151
|
Zhang Y, Dong G, Wu L, Wang X, Chen F, Xiong E, Xiong G, Zhou Y, Kong Z, Fu Y, Zeng D, Ma D, Qian Q, Yu Y. Formin protein DRT1 affects gross morphology and chloroplast relocation in rice. PLANT PHYSIOLOGY 2023; 191:280-298. [PMID: 36102807 PMCID: PMC9806613 DOI: 10.1093/plphys/kiac427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Plant height and tiller number are two major factors determining plant architecture and yield. However, in rice (Oryza sativa), the regulatory mechanism of plant architecture remains to be elucidated. Here, we reported a recessive rice mutant presenting dwarf and reduced tillering phenotypes (drt1). Map-based cloning revealed that the phenotypes are caused by a single point mutation in DRT1, which encodes the Class I formin protein O. sativa formin homolog 13 (OsFH13), binds with F-actin, and promotes actin polymerization for microfilament organization. DRT1 protein localized on the plasma membrane (PM) and chloroplast (CP) outer envelope. DRT1 interacted with rice phototropin 2 (OsPHOT2), and the interaction was interrupted in drt1. Upon blue light stimulus, PM localized DRT1 and OsPHOT2 were translocated onto the CP membrane. Moreover, deficiency of DRT1 reduced OsPHOT2 internalization and OsPHOT2-mediated CP relocation. Our study suggests that rice formin protein DRT1/OsFH13 is necessary for plant morphology and CP relocation by modulating the actin-associated cytoskeleton network.
Collapse
Affiliation(s)
- Yanli Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Guojun Dong
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Limin Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Xuewen Wang
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, 30601, USA
| | - Fei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Erhui Xiong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Guosheng Xiong
- Institute of Agricultural Genomics, Chinese Academy of Agricultural Sciences, Shenzhen, 100018, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou, 310006, China
| | - Yanchun Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036, China
| |
Collapse
|
152
|
Bae Y, Lim CW, Lee SC. Pepper stress-associated protein 14 is a substrate of CaSnRK2.6 that positively modulates abscisic acid-dependent osmotic stress responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:357-374. [PMID: 36458345 DOI: 10.1111/tpj.16052] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The phytohormone abscisic acid (ABA) plays a prominent role in various abiotic stress responses of plants. In the ABA-dependent osmotic stress response, SnRK2.6, one of the subclass III SnRK2 kinases, has been identified as playing a key role by phosphorylating and activating downstream genes. Although several modulatory proteins have been reported to be phosphorylated by SnRK2.6, the identities of the full spectrum of downstream targets have yet to be sufficiently established. In this study, we identified CaSAP14, a stress-associated protein in pepper (Capsicum annuum), as a downstream target of CaSnRK2.6. We elucidated the physical interaction between SnRK2.6 and CaSAP14, both in vitro and in vivo, and accordingly identified a C-terminal C2H2-type zinc finger domain of CaSAP14 as being important for their interaction. CaSAP14-silenced pepper plants showed dehydration- and high salt-sensitive phenotypes, whereas overexpression of CaSAP14 in Arabidopsis conferred tolerance to dehydration, high salinity, and mannitol treatment, with plants showing ABA-hypersensitive phenotypes. Furthermore, an in-gel kinase assay revealed that CaSnRK2.6 phosphorylates CaSAP14 in response to exogenous ABA, dehydration, and high-salinity stress. Collectively, these findings suggest that CaSAP14 is a direct substrate of CaSnRK2.6 and positively modulates dehydration- and high salinity-induced osmotic stress responses.
Collapse
Affiliation(s)
- Yeongil Bae
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul, 06974, South Korea
| |
Collapse
|
153
|
Xu W, Ren H, Qi X, Zhang S, Yu Z, Xie J. Conserved hierarchical gene regulatory networks for drought and cold stress response in Myrica rubra. FRONTIERS IN PLANT SCIENCE 2023; 14:1155504. [PMID: 37123838 PMCID: PMC10140524 DOI: 10.3389/fpls.2023.1155504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Stress response in plant is regulated by a large number of genes co-operating in diverse networks that serve multiple adaptive process. To understand how gene regulatory networks (GRNs) modulating abiotic stress responses, we compare the GRNs underlying drought and cold stresses using samples collected at 4 or 6 h intervals within 48 h in Chinese bayberry (Myrica rubra). We detected 7,583 and 8,840 differentially expressed genes (DEGs) under drought and cold stress respectively, which might be responsive to environmental stresses. Drought- and cold-responsive GRNs, which have been built according to the timing of transcription under both abiotic stresses, have a conserved trans-regulator and a common regulatory network. In both GRNs, basic helix-loop-helix family transcription factor (bHLH) serve as central nodes. MrbHLHp10 transcripts exhibited continuous increase in the two abiotic stresses and acts upstream regulator of ASCORBATE PEROXIDASE (APX) gene. To examine the potential biological functions of MrbHLH10, we generated a transgenic Arabidopsis plant that constitutively overexpresses the MrbHLH10 gene. Compared to wild-type (WT) plants, overexpressing transgenic Arabidopsis plants maintained higher APX activity and biomass accumulation under drought and cold stress. Consistently, RNAi plants had elevated susceptibility to both stresses. Taken together, these results suggested that MrbHLH10 mitigates abiotic stresses through the modulation of ROS scavenging.
Collapse
Affiliation(s)
- Weijie Xu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haiying Ren
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Hangzhou, China
- Xianghu Lab., Hangzhou, China
- *Correspondence: Haiying Ren, ; Jianbo Xie,
| | - Xingjiang Qi
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Hangzhou, China
- Xianghu Lab., Hangzhou, China
| | - Shuwen Zhang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Hangzhou, China
| | - Zheping Yu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-Products, Institute of Horticulture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Hangzhou, China
| | - Jianbo Xie
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
- *Correspondence: Haiying Ren, ; Jianbo Xie,
| |
Collapse
|
154
|
Diwan D, Pajerowska-Mukhtar KM. Preparation and Utilization of a Versatile GFP-Protein Trap-Like System for Protein Complex Immunoprecipitation in Plants. Methods Mol Biol 2023; 2690:59-68. [PMID: 37450136 DOI: 10.1007/978-1-0716-3327-4_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Protein complex immunoprecipitation (co-IP) is an in vitro technique used to study protein-protein interaction between two or more proteins. This method relies on affinity purification of recombinant epitope-tagged proteins followed by western blotting detection using tag-specific antibodies for the confirmation of positive interaction. The traditional co-IP method relies on the use of porous beaded support with immobilized antibodies to precipitate protein complexes. However, this method is time-consuming, labor-intensive, and provides lower reproducibility and yield of protein complexes. Here, we describe the implementation of magnetic beads and high-affinity anti-green fluorescent protein (GFP) antibodies to develop an in vitro GFP-protein trap-like system. This highly reproducible system utilizes a combination of small sample size, versatile lysis buffer, and lower amounts of magnetic beads to obtain protein complexes and aggregates that are compatible with functional assays, Western blotting, and mass spectrometry. In addition to protein-protein interactions, this versatile method can be employed to study protein-nucleic acid interactions. This protocol also highlights troubleshooting and includes recommendations to optimize its application.
Collapse
Affiliation(s)
- Danish Diwan
- Department of Biology, University of Alabama, Birmingham, AL, USA
| | | |
Collapse
|
155
|
The V2 Protein from the Geminivirus Tomato Yellow Leaf Curl Virus Largely Associates to the Endoplasmic Reticulum and Promotes the Accumulation of the Viral C4 Protein in a Silencing Suppression-Independent Manner. Viruses 2022; 14:v14122804. [PMID: 36560808 PMCID: PMC9784378 DOI: 10.3390/v14122804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/30/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Viruses are strict intracellular parasites that rely on the proteins encoded in their genomes for the effective manipulation of the infected cell that ultimately enables a successful infection. Viral proteins have to be produced during the cell invasion and takeover in sufficient amounts and in a timely manner. Silencing suppressor proteins evolved by plant viruses can boost the production of viral proteins; although, additional mechanisms for the regulation of viral protein production likely exist. The strongest silencing suppressor encoded by the geminivirus tomato yellow leaf curl virus (TYLCV) is V2: V2 suppresses both post-transcriptional and transcriptional gene silencing (PTGS and TGS), activities that are associated with its localization in punctate cytoplasmic structures and in the nucleus, respectively. However, V2 has been previously described to largely localize in the endoplasmic reticulum (ER), although the biological relevance of this distribution remains mysterious. Here, we confirm the association of V2 to the ER in Nicotiana benthamiana and assess the silencing suppression activity-independent impact of V2 on protein accumulation. Our results indicate that V2 has no obvious influence on the localization of ER-synthesized receptor-like kinases (RLKs) or ER quality control (ERQC)/ER-associated degradation (ERAD), but dramatically enhances the accumulation of the viral C4 protein, which is co-translationally myristoylated, possibly in proximity to the ER. By using the previously described V2C84S/86S mutant, in which the silencing suppression activity is abolished, we uncouple RNA silencing from the observed effect. Therefore, this work uncovers a novel function of V2, independent of its capacity to suppress silencing, in the promotion of the accumulation of another crucial viral protein.
Collapse
|
156
|
Schulze S, Yu L, Hua C, Zhang L, Kolb D, Weber H, Ehinger A, Saile SC, Stahl M, Franz-Wachtel M, Li L, El Kasmi F, Nürnberger T, Cevik V, Kemmerling B. The Arabidopsis TIR-NBS-LRR protein CSA1 guards BAK1-BIR3 homeostasis and mediates convergence of pattern- and effector-induced immune responses. Cell Host Microbe 2022; 30:1717-1731.e6. [PMID: 36446350 DOI: 10.1016/j.chom.2022.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/14/2022] [Accepted: 11/02/2022] [Indexed: 11/30/2022]
Abstract
Arabidopsis BAK1/SERK3, a co-receptor of leucine-rich repeat pattern recognition receptors (PRRs), mediates pattern-triggered immunity (PTI). Genetic inactivation of BAK1 or BAK1-interacting receptor-like kinases (BIRs) causes cell death, but the direct mechanisms leading to such deregulation remains unclear. Here, we found that the TIR-NBS-LRR protein CONSTITUTIVE SHADE AVOIDANCE 1 (CSA1) physically interacts with BIR3, but not with BAK1. CSA1 mediates cell death in bak1-4 and bak1-4 bir3-2 mutants via components of effector-triggered immunity-(ETI) pathways. Effector HopB1-mediated perturbation of BAK1 also results in CSA1-dependent cell death. Likewise, microbial pattern pg23-induced cell death, but not PTI responses, requires CSA1. Thus, we show that CSA1 guards BIR3 BAK1 homeostasis and integrates pattern- and effector-mediated cell death pathways downstream of BAK1. De-repression of CSA1 in the absence of intact BAK1 and BIR3 triggers ETI cell death. This suggests that PTI and ETI pathways are activated downstream of BAK1 for efficient plant immunity.
Collapse
Affiliation(s)
- Sarina Schulze
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Liping Yu
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Chenlei Hua
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Lisha Zhang
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Dagmar Kolb
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Hannah Weber
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Alexandra Ehinger
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Svenja C Saile
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Mark Stahl
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Mirita Franz-Wachtel
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, 72076 Tübingen, Germany
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Farid El Kasmi
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Thorsten Nürnberger
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany; Department of Biochemistry, University of Johannesburg, Johannesburg 2001, South Africa
| | - Volkan Cevik
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath BA2 7AY, UK
| | - Birgit Kemmerling
- ZMBP Center for Plant Molecular Biology, University of Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
157
|
Shoji T, Saito K. A Jasmonate-Responsive ERF Transcription Factor Regulates Steroidal Glycoalkaloid Biosynthesis Genes in Eggplant. PLANTS (BASEL, SWITZERLAND) 2022; 11:3336. [PMID: 36501375 PMCID: PMC9736504 DOI: 10.3390/plants11233336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Steroidal glycoalkaloids (SGAs) are a class of cholesterol-derived anti-nutritional defense compound that are produced in species of the genus Solanum, such as tomato (S. lycopersicum), potato (S. tuberosum), and eggplant (S. melongena). However, the regulation of defense-related metabolites in eggplant remains underexplored. In tomato and potato, the JASMONATE-RESPONSIVE ETHYLENE RESPONSE FACTOR 4 (JRE4) transcription factor positively regulates a large number of genes involved in SGA biosynthesis. Here, we report that the overexpression of eggplant JRE4 (SmJRE4) induces numerous metabolic genes involved in SGA biosynthesis in leaves. We demonstrate the jasmonate-dependent induction of SmJRE4 and its downstream metabolic genes and show that ethylene treatment attenuates this induction. Our findings thus provide molecular insights into SGA biosynthesis and its regulation in this major crop.
Collapse
|
158
|
Gulyás Z, Moncsek B, Hamow KÁ, Stráner P, Tolnai Z, Badics E, Incze N, Darkó É, Nagy V, Perczel A, Kovács L, Soós V. D27-LIKE1 isomerase has a preference towards trans/cis and cis/cis conversions of carotenoids in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1377-1395. [PMID: 36308414 DOI: 10.1111/tpj.16017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Carotenoids contribute to a variety of physiological processes in plants, functioning also as biosynthesis precursors of ABA and strigolactones (SLs). SL biosynthesis starts with the enzymatic conversion of all-trans-β-carotene to 9-cis-β-carotene by the DWARF27 (D27) isomerase. In Arabidopsis, D27 has two closely related paralogs, D27-LIKE1 and D27-LIKE2, which were predicted to be β-carotene-isomerases. In the present study, we characterised D27-LIKE1 and identified some key aspects of its physiological and enzymatic functions in Arabidopsis. d27-like1-1 mutant does not display any strigolactone-deficient traits and exhibits a substantially higher 9-cis-violaxanthin content, which is accompanied by a slightly higher ABA level. In vitro feeding assays with recombinant D27-LIKE1 revealed that the protein exhibits affinity to all β-carotene isoforms but with an exclusive preference towards trans/cis conversions and the interconversion between 9-cis, 13-cis and 15-cis-β-carotene forms, and accepts zeaxanthin and violaxanthin as substrates. Finally, we present evidence showing that D27-LIKE1 mRNA is phloem mobile and D27-LIKE1 is an ancient isomerase with a long evolutionary history. In summary, we demonstrate that D27-LIKE1 is a carotenoid isomerase with multi-substrate specificity and has a characteristic preference towards the catalysation of cis/cis interconversion of carotenoids. Therefore, D27-LIKE1 is a potential regulator of carotenoid cis pools and, eventually, SL and ABA biosynthesis pathways.
Collapse
Affiliation(s)
- Zsolt Gulyás
- Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Blanka Moncsek
- Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, Martonvásár, 2462, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter s. 1/A, Budapest, 1117, Hungary
| | - Kamirán Áron Hamow
- Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Pál Stráner
- Laboratory of Structural Chemistry and Biology, MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter s. 1/A, Budapest, 1117, Hungary
| | - Zoltán Tolnai
- Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Eszter Badics
- Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, Martonvásár, 2462, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter s. 1/A, Budapest, 1117, Hungary
| | - Norbert Incze
- Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, Martonvásár, 2462, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter s. 1/A, Budapest, 1117, Hungary
| | - Éva Darkó
- Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, Martonvásár, 2462, Hungary
| | - Valéria Nagy
- Biological Research Centre, ELKH, 6726, Szeged, Temesvári krt. 62, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, MTA-ELTE Protein Modelling Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter s. 1/A, Budapest, 1117, Hungary
| | - László Kovács
- Biological Research Centre, ELKH, 6726, Szeged, Temesvári krt. 62, Hungary
| | - Vilmos Soós
- Agricultural Institute, Centre for Agricultural Research, ELKH, Brunszvik u. 2, Martonvásár, 2462, Hungary
| |
Collapse
|
159
|
Wang W, Shinwari KI, Zhang H, Zhang H, Dong L, He F, Zheng L. The bHLH Transcription Factor OsbHLH057 Regulates Iron Homeostasis in Rice. Int J Mol Sci 2022; 23:ijms232314869. [PMID: 36499202 PMCID: PMC9739582 DOI: 10.3390/ijms232314869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/20/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Many basic Helix-Loop-Helix (bHLH) transcription factors precisely regulate the expression of Fe uptake and translocation genes to control iron (Fe) homeostasis, as both Fe deficiency and toxicity impair plant growth and development. In rice, three clade IVc bHLH transcription factors have been characterised as positively regulating Fe-deficiency response genes. However, the function of OsbHLH057, another clade IVc bHLH transcription factor, in regulating Fe homeostasis is unknown. Here, we report that OsbHLH057 is involved in regulating Fe homeostasis in rice. OsbHLH057 was highly expressed in the leaf blades and lowly expressed in the roots; it was mainly expressed in the stele and highly expressed in the lateral roots. In addition, OsbHLH057 was slightly induced by Fe deficiency in the shoots on the first day but was not affected by Fe availability in the roots. OsbHLH057 localised in the nucleus exhibited transcriptional activation activity. Under Fe-sufficient conditions, OsbHLH057 knockout or overexpression lines increased or decreased the shoot Fe concentration and the expression of several Fe homeostasis-related genes, respectively. Under Fe-deficient conditions, plants with an OsbHLH057 mutation showed susceptibility to Fe deficiency and accumulated lower Fe concentrations in the shoot compared with the wild type. Unexpectedly, the OsbHLH057-overexpressing lines had reduced tolerance to Fe deficiency. These results indicate that OsbHLH057 plays a positive role in regulating Fe homeostasis, at least under Fe-sufficient conditions.
Collapse
|
160
|
Wang Y, Le BH, Wang J, You C, Zhao Y, Galli M, Xu Y, Gallavotti A, Eulgem T, Mo B, Chen X. ZMP recruits and excludes Pol IV-mediated DNA methylation in a site-specific manner. SCIENCE ADVANCES 2022; 8:eadc9454. [PMID: 36427317 PMCID: PMC9699677 DOI: 10.1126/sciadv.adc9454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
In plants, RNA-directed DNA methylation (RdDM) uses small interfering RNAs (siRNAs) to target transposable elements (TEs) but usually avoids genes. RNA polymerase IV (Pol IV) shapes the landscape of DNA methylation through its pivotal role in siRNA biogenesis. However, how Pol IV is recruited to specific loci, particularly how it avoids genes, is poorly understood. Here, we identified a Pol IV-interacting protein, ZMP (zinc finger, mouse double-minute/switching complex B, Plus-3 protein), which exerts a dual role in regulating siRNA biogenesis and DNA methylation at specific genomic regions. ZMP is required for siRNA biogenesis at some pericentromeric regions and prevents Pol IV from targeting a subset of TEs and genes at euchromatic loci. As a chromatin-associated protein, ZMP prefers regions with depleted histone H3 lysine 4 (H3K4) methylation abutted by regions with H3K4 methylation, probably monitoring changes in local H3K4 methylation status to regulate Pol IV's chromatin occupancy. Our findings uncover a mechanism governing the specificity of RdDM.
Collapse
Affiliation(s)
- Yuan Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, 518060 Shenzhen, China
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Brandon H. Le
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Jianqiang Wang
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai 200438, China
| | - Yonghui Zhao
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Ye Xu
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ 08854-8020, USA
| | - Thomas Eulgem
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Institute of Innovative Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, 518060 Shenzhen, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
- Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
161
|
Specification of female germline by microRNA orchestrated auxin signaling in Arabidopsis. Nat Commun 2022; 13:6960. [PMID: 36379956 PMCID: PMC9666636 DOI: 10.1038/s41467-022-34723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/03/2022] [Indexed: 11/17/2022] Open
Abstract
Germline determination is essential for species survival and evolution in multicellular organisms. In most flowering plants, formation of the female germline is initiated with specification of one megaspore mother cell (MMC) in each ovule; however, the molecular mechanism underlying this key event remains unclear. Here we report that spatially restricted auxin signaling promotes MMC fate in Arabidopsis. Our results show that the microRNA160 (miR160) targeted gene ARF17 (AUXIN RESPONSE FACTOR17) is required for promoting MMC specification by genetically interacting with the SPL/NZZ (SPOROCYTELESS/NOZZLE) gene. Alterations of auxin signaling cause formation of supernumerary MMCs in an ARF17- and SPL/NZZ-dependent manner. Furthermore, miR160 and ARF17 are indispensable for attaining a normal auxin maximum at the ovule apex via modulating the expression domain of PIN1 (PIN-FORMED1) auxin transporter. Our findings elucidate the mechanism by which auxin signaling promotes the acquisition of female germline cell fate in plants.
Collapse
|
162
|
Aux/IAA11 Is Required for UV-AB Tolerance and Auxin Sensing in Arabidopsis thaliana. Int J Mol Sci 2022; 23:ijms232113386. [PMID: 36362171 PMCID: PMC9655273 DOI: 10.3390/ijms232113386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
In order to survive, plants have, over the course of their evolution, developed sophisticated acclimation and defense strategies governed by complex molecular and physiological, and cellular and extracellular, signaling pathways. They are also able to respond to various stimuli in the form of tropisms; for example, phototropism or gravitropism. All of these retrograde and anterograde signaling pathways are controlled and regulated by waves of reactive oxygen species (ROS), electrical signals, calcium, and hormones, e.g., auxins. Auxins are key phytohormones involved in the regulation of plant growth and development. Acclimation responses, which include programmed cell death induction, require precise auxin perception. However, our knowledge of these pathways is limited. The Aux/IAA family of transcriptional corepressors inhibits the growth of the plant under stress conditions, in order to maintain the balance between development and acclimation responses. In this work, we demonstrate the Aux/IAA11 involvement in auxin sensing, survival, and acclimation to UV-AB, and in carrying out photosynthesis under inhibitory conditions. The tested iaa11 mutants were more susceptible to UV-AB, photosynthetic electron transport (PET) inhibitor, and synthetic endogenous auxin. Among the tested conditions, Aux/IAA11 was not repressed by excess light stress, exclusively among its phylogenetic clade. Repression of transcription by Aux/IAA11 could be important for the inhibition of ROS formation or efficiency of ROS scavenging. We also hypothesize that the demonstrated differences in the subcellular localization of the two Aux/IAA11 protein variants might indicate their regulation by alternative splicing. Our results suggest that Aux/IAA11 plays a specific role in chloroplast retrograde signaling, since it is not repressed by high (excess) light stress, exclusively among its phylogenetic clade.
Collapse
|
163
|
Rajput R, Naik J, Stracke R, Pandey A. Interplay between R2R3 MYB-type activators and repressors regulates proanthocyanidin biosynthesis in banana (Musa acuminata). THE NEW PHYTOLOGIST 2022; 236:1108-1127. [PMID: 35842782 DOI: 10.1111/nph.18382] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Proanthocyanidins are oligomeric flavonoids that promote plant disease resistance and benefit human health. Banana is one of the world's most extensively farmed crops and its fruit pulp contain proanthocyanidins. However, the transcriptional regulatory network that fine tunes proanthocyanidin biosynthesis in banana remains poorly understood. We characterised two proanthocyanidin-specific R2R3 MYB activators (MaMYBPA1-MaMYBPA2) and four repressors (MaMYBPR1-MaMYBPR4) to elucidate the mechanisms underlying the transcriptional regulation of proanthocyanidin biosynthesis in banana. Heterologous expression of MaMYBPA1 and MaMYBPA2 partially complemented the Arabidopsis thaliana proanthocyanidin-deficient transparent testa2 mutant. MaMYBPA1 and MaMYBPA2 interacted physically with MaMYCs to transactivate anthocyanin synthase, leucoanthocyanidin reductase, and anthocyanidin reductase genes in vitro and form functional MYB-bHLH-WD Repeat (MBW) complexes with MaTTG1 to transactivate these promoters in vivo. Overexpression of MaMYBPAs alone or with MaMYC in banana fruits induced proanthocyanidin accumulation and transcription of proanthocyanidin biosynthesis-related genes. MaMYBPR repressors are also shown to interact with MaMYCs forming repressing MBW complexes, and diminished proanthocyanidin accumulation. Interestingly overexpression of MaMYBPA induces the expression of MaMYBPR, indicating an agile regulation of proanthocyanidin biosynthesis through the formation of competitive MBW complexes. Our results reveal regulatory modules of R2R3 MYB- that fine tune proanthocyanidin biosynthesis and offer possible targets for genetic manipulation for nutritional improvement of banana.
Collapse
Affiliation(s)
- Ruchika Rajput
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jogindra Naik
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ralf Stracke
- Chair of Genetics and Genomics of Plants, Bielefeld University, 33615, Bielefeld, Germany
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
164
|
Yoshihisa A, Yoshimura S, Shimizu M, Sato S, Matsuno S, Mine A, Yamaguchi K, Kawasaki T. The rice OsERF101 transcription factor regulates the NLR Xa1-mediated immunity induced by perception of TAL effectors. THE NEW PHYTOLOGIST 2022; 236:1441-1454. [PMID: 36050871 PMCID: PMC9826229 DOI: 10.1111/nph.18439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Plant nucleotide-binding leucine-rich repeat receptors (NLRs) initiate immune responses by recognizing pathogen effectors. The rice gene Xa1 encodes an NLR with an N-terminal BED domain, and recognizes transcription activator-like (TAL) effectors of Xanthomonas oryzae pv oryzae (Xoo). Our goal here was to elucidate the molecular mechanisms controlling the induction of immunity by Xa1. We used yeast two-hybrid assays to screen for host factors that interact with Xa1 and identified the AP2/ERF-type transcription factor OsERF101/OsRAP2.6. Molecular complementation assays were used to confirm the interactions among Xa1, OsERF101 and two TAL effectors. We created OsERF101-overexpressing and knockout mutant lines in rice and identified genes differentially regulated in these lines, many of which are predicted to be involved in the regulation of response to stimulus. Xa1 interacts in the nucleus with the TAL effectors and OsERF101 via the BED domain. Unexpectedly, both the overexpression and the knockout lines of OsERF101 displayed Xa1-dependent, enhanced resistance to an incompatible Xoo strain. Different sets of genes were up- or downregulated in the overexpression and knockout lines. Our results indicate that OsERF101 regulates the recognition of TAL effectors by Xa1, and functions as a positive regulator of Xa1-mediated immunity. Furthermore, an additional Xa1-mediated immune pathway is negatively regulated by OsERF101.
Collapse
Affiliation(s)
- Ayaka Yoshihisa
- Department of Advanced Bioscience, Graduate School of AgricultureKindai UniversityNakamachiNara631‐8505Japan
| | - Satomi Yoshimura
- Department of Advanced Bioscience, Graduate School of AgricultureKindai UniversityNakamachiNara631‐8505Japan
| | - Motoki Shimizu
- Division of Genomics and BreedingIwate Biotechnology Research CenterIwate024‐0003Japan
| | - Sayaka Sato
- Department of Advanced Bioscience, Graduate School of AgricultureKindai UniversityNakamachiNara631‐8505Japan
| | - Shogo Matsuno
- Department of Advanced Bioscience, Graduate School of AgricultureKindai UniversityNakamachiNara631‐8505Japan
| | - Akira Mine
- Graduate School of AgricultureKyoto UniversityKyoto606‐8502Japan
| | - Koji Yamaguchi
- Department of Advanced Bioscience, Graduate School of AgricultureKindai UniversityNakamachiNara631‐8505Japan
| | - Tsutomu Kawasaki
- Department of Advanced Bioscience, Graduate School of AgricultureKindai UniversityNakamachiNara631‐8505Japan
- Agricultural Technology and Innovation Research InstituteKindai UniversityNakamachiNara631‐8505Japan
| |
Collapse
|
165
|
Kalachova T, Škrabálková E, Pateyron S, Soubigou-Taconnat L, Djafi N, Collin S, Sekereš J, Burketová L, Potocký M, Pejchar P, Ruelland E. DIACYLGLYCEROL KINASE 5 participates in flagellin-induced signaling in Arabidopsis. PLANT PHYSIOLOGY 2022; 190:1978-1996. [PMID: 35900211 PMCID: PMC9614507 DOI: 10.1093/plphys/kiac354] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/18/2022] [Indexed: 05/04/2023]
Abstract
Flagellin perception is a keystone of pattern-triggered immunity in plants. The recognition of this protein by a plasma membrane (PM) receptor complex is the beginning of a signaling cascade that includes protein phosphorylation and the production of reactive oxygen species (ROS). In both Arabidopsis (Arabidopsis thaliana) seedlings and suspension cells, we found that treatment with flg22, a peptide corresponding to the most conserved domain of bacterial flagellin, caused a rapid and transient decrease in the level of phosphatidylinositol (PI) 4,5-bisphosphate along with a parallel increase in phosphatidic acid (PA). In suspension cells, inhibitors of either phosphoinositide-dependent phospholipases C (PLC) or diacylglycerol kinases (DGKs) inhibited flg22-triggered PA production and the oxidative burst. In response to flg22, receptor-like kinase-deficient fls2, bak1, and bik1 mutants (FLAGELLIN SENSITIVE 2, BRASSINOSTEROID INSENSITIVE 1-associated kinase 1, and BOTRYTIS-INDUCED KINASE 1, respectively) produced less PA than wild-type (WT) plants, whereas this response did not differ in NADPH oxidase-deficient rbohD (RESPIRATORY BURST OXIDASE HOMOLOG D) plants. Among the DGK-deficient lines tested, the dgk5.1 mutant produced less PA and less ROS after flg22 treatment compared with WT seedlings. In response to flg22, dgk5.1 plants showed lower callose accumulation and impaired resistance to Pseudomonas syringae pv. tomato DC3000 hrcC-. Transcriptomics revealed that the basal expression of defense-related genes was altered in dgk5.1 seedlings compared with the WT. A GFP-DGK5 fusion protein localized to the PM, where RBOHD and PLC2 (proteins involved in plant immunity) are also located. The role of DGK5 and its enzymatic activity in flagellin signaling and fine-tuning of early immune responses in plant-microbe interactions is discussed.
Collapse
Affiliation(s)
- Tetiana Kalachova
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Eliška Škrabálková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
- Department of Experimental Plant Biology, Charles University, Viničná 5, Prague 12844, Czech Republic
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Ludivine Soubigou-Taconnat
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Nabila Djafi
- Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Sorbonne Université, F-75005 Paris, France
| | - Sylvie Collin
- Laboratoire de Physiologie Cellulaire et Moléculaire des Plantes, Sorbonne Université, F-75005 Paris, France
| | - Juraj Sekereš
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Lenka Burketová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 16502 Prague, Czech Republic
| | | | | |
Collapse
|
166
|
Ge S, Zhang RX, Wang YF, Sun P, Chu J, Li J, Sun P, Wang J, Hetherington AM, Liang YK. The Arabidopsis Rab protein RABC1 affects stomatal development by regulating lipid droplet dynamics. THE PLANT CELL 2022; 34:4274-4292. [PMID: 35929087 PMCID: PMC9614440 DOI: 10.1093/plcell/koac239] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 05/13/2023]
Abstract
Lipid droplets (LDs) are evolutionarily conserved organelles that serve as hubs of cellular lipid and energy metabolism in virtually all organisms. Mobilization of LDs is important in light-induced stomatal opening. However, whether and how LDs are involved in stomatal development remains unknown. We show here that Arabidopsis thaliana LIPID DROPLETS AND STOMATA 1 (LDS1)/RABC1 (At1g43890) encodes a member of the Rab GTPase family that is involved in regulating LD dynamics and stomatal morphogenesis. The expression of RABC1 is coordinated with the different phases of stomatal development. RABC1 targets to the surface of LDs in response to oleic acid application in a RABC1GEF1-dependent manner. RABC1 physically interacts with SEIPIN2/3, two orthologues of mammalian seipin, which function in the formation of LDs. Disruption of RABC1, RABC1GEF1, or SEIPIN2/3 resulted in aberrantly large LDs, severe defects in guard cell vacuole morphology, and stomatal function. In conclusion, these findings reveal an aspect of LD function and uncover a role for lipid metabolism in stomatal development in plants.
Collapse
Affiliation(s)
| | | | - Yi-Fei Wang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Pengyue Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiaheng Chu
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiao Li
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | | |
Collapse
|
167
|
Lin X, Xiao Y, Song Y, Gan C, Deng X, Wang P, Liu J, Jiang Z, Peng L, Zhou D, He X, Bian J, Zhu C, Liu B, He H, Xu J. Rice microtubule-associated protein OsMAP65-3.1, but not OsMAP65-3.2, plays a critical role in phragmoplast microtubule organization in cytokinesis. FRONTIERS IN PLANT SCIENCE 2022; 13:1030247. [PMID: 36388546 PMCID: PMC9643714 DOI: 10.3389/fpls.2022.1030247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 06/10/2023]
Abstract
In plants, MAP65 preferentially cross-links the anti-parallel microtubules (MTs) and plays an important role for cytokinesis. However, the functions of MAP65 isoforms in rice (Oryza sativa. L) are largely unknown. Here, we identified two MAP65-3 homologs in rice, OsMAP65-3.1 and OsMAP65-3.2. We found that both OsMAP65-3.1 and OsMAP65-3.2 were similar in dimerization and location to AtMAP65-3, and the expression of either rice genes driven by the AtMAP65-3 promoter suppressed the cytokinesis failure and growth defect of atmap65-3. However, OsMAP65-3.1 with native promoter also recovered the atmap65-3, but OsMAP65-3.2 with its own promoter had no effects. OsMAP65-3.1 but not OsMAP65-3.2 was actively expressed in tissues enriched with dividing cells. R1R2R3-Myb (MYB3R) transcription factors directly bound to the OsMAP65-3.1 promoter but not that of OsMAP65-3.2. Furthermore, osmap65-3.2 had no obvious phenotype, while either osmap65-3.1 or osmap65-3.1(+/-) was lethal. The eminent MTs around the daughter nuclei and cytokinesis defects were frequently observed in OsMAP65-3.1-defective plants. Taken together, our findings suggest that OsMAP65-3.1, rather than OsMAP65-3.2, plays essential roles in rice cytokinesis resulting from their differential expression which were passably directly regulated by OsMYB3Rs.
Collapse
Affiliation(s)
- Xiaoli Lin
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Yu Xiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Yongping Song
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Cong Gan
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xingguang Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Peng Wang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jialong Liu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhishu Jiang
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Limei Peng
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dahu Zhou
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Jie Xu
- Key Laboratory of Crop Physiology, Ecology, and Genetic Breeding of the Ministry of Education, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| |
Collapse
|
168
|
Arabidopsis AAR2, a conserved splicing factor in eukaryotes, acts in microRNA biogenesis. Proc Natl Acad Sci U S A 2022; 119:e2208415119. [PMID: 36191209 PMCID: PMC9565372 DOI: 10.1073/pnas.2208415119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In yeast and humans, AAR2 is involved in pre-messenger RNA (pre-mRNA) splicing through regulating U5 snRNP assembly. This study shows that Arabidopsis AAR2 promotes microRNA (miRNA) accumulation in addition to its conserved role in pre-mRNA splicing. AAR2 is associated with the microprocessor component HYL1 and promotes its dephosphorylation to produce the active form in miRNA biogenesis. The study also reveals a previously unknown role of HYL1 in causing the degradation of the primary precursors to miRNAs (pri-miRNAs) and a role of AAR2 in protecting pri-miRNAs from HYL1-depedent degradation. Taken together, our findings provide insights into the role of a conserved splicing factor in miRNA biogenesis in plants. MicroRNAs (miRNAs) play an essential role in plant growth and development, and as such, their biogenesis is fine-tuned via regulation of the core microprocessor components. Here, we report that Arabidopsis AAR2, a homolog of a U5 snRNP assembly factor in yeast and humans, not only acts in splicing but also promotes miRNA biogenesis. AAR2 interacts with the microprocessor component hyponastic leaves 1 (HYL1) in the cytoplasm, nucleus, and dicing bodies. In aar2 mutants, abundance of nonphosphorylated HYL1, the active form of HYL1, and the number of HYL1-labeled dicing bodies are reduced. Primary miRNA (pri-miRNA) accumulation is compromised despite normal promoter activities of MIR genes in aar2 mutants. RNA decay assays show that the aar2-1 mutation leads to faster degradation of pri-miRNAs in a HYL1-dependent manner, which reveals a previously unknown and negative role of HYL1 in miRNA biogenesis. Taken together, our findings reveal a dual role of AAR2 in miRNA biogenesis and pre-messenger RNA splicing.
Collapse
|
169
|
Yang X, Gavya S L, Zhou Z, Urano D, Lau OS. Abscisic acid regulates stomatal production by imprinting a SnRK2 kinase-mediated phosphocode on the master regulator SPEECHLESS. SCIENCE ADVANCES 2022; 8:eadd2063. [PMID: 36206348 PMCID: PMC9544323 DOI: 10.1126/sciadv.add2063] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/22/2022] [Indexed: 05/19/2023]
Abstract
Stomata, the epidermal pores for gas exchange between plants and the atmosphere, are the major sites of water loss. During water shortage, plants limit the formation of new stoma via the phytohormone abscisic acid (ABA) to conserve water. However, how ABA suppresses stomatal production is largely unknown. Here, we demonstrate that three core SnRK2 kinases of ABA signaling inhibit the initiation and proliferation of the stomatal precursors in Arabidopsis. We show that the SnRK2s function within the precursors and directly phosphorylate SPEECHLESS (SPCH), the master transcription factor for stomatal initiation. We identify specific SPCH residues targeted by the SnRK2s, which mediate the ABA/drought-induced suppression of SPCH and stomatal production. This SnRK2-specific SPCH phosphocode connects stomatal development with ABA/drought signals and enables the independent control of this key water conservation response. Our work also highlights how distinct signaling activities can be specifically encoded on a master regulator to modulate developmental plasticity.
Collapse
Affiliation(s)
- Xin Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - Lalitha Gavya S
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - Zimin Zhou
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - Daisuke Urano
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore 117604, Singapore
| | - On Sun Lau
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
- Corresponding author.
| |
Collapse
|
170
|
Guo L, Zhao W, Wang Y, Yang Y, Wei C, Guo J, Dai J, Hirai MY, Bao A, Yang Z, Chen H, Li Y. Heterologous biosynthesis of isobavachalcone in tobacco based on in planta screening of prenyltransferases. FRONTIERS IN PLANT SCIENCE 2022; 13:1034625. [PMID: 36275607 PMCID: PMC9582842 DOI: 10.3389/fpls.2022.1034625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Isobavachalcone (IBC) is a prenylated chalcone mainly distributed in some Fabaceae and Moraceae species. IBC exhibits a wide range of pharmacological properties, including anti-bacterial, anti-viral, anti-inflammatory, and anti-cancer activities. In this study, we attempted to construct the heterologous biosynthesis pathway of IBC in tobacco (Nicotiana tabacum). Four previously reported prenyltransferases, including GuILDT from Glycyrrhiza uralensis, HlPT1 from Humulus lupulus, and SfILDT and SfFPT from Sophora flavescens, were subjected to an in planta screening to verify their activities for the biosynthesis of IBC, by using tobacco transient expression with exogenous isoliquiritigenin as the substrate. Only SfFPT and HlPT1 could convert isoliquiritigenin to IBC, and the activity of SfFPT was higher than that of HlPT1. By co-expression of GmCHS8 and GmCHR5 from Glycine max, endogenous isoliquiritigenin was generated in tobacco leaves (21.0 μg/g dry weight). After transformation with a multigene vector carrying GmCHS8, GmCHR5, and SfFPT, de novo biosynthesis of IBC was achieved in transgenic tobacco T0 lines, in which the highest amount of IBC was 0.56 μg/g dry weight. The yield of IBC in transgenic plants was nearly equal to that in SfFPT transient expression experiments, in which substrate supplement was sufficient, indicating that low IBC yield was not attributed to the substrate supplement. Our research provided a prospect to produce valuable prenylflavonoids using plant-based metabolic engineering.
Collapse
Affiliation(s)
- Lirong Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Wei Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Yu Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Cuimei Wei
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jian Guo
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jianye Dai
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | | | - Aike Bao
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhigang Yang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Haijuan Chen
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau, Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| | - Yimeng Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau, Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, China
| |
Collapse
|
171
|
Deubiquitinating enzymes UBP12 and UBP13 regulate carbon/nitrogen-nutrient stress responses by interacting with the membrane-localized ubiquitin ligase ATL31 in Arabidopsis. Biochem Biophys Res Commun 2022; 636:55-61. [DOI: 10.1016/j.bbrc.2022.10.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022]
|
172
|
Förderer A, Li E, Lawson AW, Deng YN, Sun Y, Logemann E, Zhang X, Wen J, Han Z, Chang J, Chen Y, Schulze-Lefert P, Chai J. A wheat resistosome defines common principles of immune receptor channels. Nature 2022; 610:532-539. [PMID: 36163289 PMCID: PMC9581773 DOI: 10.1038/s41586-022-05231-w] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/11/2022] [Indexed: 01/17/2023]
Abstract
Plant intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) detect pathogen effectors to trigger immune responses1. Indirect recognition of a pathogen effector by the dicotyledonous Arabidopsis thaliana coiled-coil domain containing NLR (CNL) ZAR1 induces the formation of a large hetero-oligomeric protein complex, termed the ZAR1 resistosome, which functions as a calcium channel required for ZAR1-mediated immunity2-4. Whether the resistosome and channel activities are conserved among plant CNLs remains unknown. Here we report the cryo-electron microscopy structure of the wheat CNL Sr355 in complex with the effector AvrSr356 of the wheat stem rust pathogen. Direct effector binding to the leucine-rich repeats of Sr35 results in the formation of a pentameric Sr35-AvrSr35 complex, which we term the Sr35 resistosome. Wheat Sr35 and Arabidopsis ZAR1 resistosomes bear striking structural similarities, including an arginine cluster in the leucine-rich repeats domain not previously recognized as conserved, which co-occurs and forms intramolecular interactions with the 'EDVID' motif in the coiled-coil domain. Electrophysiological measurements show that the Sr35 resistosome exhibits non-selective cation channel activity. These structural insights allowed us to generate new variants of closely related wheat and barley orphan NLRs that recognize AvrSr35. Our data support the evolutionary conservation of CNL resistosomes in plants and demonstrate proof of principle for structure-based engineering of NLRs for crop improvement.
Collapse
Affiliation(s)
- Alexander Förderer
- Institute of Biochemistry, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ertong Li
- Institute of Biochemistry, University of Cologne, Cologne, Germany
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Aaron W Lawson
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Ya-Nan Deng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yue Sun
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Elke Logemann
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Xiaoxiao Zhang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jie Wen
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Zhifu Han
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Junbiao Chang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Henan Normal University, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yuhang Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China; Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | | | - Jijie Chai
- Institute of Biochemistry, University of Cologne, Cologne, Germany.
- Max Planck Institute for Plant Breeding Research, Cologne, Germany.
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
173
|
Wang L, Tan H, Medina-Puche L, Wu M, Garnelo Gomez B, Gao M, Shi C, Jimenez-Gongora T, Fan P, Ding X, Zhang D, Ding Y, Rosas-Díaz T, Liu Y, Aguilar E, Fu X, Lozano-Durán R. Combinatorial interactions between viral proteins expand the potential functional landscape of the tomato yellow leaf curl virus proteome. PLoS Pathog 2022; 18:e1010909. [PMID: 36256684 PMCID: PMC9633003 DOI: 10.1371/journal.ppat.1010909] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 11/03/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022] Open
Abstract
Viruses manipulate the cells they infect in order to replicate and spread. Due to strict size restrictions, viral genomes have reduced genetic space; how the action of the limited number of viral proteins results in the cell reprogramming observed during the infection is a long-standing question. Here, we explore the hypothesis that combinatorial interactions may expand the functional landscape of the viral proteome. We show that the proteins encoded by a plant-infecting DNA virus, the geminivirus tomato yellow leaf curl virus (TYLCV), physically associate with one another in an intricate network, as detected by a number of protein-protein interaction techniques. Importantly, our results indicate that intra-viral protein-protein interactions can modify the subcellular localization of the proteins involved. Using one particular pairwise interaction, that between the virus-encoded C2 and CP proteins, as proof-of-concept, we demonstrate that the combination of viral proteins leads to novel transcriptional effects on the host cell. Taken together, our results underscore the importance of studying viral protein function in the context of the infection. We propose a model in which viral proteins might have evolved to extensively interact with other elements within the viral proteome, enlarging the potential functional landscape available to the pathogen. Viruses are obligate intracellular parasites that depend on the molecular machinery of their host cell to complete their life cycle. For this purpose, viruses co-opt host processes, modulating or redirecting them. Most viruses have small genomes, and hence limited coding capacity. During the viral invasion, virus-encoded proteins will be produced in large amounts and coexist in the infected cell, which enables physical or functional interactions among viral proteins, potentially expanding the virus-host functional interface by increasing the number of potential targets in the host cell and/or synergistically modulating the cellular environment. Examples of interactions between viral proteins have been recently documented for both animal and plant viruses; however, the hypothesis that viral proteins might have a combinatorial effect, which would lead to the acquisition of novel functions, lacks systematic experimental validation. Here, we use the geminivirus tomato yellow leaf curl virus (TYLCV), a plant-infecting virus with reduced proteome and causing devastating diseases in crops, to test the idea that combinatorial interactions between viral proteins exist and might underlie an expansion of the functional landscape of the viral proteome. Our results indicate that viral proteins prevalently interact with one another in the context of the infection, which can result in the acquisition of novel functions.
Collapse
Affiliation(s)
- Liping Wang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Huang Tan
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Laura Medina-Puche
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Mengshi Wu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Borja Garnelo Gomez
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Man Gao
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chaonan Shi
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Tamara Jimenez-Gongora
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Pengfei Fan
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xue Ding
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Dan Zhang
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Yi Ding
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Tábata Rosas-Díaz
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yujing Liu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Emmanuel Aguilar
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM-UMA-CSIC), Area de Genética, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, Málaga, Spain
| | - Xing Fu
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
- * E-mail:
| |
Collapse
|
174
|
Trutzenberg A, Engelhardt S, Weiß L, Hückelhoven R. Barley guanine nucleotide exchange factor HvGEF14 is an activator of the susceptibility factor HvRACB and supports host cell entry by Blumeria graminis f. sp. hordei. MOLECULAR PLANT PATHOLOGY 2022; 23:1524-1537. [PMID: 35849420 PMCID: PMC9452760 DOI: 10.1111/mpp.13246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
In barley (Hordeum vulgare), signalling rat sarcoma homolog (RHO) of plants guanosine triphosphate hydrolases (ROP GTPases) support the penetration success of Blumeria graminis f. sp. hordei but little is known about ROP activation. Guanine nucleotide exchange factors (GEFs) facilitate the exchange of ROP-bound GDP for GTP and thereby turn ROPs into a signalling-activated ROP-GTP state. Plants possess a unique class of GEFs harbouring a plant-specific ROP nucleotide exchanger domain (PRONE). Here, we performed phylogenetic analyses and annotated barley PRONE-GEFs. The leaf epidermal-expressed PRONE-GEF HvGEF14 undergoes a transcriptional down-regulation on inoculation with B. graminis f. sp. hordei and directly interacts with the ROP GTPase and susceptibility factor HvRACB in yeast and in planta. Overexpression of activated HvRACB or of HvGEF14 led to the recruitment of ROP downstream interactor HvRIC171 to the cell periphery. HvGEF14 further supported direct interaction of HvRACB with a HvRACB-GTP-binding CRIB (Cdc42/Rac Interactive Binding motif) domain-containing HvRIC171 truncation. Finally, the overexpression of HvGEF14 caused enhanced susceptibility to fungal entry, while HvGEF14 RNAi provoked a trend to more penetration resistance. HvGEF14 might therefore play a role in the activation of HvRACB in barley epidermal cells during fungal penetration.
Collapse
Affiliation(s)
- Adriana Trutzenberg
- Chair of Phytopathology, School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| | - Stefan Engelhardt
- Chair of Phytopathology, School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| | - Lukas Weiß
- Chair of Phytopathology, School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| | - Ralph Hückelhoven
- Chair of Phytopathology, School of Life SciencesTechnical University of MunichFreising‐WeihenstephanGermany
| |
Collapse
|
175
|
Suppression of Chitin-Triggered Immunity by a New Fungal Chitin-Binding Effector Resulting from Alternative Splicing of a Chitin Deacetylase Gene. J Fungi (Basel) 2022; 8:jof8101022. [PMID: 36294587 PMCID: PMC9605236 DOI: 10.3390/jof8101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
Phytopathogenic fungi have evolved mechanisms to manipulate plant defences, such as chitin-triggered immunity, a plant defensive response based on the recognition of chitin oligomers by plant-specific receptors. To cope with chitin resistance, fungal pathogens have developed different strategies to prevent chitin recognition, such as binding, breaking, or modifying immunogenic oligomers. In powdery mildew fungi, the activity of chitin deacetylase (CDA) is crucial for this purpose, since silencing of the CDA gene leads to a rapid activation of chitin signalling and the subsequent suppression of fungal growth. In this work, we have identified an unusually short CDA transcript in Podosphaera xanthii, the cucurbit powdery mildew pathogen. This transcript, designated PxCDA3, appears to encode a truncated version of CDA resulting from an alternative splicing of the PxCDA gene, which lacked most of the chitin deacetylase activity domain but retained the carbohydrate-binding module. Experiments with the recombinant protein showed its ability to bind to chitin oligomers and prevent the activation of chitin signalling. Furthermore, the use of fluorescent fusion proteins allowed its localization in plant papillae at pathogen penetration sites. Our results suggest the occurrence of a new fungal chitin-binding effector, designated CHBE, involved in the manipulation of chitin-triggered immunity in powdery mildew fungi.
Collapse
|
176
|
Sakamoto S, Nomura T, Kato Y, Ogita S, Mitsuda N. High-transcriptional activation ability of bamboo SECONDARY WALL NAC transcription factors is derived from C-terminal domain. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:229-240. [PMID: 36349231 PMCID: PMC9592943 DOI: 10.5511/plantbiotechnology.22.0501a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/01/2022] [Indexed: 06/16/2023]
Abstract
The secondary cell wall, which is mainly composed of cellulose, hemicellulose, and lignin, constitutes woody tissues and gives physical strength and hydrophobic properties for resistance against environmental stresses. We cloned and functionally analyzed the homologous transcription factor (TF) genes of SECONDARY WALL NAC (SWN) proteins from Hachiku bamboo (Phyllostachys nigra; PnSWNs). An RT-PCR analysis showed that PnSWNs are expressed in young tissues in bamboo. Their transcriptional activation activities were higher than that of the Arabidopsis NAC SECONDARY WALL THICKENING PROMOTING FACTOR 3 (NST3) TF, which was equivalent to SWN TFs in monocot. PnSWNs preferred to activate the genes related to secondary cell wall formation but not the genes related to programmed cell death. When PnSWNs were expressed in Arabidopsis, they highly induced secondary cell wall formation, like previously-shown rice SWN1. Dissection analysis revealed that this high activity largely depends on C-terminal domain. These results demonstrate that the cloned bamboo SWNs function as regulators of secondary cell wall formation with strong activation ability derived from C-terminal domain, and could be served as new genetic tools for secondary cell wall manipulation.
Collapse
Affiliation(s)
- Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1 Tsukuba, Ibaraki 305-8566, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1 Tsukuba, Ibaraki 305-8566, Japan
| | - Taiji Nomura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Shinjiro Ogita
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
- Faculty of Bioresource Sciences, Prefectural University of Hiroshima, 5562 Nanatsukacho, Shobara, Hiroshima 727-0023, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1 Tsukuba, Ibaraki 305-8566, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1 Tsukuba, Ibaraki 305-8566, Japan
| |
Collapse
|
177
|
Wang R, Li C, Li Q, Ai Y, Huang Z, Sun X, Zhou J, Zhou Y, Liang Y. Tomato receptor-like cytosolic kinase RIPK confers broad-spectrum disease resistance without yield penalties. HORTICULTURE RESEARCH 2022; 9:uhac207. [PMID: 36467273 PMCID: PMC9715573 DOI: 10.1093/hr/uhac207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/09/2022] [Indexed: 05/28/2023]
Abstract
Production of reactive oxygen species (ROS) is an important immune response in plant multilayer defense mechanisms; however, direct modification of ROS homeostasis to breed plants with broad-spectrum resistance to disease has not yet been successful. In Arabidopsis, the receptor-like cytosolic kinase AtRIPK regulates broad-spectrum ROS signaling in multiple layers of the plant immune system. Upon treatment with immune elicitors, AtRIPK is activated and phosphorylates nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, which leads to ROS production. In this study, we identified an AtRIPK ortholog in tomatoes and generated knockdown mutants using CRISPR/Cas9 technology. Slripk mutants displayed reduced ROS production in response to representative immune elicitors and were susceptible to pathogenic bacteria and fungi from different genera, including Ralstonia solanacearum, Pectobacterium carotovorum, Botrytis cinerea, and Fusarium oxysporum, which are leaf and root pathogens with hemibiotrophic and necrotrophic infection strategies. In contrast, transgenic tomato plants overexpressing SlRIPK are more resistant to these pathogens. Remarkably, the slripk mutants and SlRIPK-overexpressing transgenic plants did not exhibit significant growth retardation or yield loss. These results suggest that overexpression of SlRIPK confers broad-spectrum disease resistance without a yield penalty in tomato plants. Our findings suggest that modifying ROS homeostasis by altering the regulatory components of ROS production in plant immunity could contribute to engineering or breeding broad-spectrum disease-resistant crops without yield penalty.
Collapse
Affiliation(s)
- Ran Wang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Chenying Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Qinghong Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Yingfei Ai
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Zeming Huang
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Xun Sun
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Department of Plant Protection, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhou
- Ministry of Agriculture Key Laboratory of Horticultural Plants Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yanhong Zhou
- Ministry of Agriculture Key Laboratory of Horticultural Plants Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | | |
Collapse
|
178
|
Li X, Zhang L, Ren H, Wang X, Mi F. Zinc toxicity response in Ceratoides arborescens and identification of CaMTP, a novel zinc transporter. FRONTIERS IN PLANT SCIENCE 2022; 13:976311. [PMID: 36161019 PMCID: PMC9505901 DOI: 10.3389/fpls.2022.976311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 06/16/2023]
Abstract
Zinc (Zn) is an essential micronutrient for several physiological and biochemical processes. Changes in soil Zn levels can negatively affect plant physiology. Although the mechanism of Zn nutrition has been studied extensively in crops and model plants, there has been little research on steppe plants, particularly live in alkaline soils of arid and semiarid regions. Ceratoides arborescens is used in arid and semiarid regions as forage and ecological restoration germplasm, which is studied can enrich the mechanism of Zn nutrition. The plants were exposed to three different Zn treatments, Zn-deficient (-Zn 0 mM L-1), Zn-normal (Control, 0.015 mM L-1), and Zn-excess (+Zn, 0.15 mM L-1), for 3 weeks. Individual biomass, ion concentrations, photosynthetic system, and antioxidant characteristics were measured. High Zn supply significantly decreased plant biomass and induced chlorosis and growth defects and increased Zn concentration but decreased Fe and Ca concentrations, unlike in controls (p < 0.05). High Zn supply also reduced plant chlorophyll content, which consequently decreased the photosynthesis rate. Increased concentrations of malondialdehyde and soluble sugar and activities of peroxidase and superoxide dismutase could resist the high-level Zn stress. In contrast, low Zn supply did not affect plant growth performance. We also identified a novel protein through RNA transcriptome analysis, named CaMTP, that complemented the sensitivity of a yeast mutant to excessive Zn, which was found to be localized to the endoplasmic reticulum through transient gene expression in Nicotiana benthamiana. The gene CaMTP identified to be highly sensitive to Zn stress is a potential candidate for overcoming mineral stress in dicot crop plants.
Collapse
Affiliation(s)
- Xingyue Li
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Lin Zhang
- M-Grass Ecology and Environment (Group) Co., Ltd., Hohhot, China
| | - Haiyan Ren
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiaoyu Wang
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| | - Fugui Mi
- College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
179
|
Ban S, El-Sharkawy I, Zhao J, Fei Z, Xu K. An apple somatic mutation of delayed fruit maturation date is primarily caused by a retrotransposon insertion-associated large deletion. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1609-1625. [PMID: 35861682 DOI: 10.1111/tpj.15911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/03/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Somatic mutations may alter important traits in tree fruits, such as fruit color, size and maturation date. Autumn Gala (AGala), a somatic mutation from apple cultivar Gala, matures 4 weeks later than Gala. To understand the mechanisms underlying the delayed maturation, RNA-seq analyses were conducted with fruit sampled at 13 (Gala) and 16 (AGala) time-points during their growth and development. Weighted gene co-expression network analysis (WGCNA) of 23 372 differentially expressed genes resulted in 25 WGCNA modules. Of these, modules 1 (r = -0.98, P = 2E-21) and 2 (r = -0.52, P = 0.004), which were suppressed in AGala, were correlated with fruit maturation date. Surprisingly, 77 of the 152 member genes in module 1 were harbored in a 2.8-Mb genomic region on chromosome 6 that was deleted and replaced by a 10.7-kb gypsy-like retrotransposon (Gy-36) from chromosome 7 in AGala. Among the 77 member genes, MdACT7 was the most suppressed (by 10.5-fold) in AGala due to a disruptive 2.5-kb insertion in coding sequence. Moreover, MdACT7 is the exclusive apple counterpart of Arabidopsis ACT7 known of essential roles in plant development, and the functional allele MdACT7, which was lost to the deletion in AGala, was associated with early fruit maturation in 268 apple accessions. Overexpressing alleles MdACT7 and Mdact7 in an Arabidopsis act7 line showed that MdACT7 largely rescued its stunted growth and delayed initial flowering while Mdact7 did not. Therefore, the 2.8-Mb hemizygous deletion is largely genetically causal for fruit maturation delay in AGala, and the total loss of MdACT7 might have contributed to the phenotype.
Collapse
Affiliation(s)
- Seunghyun Ban
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell Agritech, Geneva, New York, USA
| | - Islam El-Sharkawy
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell Agritech, Geneva, New York, USA
| | | | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, New York, USA
- US Department of Agriculture, Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, USA
| | - Kenong Xu
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell Agritech, Geneva, New York, USA
| |
Collapse
|
180
|
Hsieh WY, Wang HM, Chung YH, Lee KT, Liao HS, Hsieh MH. THIAMIN REQUIRING2 is involved in thiamin diphosphate biosynthesis and homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1383-1396. [PMID: 35791282 DOI: 10.1111/tpj.15895] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The THIAMIN REQUIRING2 (TH2) protein comprising a mitochondrial targeting peptide followed by a transcription enhancement A and a haloacid dehalogenase domain is a thiamin monophosphate (TMP) phosphatase in the vitamin B1 biosynthetic pathway. The Arabidopsis th2-3 T-DNA insertion mutant was chlorotic and deficient in thiamin diphosphate (TDP). Complementation assays confirmed that haloacid dehalogenase domain alone was sufficient to rescue the th2-3 mutant. In pTH2:TH2-GFP/th2-3 complemented plants, the TH2-GFP was localized to the cytosol, mitochondrion, and nucleus, indicating that the vitamin B1 biosynthetic pathway extended across multi-subcellular compartments. Engineered TH2-GFP localized to the cytosol, mitochondrion, nucleus, and chloroplast, could complement the th2 mutant. Together, these results highlight the importance of intracellular TMP and thiamin trafficking in vitamin B1 biosynthesis. In an attempt to enhance the production of thiamin, we created various constructs to overexpress TH2-GFP in the cytosol, mitochondrion, chloroplast, and nucleus. Unexpectedly, overexpressing TH2-GFP resulted in an increase rather than a decrease in TMP. While studies on th2 mutants support TH2 as a TMP phosphatase, analyses of TH2-GFP overexpression lines implicating TH2 may also function as a TDP phosphatase in planta. We propose a working model that the TMP/TDP phosphatase activity of TH2 connects TMP, thiamin, and TDP into a metabolic cycle. The TMP phosphatase activity of TH2 is required for TDP biosynthesis, and the TDP phosphatase activity of TH2 may modulate TDP homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Wei-Yu Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Hsin-Mei Wang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
| | - Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 11529, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, 11529, Taiwan
- Department of Life Sciences, National Central University, Taoyuan, 32001, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, 40227, Taiwan
| |
Collapse
|
181
|
Wang C, Blondel L, Quadrado M, Dargel-Graffin C, Mireau H. Pentatricopeptide repeat protein MITOCHONDRIAL STABILITY FACTOR 3 ensures mitochondrial RNA stability and embryogenesis. PLANT PHYSIOLOGY 2022; 190:669-681. [PMID: 35751603 PMCID: PMC9434245 DOI: 10.1093/plphys/kiac309] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/09/2022] [Indexed: 05/29/2023]
Abstract
Gene expression in plant mitochondria is predominantly governed at the post-transcriptional level and relies mostly on nuclear-encoded proteins. However, the protein factors involved and the underlying molecular mechanisms are still not well understood. Here, we report on the function of the MITOCHONDRIAL STABILITY FACTOR 3 (MTSF3) protein, previously named EMBRYO DEFECTIVE 2794 (EMB2794), and show that it is essential for accumulation of the mitochondrial NADH dehydrogenase subunit 2 (nad2) transcript in Arabidopsis (Arabidopsis thaliana) but not for splicing of nad2 intron 2 as previously proposed. The MTSF3 gene encodes a pentatricopeptide repeat protein that localizes in the mitochondrion. An MTSF3 null mutation induces embryonic lethality, but viable mtsf3 mutant plants can be generated through partial complementation with the developmentally regulated ABSCISIC ACID INSENSITIVE3 promoter. Genetic analyses revealed growth retardation in rescued mtsf3 plants owing to the specific destabilization of mature nad2 mRNA and a nad2 precursor transcript bearing exons 3 to 5. Biochemical data demonstrate that MTSF3 protein specifically binds to the 3' terminus of nad2. Destabilization of nad2 mRNA induces a substantial decrease in complex I assembly and activity and overexpression of the alternative respiratory pathway. Our results support a role for MTSF3 protein in protecting two nad2 transcripts from degradation by mitochondrial exoribonucleases by binding to their 3' extremities.
Collapse
Affiliation(s)
- Chuande Wang
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Lisa Blondel
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Martine Quadrado
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Céline Dargel-Graffin
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | | |
Collapse
|
182
|
Rajput R, Tyagi S, Naik J, Pucker B, Stracke R, Pandey A. The R2R3-MYB gene family in Cicer arietinum: genome-wide identification and expression analysis leads to functional characterization of proanthocyanidin biosynthesis regulators in the seed coat. PLANTA 2022; 256:67. [PMID: 36038740 DOI: 10.1007/s00425-022-03979-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
We identified 119 typical CaMYB encoding genes and reveal the major components of the proanthocyanidin regulatory network. CaPARs emerged as promising targets for genetic engineering toward improved agronomic traits in C. arietinum. Chickpea (Cicer arietinum) is among the eight oldest crops and has two main types, i.e., desi and kabuli, whose most obvious difference is the color of their seeds. We show that this color difference is due to differences in proanthocyanidin content of seed coats. Using a targeted approach, we performed in silico analysis, metabolite profiling, molecular, genetic, and biochemical studies to decipher the transcriptional regulatory network involved in proanthocyanidin biosynthesis in the seed coat of C. arietinum. Based on the annotated C. arietinum reference genome sequence, we identified 119 typical CaMYB encoding genes, grouped in 32 distinct clades. Two CaR2R3-MYB transcription factors, named CaPAR1 and CaPAR2, clustering with known proanthocyanidin regulators (PARs) were identified and further analyzed. The expression of CaPAR genes correlated well with the expression of the key structural proanthocyanidin biosynthesis genes CaANR and CaLAR and with proanthocyanidin levels. Protein-protein interaction studies suggest the in vivo interaction of CaPAR1 and CaPAR2 with the bHLH-type transcription factor CaTT8. Co-transfection analyses using Arabidopsis thaliana protoplasts showed that the CaPAR proteins form a MBW complex with CaTT8 and CaTTG1, able to activate the promoters of CaANR and CaLAR in planta. Finally, transgenic expression of CaPARs in the proanthocyanidin-deficient A. thaliana mutant tt2-1 leads to complementation of the transparent testa phenotype. Taken together, our results reveal main components of the proanthocyanidin regulatory network in C. arietinum and suggest that CaPARs are relevant targets of genetic engineering toward improved agronomic traits.
Collapse
Affiliation(s)
- Ruchika Rajput
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shivi Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jogindra Naik
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Boas Pucker
- Chair of Genetics and Genomics of Plants, Bielefeld University, 33615, Bielefeld, Germany
- Institute of Plant Biology and Braunschweig Integrated Centre of Systems Biology (BRICS), TU Brunswick, Brunswick, Germany
| | - Ralf Stracke
- Chair of Genetics and Genomics of Plants, Bielefeld University, 33615, Bielefeld, Germany
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
183
|
Sasaki T, Ariyoshi M, Yamamoto Y, Mori IC. Functional roles of ALMT-type anion channels in malate-induced stomatal closure in tomato and Arabidopsis. PLANT, CELL & ENVIRONMENT 2022; 45:2337-2350. [PMID: 35672880 DOI: 10.1111/pce.14373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/21/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Guard-cell-type aluminium-activated malate transporters (ALMTs) are involved in stomatal closure by exporting anions from guard cells. However, their physiological and electrophysiological functions are yet to be explored. Here, we analysed the physiological and electrophysiological properties of the ALMT channels in Arabidopsis and tomato (Solanum lycopersicum). SlALMT11 was specifically expressed in tomato guard cells. External malate-induced stomatal closure was impaired in ALMT-suppressed lines of tomato and Arabidopsis, although abscisic acid did not influence the stomatal response in SlALMT11-knock-down tomato lines. Electrophysiological analyses in Xenopus oocytes showed that SlALMT11 and AtALMT12/QUAC1 exhibited characteristic bell-shaped current-voltage patterns dependent on extracellular malate, fumarate, and citrate. Both ALMTs could transport malate, fumarate, and succinate, but not citrate, suggesting that the guard-cell-type ALMTs are dicarboxylic anion channels activated by extracellular organic acids. The truncation of acidic amino acids, Asp or Glu, from the C-terminal end of SlALMT11 or AtALMT12/QUAC1 led to the disappearance of the bell-shaped current-voltage patterns. Our findings establish that malate-activated stomatal closure is mediated by guard-cell-type ALMT channels that require an acidic amino acid in the C-terminus as a candidate voltage sensor in both tomato and Arabidopsis.
Collapse
Affiliation(s)
- Takayuki Sasaki
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Michiyo Ariyoshi
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Yoko Yamamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, Japan
| |
Collapse
|
184
|
Wang P, Yamaji N, Ma JF. A Golgi-localized glycosyltransferase, OsGT14;1, is required for growth of both roots and shoots in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:923-935. [PMID: 35791277 DOI: 10.1111/tpj.15897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Glycosyltransferases (GTs) form a large family in plants and are important enzymes for the synthesis of various polysaccharides, but only a few members have been functionally characterized. Here, through mutant screening with gene mapping, we found that an Oryza sativa (rice) mutant with a short-root phenotype was caused by a frame-shift mutation of a gene (OsGT14;1) belonging to the glycosyltransferase gene family 14. Further analysis indicated that the mutant also had a brittle culm and produced lower grain yield compared with wild-type rice, but the roots showed similar root structure and function in terms of the uptake of mineral nutrients. OsGT14;1 was broadly expressed in all organs throughout the entire growth period, with a relatively high expression in the roots, stems, node I and husk. Furthermore, OsGT14;1 was expressed in all tissues of these organs. Subcellular observation revealed that OsGT14;1 encoded a Golgi-localized protein. Mutation of OsGT14;1 resulted in decreased cellulose content and increased hemicellulose, but did not alter pectin in the cell wall of roots and shoots. The knockout of OsGT14;1 did not affect the tolerance to toxic mineral elements, including Al, As, Cd and salt stress, but did increase the sensitivity to low pH. Taken together, OsGT14;1 located at the Golgi is required for growth of both roots and shoots in rice through affecting cellulose synthesis.
Collapse
Affiliation(s)
- Peitong Wang
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Naoki Yamaji
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, 710-0046, Japan
| |
Collapse
|
185
|
Ohno S, Yamada H, Maruyama K, Deguchi A, Kato Y, Yokota M, Tatsuzawa F, Hosokawa M, Doi M. A novel aldo-keto reductase gene is involved in 6'-deoxychalcone biosynthesis in dahlia (Dahlia variabilis). PLANTA 2022; 256:47. [PMID: 35871668 DOI: 10.1007/s00425-022-03958-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
A novel gene belonging to the aldo-keto reductase 13 family is involved in isoliquiritigenin biosynthesis in dahlia. The yellow pigments of dahlia flowers are derived from 6'-deoxychalcones, which are synthesized via a two-step process, involving the conversion of 3-malonyl-CoA and 4-coumaloyl-CoA into isoliquiritigenin in the first step, and the subsequent generation of butein from isoliquiritigenin. The first step reaction is catalyzed by chalcone synthase (CHS) and aldo-keto reductase (AKR). AKR has been implicated in the isoflavone biosynthesis in legumes, however, isolation of butein biosynthesis related AKR members are yet to be reported. A comparative RNA-seq analysis between two dahlia cultivars, 'Shukuhai' and its butein-deficient lateral mutant 'Rinka', was used in this study to identify a novel AKR gene involved in 6'-deoxychalcone biosynthesis. DvAKR1 encoded a AKR 13 sub-family protein with significant differential expression levels, and was phylogenetically distinct from the chalcone reductases, which belongs to the AKR 4A sub-family in legumes. DNA sequence variation and expression profiles of DvAKR1 gene were correlated with 6'-deoxychalcone accumulation in the tested dahlia cultivars. A single over-expression analysis of DvAKR1 was not sufficient to initiate the accumulation of isoliquiritigenin in tobacco, in contrast, its co-overexpression with a chalcone 4'-O-glucosyltransferase (Am4'CGT) from Antirrhinum majus and a MYB transcription factor, CaMYBA from Capsicum annuum successfully induced isoliquiritigenin accumulation. In addition, DvAKR1 homologous gene expression was detected in Coreopsideae species accumulating 6'-deoxychalcone, but not in Asteraceae species lacking 6'-deoxychalcone production. These results not only demonstrate the involvement of DvAKR1 in the biosynthesis of 6'-deoxychalcone in dahlia, but also show that 6'-deoxychalcone occurrence in Coreopsideae species developed evolutionarily independent from legume species.
Collapse
Affiliation(s)
- Sho Ohno
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan.
| | - Haruka Yamada
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Kei Maruyama
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Ayumi Deguchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
- Chiba University, Chiba, 271-8510, Japan
| | - Yasunari Kato
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Mizuki Yokota
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| | - Fumi Tatsuzawa
- Faculty of Agriculture, Iwate University, Iwate, Morioka, 020-8550, Japan
| | - Munetaka Hosokawa
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
- Kindai University, Nara, 631-0052, Japan
| | - Motoaki Doi
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto, 606-8502, Japan
| |
Collapse
|
186
|
Hotta T, Lee YRJ, Higaki T, Hashimoto T, Liu B. Two Kinesin-14A Motors Oligomerize to Drive Poleward Microtubule Convergence for Acentrosomal Spindle Morphogenesis in Arabidopsis thaliana. Front Cell Dev Biol 2022; 10:949345. [PMID: 35982853 PMCID: PMC9380777 DOI: 10.3389/fcell.2022.949345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Plant cells form acentrosomal spindles with microtubules (MTs) converged toward two structurally undefined poles by employing MT minus end-directed Kinesin-14 motors. To date, it is unclear whether the convergent bipolar MT array assumes unified poles in plant spindles, and if so, how such a goal is achieved. Among six classes of Kinesin-14 motors in Arabidopsis thaliana, the Kinesin-14A motors ATK1 (KatA) and ATK5 share the essential function in spindle morphogenesis. To understand how the two functionally redundant Kinesin-14A motors contributed to the spindle assembly, we had ATK1-GFP and ATK5-GFP fusion proteins expressed in their corresponding null mutants and found that they were functionally comparable to their native forms. Although ATK1 was a nuclear protein and ATK5 cytoplasmic prior to nuclear envelop breakdown, at later mitotic stages, the two motors shared similar localization patterns of uniform association with both spindle and phragmoplast MTs. We found that ATK1 and ATK5 were rapidly concentrated toward unified polar foci when cells were under hyperosmotic conditions. Concomitantly, spindle poles became perfectly focused as if there were centrosome-like MT-organizing centers where ATK1 and ATK5 were highly enriched and at which kinetochore fibers pointed. The separation of ATK1/ATK5-highlighted MTs from those of kinetochore fibers suggested that the motors translocated interpolar MTs. Our protein purification and live-cell imaging results showed that ATK1 and ATK5 are associated with each other in vivo. The stress-induced spindle pole convergence was also accompanied by poleward accumulation of the MT nucleator γ-tubulin. These results led to the conclusion that the two Kinesin-14A motors formed oligomeric motor complexes that drove MT translocation toward the spindle pole to establish acentrosomal spindles with convergent poles.
Collapse
Affiliation(s)
- Takashi Hotta
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, CA, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, CA, United States
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takashi Hashimoto
- Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Bo Liu
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, Davis, CA, United States
- *Correspondence: Bo Liu,
| |
Collapse
|
187
|
Sahrawy M, Fernández-Trijueque J, Vargas P, Serrato AJ. Comprehensive Expression Analyses of Plastidial Thioredoxins of Arabidopsis thaliana Indicate a Main Role of Thioredoxin m2 in Roots. Antioxidants (Basel) 2022; 11:antiox11071365. [PMID: 35883856 PMCID: PMC9311637 DOI: 10.3390/antiox11071365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Thioredoxins (TRXs) f and m are redox proteins that regulate key chloroplast processes. The existence of several isoforms of TRXs f and m indicates that these redox players have followed a specialization process throughout evolution. Current research efforts are focused on discerning the signalling role of the different TRX types and their isoforms in chloroplasts. Nonetheless, little is known about their function in non-photosynthetic plastids. For this purpose, we have carried out comprehensive expression analyses by using Arabidopsis thaliana TRXf (f1 and f2) and TRXm (m1, m2, m3 and m4) genes translationally fused to the green fluorescence protein (GFP). These analyses showed that TRX m has different localisation patterns inside chloroplasts, together with a putative dual subcellular localisation of TRX f1. Apart from mesophyll cells, these TRXs were also observed in reproductive organs, stomatal guard cells and roots. We also investigated whether photosynthesis, stomatal density and aperture or root structure were affected in the TRXs f and m loss-of-function Arabidopsis mutants. Remarkably, we immunodetected TRX m2 and the Calvin−Benson cycle fructose-1,6-bisphosphatase (cFBP1) in roots. After carrying out in vitro redox activation assays of cFBP1 by plastid TRXs, we propose that cFBP1 might be activated by TRX m2 in root plastids.
Collapse
|
188
|
A guiding role of the Arabidopsis circadian clock in cell differentiation revealed by time-series single-cell RNA sequencing. Cell Rep 2022; 40:111059. [PMID: 35830805 DOI: 10.1016/j.celrep.2022.111059] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 04/01/2022] [Accepted: 06/14/2022] [Indexed: 11/21/2022] Open
Abstract
Circadian rhythms and progression of cell differentiation are closely coupled in multicellular organisms. However, whether establishment of circadian rhythms regulates cell differentiation or vice versa has not been elucidated due to technical limitations. Here, we exploit high cell fate plasticity of plant cells to perform single-cell RNA sequencing during the entire process of cell differentiation. By analyzing reconstructed actual time series of the differentiation processes at single-cell resolution using a method we developed (PeakMatch), we find that the expression profile of clock genes is changed prior to cell differentiation, including induction of the clock gene LUX ARRYTHMO (LUX). ChIP sequencing analysis reveals that LUX induction in early differentiating cells directly targets genes involved in cell-cycle progression to regulate cell differentiation. Taken together, these results not only reveal a guiding role of the plant circadian clock in cell differentiation but also provide an approach for time-series analysis at single-cell resolution.
Collapse
|
189
|
Shimada S, Yanagawa Y, Munesada T, Horii Y, Kuriyama T, Kawashima M, Kondou Y, Yoshizumi T, Mitsuda N, Ohme-Takagi M, Makita Y, Matsui M. A collection of inducible transcription factor-glucocorticoid receptor fusion lines for functional analyses in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:595-607. [PMID: 35510416 DOI: 10.1111/tpj.15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 04/12/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
Arabidopsis possesses approximately 2000 transcription factors (TFs) in its genome. They play pivotal roles in various biological processes but analysis of their function has been hampered by the overlapping nature of their activities. To uncover clues to their function, we generated inducible TF lines using glucocorticoid receptor (GR) fusion techniques in Arabidopsis. These TF-GR lines each express one of 1255 TFs as a fusion with the GR gene. An average 14 lines of T2 transgenic TF-GR lines were generated for each TF to monitor their function. To evaluate these transcription lines, we induced the TF-GR lines of phytochrome-interacting factor 4, which controls photomorphogenesis, with synthetic glucocorticoid dexamethasone. These phytochrome-interacting factor 4-GR lines showed the phenotype described in a previous report. We performed screening of the other TF-GR lines for TFs involved in light signaling under blue and far-red light conditions and identified 13 novel TF candidates. Among these, we found two lines showing higher anthocyanin accumulation under light conditions and we examined the regulating genes. These results indicate that the TF-GR lines can be used to dissect functionally redundant genes in plants and demonstrate that the TF-GR line collection can be used as an effective tool for functional analysis of TFs.
Collapse
Affiliation(s)
- Setsuko Shimada
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Yuki Yanagawa
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, 271-8510, Japan
| | - Takachika Munesada
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Graduate School of NanoBioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Yoko Horii
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Tomoko Kuriyama
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mika Kawashima
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Youichi Kondou
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Department of Biosciences, Kanto Gakuin University College of Science and Engineering, Yokohama, 236-8501, Japan
| | - Takeshi Yoshizumi
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Faculty of Agriculture, Takasaki University of Health and Welfare, 54 Nakaorui-machi, Takasaki, Gunma, 370-0033, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, 305-8562, Japan
| | - Masaru Ohme-Takagi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, Higashi 1-1-1, Tsukuba, 305-8562, Japan
- Graduate School of Science and Engineering, Saitama University, Saitama, 338-8570, Japan
| | - Yuko Makita
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Graduate School of Engineering, Maebashi Institute of Technology, 460-1, Kamisadori, Maebashi City, Gunma, 371-0816, Japan
| | - Minami Matsui
- Synthetic Genomics Research Group, RIKEN Center for Sustainable Resource Science (CSRS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
190
|
Tsuda K, Suzuki T, Mimura M, Nonomura KI. Comparison of constitutive promoter activities and development of maize ubiquitin promoter- and Gateway-based binary vectors for rice. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:139-146. [PMID: 35937527 PMCID: PMC9300420 DOI: 10.5511/plantbiotechnology.22.0120a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/20/2022] [Indexed: 06/15/2023]
Abstract
In transgenic experiments, we often face fundamental requirements such as overexpressing a certain gene, developing organelle markers, testing promoter activities, introducing large genomic fragments, and combinations of them. To fulfill these multiple requirements in rice, we developed simple binary vectors with or without maize ubiquitin (UBQ) promoter, Gateway cassette and fluorescent proteins. First, we compared stabilities of cauliflower mosaic virus 35S and maize UBQ promoters for constitutive gene expression in transgenic rice. We show that the 35S promoter was frequently silenced after shoot regeneration, whereas maize UBQ promoter achieved stable expression in various young tissues. Binary vectors with Gateway cassettes under the control of the UBQ promoter allowed us to develop stable organelle markers for nuclei, microtubules and P-bodies in rice. The maize UBQ promoter can be easily replaced with any promoters of interest as exemplified by reporters of mitotic cells and provascular bundles. Finally, by introducing two genomic fluorescent reporters, we showed utilities of the Gateway cassette and two selection markers in large DNA fragment transfer and sequential transformations, respectively. Thus, these binary vectors provide useful choices of transgenic experiments in rice.
Collapse
Affiliation(s)
- Katsutoshi Tsuda
- Plant Cytogenetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| | - Toshiya Suzuki
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
- Plant Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Manaki Mimura
- Plant Cytogenetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
191
|
Lichtblau DM, Schwarz B, Baby D, Endres C, Sieberg C, Bauer P. The Iron Deficiency-Regulated Small Protein Effector FEP3/IRON MAN1 Modulates Interaction of BRUTUS-LIKE1 With bHLH Subgroup IVc and POPEYE Transcription Factors. FRONTIERS IN PLANT SCIENCE 2022; 13:930049. [PMID: 35755670 PMCID: PMC9226616 DOI: 10.3389/fpls.2022.930049] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/19/2022] [Indexed: 05/28/2023]
Abstract
In light of climate change and human population growth one of the most challenging tasks is to generate plants that are Fe-efficient, resilient to low Fe supply and Fe-biofortified. For such endeavors, it is crucial to understand the regulation of Fe acquisition and allocation in plants. One open question is how identified Fe-regulatory proteins comprising positive and negative regulators act together to steer Fe homeostasis. bHLH transcription factors (TFs) belonging to the subgroups IVb and IVc can initiate a bHLH cascade controlling the -Fe response in roots. In Arabidopsis thaliana, the -Fe-induced genes are sub-divided into several gene co-expression clusters controlled by different sets of TFs. Some of the co-expressed genes encode regulatory E3 ligase proteins BRUTUS (BTS)/BTS-LIKE (BTSL) and small proteins belonging to the group of FE UPTAKE-INDUCING PEPTIDE/IRON MAN (FEP/IMA). Recently, it was described that FEP1/IMA3 and FEP3/IMA1 proteins inhibit the repression of bHLH factors by BTS. We had postulated that -Fe-regulated co-expression clusters provide new information about regulatory protein interaction complexes. Here, we report a targeted yeast two-hybrid screen among 23 proteins of the -Fe response. This identified a novel protein interactome involving another E3 ligase, namely BTSL1, basic helix-loop-helix (bHLH) protein POPEYE (PYE) and transcription factors of the subgroup IVc as well as FEP3/IMA1. Because of the difficulty in stable BTSL1 protein expression in plant cells, we used a yeast two hybrid-based deletion mapping, homology modeling and molecular docking, to pinpoint interaction sites in BTSL1 and FEP3/IMA1. bHLH IVc TFs have similar residues at their C-terminus as FEP3/IMA1 interacting sites. FEP3/IMA1 attenuated interaction of BTSL1 and bHLH proteins in a yeast three-hybrid assay, in line with physiological data pointing to enhanced Fe acquisition and allocation in FEP3/IMA1 overexpression and btsl1 btsl2 mutant plants. Hence, exploiting -Fe-induced gene co-expression networks identified FEP3/IMA1 as a small effector protein that binds and inhibits the BTSL1 complex with PYE and bHLH subgroup IVc proteins. Structural analysis resolved interaction sites. This information helps improving models of Fe regulation and identifying novel targets for breeding of Fe-efficient crops.
Collapse
Affiliation(s)
| | - Birte Schwarz
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Dibin Baby
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christopher Endres
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christin Sieberg
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
192
|
Saha S, Lõhmus A, Dutta P, Pollari M, Mäkinen K. Interplay of HCPro and CP in the Regulation of Potato Virus A RNA Expression and Encapsidation. Viruses 2022; 14:1233. [PMID: 35746704 PMCID: PMC9227828 DOI: 10.3390/v14061233] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/27/2022] [Accepted: 06/03/2022] [Indexed: 12/04/2022] Open
Abstract
Potyviral coat protein (CP) and helper component-proteinase (HCPro) play key roles in both the regulation of viral gene expression and the formation of viral particles. We investigated the interplay between CP and HCPro during these viral processes. While the endogenous HCPro and a heterologous viral suppressor of gene silencing both complemented HCPro-less potato virus A (PVA) expression, CP stabilization connected to particle formation could be complemented only by the cognate PVA HCPro. We found that HCPro relieves CP-mediated inhibition of PVA RNA expression likely by enabling HCPro-mediated sequestration of CPs to particles. We addressed the question about the role of replication in formation of PVA particles and gained evidence for encapsidation of non-replicating PVA RNA. The extreme instability of these particles substantiates the need for replication in the formation of stable particles. During replication, viral protein genome linked (VPg) becomes covalently attached to PVA RNA and can attract HCPro, cylindrical inclusion protein and host proteins. Based on the results of the current study and our previous findings we propose a model in which a large ribonucleoprotein complex formed around VPg at one end of PVA particles is essential for their integrity.
Collapse
Affiliation(s)
| | | | | | | | - Kristiina Mäkinen
- Department of Microbiology, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland; (S.S.); (A.L.); (P.D.); (M.P.)
| |
Collapse
|
193
|
Steinbrenner AD, Saldivar E, Hodges N, Guayazán-Palacios N, Chaparro AF, Schmelz EA. Signatures of plant defense response specificity mediated by herbivore-associated molecular patterns in legumes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1255-1270. [PMID: 35315556 DOI: 10.1111/tpj.15732] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Chewing herbivores activate plant defense responses through a combination of mechanical wounding and elicitation by herbivore-associated molecular patterns (HAMPs). HAMPs are wound response amplifiers; however, specific defense outputs may also exist that strictly require HAMP-mediated defense signaling. To investigate HAMP-mediated signaling and defense responses, we characterized cowpea (Vigna unguiculata) transcriptome changes following elicitation by inceptin, a peptide HAMP common in Lepidoptera larvae oral secretions. Following inceptin treatment, we observed large-scale reprogramming of the transcriptome consistent with three different response categories: (i) amplification of mechanical wound responses, (ii) temporal extension through accelerated or prolonged responses, and (iii) examples of inceptin-specific elicitation and suppression. At both early and late timepoints, namely 1 and 6 h, large sets of transcripts specifically accumulated following inceptin elicitation. Further early inceptin-regulated transcripts were classified as reversing changes induced by wounding alone. Within key signaling- and defense-related gene families, inceptin-elicited responses included target subsets of wound-induced transcripts. Transcripts displaying the largest inceptin-elicited fold changes included transcripts encoding terpene synthases (TPSs) and peroxidases (POXs) that correspond with induced volatile production and increased POX activity in cowpea. Characterization of inceptin-elicited cowpea defenses via heterologous expression in Nicotiana benthamiana demonstrated that specific cowpea TPSs and POXs were able to confer terpene emission and the reduced growth of beet armyworm (Spodoptera exigua) herbivores, respectively. Collectively, our present findings in cowpea support a model where HAMP elicitation both amplifies concurrent wound responses and specifically contributes to the activation of selective outputs associated with direct and indirect antiherbivore defenses.
Collapse
Affiliation(s)
- Adam D Steinbrenner
- Department of Biology, University of Washington, Seattle, WA, USA
- Washington Research Foundation, Seattle, WA, USA
| | - Evan Saldivar
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Nile Hodges
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Eric A Schmelz
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
194
|
Kashihara S, Nishimura T, Noutoshi Y, Yamamoto M, Toyoda K, Ichinose Y, Matsui H. HopAZ1, a type III effector of Pseudomonas amygdali pv. tabaci, induces a hypersensitive response in tobacco wildfire-resistant Nicotiana tabacum 'N509'. MOLECULAR PLANT PATHOLOGY 2022; 23:885-894. [PMID: 35233886 PMCID: PMC9104263 DOI: 10.1111/mpp.13198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 05/27/2023]
Abstract
Pseudomonas amygdali pv. tabaci (formerly Pseudomonas syringae pv. tabaci; Pta) is a gram-negative bacterium that causes bacterial wildfire disease in Nicotiana tabacum. The pathogen establishes infections by using a type III secretion system to inject type III effector proteins (T3Es) into cells, thereby interfering with the host__s immune system. To counteract the effectors, plants have evolved disease-resistance genes and mechanisms to induce strong resistance on effector recognition. By screening a series of Pta T3E-deficient mutants, we have identified HopAZ1 as the T3E that induces disease resistance in N. tabacum 'N509'. Inoculation with the Pta ∆hopAZ1 mutant did not induce resistance to Pta in N509. We also found that the Pta ∆hopAZ1 mutant did not induce a hypersensitive response and promoted severe disease symptoms in N509. Furthermore, a C-terminal truncated HopAZ1 abolished HopAZ1-dependent cell death in N509. These results indicate that HopAZ1 is the avirulence factor that induces resistance to Pta by N509.
Collapse
Affiliation(s)
- Sachi Kashihara
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Takafumi Nishimura
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Yuki Ichinose
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| | - Hidenori Matsui
- Graduate School of Environmental and Life ScienceOkayama UniversityOkayamaJapan
| |
Collapse
|
195
|
Kobayashi T, Shinkawa H, Nagano AJ, Nishizawa NK. The basic leucine zipper transcription factor OsbZIP83 and the glutaredoxins OsGRX6 and OsGRX9 facilitate rice iron utilization under the control of OsHRZ ubiquitin ligases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1731-1750. [PMID: 35411594 DOI: 10.1111/tpj.15767] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/06/2022] [Indexed: 05/16/2023]
Abstract
Under low iron availability, plants induce the expression of various genes for iron uptake and translocation. The rice (Oryza sativa) ubiquitin ligases OsHRZ1 and OsHRZ2 cause overall repression of these iron-related genes at the transcript level, but their protein-level regulation is unclear. We conducted a proteome analysis to identify key regulators whose abundance was regulated by OsHRZs at the protein level. In response to iron deficiency or OsHRZ knockdown, many genes showed differential regulation between the transcript and protein levels, including the TGA-type basic leucine zipper transcription factor OsbZIP83. We also identified two glutaredoxins, OsGRX6 and OsGRX9, as OsHRZ-interacting proteins in yeast and plant cells. OsGRX6 also interacted with OsbZIP83. Our in vitro degradation assay suggested that OsbZIP83, OsGRX6 and OsGRX9 proteins are subjected to 26S proteasome- and OsHRZ-dependent degradation. Proteome analysis and our in vitro degradation assay also suggested that OsbZIP83 protein was preferentially degraded under iron-deficient conditions in rice roots. Transgenic rice lines overexpressing OsGRX9 and OsbZIP83 showed improved tolerance to iron deficiency. Expression of iron-related genes was affected in the OsGRX9 and OsGRX6 knockdown lines, suggesting disturbed iron utilization and signaling. OsbZIP83 overexpression lines showed enhanced expression of OsYSL2 and OsNAS3, which are involved in internal iron translocation, in addition to OsGRX9 and genes related to phytoalexin biosynthesis and the salicylic acid pathway. The results suggest that OsbZIP83, OsGRX6 and OsGRX9 facilitate iron utilization downstream of the OsHRZ pathway.
Collapse
Affiliation(s)
- Takanori Kobayashi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Haruka Shinkawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| | - Atsushi J Nagano
- Faculty of Agriculture, Ryukoku University, Otsu, Shiga, 520-2194, Japan
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
| | - Naoko K Nishizawa
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi, Ishikawa, 921-8836, Japan
| |
Collapse
|
196
|
Han J, Ma K, Li H, Su J, Zhou L, Tang J, Zhang S, Hou Y, Chen L, Liu Y, Zhu Q. All-in-one: a robust fluorescent fusion protein vector toolbox for protein localization and BiFC analyses in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1098-1109. [PMID: 35179286 PMCID: PMC9129086 DOI: 10.1111/pbi.13790] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 05/20/2023]
Abstract
Fluorescent tagging protein localization (FTPL) and bimolecular fluorescence complementation (BiFC) are popular tools for in vivo analyses of the subcellular localizations of proteins and protein-protein interactions in plant cells. The efficiency of fluorescent fusion protein (FFP) expression analyses is typically impaired when the FFP genes are co-transformed on separate plasmids compared to when all are cloned and transformed in a single vector. Functional genomics applications using FFPs such as a gene family studies also often require the generation of multiple plasmids. Here, to address these needs, we developed an efficient, modular all-in-one (Aio) FFP (AioFFP) vector toolbox, including a set of fluorescently labelled organelle markers, FTPL and BiFC plasmids and associated binary vectors. This toolbox uses Gibson assembly (GA) and incorporates multiple unique nucleotide sequences (UNSs) to facilitate efficient gene cloning. In brief, this system enables convenient cloning of a target gene into various FFP vectors or the insertion of two or more target genes into the same FFP vector in a single-tube GA reaction. This system also enables integration of organelle marker genes or fluorescently fused target gene expression units into a single transient expression plasmid or binary vector. We validated the AioFFP system by testing genes encoding proteins known to be functional in FTPL and BiFC assays. In addition, we performed a high-throughput assessment of the accurate subcellular localizations of an uncharacterized rice CBSX protein subfamily. This modular UNS-guided GA-mediated AioFFP vector toolkit is cost-effective, easy to use and will promote functional genomics research in plants.
Collapse
Affiliation(s)
- Jingluan Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Kun Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Huali Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
| | - Jing Su
- Guangdong Provincial Key Laboratory of High Technology for Plant ProtectionPlant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Lian Zhou
- Rice Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Jintao Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Shijuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Yuke Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Yao‐Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- College of Life ScienceSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
197
|
Shukla A, Hoffmann G, Kushwaha NK, López-González S, Hofius D, Hafrén A. Salicylic acid and the viral virulence factor 2b regulate the divergent roles of autophagy during cucumber mosaic virus infection. Autophagy 2022; 18:1450-1462. [PMID: 34740306 PMCID: PMC9225522 DOI: 10.1080/15548627.2021.1987674] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macroautophagy/autophagy is a conserved intracellular degradation pathway that has recently emerged as an integral part of plant responses to virus infection. The known mechanisms of autophagy range from the selective degradation of viral components to a more general attenuation of disease symptoms. In addition, several viruses are able to manipulate the autophagy machinery and counteract autophagy-dependent resistance. Despite these findings, the complex interplay of autophagy activities, viral pathogenicity factors, and host defense pathways in disease development remains poorly understood. In the current study, we analyzed the interaction between autophagy and cucumber mosaic virus (CMV) in Arabidopsis thaliana. We show that autophagy is induced during CMV infection and promotes the turnover of the major virulence protein and RNA silencing suppressor 2b. Intriguingly, autophagy induction is mediated by salicylic acid (SA) and dampened by the CMV virulence factor 2b. In accordance with 2b degradation, we found that autophagy provides resistance against CMV by reducing viral RNA accumulation in an RNA silencing-dependent manner. Moreover, autophagy and RNA silencing attenuate while SA promotes CMV disease symptoms, and epistasis analysis suggests that autophagy-dependent disease and resistance are uncoupled. We propose that autophagy counteracts CMV virulence via both 2b degradation and reduced SA-responses, thereby increasing plant fitness with the viral trade-off arising from increased RNA silencing-mediated resistance.
Collapse
Affiliation(s)
- Aayushi Shukla
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Nirbhay Kumar Kushwaha
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Silvia López-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| |
Collapse
|
198
|
Leong JX, Raffeiner M, Spinti D, Langin G, Franz-Wachtel M, Guzman AR, Kim JG, Pandey P, Minina AE, Macek B, Hafrén A, Bozkurt TO, Mudgett MB, Börnke F, Hofius D, Üstün S. A bacterial effector counteracts host autophagy by promoting degradation of an autophagy component. EMBO J 2022; 41:e110352. [PMID: 35620914 PMCID: PMC9251887 DOI: 10.15252/embj.2021110352] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/24/2022] Open
Abstract
Beyond its role in cellular homeostasis, autophagy plays anti‐ and promicrobial roles in host–microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well‐described in animals, the extent to which xenophagy contributes to plant–bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type‐III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense‐related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense‐related autophagy in plant–bacteria interactions.
Collapse
Affiliation(s)
- Jia Xuan Leong
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Margot Raffeiner
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Daniela Spinti
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany
| | - Gautier Langin
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany
| | - Mirita Franz-Wachtel
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, Tübingen, Germany
| | - Andrew R Guzman
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Jung-Gun Kim
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Pooja Pandey
- Department of Life Sciences, Imperial College London, London, UK
| | - Alyona E Minina
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Boris Macek
- Interfaculty Institute for Cell Biology, Department of Quantitative Proteomics, University of Tübingen, Tübingen, Germany
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Tolga O Bozkurt
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Frederik Börnke
- Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Suayib Üstün
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany.,Faculty of Biology & Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
199
|
Akagi T, Masuda K, Kuwada E, Takeshita K, Kawakatsu T, Ariizumi T, Kubo Y, Ushijima K, Uchida S. Genome-wide cis-decoding for expression design in tomato using cistrome data and explainable deep learning. THE PLANT CELL 2022; 34:2174-2187. [PMID: 35258588 PMCID: PMC9134063 DOI: 10.1093/plcell/koac079] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
In the evolutionary history of plants, variation in cis-regulatory elements (CREs) resulting in diversification of gene expression has played a central role in driving the evolution of lineage-specific traits. However, it is difficult to predict expression behaviors from CRE patterns to properly harness them, mainly because the biological processes are complex. In this study, we used cistrome datasets and explainable convolutional neural network (CNN) frameworks to predict genome-wide expression patterns in tomato (Solanum lycopersicum) fruit from the DNA sequences in gene regulatory regions. By fixing the effects of trans-acting factors using single cell-type spatiotemporal transcriptome data for the response variables, we developed a prediction model for crucial expression patterns in the initiation of tomato fruit ripening. Feature visualization of the CNNs identified nucleotide residues critical to the objective expression pattern in each gene, and their effects were validated experimentally in ripening tomato fruit. This cis-decoding framework will not only contribute to the understanding of the regulatory networks derived from CREs and transcription factor interactions, but also provides a flexible means of designing alleles for optimized expression.
Collapse
Affiliation(s)
| | | | | | | | - Taiji Kawakatsu
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8602, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba Plant Innovation Research Center, Tsukuba, Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Seiichi Uchida
- Department of Advanced Information Technology, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
200
|
Stegmann M, Zecua-Ramirez P, Ludwig C, Lee HS, Peterson B, Nimchuk ZL, Belkhadir Y, Hückelhoven R. RGI-GOLVEN signaling promotes cell surface immune receptor abundance to regulate plant immunity. EMBO Rep 2022; 23:e53281. [PMID: 35229426 PMCID: PMC9066070 DOI: 10.15252/embr.202153281] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
Plant immune responses must be tightly controlled for proper allocation of resources for growth and development. In plants, endogenous signaling peptides regulate developmental and growth‐related processes. Recent research indicates that some of these peptides also have regulatory functions in the control of plant immune responses. This classifies these peptides as phytocytokines as they show analogies with metazoan cytokines. However, the mechanistic basis for phytocytokine‐mediated regulation of plant immunity remains largely elusive. Here, we identify GOLVEN2 (GLV2) peptides as phytocytokines in Arabidopsis thaliana. GLV2 signaling enhances sensitivity of plants to elicitation with immunogenic bacterial elicitors and contributes to resistance against virulent bacterial pathogens. GLV2 is perceived by ROOT MERISTEM GROWTH FACTOR 1 INSENSITIVE (RGI) receptors. RGI mutants show reduced elicitor sensitivity and enhanced susceptibility to bacterial infection. RGI3 forms ligand‐induced complexes with the pattern recognition receptor (PRR) FLAGELLIN SENSITIVE 2 (FLS2), suggesting that RGIs are part of PRR signaling platforms. GLV2‐RGI signaling promotes PRR abundance independent of transcriptional regulation and controls plant immunity via a previously undescribed mechanism of phytocytokine activity.
Collapse
Affiliation(s)
- Martin Stegmann
- Phytopathology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Patricia Zecua-Ramirez
- Phytopathology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Ho-Seok Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Brenda Peterson
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
| | - Ralph Hückelhoven
- Phytopathology, School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|