151
|
Switonski PM, Delaney JR, Bartelt LC, Niu C, Ramos-Zapatero M, Spann NJ, Alaghatta A, Chen T, Griffin EN, Bapat J, Sopher BL, La Spada AR. Altered H3 histone acetylation impairs high-fidelity DNA repair to promote cerebellar degeneration in spinocerebellar ataxia type 7. Cell Rep 2021; 37:110062. [PMID: 34852229 PMCID: PMC8710427 DOI: 10.1016/j.celrep.2021.110062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/11/2021] [Accepted: 11/05/2021] [Indexed: 11/30/2022] Open
Abstract
A common mechanism in inherited ataxia is a vulnerability of DNA damage. Spinocerebellar ataxia type 7 (SCA7) is a CAG-polyglutamine-repeat disorder characterized by cerebellar and retinal degeneration. Polyglutamine-expanded ataxin-7 protein incorporates into STAGA co-activator complex and interferes with transcription by altering histone acetylation. We performed chromatic immunoprecipitation sequencing ChIP-seq on cerebellum from SCA7 mice and observed increased H3K9-promoter acetylation in DNA repair genes, resulting in increased expression. After detecting increased DNA damage in SCA7 cells, mouse primary cerebellar neurons, and patient stem-cell-derived neurons, we documented reduced homology-directed repair (HDR) and single-strand annealing (SSA). To evaluate repair at endogenous DNA in native chromosome context, we modified linear amplification-mediated high-throughput genome-wide translocation sequencing and found that DNA translocations are less frequent in SCA7 models, consistent with decreased HDR and SSA. Altered DNA repair function in SCA7 may predispose the subject to excessive DNA damage, leading to neuron demise and highlights DNA repair as a therapy target. Switonski et al. performed ChIP-seq on cerebellar DNA from SCA7 mice and detect increased histone H3-promoter acetylation in DNA repair genes. They document DNA damage in SCA7 models and patient stem-cell-derived neurons. Using in vitro assays and genome-wide translocation sequencing, they observe altered DNA repair in SCA7.
Collapse
Affiliation(s)
- Pawel M Switonski
- Departments of Pathology & Laboratory Medicine, Neurology, and Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Joe R Delaney
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Luke C Bartelt
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chenchen Niu
- Departments of Pathology & Laboratory Medicine, Neurology, and Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Maria Ramos-Zapatero
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nathanael J Spann
- Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Akshay Alaghatta
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Toby Chen
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Emily N Griffin
- Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jaidev Bapat
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bryce L Sopher
- Department of Neurology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Albert R La Spada
- Departments of Pathology & Laboratory Medicine, Neurology, and Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA; Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA; UCI Institute for Neurotherapeutics, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
152
|
Mehlich D, Łomiak M, Sobiborowicz A, Mazan A, Dymerska D, Szewczyk ŁM, Mehlich A, Borowiec A, Prełowska MK, Gorczyński A, Jabłoński P, Iżycka-Świeszewska E, Nowis D, Marusiak AA. MLK4 regulates DNA damage response and promotes triple-negative breast cancer chemoresistance. Cell Death Dis 2021; 12:1111. [PMID: 34839359 PMCID: PMC8627512 DOI: 10.1038/s41419-021-04405-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/03/2021] [Accepted: 11/15/2021] [Indexed: 12/18/2022]
Abstract
Chemoresistance constitutes a major challenge in the treatment of triple-negative breast cancer (TNBC). Mixed-Lineage Kinase 4 (MLK4) is frequently amplified or overexpressed in TNBC where it facilitates the aggressive growth and migratory potential of breast cancer cells. However, the functional role of MLK4 in resistance to chemotherapy has not been investigated so far. Here, we demonstrate that MLK4 promotes TNBC chemoresistance by regulating the pro-survival response to DNA-damaging therapies. We observed that MLK4 knock-down or inhibition sensitized TNBC cell lines to chemotherapeutic agents in vitro. Similarly, MLK4-deficient cells displayed enhanced sensitivity towards doxorubicin treatment in vivo. MLK4 silencing induced persistent DNA damage accumulation and apoptosis in TNBC cells upon treatment with chemotherapeutics. Using phosphoproteomic profiling and reporter assays, we demonstrated that loss of MLK4 reduced phosphorylation of key DNA damage response factors, including ATM and CHK2, and compromised DNA repair via non-homologous end-joining pathway. Moreover, our mRNA-seq analysis revealed that MLK4 is required for DNA damage-induced expression of several NF-кB-associated cytokines, which facilitate TNBC cells survival. Lastly, we found that high MLK4 expression is associated with worse overall survival of TNBC patients receiving anthracycline-based neoadjuvant chemotherapy. Collectively, these results identify a novel function of MLK4 in the regulation of DNA damage response signaling and indicate that inhibition of this kinase could be an effective strategy to overcome TNBC chemoresistance.
Collapse
Affiliation(s)
- Dawid Mehlich
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.,Doctoral School of Medical University of Warsaw, Warsaw, Poland.,Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Michał Łomiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Aleksandra Sobiborowicz
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Mazan
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland.,ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Dagmara Dymerska
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Łukasz M Szewczyk
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Anna Mehlich
- Department of Internal Diseases Endocrinology and Diabetes, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Borowiec
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Monika K Prełowska
- Centre of New Technologies, University of Warsaw, Warsaw, Poland.,Department of Oncology, Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Adam Gorczyński
- Department of Pathology and Neuropathology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Paweł Jabłoński
- Department of Pathomorphology, Copernicus P.L., Gdansk, Poland
| | - Ewa Iżycka-Świeszewska
- Department of Pathology and Neuropathology, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland
| | - Dominika Nowis
- Laboratory of Experimental Medicine, Medical University of Warsaw, Warsaw, Poland.,Department of Immunology, Medical University of Warsaw, Warsaw, Poland
| | - Anna A Marusiak
- Laboratory of Molecular OncoSignalling, IMol Polish Academy of Sciences, Warsaw, Poland. .,ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
153
|
Chen WT, Tseng HY, Jiang CL, Lee CY, Chi P, Chen LY, Lo KY, Wang IC, Lin FJ. Elp1 facilitates RAD51-mediated homologous recombination repair via translational regulation. J Biomed Sci 2021; 28:81. [PMID: 34819065 PMCID: PMC8613991 DOI: 10.1186/s12929-021-00773-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
Background RAD51-dependent homologous recombination (HR) is one of the most important pathways for repairing DNA double-strand breaks (DSBs), and its regulation is crucial to maintain genome integrity. Elp1 gene encodes IKAP/ELP1, a core subunit of the Elongator complex, which has been implicated in translational regulation. However, how ELP1 contributes to genome maintenance is unclear. Methods To investigate the function of Elp1, Elp1-deficient mouse embryonic fibroblasts (MEFs) were generated. Metaphase chromosome spreading, immunofluorescence, and comet assays were used to access chromosome abnormalities and DSB formation. Functional roles of Elp1 in MEFs were evaluated by cell viability, colony forming capacity, and apoptosis assays. HR-dependent DNA repair was assessed by reporter assay, immunofluorescence, and western blot. Polysome profiling was used to evaluate translational efficiency. Differentially expressed proteins and signaling pathways were identified using a label-free liquid chromatography–tandem mass spectrometry (LC–MS/MS) proteomics approach. Results Here, we report that Elp1 depletion enhanced genomic instability, manifested as chromosome breakage and genotoxic stress-induced genomic DNA fragmentation upon ionizing radiation (IR) exposure. Elp1-deficient cells were hypersensitive to DNA damage and exhibited impaired cell proliferation and defective HR repair. Moreover, Elp1 depletion reduced the formation of IR-induced RAD51 foci and decreased RAD51 protein levels. Polysome profiling analysis revealed that ELP1 regulated RAD51 expression by promoting its translation in response to DNA damage. Notably, the requirement for ELP1 in DSB repair could be partially rescued in Elp1-deficient cells by reintroducing RAD51, suggesting that Elp1-mediated HR-directed repair of DSBs is RAD51-dependent. Finally, using proteome analyses, we identified several proteins involved in cancer pathways and DNA damage responses as being differentially expressed upon Elp1 depletion. Conclusions Our study uncovered a molecular mechanism underlying Elp1-mediated regulation of HR activity and provides a novel link between translational regulation and genome stability. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-021-00773-z.
Collapse
Affiliation(s)
- Wei-Ting Chen
- Department of Biochemical Science and Technology, National Taiwan University, No.1, Sec.4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Huan-Yi Tseng
- Department of Biochemical Science and Technology, National Taiwan University, No.1, Sec.4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Chung-Lin Jiang
- Department of Biochemical Science and Technology, National Taiwan University, No.1, Sec.4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Chih-Ying Lee
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan
| | - Peter Chi
- Institute of Biochemical Sciences, National Taiwan University, Taipei, 10617, Taiwan.,Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Liuh-Yow Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, 11529, Taiwan
| | - Kai-Yin Lo
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - I-Ching Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Fu-Jung Lin
- Department of Biochemical Science and Technology, National Taiwan University, No.1, Sec.4, Roosevelt Rd., Taipei, 10617, Taiwan. .,Research Center for Development Biology and Regenerative Medicine, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
154
|
Abstract
DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genome integrity and cell viability. Typically, cells repair DSBs by either nonhomologous end joining (NHEJ) or homologous recombination (HR). The relative use of these two pathways depends on many factors, including cell cycle stage and the nature of the DNA ends. A critical determinant of repair pathway selection is the initiation of 5'→3' nucleolytic degradation of DNA ends, a process referred to as DNA end resection. End resection is essential to create single-stranded DNA overhangs, which serve as the substrate for the Rad51 recombinase to initiate HR and are refractory to NHEJ repair. Here, we review recent insights into the mechanisms of end resection, how it is regulated, and the pathological consequences of its dysregulation.
Collapse
Affiliation(s)
- Petr Cejka
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; .,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; .,Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
155
|
Singh JK, Smith R, Rother MB, de Groot AJL, Wiegant WW, Vreeken K, D’Augustin O, Kim RQ, Qian H, Krawczyk PM, González-Prieto R, Vertegaal ACO, Lamers M, Huet S, van Attikum H. Zinc finger protein ZNF384 is an adaptor of Ku to DNA during classical non-homologous end-joining. Nat Commun 2021; 12:6560. [PMID: 34772923 PMCID: PMC8589989 DOI: 10.1038/s41467-021-26691-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/19/2021] [Indexed: 12/14/2022] Open
Abstract
DNA double-strand breaks (DSBs) are among the most deleterious types of DNA damage as they can lead to mutations and chromosomal rearrangements, which underlie cancer development. Classical non-homologous end-joining (cNHEJ) is the dominant pathway for DSB repair in human cells, involving the DNA-binding proteins XRCC6 (Ku70) and XRCC5 (Ku80). Other DNA-binding proteins such as Zinc Finger (ZnF) domain-containing proteins have also been implicated in DNA repair, but their role in cNHEJ remained elusive. Here we show that ZNF384, a member of the C2H2 family of ZnF proteins, binds DNA ends in vitro and is recruited to DSBs in vivo. ZNF384 recruitment requires the poly(ADP-ribosyl) polymerase 1 (PARP1)-dependent expansion of damaged chromatin, followed by binding of its C2H2 motifs to the exposed DNA. Moreover, ZNF384 interacts with Ku70/Ku80 via its N-terminus, thereby promoting Ku70/Ku80 assembly and the accrual of downstream cNHEJ factors, including APLF and XRCC4/LIG4, for efficient repair at DSBs. Altogether, our data suggest that ZNF384 acts as a 'Ku-adaptor' that binds damaged DNA and Ku70/Ku80 to facilitate the build-up of a cNHEJ repairosome, highlighting a role for ZNF384 in DSB repair and genome maintenance.
Collapse
Affiliation(s)
- Jenny Kaur Singh
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Rebecca Smith
- grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, BIOSIT–UMS3480, F-35000 Rennes, France
| | - Magdalena B. Rother
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anton J. L. de Groot
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wouter W. Wiegant
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kees Vreeken
- grid.10419.3d0000000089452978Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Ostiane D’Augustin
- grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, BIOSIT–UMS3480, F-35000 Rennes, France ,grid.457349.80000 0004 0623 0579Institut de Biologie François Jacob, Institute of Cellular and Molecular Radiobiology, Université Paris-Saclay, Université de Paris, CEA, F-92265 Fontenay-aux-Roses, France
| | - Robbert Q. Kim
- grid.10419.3d0000000089452978Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Haibin Qian
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Przemek M. Krawczyk
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Román González-Prieto
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Alfred C. O. Vertegaal
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Meindert Lamers
- grid.16872.3a0000 0004 0435 165XDepartment of Medical Biology, Amsterdam University Medical Centers (location AMC), Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Sébastien Huet
- grid.410368.80000 0001 2191 9284Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes)—UMR 6290, BIOSIT–UMS3480, F-35000 Rennes, France ,grid.440891.00000 0001 1931 4817Institut Universitaire de France, F-75000 Paris, France
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
156
|
Jia W, Xu C, Li SC. Resolving complex structures at oncovirus integration loci with conjugate graph. Brief Bioinform 2021; 22:6359003. [PMID: 34463709 DOI: 10.1093/bib/bbab359] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 01/10/2023] Open
Abstract
Oncovirus integrations cause copy number variations and complex structural variations (SVs) on host genomes. However, the understanding of how inserted viral DNA impacts the local genome remains limited. The linear structure of the oncovirus integrated local genomic map (LGM) will lay the foundations to understand how oncovirus integrations emerge and compromise the host genome's functioning. We propose a conjugate graph model to reconstruct the rearranged LGM at integrated loci. Simulation tests prove the reliability and credibility of the algorithm. Applications of the algorithm to whole-genome sequencing data of human papillomavirus (HPV) and hepatitis B virus (HBV)-infected cancer samples gained biological insights on oncovirus integrations. We observed four affection patterns of oncovirus integrations from the HPV and HBV-integrated cancer samples, including the coding-frame truncation, hyper-amplification of tumor gene, the viral cis-regulation inserted at the single intron and at the intergenic region. We found that the focal duplicates and host SVs are frequent in the HPV-integrated LGMs, while the focal deletions are prevalent in HBV-integrated LGMs. Furthermore, with the results yields from our method, we found the enhanced microhomology-mediated end joining might lead to both HPV and HBV integrations and conjectured that the HPV integrations might mainly occur during the DNA replication process. The conjugate graph algorithm code and LGM construction pipeline, available at https://github.com/deepomicslab/FuseSV.
Collapse
Affiliation(s)
- Wenlong Jia
- Department of Computer Science, City University of Hong Kong, Hong Kong
| | - Chang Xu
- Department of Computer Science, City University of Hong Kong, Hong Kong
| | - Shuai Cheng Li
- Department of Computer Science, City University of Hong Kong, Hong Kong
| |
Collapse
|
157
|
Jiang H, Swacha P, Gekara NO. Nuclear AIM2-Like Receptors Drive Genotoxic Tissue Injury by Inhibiting DNA Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102534. [PMID: 34658166 PMCID: PMC8596118 DOI: 10.1002/advs.202102534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Radiation is an essential preparative procedure for bone marrow (BM) transplantation and cancer treatment. The therapeutic efficacy of radiation and associated toxicity varies from patient to patient, making it difficult to prescribe an optimal patient-specific irradiation dose. The molecular determinants of radiation response remain unclear. AIM2-like receptors (ALRs) are key players in innate immunity and determine the course of infections, inflammatory diseases, senescence, and cancer. Here it is reported that mice lacking ALRs are resistant to irradiation-induced BM injury. It is shown that nuclear ALRs are inhibitors of DNA repair, thereby accelerate genome destabilization, micronuclei generation, and cell death, and that this novel function is uncoupled from their role in innate immunity. Mechanistically, ALRs bind to and interfere with chromatin decompaction vital for DNA repair. The finding uncovers ALRs as targets for new interventions against genotoxic tissue injury and as possible biomarkers for predicting the outcome of radio/chemotherapy.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholm106 91Sweden
| | - Patrycja Swacha
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholm106 91Sweden
| | - Nelson O. Gekara
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholm106 91Sweden
| |
Collapse
|
158
|
Jiang H, Mei YF. SARS-CoV-2 Spike Impairs DNA Damage Repair and Inhibits V(D)J Recombination In Vitro. Viruses 2021; 13:2056. [PMID: 34696485 PMCID: PMC8538446 DOI: 10.3390/v13102056] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/08/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the coronavirus disease 2019 (COVID-19) pandemic, severely affecting public health and the global economy. Adaptive immunity plays a crucial role in fighting against SARS-CoV-2 infection and directly influences the clinical outcomes of patients. Clinical studies have indicated that patients with severe COVID-19 exhibit delayed and weak adaptive immune responses; however, the mechanism by which SARS-CoV-2 impedes adaptive immunity remains unclear. Here, by using an in vitro cell line, we report that the SARS-CoV-2 spike protein significantly inhibits DNA damage repair, which is required for effective V(D)J recombination in adaptive immunity. Mechanistically, we found that the spike protein localizes in the nucleus and inhibits DNA damage repair by impeding key DNA repair protein BRCA1 and 53BP1 recruitment to the damage site. Our findings reveal a potential molecular mechanism by which the spike protein might impede adaptive immunity and underscore the potential side effects of full-length spike-based vaccines.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Molecular Biosciences, The Wenner–Gren Institute, Stockholm University, SE-10691 Stockholm, Sweden
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden
| | - Ya-Fang Mei
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden
| |
Collapse
|
159
|
Kunisky AK, Anyaeche VI, Herron RS, Park CY, Hwang HW. Shift in MSL1 alternative polyadenylation in response to DNA damage protects cancer cells from chemotherapeutic agent-induced apoptosis. Cell Rep 2021; 37:109815. [PMID: 34644577 PMCID: PMC8580136 DOI: 10.1016/j.celrep.2021.109815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/26/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
DNA damage reshapes the cellular transcriptome by modulating RNA transcription and processing. In cancer cells, these changes can alter the expression of genes in the immune surveillance and cell death pathways. Here, we investigate how DNA damage impacts alternative polyadenylation (APA) using the PAPERCLIP technique. We find that APA shifts are a coordinated response for hundreds of genes to DNA damage, and we identify PCF11 as an important contributor of DNA damage-induced APA shifts. One of these APA shifts results in upregulation of the full-length MSL1 mRNA isoform, which protects cells from DNA damage-induced apoptosis and promotes cell survival from DNA-damaging agents. Importantly, blocking MSL1 upregulation enhances cytotoxicity of chemotherapeutic agents even in the absence of p53 and overcomes chemoresistance. Our study demonstrates that characterizing adaptive APA shifts to DNA damage has therapeutic implications and reveals a link between PCF11, the MSL complex, and DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Alexander K Kunisky
- Department of Pathology, University of Pittsburgh, School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Vivian I Anyaeche
- Department of Pathology, University of Pittsburgh, School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - R Samuel Herron
- Department of Pathology, University of Pittsburgh, School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA
| | - Christopher Y Park
- Flatiron Institute, Simons Foundation, 162 Fifth Avenue, New York, NY 10010, USA
| | - Hun-Way Hwang
- Department of Pathology, University of Pittsburgh, School of Medicine, 3550 Terrace Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
160
|
Disruption of Chromatin Dynamics by Hypotonic Stress Suppresses HR and Shifts DSB Processing to Error-Prone SSA. Int J Mol Sci 2021; 22:ijms222010957. [PMID: 34681628 PMCID: PMC8535785 DOI: 10.3390/ijms222010957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
The processing of DNA double-strand breaks (DSBs) depends on the dynamic characteristics of chromatin. To investigate how abrupt changes in chromatin compaction alter these dynamics and affect DSB processing and repair, we exposed irradiated cells to hypotonic stress (HypoS). Densitometric and chromosome-length analyses show that HypoS transiently decompacts chromatin without inducing histone modifications known from regulated local chromatin decondensation, or changes in Micrococcal Nuclease (MNase) sensitivity. HypoS leaves undisturbed initial stages of DNA-damage-response (DDR), such as radiation-induced ATM activation and H2AX-phosphorylation. However, detection of ATM-pS1981, γ-H2AX and 53BP1 foci is reduced in a protein, cell cycle phase and cell line dependent manner; likely secondary to chromatin decompaction that disrupts the focal organization of DDR proteins. While HypoS only exerts small effects on classical nonhomologous end-joining (c-NHEJ) and alternative end-joining (alt-EJ), it markedly suppresses homologous recombination (HR) without affecting DNA end-resection at DSBs, and clearly enhances single-strand annealing (SSA). These shifts in pathway engagement are accompanied by decreases in HR-dependent chromatid-break repair in the G2-phase, and by increases in alt-EJ and SSA-dependent chromosomal translocations. Consequently, HypoS sensitizes cells to ionizing radiation (IR)-induced killing. We conclude that HypoS-induced global chromatin decompaction compromises regulated chromatin dynamics and genomic stability by suppressing DSB-processing by HR, and allowing error-prone processing by alt-EJ and SSA.
Collapse
|
161
|
Giaccherini C, Gaillard P. Control of structure-specific endonucleases during homologous recombination in eukaryotes. Curr Opin Genet Dev 2021; 71:195-205. [PMID: 34624742 DOI: 10.1016/j.gde.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023]
Abstract
Structure-Specific Endonucleases (SSE) are specialized DNA endonucleases that recognize and process DNA secondary structures without any strict dependency on the nucleotide sequence context. This enables them to act virtually anywhere in the genome and to make key contributions to the maintenance of genome stability by removing DNA structures that may stall essential cellular processes such as DNA replication, transcription, repair and chromosome segregation. During repair of double strand breaks by homologous recombination mechanisms, DNA secondary structures are formed and processed in a timely manner. Their homeostasis relies on the combined action of helicases, SSE and topoisomerases. In this review, we focus on how SSE contribute to DNA end resection, single-strand annealing and double-strand break repair, with an emphasis on how their action is fine-tuned in those processes.
Collapse
Affiliation(s)
- C Giaccherini
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France
| | - Phl Gaillard
- Centre de Recherche en Cancérologie de Marseille, CRCM, Inserm, CNRS, Aix-Marseille Université, Institut Paoli-Calmettes, Marseille, France.
| |
Collapse
|
162
|
Frock RL, Sadeghi C, Meng J, Wang JL. DNA End Joining: G0-ing to the Core. Biomolecules 2021; 11:biom11101487. [PMID: 34680120 PMCID: PMC8533500 DOI: 10.3390/biom11101487] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/28/2022] Open
Abstract
Humans have evolved a series of DNA double-strand break (DSB) repair pathways to efficiently and accurately rejoin nascently formed pairs of double-stranded DNA ends (DSEs). In G0/G1-phase cells, non-homologous end joining (NHEJ) and alternative end joining (A-EJ) operate to support covalent rejoining of DSEs. While NHEJ is predominantly utilized and collaborates extensively with the DNA damage response (DDR) to support pairing of DSEs, much less is known about A-EJ collaboration with DDR factors when NHEJ is absent. Non-cycling lymphocyte progenitor cells use NHEJ to complete V(D)J recombination of antigen receptor genes, initiated by the RAG1/2 endonuclease which holds its pair of targeted DSBs in a synapse until each specified pair of DSEs is handed off to the NHEJ DSB sensor complex, Ku. Similar to designer endonuclease DSBs, the absence of Ku allows for A-EJ to access RAG1/2 DSEs but with random pairing to complete their repair. Here, we describe recent insights into the major phases of DSB end joining, with an emphasis on synapsis and tethering mechanisms, and bring together new and old concepts of NHEJ vs. A-EJ and on RAG2-mediated repair pathway choice.
Collapse
|
163
|
Unfried JP, Marín-Baquero M, Rivera-Calzada Á, Razquin N, Martín-Cuevas EM, de Bragança S, Aicart-Ramos C, McCoy C, Prats-Mari L, Arribas-Bosacoma R, Lee L, Caruso S, Zucman-Rossi J, Sangro B, Williams G, Moreno-Herrero F, Llorca O, Lees-Miller SP, Fortes P. Long Noncoding RNA NIHCOLE Promotes Ligation Efficiency of DNA Double-Strand Breaks in Hepatocellular Carcinoma. Cancer Res 2021; 81:4910-4925. [PMID: 34321241 PMCID: PMC8488005 DOI: 10.1158/0008-5472.can-21-0463] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022]
Abstract
Long noncoding RNAs (lncRNA) are emerging as key players in cancer as parts of poorly understood molecular mechanisms. Here, we investigated lncRNAs that play a role in hepatocellular carcinoma (HCC) and identified NIHCOLE, a novel lncRNA induced in HCC with oncogenic potential and a role in the ligation efficiency of DNA double-stranded breaks (DSB). NIHCOLE expression was associated with poor prognosis and survival of HCC patients. Depletion of NIHCOLE from HCC cells led to impaired proliferation and increased apoptosis. NIHCOLE deficiency led to accumulation of DNA damage due to a specific decrease in the activity of the nonhomologous end-joining (NHEJ) pathway of DSB repair. DNA damage induction in NIHCOLE-depleted cells further decreased HCC cell growth. NIHCOLE was associated with DSB markers and recruited several molecules of the Ku70/Ku80 heterodimer. Further, NIHCOLE putative structural domains supported stable multimeric complexes formed by several NHEJ factors including Ku70/80, APLF, XRCC4, and DNA ligase IV. NHEJ reconstitution assays showed that NIHCOLE promoted the ligation efficiency of blunt-ended DSBs. Collectively, these data show that NIHCOLE serves as a scaffold and facilitator of NHEJ machinery and confers an advantage to HCC cells, which could be exploited as a targetable vulnerability. SIGNIFICANCE: This study characterizes the role of lncRNA NIHCOLE in DNA repair and cellular fitness in HCC, thus implicating it as a therapeutic target.See related commentary by Barcena-Varela and Lujambio, p. 4899.
Collapse
MESH Headings
- Biomarkers, Tumor
- Carcinoma, Hepatocellular/diagnosis
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/mortality
- Cell Line, Tumor
- DNA Breaks, Double-Stranded
- DNA End-Joining Repair
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- High-Throughput Nucleotide Sequencing
- Humans
- Liver Neoplasms/diagnosis
- Liver Neoplasms/genetics
- Liver Neoplasms/mortality
- Models, Biological
- Nucleic Acid Conformation
- Nucleotide Motifs
- Prognosis
- RNA, Long Noncoding/chemistry
- RNA, Long Noncoding/genetics
Collapse
Affiliation(s)
- Juan P Unfried
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain.
| | - Mikel Marín-Baquero
- Department of Macromolecular Structures, Spanish National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Ángel Rivera-Calzada
- Structural Biology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Nerea Razquin
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Eva M Martín-Cuevas
- Department of Macromolecular Structures, Spanish National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Sara de Bragança
- Department of Macromolecular Structures, Spanish National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Clara Aicart-Ramos
- Department of Macromolecular Structures, Spanish National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Christopher McCoy
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Laura Prats-Mari
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain
| | - Raquel Arribas-Bosacoma
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Linda Lee
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Stefano Caruso
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors laboratory, Équipe Labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, INSERM, Functional Genomics of Solid Tumors laboratory, Équipe Labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, Paris, France
| | - Bruno Sangro
- University of Navarra Clinic (CUN), Liver Unit, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| | - Gareth Williams
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Fernando Moreno-Herrero
- Department of Macromolecular Structures, Spanish National Centre for Biotechnology (CNB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Oscar Llorca
- Structural Biology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Susan P Lees-Miller
- Department of Biochemistry and Molecular Biology, Robson DNA Science Centre, Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Puri Fortes
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research (CIMA), University of Navarra (UNAV), Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Liver and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Madrid, Spain
| |
Collapse
|
164
|
Jiang Y, Yam JC, Chu WK. Poly ADP Ribose Polymerase Inhibitor Olaparib Targeting Microhomology End Joining in Retinoblastoma Protein Defective Cancer: Analysis of the Retinoblastoma Cell-Killing Effects by Olaparib after Inducing Double-Strand Breaks. Int J Mol Sci 2021; 22:10687. [PMID: 34639028 PMCID: PMC8508856 DOI: 10.3390/ijms221910687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Retinoblastoma is the most common intraocular cancer in childhood. Loss of function in both copies of the RB1 gene is the causal mutation of retinoblastoma. Current treatment for retinoblastoma includes the use of chemotherapeutic agents, such as the DNA damaging agent etoposide, which is a topoisomerase II poison that mainly generates DNA double-strand breaks (DSBs) and genome instability. Unfaithful repairing of DSBs could lead to secondary cancers and serious side effects. Previously, we found that RB knocked-down mammalian cells depend on a highly mutagenic pathway, the micro-homology mediated end joining (MMEJ) pathway, to repair DSBs. Poly ADP ribose polymerase 1 (PARP1) is a major protein in promoting the MMEJ pathway. In this study, we explored the effects of olaparib, a PARP inhibitor, in killing retinoblastoma cells. Retinoblastoma cell line Y79 and primary retinoblastoma cells expressed the cone-rod homeobox protein (CRX), a photoreceptor-specific marker. No detectable RB expression was found in these cells. The co-treatment of olaparib and etoposide led to enhanced cell death in both the Y79 cells and the primary retinoblastoma cells. Our results demonstrated the killing effects in retinoblastoma cells by PARP inhibitor olaparib after inducing DNA double-strand breaks. The use of olaparib in combination with etoposide could improve the cell-killing effects. Thus, lower dosages of etoposide can be used to treat retinoblastoma, which would potentially lead to a lower level of DSBs and a relatively more stable genome.
Collapse
Affiliation(s)
- Yuning Jiang
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (Y.J.); (J.C.Y.)
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jason C. Yam
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (Y.J.); (J.C.Y.)
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Wai Kit Chu
- Department of Ophthalmology & Visual Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China; (Y.J.); (J.C.Y.)
- Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
165
|
Llorens-Agost M, Ensminger M, Le HP, Gawai A, Liu J, Cruz-García A, Bhetawal S, Wood RD, Heyer WD, Löbrich M. POLθ-mediated end joining is restricted by RAD52 and BRCA2 until the onset of mitosis. Nat Cell Biol 2021; 23:1095-1104. [PMID: 34616022 PMCID: PMC8675436 DOI: 10.1038/s41556-021-00764-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/30/2021] [Indexed: 01/25/2023]
Abstract
BRCA2-mutant cells are defective in homologous recombination, making them vulnerable to the inactivation of other pathways for the repair of DNA double-strand breaks (DSBs). This concept can be clinically exploited but is currently limited due to insufficient knowledge about how DSBs are repaired in the absence of BRCA2. We show that DNA polymerase θ (POLθ)-mediated end joining (TMEJ) repairs DSBs arising during the S phase in BRCA2-deficient cells only after the onset of the ensuing mitosis. This process is regulated by RAD52, whose loss causes the premature usage of TMEJ and the formation of chromosomal fusions. Purified RAD52 and BRCA2 proteins both block the DNA polymerase function of POLθ, suggesting a mechanism explaining their synthetic lethal relationships. We propose that the delay of TMEJ until mitosis ensures the conversion of originally one-ended DSBs into two-ended DSBs. Mitotic chromatin condensation might further serve to juxtapose correct break ends and limit chromosomal fusions.
Collapse
Affiliation(s)
- Marta Llorens-Agost
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Michael Ensminger
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Anugrah Gawai
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Andrés Cruz-García
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany
| | - Sarita Bhetawal
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, USA
| | - Markus Löbrich
- Radiation Biology and DNA Repair, Technical University of Darmstadt, Darmstadt, Germany.
| |
Collapse
|
166
|
Bai W, Zhu G, Xu J, Chen P, Meng F, Xue H, Chen C, Dong J. The 3'-flap endonuclease XPF-ERCC1 promotes alternative end joining and chromosomal translocation during B cell class switching. Cell Rep 2021; 36:109756. [PMID: 34592150 DOI: 10.1016/j.celrep.2021.109756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/06/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Robust alternative end joining (A-EJ) in classical non-homologous end joining (c-NHEJ)-deficient murine cells features double-strand break (DSB) end resection and microhomology (MH) usage and promotes chromosomal translocation. The activities responsible for removing 3' single-strand overhangs following resection and MH annealing in A-EJ remain unclear. We show that, during class switch recombination (CSR) in mature mouse B cells, the structure-specific endonuclease complex XPF-ERCC1SLX4, although not required for normal CSR, represents a nucleotide-excision-repair-independent 3' flap removal activity for A-EJ-mediated CSR. B cells deficient in DNA ligase 4 and XPF-ERCC1 exhibit further impaired class switching, reducing joining to the resected S region DSBs without altering the MH pattern in S-S junctions. In ERCC1-deficient A-EJ cells, 3' single-stranded DNA (ssDNA) flaps that are generated predominantly in S/G2 phase of the cell cycle are susceptible to nuclease resolution. Moreover, ERCC1 promotes c-myc-IgH translocation in Lig4-/- cells. Our study reveals an important role of the flap endonuclease XPF-ERCC1 in A-EJ and oncogenic translocation in mouse B cells.
Collapse
Affiliation(s)
- Wanyu Bai
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Guangchao Zhu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Jiejie Xu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Pingyue Chen
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China
| | - Feilong Meng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongman Xue
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China
| | - Chun Chen
- Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, China; Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, China.
| |
Collapse
|
167
|
Targeting the Interplay between HDACs and DNA Damage Repair for Myeloma Therapy. Int J Mol Sci 2021; 22:ijms221910406. [PMID: 34638744 PMCID: PMC8508842 DOI: 10.3390/ijms221910406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple myeloma (MM) is a malignancy of terminally differentiated plasma cells, and accounts for 10% of all hematologic malignancies and 1% of all cancers. MM is characterized by genomic instability which results from DNA damage with certain genomic rearrangements being prognostic factors for the disease and patients’ clinical response. Following genotoxic stress, the evolutionary conserved DNA damage response (DDR) is activated and, in turn, coordinates DNA repair with cell-cycle events. However, the process of carcinogenesis cannot be attributed only to the genetic alterations, but also involves epigenetic processes. Regulation of expression and activity of key players in DNA repair and checkpoint proteins are essential and mediated partly by posttranslational modifications (PTM), such as acetylation. Crosstalk between different PTMs is important for regulation of DNA repair pathways. Acetylation, which is mediated by acetyltransferases (HAT) and histone deacetylases (HDAC), not only affects gene expression through its modulation of histone tails but also has recently been implicated in regulating non-histone proteins. Currently, several HDAC inhibitors (HDACi) have been developed both in pre-clinical and clinical studies, with some of them exhibiting significant anti-MM activities. Due to reversibility of epigenetic changes during the evolutionary process of myeloma genesis, the potency of epigenetic therapies seems to be of great importance. The aim of the present paper is the summary of all data on the role of HDACi in DDR, the interference with each DNA repair mechanism and the therapeutic implications of HDACi in MM.
Collapse
|
168
|
Marchal L, Hamsanathan S, Karthikappallil R, Han S, Shinglot H, Gurkar AU. Analysis of representative mutants for key DNA repair pathways on healthspan in Caenorhabditis elegans. Mech Ageing Dev 2021; 200:111573. [PMID: 34562508 DOI: 10.1016/j.mad.2021.111573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022]
Abstract
Although the link between DNA damage and aging is well accepted, the role of different DNA repair proteins on functional/physiological aging is not well-defined. Here, using Caenorhabditis elegans, we systematically examined the effect of three DNA repair genes involved in key genome stability pathways. We assayed multiple health proxies including molecular, functional and resilience measures to define healthspan. Loss of XPF-1/ERCC-1, a protein involved in nucleotide excision repair (NER), homologous recombination (HR) and interstrand crosslink (ICL) repair, showed the highest impairment of functional and stress resilience measures along with a shortened lifespan. brc-1 mutants, with a well-defined role in HR and ICL are short-lived and highly sensitive to acute stressors, specifically oxidative stress. In contrast, ICL mutant, fcd-2 did not impact lifespan or most healthspan measures. Our efforts also uncover that DNA repair mutants show high sensitivity to oxidative stress with age, suggesting that this measure could act as a primary proxy for healthspan. Together, these data suggest that impairment of multiple DNA repair genes can drive functional/physiological aging. Further studies to examine specific DNA repair genes in a tissue specific manner will help dissect the importance and mechanistic role of these repair systems in biological aging.
Collapse
Affiliation(s)
- Lucile Marchal
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Shruthi Hamsanathan
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Roshan Karthikappallil
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA; Medical Sciences Division, University of Oxford, Oxford, UK
| | - Suhao Han
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Himaly Shinglot
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Aditi U Gurkar
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA; Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Kaufmann Medical Building Suite 500, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Centre, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
169
|
Wang XS, Menolfi D, Wu-Baer F, Fangazio M, Meyer SN, Shao Z, Wang Y, Zhu Y, Lee BJ, Estes VM, Cupo OM, Gautier J, Pasqualucci L, Dalla-Favera R, Baer R, Zha S. DNA damage-induced phosphorylation of CtIP at a conserved ATM/ATR site T855 promotes lymphomagenesis in mice. Proc Natl Acad Sci U S A 2021; 118:e2105440118. [PMID: 34521752 PMCID: PMC8463888 DOI: 10.1073/pnas.2105440118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2021] [Indexed: 12/28/2022] Open
Abstract
CtIP is a DNA end resection factor widely implicated in alternative end-joining (A-EJ)-mediated translocations in cell-based reporter systems. To address the physiological role of CtIP, an essential gene, in translocation-mediated lymphomagenesis, we introduced the T855A mutation at murine CtIP to nonhomologous end-joining and Tp53 double-deficient mice that routinely succumbed to lymphomas carrying A-EJ-mediated IgH-Myc translocations. T855 of CtIP is phosphorylated by ATM or ATR kinases upon DNA damage to promote end resection. Here, we reported that the T855A mutation of CtIP compromised the neonatal development of Xrcc4-/-Tp53-/- mice and the IgH-Myc translocation-driven lymphomagenesis in DNA-PKcs-/-Tp53-/- mice. Mechanistically, the T855A mutation limits DNA end resection length without affecting hairpin opening, translocation frequency, or fork stability. Meanwhile, after radiation, CtIP-T855A mutant cells showed a consistent decreased Chk1 phosphorylation and defects in the G2/M cell cycle checkpoint. Consistent with the role of T855A mutation in lymphomagenesis beyond translocation, the CtIP-T855A mutation also delays splenomegaly in λ-Myc mice. Collectively, our study revealed a role of CtIP-T855 phosphorylation in lymphomagenesis beyond A-EJ-mediated chromosomal translocation.
Collapse
Affiliation(s)
- Xiaobin S Wang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Graduate Program of Pathobiology and Molecular Medicine, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Demis Menolfi
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Foon Wu-Baer
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Marco Fangazio
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Stefanie N Meyer
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Zhengping Shao
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Yunyue Wang
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Yimeng Zhu
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Brian J Lee
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Verna M Estes
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Olivia M Cupo
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
| | - Jean Gautier
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Genetics and Development, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Laura Pasqualucci
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Riccardo Dalla-Favera
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Genetics and Development, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Richard Baer
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Shan Zha
- Institute for Cancer Genetics, Vagelos College for Physicians and Surgeons, Columbia University, New York City, NY 10032;
- Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Department of Immunology and Microbiology, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, Vagelos College for Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
170
|
Jimeno S, Prados-Carvajal R, Fernández-Ávila MJ, Silva S, Silvestris DA, Endara-Coll M, Rodríguez-Real G, Domingo-Prim J, Mejías-Navarro F, Romero-Franco A, Jimeno-González S, Barroso S, Cesarini V, Aguilera A, Gallo A, Visa N, Huertas P. ADAR-mediated RNA editing of DNA:RNA hybrids is required for DNA double strand break repair. Nat Commun 2021; 12:5512. [PMID: 34535666 PMCID: PMC8448848 DOI: 10.1038/s41467-021-25790-2] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/23/2021] [Indexed: 02/08/2023] Open
Abstract
The maintenance of genomic stability requires the coordination of multiple cellular tasks upon the appearance of DNA lesions. RNA editing, the post-transcriptional sequence alteration of RNA, has a profound effect on cell homeostasis, but its implication in the response to DNA damage was not previously explored. Here we show that, in response to DNA breaks, an overall change of the Adenosine-to-Inosine RNA editing is observed, a phenomenon we call the RNA Editing DAmage Response (REDAR). REDAR relies on the checkpoint kinase ATR and the recombination factor CtIP. Moreover, depletion of the RNA editing enzyme ADAR2 renders cells hypersensitive to genotoxic agents, increases genomic instability and hampers homologous recombination by impairing DNA resection. Such a role of ADAR2 in DNA repair goes beyond the recoding of specific transcripts, but depends on ADAR2 editing DNA:RNA hybrids to ease their dissolution.
Collapse
Affiliation(s)
- Sonia Jimeno
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain.
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain.
| | - Rosario Prados-Carvajal
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - María Jesús Fernández-Ávila
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Sonia Silva
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Domenico Alessandro Silvestris
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo 15, 00146, Rome, Italy
| | - Martín Endara-Coll
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Guillermo Rodríguez-Real
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Judit Domingo-Prim
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
- Moirai Biodesign SL, Parc Científic de Barcelona, 08028, Barcelona, Spain
| | - Fernando Mejías-Navarro
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Amador Romero-Franco
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Silvia Jimeno-González
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Sonia Barroso
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Valeriana Cesarini
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo 15, 00146, Rome, Italy
| | - Andrés Aguilera
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain
| | - Angela Gallo
- RNA Editing Lab, Oncohaematology Department, IRCCS Ospedale Pediatrico "Bambino Gesù", Viale San Paolo 15, 00146, Rome, Italy
| | - Neus Visa
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 10691, Stockholm, Sweden
| | - Pablo Huertas
- Departamento de Genética, Universidad de Sevilla, Sevilla, 41080, Spain.
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Sevilla, 41092, Spain.
| |
Collapse
|
171
|
Rall-Scharpf M, Friedl TWP, Biechonski S, Denkinger M, Milyavsky M, Wiesmüller L. Sex-specific differences in DNA double-strand break repair of cycling human lymphocytes during aging. Aging (Albany NY) 2021; 13:21066-21089. [PMID: 34506302 PMCID: PMC8457596 DOI: 10.18632/aging.203519] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022]
Abstract
The gender gap in life expectancy and cancer incidence suggests differences in the aging process between the sexes. Genomic instability has been recognized as a key factor in aging, but little is known about sex-specific differences. Therefore, we analyzed DNA double-strand break (DSB) repair in cycling human peripheral blood lymphocytes (PBL) from male and female donors of different age. Reporter-based DSB repair analyses revealed differential regulation of pathway usage in PBL from male and female donors with age: Non-homologous end joining (NHEJ) was inversely regulated in men and women; the activity of pathways requiring end processing and strand annealing steps such as microhomology-mediated end joining (MMEJ) declined with age in women but not in men. Screening candidate proteins identified the NHEJ protein KU70 as well as the end resection regulatory factors ATM and BLM showing reduced expression during aging in women. Consistently, the regulatory factor BLM contributed to the MMEJ proficiency in young but not in old women as demonstrated by knockdown analysis. In conclusion, we show that DSB repair is subject to changes upon aging and age-related changes in DSB repair are distinct in men and women.
Collapse
Affiliation(s)
| | - Thomas W P Friedl
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Shahar Biechonski
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Michael Denkinger
- Institute for Geriatric Research Unit, Agaplesion Bethesda Hospital, Ulm University, Ulm, Germany
| | - Michael Milyavsky
- Department of Pathology, Sackler Faculty of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| |
Collapse
|
172
|
Scarpa M, Kapoor S, Tvedte ES, Doshi KA, Zou YS, Singh P, Lee JK, Chatterjee A, Ali MKM, Bromley RE, Hotopp JCD, Rassool FV, Baer MR. Pim kinase inhibitor co-treatment decreases alternative non-homologous end-joining DNA repair and genomic instability induced by topoisomerase 2 inhibitors in cells with FLT3 internal tandem duplication. Oncotarget 2021; 12:1763-1779. [PMID: 34504649 PMCID: PMC8416564 DOI: 10.18632/oncotarget.28042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/28/2021] [Indexed: 01/11/2023] Open
Abstract
Acute myeloid leukemia (AML) with fms-like tyrosine kinase 3 internal tandem duplication (FLT3-ITD) relapses with new chromosome abnormalities following chemotherapy, implicating genomic instability. Error-prone alternative non-homologous end-joining (Alt-NHEJ) DNA double-strand break (DSB) repair is upregulated in FLT3-ITD-expresssing cells, driven by c-Myc. The serine/threonine kinase Pim-1 is upregulated downstream of FLT3-ITD, and inhibiting Pim increases topoisomerase 2 (TOP2) inhibitor chemotherapy drug induction of DNA DSBs and apoptosis. We hypothesized that Pim inhibition increases DNA DSBs by downregulating Alt-NHEJ, also decreasing genomic instability. Alt-NHEJ activity, measured with a green fluorescent reporter construct, increased in FLT3-ITD-transfected Ba/F3-ITD cells treated with TOP2 inhibitors, and this increase was abrogated by Pim kinase inhibitor AZD1208 co-treatment. TOP2 inhibitor and AZD1208 co-treatment downregulated cellular and nuclear expression of c-Myc and Alt-NHEJ repair pathway proteins DNA polymerase θ, DNA ligase 3 and XRCC1 in FLT3-ITD cell lines and AML patient blasts. ALT-NHEJ protein downregulation was preceded by c-Myc downregulation, inhibited by c-Myc overexpression and induced by c-Myc knockdown or inhibition. TOP2 inhibitor treatment increased chromosome breaks in metaphase spreads in FLT3-ITD-expressing cells, and AZD1208 co-treatment abrogated these increases. Thus Pim kinase inhibitor co-treatment both enhances TOP2 inhibitor cytotoxicity and decreases TOP2 inhibitor-induced genomic instability in cells with FLT3-ITD.
Collapse
Affiliation(s)
- Mario Scarpa
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shivani Kapoor
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | | | - Kshama A. Doshi
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Ying S. Zou
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Prerna Singh
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Jonelle K. Lee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
| | - Aditi Chatterjee
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Moaath K. Mustafa Ali
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Julie C. Dunning Hotopp
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Institute for Genome Sciences, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Feyruz V. Rassool
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Maria R. Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
- Veterans Affairs Medical Center, Baltimore, MD, USA
| |
Collapse
|
173
|
Gillyard T, Davis J. DNA double-strand break repair in cancer: A path to achieving precision medicine. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 364:111-137. [PMID: 34507781 DOI: 10.1016/bs.ircmb.2021.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The assessment of DNA damage can be a significant diagnostic for precision medicine. DNA double strand break (DSBs) pathways in cancer are the primary targets in a majority of anticancer therapies, yet the molecular vulnerabilities that underlie each tumor can vary widely making the application of precision medicine challenging. Identifying and understanding these interindividual vulnerabilities enables the design of targeted DSB inhibitors along with evolving precision medicine approaches to selectively kill cancer cells with minimal side effects. A major challenge however, is defining exactly how to target unique differences in DSB repair pathway mechanisms. This review comprises a brief overview of the DSB repair mechanisms in cancer and includes results obtained with revolutionary advances such as CRISPR/Cas9 and machine learning/artificial intelligence, which are rapidly advancing not only our understanding of determinants of DSB repair choice, but also how it can be used to advance precision medicine. Scientific innovation in the methods used to diagnose and treat cancer is converging with advances in basic science and translational research. This revolution will continue to be a critical driver of precision medicine that will enable precise targeting of unique individual mechanisms. This review aims to lay the foundation for achieving this goal.
Collapse
Affiliation(s)
- Taneisha Gillyard
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States
| | - Jamaine Davis
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN, United States.
| |
Collapse
|
174
|
Tamura Y, Ohhata T, Niida H, Sakai S, Uchida C, Masumoto K, Katou F, Wutz A, Kitagawa M. Homologous recombination is reduced in female embryonic stem cells by two active X chromosomes. EMBO Rep 2021; 22:e52190. [PMID: 34309165 DOI: 10.15252/embr.202052190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/16/2022] Open
Abstract
The reactivation of X-linked genes is observed in some primary breast tumors. Two active X chromosomes are also observed in female embryonic stem cells (ESCs), but whether double doses of X-linked genes affect DNA repair efficiency remains unclear. Here, we establish isogenic female/male ESCs and show that the female ESCs are more sensitive to camptothecin and have lower gene targeting efficiency than male ESCs, suggesting that homologous recombination (HR) efficiency is reduced in female ESCs. We also generate Xist-inducible female ESCs and show that the lower HR efficiency is restored when X chromosome inactivation is induced. Finally, we assess the X-linked genes with a role in DNA repair and find that Brcc3 is one of the genes involved in a network promoting proper HR. Our findings link the double doses of X-linked genes with lower DNA repair activity, and this may have relevance for common diseases in female patients, such as breast cancer.
Collapse
Affiliation(s)
- Yuka Tamura
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan.,Department of Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tatsuya Ohhata
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Niida
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoshi Sakai
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Chiharu Uchida
- Advanced Research Facilities & Services, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kazuma Masumoto
- Department of Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Fuminori Katou
- Department of Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Anton Wutz
- Institute of Molecular Health Sciences, ETH Zürich, Zurich, Switzerland
| | - Masatoshi Kitagawa
- Department of Molecular Biology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
175
|
Su J, Xu R, Mongia P, Toyofuku N, Nakagawa T. Fission yeast Rad8/HLTF facilitates Rad52-dependent chromosomal rearrangements through PCNA lysine 107 ubiquitination. PLoS Genet 2021; 17:e1009671. [PMID: 34292936 PMCID: PMC8297803 DOI: 10.1371/journal.pgen.1009671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/18/2021] [Indexed: 11/19/2022] Open
Abstract
Gross chromosomal rearrangements (GCRs), including translocation, deletion, and inversion, can cause cell death and genetic diseases such as cancer in multicellular organisms. Rad51, a DNA strand exchange protein, suppresses GCRs by repairing spontaneous DNA damage through a conservative way of homologous recombination, gene conversion. On the other hand, Rad52 that catalyzes single-strand annealing (SSA) causes GCRs using homologous sequences. However, the detailed mechanism of Rad52-dependent GCRs remains unclear. Here, we provide genetic evidence that fission yeast Rad8/HLTF facilitates Rad52-dependent GCRs through the ubiquitination of lysine 107 (K107) of PCNA, a DNA sliding clamp. In rad51Δ cells, loss of Rad8 eliminated 75% of the isochromosomes resulting from centromere inverted repeat recombination, showing that Rad8 is essential for the formation of the majority of isochromosomes in rad51Δ cells. Rad8 HIRAN and RING finger mutations reduced GCRs, suggesting that Rad8 facilitates GCRs through 3’ DNA-end binding and ubiquitin ligase activity. Mms2 and Ubc4 but not Ubc13 ubiquitin-conjugating enzymes were required for GCRs. Consistent with this, mutating PCNA K107 rather than the well-studied PCNA K164 reduced GCRs. Rad8-dependent PCNA K107 ubiquitination facilitates Rad52-dependent GCRs, as PCNA K107R, rad8, and rad52 mutations epistatically reduced GCRs. In contrast to GCRs, PCNA K107R did not significantly change gene conversion rates, suggesting a specific role of PCNA K107 ubiquitination in GCRs. PCNA K107R enhanced temperature-sensitive growth defects of DNA ligase I cdc17-K42 mutant, implying that PCNA K107 ubiquitination occurs when Okazaki fragment maturation fails. Remarkably, K107 is located at the interface between PCNA subunits, and an interface mutation D150E bypassed the requirement of PCNA K107 and Rad8 ubiquitin ligase for GCRs. These data suggest that Rad8-dependent PCNA K107 ubiquitination facilitates Rad52-dependent GCRs by changing the PCNA clamp structure. Gross chromosomal rearrangements (GCRs), including translocation, can alter gene dosage and activity, resulting in genetic diseases such as cancer. However, GCRs can occur by some enzymes, including Rad52 recombinase, and result in chromosomal evolution. Therefore, GCRs are not only pathological but also physiological phenomena from an evolutionary point of view. However, the detailed mechanism of GCRs remains unclear. Here, using fission yeast, we show that the homolog of human HLTF, Rad8 causes GCRs through noncanonical ubiquitination of proliferating cellular nuclear antigen (PCNA) at a lysine 107 (K107). Rad51, a DNA strand exchange protein, suppresses the formation of isochromosomes whose arms mirror each another and chromosomal truncation. We found that, like Rad52, Rad8 is required for isochromosome formation but not chromosomal truncation in rad51Δ cells, showing a specific role of Rad8 in homology-mediated GCRs. Mutations in Rad8 ubiquitin E3 ligase RING finger domain, Mms2-Ubc4 ubiquitin-conjugating enzymes, and PCNA K107 reduced GCRs in rad51Δ cells, suggesting that Rad8-Mms2-Ubc4-dependent PCNA K107 ubiquitination facilitates GCRs. PCNA trimers form a DNA sliding clamp. The K107 residue is located at the PCNA-PCNA interface, and an interface mutation D150E restored GCRs in PCNA K107R mutant cells. This study provides genetic evidence that Rad8-dependent PCNA K107 ubiquitination facilitates GCRs by changing the PCNA clamp structure.
Collapse
Affiliation(s)
- Jie Su
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Ran Xu
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Piyusha Mongia
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Naoko Toyofuku
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Takuro Nakagawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
- * E-mail:
| |
Collapse
|
176
|
Hussain SS, Majumdar R, Moore GM, Narang H, Buechelmaier E, Bazil MJ, Ravindran PT, Leeman J, Li Y, Jalan M, Anderson KS, Farina A, Soni R, Mohibullah N, Hamzic E, Rong-Mullins X, Sifuentes C, Damerla RR, Viale A, Powell SN, Higginson D. Measuring nonhomologous end-joining, homologous recombination and alternative end-joining simultaneously at an endogenous locus in any transfectable human cell. Nucleic Acids Res 2021; 49:e74. [PMID: 33877327 PMCID: PMC8287935 DOI: 10.1093/nar/gkab262] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/23/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
Double strand break (DSB) repair primarily occurs through 3 pathways: non-homologous end-joining (NHEJ), alternative end-joining (Alt-EJ), and homologous recombination (HR). Typical methods to measure pathway usage include integrated cassette reporter assays or visualization of DNA damage induced nuclear foci. It is now well understood that repair of Cas9-induced breaks also involves NHEJ, Alt-EJ, and HR pathways, providing a new format to measure pathway usage. Here, we have developed a simple Cas9-based system with validated repair outcomes that accurately represent each pathway and then converted it to a droplet digital PCR (ddPCR) readout, thus obviating the need for Next Generation Sequencing and bioinformatic analysis with the goal to make Cas9-based system accessible to more laboratories. The assay system has reproduced several important insights. First, absence of the key Alt-EJ factor Pol θ only abrogates ∼50% of total Alt-EJ. Second, single-strand templated repair (SSTR) requires BRCA1 and MRE11 activity, but not BRCA2, establishing that SSTR commonly used in genome editing is not conventional HR. Third, BRCA1 promotes Alt-EJ usage at two-ended DSBs in contrast to BRCA2. This assay can be used in any system, which permits Cas9 delivery and, importantly, allows rapid genotype-to-phenotype correlation in isogenic cell line pairs.
Collapse
Affiliation(s)
- Suleman S Hussain
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rahul Majumdar
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Grace M Moore
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Himanshi Narang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erika S Buechelmaier
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Weill Cornell Medicine, Graduate School of Medical Sciences, New York, NY 10065, USA
| | - Maximilian J Bazil
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Jonathan E Leeman
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02189, USA
| | - Yi Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manisha Jalan
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kyrie S Anderson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Farina
- Integrated Genomics Operations, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rekha Soni
- Integrated Genomics Operations, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Neeman Mohibullah
- Integrated Genomics Operations, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Edin Hamzic
- Biocomputix, Sarajevo, 71000, Bosnia and Herzegovina
| | - Xiaoqing Rong-Mullins
- Department of Biostatistics, The Ohio State University College of Public Health, Columbus, OH 43210, USA
| | | | - Rama R Damerla
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Agnes Viale
- Integrated Genomics Operations, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Simon N Powell
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daniel S Higginson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
177
|
Al-Zain AM, Symington LS. The dark side of homology-directed repair. DNA Repair (Amst) 2021; 106:103181. [PMID: 34311272 DOI: 10.1016/j.dnarep.2021.103181] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/16/2021] [Accepted: 07/16/2021] [Indexed: 10/20/2022]
Abstract
DNA double strand breaks (DSB) are cytotoxic lesions that can lead to genome rearrangements and genomic instability, which are hallmarks of cancer. The two main DSB repair pathways are non-homologous end joining and homologous recombination (HR). While HR is generally highly accurate, it has the potential for rearrangements that occur directly or through intermediates generated during the repair process. Whole genome sequencing of cancers has revealed numerous types of structural rearrangement signatures that are often indicative of repair mediated by sequence homology. However, it can be challenging to delineate repair mechanisms from sequence analysis of rearrangement end products from cancer genomes, or even model systems, because the same rearrangements can be generated by different pathways. Here, we review homology-directed repair pathways and their consequences. Exploring those pathways can lead to a greater understanding of rearrangements that occur in cancer cells.
Collapse
Affiliation(s)
- Amr M Al-Zain
- Program in Biological Sciences, Columbia University, New York, NY, 10027, United States; Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, United States
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, 10032, United States; Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY, 10032, United States.
| |
Collapse
|
178
|
Ackerson SM, Romney C, Schuck PL, Stewart JA. To Join or Not to Join: Decision Points Along the Pathway to Double-Strand Break Repair vs. Chromosome End Protection. Front Cell Dev Biol 2021; 9:708763. [PMID: 34322492 PMCID: PMC8311741 DOI: 10.3389/fcell.2021.708763] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 01/01/2023] Open
Abstract
The regulation of DNA double-strand breaks (DSBs) and telomeres are diametrically opposed in the cell. DSBs are considered one of the most deleterious forms of DNA damage and must be quickly recognized and repaired. Telomeres, on the other hand, are specialized, stable DNA ends that must be protected from recognition as DSBs to inhibit unwanted chromosome fusions. Decisions to join DNA ends, or not, are therefore critical to genome stability. Yet, the processing of telomeres and DSBs share many commonalities. Accordingly, key decision points are used to shift DNA ends toward DSB repair vs. end protection. Additionally, DSBs can be repaired by two major pathways, namely homologous recombination (HR) and non-homologous end joining (NHEJ). The choice of which repair pathway is employed is also dictated by a series of decision points that shift the break toward HR or NHEJ. In this review, we will focus on these decision points and the mechanisms that dictate end protection vs. DSB repair and DSB repair choice.
Collapse
Affiliation(s)
- Stephanie M Ackerson
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Carlan Romney
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - P Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| | - Jason A Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
179
|
Analysis of chromatid-break-repair detects a homologous recombination to non-homologous end-joining switch with increasing load of DNA double-strand breaks. Mutat Res 2021; 867:503372. [PMID: 34266628 DOI: 10.1016/j.mrgentox.2021.503372] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/28/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022]
Abstract
We recently reported that when low doses of ionizing radiation induce low numbers of DNA double-strand breaks (DSBs) in G2-phase cells, about 50 % of them are repaired by homologous recombination (HR) and the remaining by classical non-homologous end-joining (c-NHEJ). However, with increasing DSB-load, the contribution of HR drops to undetectable (at ∼10 Gy) as c-NHEJ dominates. It remains unknown whether the approximately equal shunting of DSBs between HR and c-NHEJ at low radiation doses and the predominant shunting to c-NHEJ at high doses, applies to every DSB, or whether the individual characteristics of each DSB generate processing preferences. When G2-phase cells are irradiated, only about 10 % of the induced DSBs break the chromatids. This breakage allows analysis of the processing of this specific subset of DSBs using cytogenetic methods. Notably, at low radiation doses, these DSBs are almost exclusively processed by HR, suggesting that chromatin characteristics awaiting characterization underpin chromatid breakage and determine the preferential engagement of HR. Strikingly, we also discovered that with increasing radiation dose, a pathway switch to c-NHEJ occurs in the processing of this subset of DSBs. Here, we confirm and substantially extend our initial observations using additional methodologies. Wild-type cells, as well as HR and c-NHEJ mutants, are exposed to a broad spectrum of radiation doses and their response analyzed specifically in G2 phase. Our results further consolidate the observation that at doses <2 Gy, HR is the main option in the processing of the subset of DSBs generating chromatid breaks and that a pathway switch at doses between 4-6 Gy allows the progressive engagement of c-NHEJ. PARP1 inhibition, irrespective of radiation dose, leaves chromatid break repair unaffected suggesting that the contribution of alternative end-joining is undetectable under these experimental conditions.
Collapse
|
180
|
Nam JK, Kim AR, Choi SH, Kim JH, Choi KJ, Cho S, Lee JW, Cho HJ, Kwon YW, Cho J, Kim KS, Kim J, Lee HJ, Lee TS, Bae S, Hong HJ, Lee YJ. An antibody against L1 cell adhesion molecule inhibits cardiotoxicity by regulating persistent DNA damage. Nat Commun 2021; 12:3279. [PMID: 34078883 PMCID: PMC8172563 DOI: 10.1038/s41467-021-23478-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/03/2021] [Indexed: 02/04/2023] Open
Abstract
Targeting the molecular pathways underlying the cardiotoxicity associated with thoracic irradiation and doxorubicin (Dox) could reduce the morbidity and mortality associated with these anticancer treatments. Here, we find that vascular endothelial cells (ECs) with persistent DNA damage induced by irradiation and Dox treatment exhibit a fibrotic phenotype (endothelial-mesenchymal transition, EndMT) correlating with the colocalization of L1CAM and persistent DNA damage foci. We demonstrate that treatment with the anti-L1CAM antibody Ab417 decreases L1CAM overexpression and nuclear translocation and persistent DNA damage foci. We show that in whole-heart-irradiated mice, EC-specific p53 deletion increases vascular fibrosis and the colocalization of L1CAM and DNA damage foci, while Ab417 attenuates these effects. We also demonstrate that Ab417 prevents cardiac dysfunction-related decrease in fractional shortening and prolongs survival after whole-heart irradiation or Dox treatment. We show that cardiomyopathy patient-derived cardiovascular ECs with persistent DNA damage show upregulated L1CAM and EndMT, indicating clinical applicability of Ab417. We conclude that controlling vascular DNA damage by inhibiting nuclear L1CAM translocation might effectively prevent anticancer therapy-associated cardiotoxicity.
Collapse
Affiliation(s)
- Jae-Kyung Nam
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Korea
| | - A-Ram Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Seo-Hyun Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
- Department of Surgery, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Ji-Hee Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Korea
| | - Kyu Jin Choi
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Seulki Cho
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea
| | - Jae Won Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Hyun-Jai Cho
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Yoo-Wook Kwon
- Cardiovascular Center & Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jaeho Cho
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Korea
| | - Kwang Seok Kim
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Joon Kim
- Laboratory of Biochemistry, Division of Life Sciences, Korea University, Seoul, Korea
| | - Hae-June Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Tae Sup Lee
- Division of RI Convergence Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Sangwoo Bae
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Hyo Jeong Hong
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Korea.
- Scripps Korea Antibody Institute, Chuncheon, Korea.
| | - Yoon-Jin Lee
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.
| |
Collapse
|
181
|
The nuclear kinesin KIF18B promotes 53BP1-mediated DNA double-strand break repair. Cell Rep 2021; 35:109306. [PMID: 34192545 DOI: 10.1016/j.celrep.2021.109306] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/29/2021] [Accepted: 06/03/2021] [Indexed: 12/13/2022] Open
Abstract
53BP1 is recruited to chromatin in the vicinity of DNA double-strand breaks (DSBs). We identify the nuclear kinesin, KIF18B, as a 53BP1-interacting protein and define its role in 53BP1-mediated DSB repair. KIF18B is a molecular motor protein involved in destabilizing astral microtubules during mitosis. It is primarily nuclear throughout the interphase and is constitutively chromatin bound. Our observations indicate a nuclear function during the interphase for a kinesin previously implicated in mitosis. We identify a central motif in KIF18B, which we term the Tudor-interacting motif (TIM), because of its interaction with the Tudor domain of 53BP1. TIM enhances the interaction between the 53BP1 Tudor domain and dimethylated lysine 20 of histone H4. TIM and the motor function of KIF18B are both required for efficient 53BP1 focal recruitment in response to damage and for fusion of dysfunctional telomeres. Our data suggest a role for KIF18B in efficient 53BP1-mediated end-joining of DSBs.
Collapse
|
182
|
Bian R, Dang W, Song X, Liu L, Jiang C, Yang Y, Li Y, Li L, Li X, Hu Y, Bao R, Liu Y. Rac GTPase activating protein 1 promotes gallbladder cancer via binding DNA ligase 3 to reduce apoptosis. Int J Biol Sci 2021; 17:2167-2180. [PMID: 34239347 PMCID: PMC8241731 DOI: 10.7150/ijbs.58857] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/30/2021] [Indexed: 11/09/2022] Open
Abstract
Rac GTPase activating protein 1 (RACGAP1) has been characterized in the pathogenesis and progression of several malignancies, however, little is known regarding its role in the development of gallbladder cancer (GBC). This investigation seeks to describe the role of RACGAP1 and its associated molecular mechanisms in GBC. It was found that RACGAP1 was highly expressed in human GBC tissues, which was associated to poorer overall survival (OS). Gene knockdown of RACGAP1 hindered tumor cell proliferation and survival both in vitro and in vivo. We further identified that RACGAP1 was involved in DNA repair through its binding with DNA ligase 3 (LIG3), a crucial component of the alternative-non-homologous end joining (Alt-NHEJ) pathway. RACGAP1 regulated LIG3 expression independent of RhoA activity. RACGAP1 knockdown resulted in LIG3-dependent repair dysfunction, accumulated DNA damage and Poly(ADP-ribosyl) modification (PARylation) enhancement, leading to increased apoptosis and suppressed cell growth. We conclude that RACGAP1 exerts a tumor-promoting role via binding LIG3 to reduce apoptosis and facilitate cell growth in GBC, pointing to RACGAP1 as a potential therapeutic target for GBC.
Collapse
Affiliation(s)
- Rui Bian
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Dang
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoling Song
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liguo Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengkai Jiang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yongsheng Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lin Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuechuan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yunping Hu
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Runfa Bao
- Department of General Surgery and Laboratory of General Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200092, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai 200092, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
183
|
Botvinnik A, Shivam P, Smith Y, Sharma G, Olshevsky U, Moshel O, Manevitch Z, Climent N, Oliva H, Britan-Rosich E, Kotler M. APOBEC3G rescues cells from the deleterious effects of DNA damage. FEBS J 2021; 288:6063-6077. [PMID: 33999509 DOI: 10.1111/febs.16025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 04/25/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
Human apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3G (hA3G), a member of the APOBEC family, was described as an anti-HIV-1 restriction factor, deaminating reverse transcripts of the HIV-1 genome. Several types of cancer cells that express high levels of A3G, such as diffuse large B-cell lymphoma cells and glioblastomas, show enhanced cell survival after ionizing radiation and chemotherapy treatments. Previously, we showed that hA3G promotes (DNA) double-strand breaks repair in cultured cells and rescues transgenic mice from a lethal dose of ionizing radiation. Here, we show that A3G rescues cells from the detrimental effects of DNA damage induced by ultraviolet irradiation and by combined bromodeoxyuridine and ultraviolet treatments. The combined treatments stimulate the synthesis of cellular proteins, which are exclusively associated with A3G expression. These proteins participate mainly in nucleotide excision repair and homologous recombination DNA repair pathways. Our results implicate A3G inhibition as a potential strategy for increasing tumor cell sensitivity to genotoxic treatments.
Collapse
Affiliation(s)
- Alexander Botvinnik
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Pushkar Shivam
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Yoav Smith
- Genomic Data Analysis, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Gunjan Sharma
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Udy Olshevsky
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ofra Moshel
- Core Research Facility, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Zakhariya Manevitch
- Core Research Facility, Light Microscopy and Image Analysis Laboratory, Hadassah Medical School, Hebrew University, Jerusalem, Israel
| | - Nuria Climent
- Faculty of Medicine, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-AIDS Research Group and HIV Vaccine Development in Catalonia (HIVACAT), Hospital Clínic de Barcelona, University of Barcelona, Barcelona, Spain
| | | | - Elena Britan-Rosich
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Moshe Kotler
- Department of Pathology and Immunology, The Lautenberg Center for Immunology and Cancer Research, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
184
|
Imai S, Ooki T, Murata-Kamiya N, Komura D, Tahmina K, Wu W, Takahashi-Kanemitsu A, Knight CT, Kunita A, Suzuki N, Del Valle AA, Tsuboi M, Hata M, Hayakawa Y, Ohnishi N, Ueda K, Fukayama M, Ushiku T, Ishikawa S, Hatakeyama M. Helicobacter pylori CagA elicits BRCAness to induce genome instability that may underlie bacterial gastric carcinogenesis. Cell Host Microbe 2021; 29:941-958.e10. [PMID: 33989515 DOI: 10.1016/j.chom.2021.04.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/17/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Infection with CagA-producing Helicobacter pylori plays a causative role in the development of gastric cancer. Upon delivery into gastric epithelial cells, CagA deregulates prooncogenic phosphatase SHP2 while inhibiting polarity-regulating kinase PAR1b through complex formation. Here, we show that CagA/PAR1b interaction subverts nuclear translocation of BRCA1 by inhibiting PAR1b-mediated BRCA1 phosphorylation. It hereby induces BRCAness that promotes DNA double-strand breaks (DSBs) while disabling error-free homologous recombination-mediated DNA repair. The CagA/PAR1b interaction also stimulates Hippo signaling that circumvents apoptosis of DNA-damaged cells, giving cells time to repair DSBs through error-prone mechanisms. The DSB-activated p53-p21Cip1 axis inhibits proliferation of CagA-delivered cells, but the inhibition can be overcome by p53 inactivation. Indeed, sequential pulses of CagA in TP53-mutant cells drove somatic mutation with BRCAness-associated genetic signatures. Expansion of CagA-delivered cells with BRCAness-mediated genome instability, from which CagA-independent cancer-predisposing cells arise, provides a plausible "hit-and-run mechanism" of H. pylori CagA for gastric carcinogenesis.
Collapse
Affiliation(s)
- Satoshi Imai
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Takuya Ooki
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Naoko Murata-Kamiya
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan.
| | - Daisuke Komura
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Kamrunnesa Tahmina
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Weida Wu
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | | | - Christopher Takaya Knight
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Akiko Kunita
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Nobumi Suzuki
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Adriana A Del Valle
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Mayo Tsuboi
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Masahiro Hata
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Naomi Ohnishi
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Koji Ueda
- Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Masashi Fukayama
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan
| | - Masanori Hatakeyama
- Department of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
185
|
Xu S, Wu X, Wang P, Cao SL, Peng B, Xu X. ASPM promotes homologous recombination-mediated DNA repair by safeguarding BRCA1 stability. iScience 2021; 24:102534. [PMID: 34142045 PMCID: PMC8184511 DOI: 10.1016/j.isci.2021.102534] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/13/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
DNA double-strand break (DSB) repair by homologous recombination (HR) is essential for ensuring genome stability. Abnormal spindle-like microcephaly-associated (ASPM) gene encodes a spindle protein that is commonly implicated in primary microcephaly. We found that ASPM is recruited to sites of DNA damage in a PARP2-dependent manner. ASPM interacts with BRCA1 and its E3 ligase HERC2, preventing HERC2 from accessing to BRCA1 and ensuring BRCA1 stability. Inhibition of ASPM expression promotes HERC2-mediated BRCA1 degradation, compromises HR repair efficiency and chromosome stability, and sensitizes cancer cells to ionizing radiation. Moreover, we observed a synergistic effect between ASPM and PARP inhibition in killing cancer cells. This research has uncovered a novel function for ASPM in facilitating HR-mediated repair of DSBs by ensuring BRCA1 stability. ASPM might constitute a promising target for synthetic lethality-based cancer therapy. ASPM is recruited to sites of DNA damage in a PARP2-dependent manner. ASPM promotes DSB-end resection to facilitate HR repair. ASPM prevents HERC2 from accessing to BRCA1 and ensuring BRCA1 stability. Inhibition of ASPM sensitizes cancer cells to ionizing radiation and PARP inhibitor.
Collapse
Affiliation(s)
- Shibin Xu
- College of Life Sciences, Capital Normal University, Beijing 100048, China.,Department of Chemistry, Capital Normal University, Beijing 100048, China.,Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xingxuan Wu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China.,Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Peipei Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China.,International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Sheng-Li Cao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China.,Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China.,International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China.,Shenzhen University-Friedrich Schiller Universität Jena Joint PhD Program in Biomedical Sciences, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China.,International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| |
Collapse
|
186
|
Zhang X, Li T, Ou J, Huang J, Liang P. Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing. Protein Cell 2021; 13:316-335. [PMID: 33945139 PMCID: PMC9008090 DOI: 10.1007/s13238-021-00838-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/16/2021] [Indexed: 12/26/2022] Open
Abstract
Recent advances in genome editing, especially CRISPR-Cas nucleases, have revolutionized both laboratory research and clinical therapeutics. CRISPR-Cas nucleases, together with the DNA damage repair pathway in cells, enable both genetic diversification by classical non-homologous end joining (c-NHEJ) and precise genome modification by homology-based repair (HBR). Genome editing in zygotes is a convenient way to edit the germline, paving the way for animal disease model generation, as well as human embryo genome editing therapy for some life-threatening and incurable diseases. HBR efficiency is highly dependent on the DNA donor that is utilized as a repair template. Here, we review recent progress in improving CRISPR-Cas nuclease-induced HBR in mammalian embryos by designing a suitable DNA donor. Moreover, we want to provide a guide for producing animal disease models and correcting genetic mutations through CRISPR-Cas nuclease-induced HBR in mammalian embryos. Finally, we discuss recent developments in precise genome-modification technology based on the CRISPR-Cas system.
Collapse
Affiliation(s)
- Xiya Zhang
- Center for Reproductive Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China
| | - Tao Li
- Center for Reproductive Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jianping Ou
- Center for Reproductive Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
187
|
Deng J, Thennavan A, Dolgalev I, Chen T, Li J, Marzio A, Poirier JT, Peng D, Bulatovic M, Mukhopadhyay S, Silver H, Papadopoulos E, Pyon V, Thakurdin C, Han H, Li F, Li S, Ding H, Hu H, Pan Y, Weerasekara V, Jiang B, Wang ES, Ahearn I, Philips M, Papagiannakopoulos T, Tsirigos A, Rothenberg E, Gainor J, Freeman GJ, Rudin CM, Gray NS, Hammerman PS, Pagano M, Heymach JV, Perou CM, Bardeesy N, Wong KK. ULK1 inhibition overcomes compromised antigen presentation and restores antitumor immunity in LKB1 mutant lung cancer. NATURE CANCER 2021; 2:503-514. [PMID: 34142094 PMCID: PMC8205437 DOI: 10.1038/s43018-021-00208-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jiehui Deng
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Aatish Thennavan
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Igor Dolgalev
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, NY, USA
| | - Ting Chen
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Jie Li
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Antonio Marzio
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - John T. Poirier
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David Peng
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Mirna Bulatovic
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Subhadip Mukhopadhyay
- Department of Radiation Oncology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Heather Silver
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Eleni Papadopoulos
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Val Pyon
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Cassandra Thakurdin
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Han Han
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Fei Li
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Shuai Li
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Hailin Ding
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Hai Hu
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Yuanwang Pan
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Vajira Weerasekara
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Baishan Jiang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Eric S. Wang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ian Ahearn
- Department of Medicine, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Mark Philips
- Department of Medicine, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Thales Papagiannakopoulos
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, NY, USA.,Department of Pathology, New York University School of Medicine, New York, NY, USA
| | - Aristotelis Tsirigos
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, NY, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Justin Gainor
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Gordon J. Freeman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Peter S. Hammerman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Michele Pagano
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Medical Center, New York University, New York, NY, USA.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.,Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - John V Heymach
- Departments of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nabeel Bardeesy
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kwok-Kin Wong
- Division of Hematology & Medical Oncology, Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA.,Correspondence and requests for materials should be addressed to Kwok-Kin Wong ()
| |
Collapse
|
188
|
Ghosh D, Raghavan SC. 20 years of DNA Polymerase μ, the polymerase that still surprises. FEBS J 2021; 288:7230-7242. [DOI: 10.1111/febs.15852] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/02/2021] [Accepted: 03/01/2021] [Indexed: 12/22/2022]
Affiliation(s)
- Dipayan Ghosh
- Department of Biochemistry Indian Institute of Science Bangalore India
| | | |
Collapse
|
189
|
Age-related activity of Poly (ADP-Ribose) Polymerase (PARP) in men with localized prostate cancer. Mech Ageing Dev 2021; 196:111494. [PMID: 33887280 DOI: 10.1016/j.mad.2021.111494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Mutations in DNA repair genes have been connected with familial prostate cancer and sensitivity to targeted drugs like PARP-inhibitors. Clinical use of this information is limited by the small fraction of prostate cancer risk gene carriers, variants of unknown pathogenicity and the focus on monogenic disease mechanisms. Functional assays capturing mono- and polygenic defects were shown to detect breast and ovarian cancer risk in blood-derived cells. Here, we comparatively analyzed lymphocytes from prostate cancer patients and controls applying a sensitive DNA double-strand break (DSB) repair assay and a flow cytometrybased assay measuring the activity of Poly(ADP-Ribose)-Polymerase, a target in treatment of metastatic prostate cancer. Contrary to breast and ovarian cancer patients, error-prone DNA double-strand break repair was not activated in prostate cancer patients. Yet, the activity of PARP discriminated between prostate cancer cases and controls. PARylation also correlated with the age of male probands, suggesting male-specific links between mutation-based and aging-associated DNA damage accumulation and PARP. Our work identifies prostate cancer-specific DNA repair phenotypes characterized by increased PARP activities and carboplatin-sensitivities, detected by functional testing of lymphocytes. This provides new insights for further investigation of PARP and carboplatin sensitivity as biomarkers in peripheral cells of men and prostate cancer patients.
Collapse
|
190
|
Lin ZP, Al Zouabi NN, Xu ML, Bowen NE, Wu TL, Lavi ES, Huang PH, Zhu YL, Kim B, Ratner ES. In silico screening identifies a novel small molecule inhibitor that counteracts PARP inhibitor resistance in ovarian cancer. Sci Rep 2021; 11:8042. [PMID: 33850183 PMCID: PMC8044145 DOI: 10.1038/s41598-021-87325-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Poly ADP-ribose polymerase (PARP) inhibitors are promising targeted therapy for epithelial ovarian cancer (EOC) with BRCA mutations or defective homologous recombination (HR) repair. However, reversion of BRCA mutation and restoration of HR repair in EOC lead to PARP inhibitor resistance and reduced clinical efficacy of PARP inhibitors. We have previously shown that triapine, a small molecule inhibitor of ribonucleotide reductase (RNR), impaired HR repair and sensitized HR repair-proficient EOC to PARP inhibitors. In this study, we performed in silico screening of small molecule libraries to identify novel compounds that bind to the triapine-binding pocket on the R2 subunit of RNR and inhibit RNR in EOC cells. Following experimental validation of selected top-ranking in silico hits for inhibition of dNTP and DNA synthesis, we identified, DB4, a putative RNR pocket-binding inhibitor markedly abrogated HR repair and sensitized BRCA-wild-type EOC cells to the PARP inhibitor olaparib. Furthermore, we demonstrated that the combination of DB4 and olaparib deterred the progression of BRCA-wild type EOC xenografts and significantly prolonged the survival time of tumor-bearing mice. Herein we report the discovery of a putative small molecule inhibitor of RNR and HR repair for combination with PARP inhibitors to treat PARP inhibitor-resistant and HR repair-proficient EOC.
Collapse
Affiliation(s)
- Z Ping Lin
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA.
| | - Nour N Al Zouabi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Mark L Xu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Nicole E Bowen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Terence L Wu
- Yale West Campus Analytical Core, Yale University, West Haven, CT, 06516, USA
| | - Ethan S Lavi
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Pamela H Huang
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Yong-Lian Zhu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Baek Kim
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Elena S Ratner
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, 06510, USA.
| |
Collapse
|
191
|
Wei B, Xu L, Guo W, Wang Y, Wu J, Li X, Cai X, Hu J, Wang M, Xu Q, Liu W, Gu Y. SHP2-Mediated Inhibition of DNA Repair Contributes to cGAS-STING Activation and Chemotherapeutic Sensitivity in Colon Cancer. Cancer Res 2021; 81:3215-3228. [PMID: 33820798 DOI: 10.1158/0008-5472.can-20-3738] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/11/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022]
Abstract
As a cytoplasmic sensor of double-stranded DNA (dsDNA), the cyclic GMP-AMP synthase-stimulator of IFN genes (STING) pathway plays an important role in antitumor immunity. In this study, we investigated the effect of Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) on tumor cell-intrinsic STING pathway activity and DNA repair in colon cancer. SHP2 interacted with and dephosphorylated PARP1 after DNA damage. PARP1 inhibition by SHP2 resulted in reduced DNA repair and accumulation of dsDNA in cells, thus promoting hyperactivation of the STING pathway. The SHP2 agonist lovastatin was able to enhance SHP2 activity and promote STING pathway activation. Moreover, lovastatin significantly enhanced the efficacy of chemotherapy in colon cancer models, in part via STING pathway-mediated antitumor immunity. These findings suggest that SHP2 exacerbates STING pathway activation by restricting PARP1-mediated DNA repair in tumor cells, providing a basis for the combined use of lovastatin and chemotherapy in the treatment of colon cancer. SIGNIFICANCE: Dephosphorylation of PARP1 by SHP2 simultaneously suppresses DNA repair and enhances STING pathway-mediated antitumor immunity, highlighting SHP2 activation as a potential therapeutic approach in colon cancer.
Collapse
Affiliation(s)
- Bin Wei
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.,Department of Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, P.R. China
| | - Lingyan Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Wenjie Guo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Yuanyuan Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jingjing Wu
- Department of Oncology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, P.R. China
| | - Xiaofei Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Xiaomin Cai
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China
| | - Jinbo Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Meijing Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China
| | - Wen Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, P.R. China.
| | - Yanhong Gu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, P.R. China.
| |
Collapse
|
192
|
Zahn KE, Jensen RB, Wood RD, Doublié S. RETRACTED: Human DNA polymerase θ harbors DNA end-trimming activity critical for DNA repair. Mol Cell 2021; 81:1534-1547.e4. [PMID: 33577776 PMCID: PMC8231307 DOI: 10.1016/j.molcel.2021.01.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/24/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cancers with hereditary defects in homologous recombination rely on DNA polymerase θ (pol θ) for repair of DNA double-strand breaks. During end joining, pol θ aligns microhomology tracts internal to 5'-resected broken ends. An unidentified nuclease trims the 3' ends before synthesis can occur. Here we report that a nuclease activity, which differs from the proofreading activity often associated with DNA polymerases, is intrinsic to the polymerase domain of pol θ. Like the DNA synthesis activity, the nuclease activity requires conserved metal-binding residues, metal ions, and dNTPs and is inhibited by ddNTPs or chain-terminated DNA. Our data indicate that pol θ repurposes metal ions in the polymerase active site for endonucleolytic cleavage and that the polymerase-active and end-trimming conformations of the enzyme are distinct. We reveal a nimble strategy of substrate processing that allows pol θ to trim or extend DNA depending on the DNA repair context.
Collapse
Affiliation(s)
- Karl E Zahn
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave., Burlington, VT 05405, USA; Department of Therapeutic Radiology, Yale University, New Haven, CT 06510, USA
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale University, New Haven, CT 06510, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 78957, USA.
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave., Burlington, VT 05405, USA.
| |
Collapse
|
193
|
PUMA facilitates EMI1-promoted cytoplasmic Rad51 ubiquitination and inhibits DNA repair in stem and progenitor cells. Signal Transduct Target Ther 2021; 6:129. [PMID: 33785736 PMCID: PMC8009889 DOI: 10.1038/s41392-021-00510-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/20/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Maintenance of genetic stability via proper DNA repair in stem and progenitor cells is essential for the tissue repair and regeneration, while preventing cell transformation after damage. Loss of PUMA dramatically increases the survival of mice after exposure to a lethal dose of ionizing radiation (IR), while without promoting tumorigenesis in the long-term survivors. This finding suggests that PUMA (p53 upregulated modulator of apoptosis) may have a function other than regulates apoptosis. Here, we identify a novel role of PUMA in regulation of DNA repair in embryonic or induced pluripotent stem cells (PSCs) and immortalized hematopoietic progenitor cells (HPCs) after IR. We found that PUMA-deficient PSCs and HPCs exhibited a significant higher double-strand break (DSB) DNA repair activity via Rad51-mediated homologous recombination (HR). This is because PUMA can be associated with early mitotic inhibitor 1 (EMI1) and Rad51 in the cytoplasm to facilitate EMI1-mediated cytoplasmic Rad51 ubiquitination and degradation, thereby inhibiting Rad51 nuclear translocation and HR DNA repair. Our data demonstrate that PUMA acts as a repressor for DSB DNA repair and thus offers a new rationale for therapeutic targeting of PUMA in regenerative cells in the context of DNA damage.
Collapse
|
194
|
Ghosh D, Raghavan SC. Nonhomologous end joining: new accessory factors fine tune the machinery. Trends Genet 2021; 37:582-599. [PMID: 33785198 DOI: 10.1016/j.tig.2021.03.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 01/08/2023]
Abstract
Nonhomologous DNA end joining (NHEJ) is one of the major DNA double-strand break (DSB) repair pathways in eukaryotes. The well-known critical proteins involved in NHEJ include Ku70/80, DNA-PKcs, Artemis, DNA pol λ/μ, DNA ligase IV-XRCC4, and XLF. Recent studies have added a number of new proteins to the NHEJ repertoire namely paralog of XRCC4 and XLF (PAXX), modulator of retroviral infection (MRI)/ cell cycle regulator of NHEJ (CYREN), transactivation response DNA-binding protein (TARDBP) of 43 kDa (TDP-43), intermediate filament family orphan (IFFO1), ERCC excision repair 6 like 2 (ERCC6L2), and RNase H2. PAXX acts as a stabilizing factor for the main NHEJ components. MRI/CYREN seems to play a dual role stimulating NHEJ in the G1 phase of the cell cycle, while inhibiting the pathway in the S and G2 phases. TDP-43 can recruit the ligase IV-XRCC4 complex to the DSB sites and stimulate ligation in neuronal cells. RNase H2 excises out the ribonucleotides inserted during repair by DNA polymerase μ/TdT. This review provides a brief glimpse into how these new partners were discovered and their contribution to the mechanism and regulation of NHEJ.
Collapse
Affiliation(s)
- Dipayan Ghosh
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
195
|
Genomic, Transcriptomic, and Functional Alterations in DNA Damage Response Pathways as Putative Biomarkers of Chemotherapy Response in Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13061420. [PMID: 33804647 PMCID: PMC8003626 DOI: 10.3390/cancers13061420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Several chemotherapy drugs are approved for ovarian cancer treatment in the neo-adjuvant/adjuvant setting as well as following relapse. These include carboplatin, paclitaxel, doxorubicin, topotecan, PARP inhibitors (PARPi), and gemcitabine. However, except for PAPRi, there are no predictive biomarkers to guide the choice of drug. The majority of chemotherapeutic drugs function by inducing DNA damage or inhibiting its repair. However, the association of DNA damage repair (DDR) pathway alterations with therapy response remain unclear. In this study, using a panel of 14 ovarian cancer cell lines, 10 patient ascites-derived primary cultures and bioinformatic analysis of The Cancer Genome Atlas (TCGA) ovarian cancer dataset, we identified the role of genomic/transcriptomic and/or functional alterations in DDR pathways as determinants of therapy response. Abstract Defective DNA damage response (DDR) pathways are enabling characteristics of cancers that not only can be exploited to specifically target cancer cells but also can predict chemotherapy response. Defective Homologous Recombination Repair (HRR) function, e.g., due to BRCA1/2 loss, is a determinant of response to platinum agents and PARP inhibitors in ovarian cancers. Most chemotherapies function by either inducing DNA damage or impacting on its repair but are generally used in the clinic unselectively. The significance of HRR and other DDR pathways in determining response to several other chemotherapy drugs is not well understood. In this study, the genomic, transcriptomic and functional analysis of DDR pathways in a panel of 14 ovarian cancer cell lines identified that defects in DDR pathways could determine response to several chemotherapy drugs. Carboplatin, rucaparib, and topotecan sensitivity were associated with functional loss of HRR (validated in 10 patient-derived primary cultures) and mismatch repair. Two DDR gene expression clusters correlating with treatment response were identified, with PARP10 identified as a novel marker of platinum response, which was confirmed in The Cancer Genome Atlas (TCGA) ovarian cancer cohort. Reduced non-homologous end-joining function correlated with increased sensitivity to doxorubicin, while cells with high intrinsic oxidative stress showed sensitivity to gemcitabine. In this era of personalised medicine, molecular/functional characterisation of DDR pathways could guide chemotherapy choices in the clinic allowing specific targeting of ovarian cancers.
Collapse
|
196
|
Mendez-Dorantes C, Tsai LJ, Jahanshir E, Lopezcolorado FW, Stark JM. BLM has Contrary Effects on Repeat-Mediated Deletions, based on the Distance of DNA DSBs to a Repeat and Repeat Divergence. Cell Rep 2021; 30:1342-1357.e4. [PMID: 32023454 PMCID: PMC7085117 DOI: 10.1016/j.celrep.2020.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/08/2019] [Accepted: 12/31/2019] [Indexed: 12/30/2022] Open
Abstract
Repeat-mediated deletions (RMDs) often involve repetitive elements (e.g., short interspersed elements) with sequence divergence that is separated by several kilobase pairs (kbps). We have examined RMDs induced by DNA double-strand breaks (DSBs) under varying conditions of repeat sequence divergence (identical versus 1% and 3% divergent) and DSB/repeat distance (16 bp–28.4 kbp). We find that the BLM helicase promotes RMDs with long DSB/repeat distances (e.g., 28.4 kbp), which is consistent with a role in extensive DSB end resection, because the resection nucleases EXO1 and DNA2 affect RMDs similarly to BLM. In contrast, BLM suppresses RMDs with sequence divergence and intermediate (e.g., 3.3 kbp) DSB/repeat distances, which supports a role in heteroduplex rejection. The role of BLM in heteroduplex rejection is not epistatic with MSH2 and is independent of the annealing factor RAD52. Accordingly, the role of BLM on RMDs is substantially affected by DSB/repeat distance and repeat sequence divergence. Mendez-Dorantes et al. identify the BLM helicase as a key regulator of repeat-mediated deletions (RMDs). BLM, EXO1, and DNA2 mediate RMDs with remarkably long DNA break/repeat distances. BLM suppresses RMDs with sequence divergence that is optimal with a long non-homologous tail and is independent of MSH2 and RAD52.
Collapse
Affiliation(s)
- Carlos Mendez-Dorantes
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - L Jillianne Tsai
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Eva Jahanshir
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| |
Collapse
|
197
|
Helfricht A, Thijssen PE, Rother MB, Shah RG, Du L, Takada S, Rogier M, Moritz J, IJspeert H, Stoepker C, van Ostaijen-Ten Dam MM, Heyer V, Luijsterburg MS, de Groot A, Jak R, Grootaers G, Wang J, Rao P, Vertegaal ACO, van Tol MJD, Pan-Hammarström Q, Reina-San-Martin B, Shah GM, van der Burg M, van der Maarel SM, van Attikum H. Loss of ZBTB24 impairs nonhomologous end-joining and class-switch recombination in patients with ICF syndrome. J Exp Med 2021; 217:152060. [PMID: 32865561 PMCID: PMC7526497 DOI: 10.1084/jem.20191688] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/06/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The autosomal recessive immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is a genetically heterogeneous disorder. Despite the identification of the underlying gene defects, it is unclear how mutations in any of the four known ICF genes cause a primary immunodeficiency. Here we demonstrate that loss of ZBTB24 in B cells from mice and ICF2 patients affects nonhomologous end-joining (NHEJ) during immunoglobulin class-switch recombination and consequently impairs immunoglobulin production and isotype balance. Mechanistically, we found that ZBTB24 associates with poly(ADP-ribose) polymerase 1 (PARP1) and stimulates its auto-poly(ADP-ribosyl)ation. The zinc-finger in ZBTB24 binds PARP1-associated poly(ADP-ribose) chains and mediates the PARP1-dependent recruitment of ZBTB24 to DNA breaks. Moreover, through its association with poly(ADP-ribose) chains, ZBTB24 protects them from degradation by poly(ADP-ribose) glycohydrolase (PARG). This facilitates the poly(ADP-ribose)-dependent assembly of the LIG4/XRCC4 complex at DNA breaks, thereby promoting error-free NHEJ. Thus, we uncover ZBTB24 as a regulator of PARP1-dependent NHEJ and class-switch recombination, providing a molecular basis for the immunodeficiency in ICF2 syndrome.
Collapse
Affiliation(s)
- Angela Helfricht
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Peter E Thijssen
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Rashmi G Shah
- CHU de Québec Research Centre (site CHUL) and Laboratory for Skin Cancer Research and Axe Neuroscience, Université Laval, Québec, Canada
| | - Likun Du
- Department of Biosciences and Nutrition, Karolinska Institute, Solna, Sweden
| | - Sanami Takada
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Mélanie Rogier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Jacques Moritz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Hanna IJspeert
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Chantal Stoepker
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Monique M van Ostaijen-Ten Dam
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Vincent Heyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | | | - Anton de Groot
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Rianca Jak
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Gwendolynn Grootaers
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Jun Wang
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | | | - Alfred C O Vertegaal
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Maarten J D van Tol
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | | | - Bernardo Reina-San-Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Girish M Shah
- CHU de Québec Research Centre (site CHUL) and Laboratory for Skin Cancer Research and Axe Neuroscience, Université Laval, Québec, Canada
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | | | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
198
|
Feng M, Wang Y, Bi L, Zhang P, Wang H, Zhao Z, Mao JH, Wei G. CRL4A DTL degrades DNA-PKcs to modulate NHEJ repair and induce genomic instability and subsequent malignant transformation. Oncogene 2021; 40:2096-2111. [PMID: 33627782 PMCID: PMC7979543 DOI: 10.1038/s41388-021-01690-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 01/30/2023]
Abstract
Genomic instability induced by DNA damage and improper DNA damage repair is one of the main causes of malignant transformation and tumorigenesis. DNA double strand breaks (DSBs) are the most detrimental form of DNA damage, and nonhomologous end-joining (NHEJ) mechanisms play dominant and priority roles in initiating DSB repair. A well-studied oncogene, the ubiquitin ligase Cullin 4A (CUL4A), is reported to be recruited to DSB sites in genomic DNA, but whether it regulates NHEJ mechanisms of DSB repair is unclear. Here, we discovered that the CUL4A-DTL ligase complex targeted the DNA-PKcs protein in the NHEJ repair pathway for nuclear degradation. Overexpression of either CUL4A or DTL reduced NHEJ repair efficiency and subsequently increased the accumulation of DSBs. Moreover, we demonstrated that overexpression of either CUL4A or DTL in normal cells led to genomic instability and malignant proliferation. Consistent with the in vitro findings, in human precancerous lesions, CUL4A expression gradually increased with increasing malignant tendency and was negatively correlated with DNA-PKcs and positively correlated with γ-H2AX expression. Collectively, this study provided strong evidence that the CUL4A-DTL axis increases genomic instability and enhances the subsequent malignant transformation of normal cells by inhibiting NHEJ repair. These results also suggested that CUL4A may be a prognostic marker of precancerous lesions and a potential therapeutic target in cancer.
Collapse
Affiliation(s)
- Maoxiao Feng
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Department of Clinical Laboratory, The Second Hospital, Cheeloo College of Medicine, Jinan, Shandong, China
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lei Bi
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Pengju Zhang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Huaizhi Wang
- Institute of Hepatopancreatobiliary Surgery, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
| | - Zhongxi Zhao
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Guangwei Wei
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
199
|
Swift ML, Beishline K, Flashner S, Azizkhan-Clifford J. DSB repair pathway choice is regulated by recruitment of 53BP1 through cell cycle-dependent regulation of Sp1. Cell Rep 2021; 34:108840. [PMID: 33730584 DOI: 10.1016/j.celrep.2021.108840] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/13/2020] [Accepted: 02/17/2021] [Indexed: 12/14/2022] Open
Abstract
Although many of the factors, epigenetic changes, and cell cycle stages that distinguish repair of double-strand breaks (DSBs) by homologous recombination (HR) from non-homologous end joining (NHEJ) are known, the underlying mechanisms that determine pathway choice are incompletely understood. Previously, we found that the transcription factor Sp1 is recruited to DSBs and is necessary for repair. Here, we demonstrate that Sp1 localizes to DSBs in G1 and is necessary for recruitment of the NHEJ repair factor, 53BP1. Phosphorylation of Sp1-S59 in early S phase evicts Sp1 and 53BP1 from the break site; inhibition of that phosphorylation results in 53BP1 and Sp1 remaining at DSBs in S phase cells, precluding BRCA1 binding and suppressing HR. Expression of Sp1-S59A increases sensitivity of BRCA1+/+ cells to poly (ADP-ribose) polymerase (PARP) inhibition similar to BRCA1 deficiency. These data demonstrate how Sp1 integrates the cell cycle and DSB repair pathway choice to favor NHEJ.
Collapse
Affiliation(s)
- Michelle L Swift
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Samuel Flashner
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
200
|
Murray-Nerger LA, Justice JL, Rekapalli P, Hutton JE, Cristea I. Lamin B1 acetylation slows the G1 to S cell cycle transition through inhibition of DNA repair. Nucleic Acids Res 2021; 49:2044-2064. [PMID: 33533922 PMCID: PMC7913768 DOI: 10.1093/nar/gkab019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 01/05/2021] [Accepted: 01/13/2021] [Indexed: 12/21/2022] Open
Abstract
The integrity and regulation of the nuclear lamina is essential for nuclear organization and chromatin stability, with its dysregulation being linked to laminopathy diseases and cancer. Although numerous posttranslational modifications have been identified on lamins, few have been ascribed a regulatory function. Here, we establish that lamin B1 (LMNB1) acetylation at K134 is a molecular toggle that controls nuclear periphery stability, cell cycle progression, and DNA repair. LMNB1 acetylation prevents lamina disruption during herpesvirus type 1 (HSV-1) infection, thereby inhibiting virus production. We also demonstrate the broad impact of this site on laminar processes in uninfected cells. LMNB1 acetylation negatively regulates canonical nonhomologous end joining by impairing the recruitment of 53BP1 to damaged DNA. This defect causes a delay in DNA damage resolution and a persistent activation of the G1/S checkpoint. Altogether, we reveal LMNB1 acetylation as a mechanism for controlling DNA repair pathway choice and stabilizing the nuclear periphery.
Collapse
Affiliation(s)
- Laura A Murray-Nerger
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Joshua L Justice
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Pranav Rekapalli
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Josiah E Hutton
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| |
Collapse
|