151
|
Ikeda Y, Yamagishi A, Komura M, Suzuki T, Dohmae N, Shibata Y, Itoh S, Koike H, Satoh K. Two types of fucoxanthin-chlorophyll-binding proteins I tightly bound to the photosystem I core complex in marine centric diatoms. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:529-39. [PMID: 23416844 DOI: 10.1016/j.bbabio.2013.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/31/2013] [Accepted: 02/06/2013] [Indexed: 12/30/2022]
Abstract
Intact fucoxanthin (Fucox)-chlorophyll (Chl)-binding protein I-photosystem I supercomplexes (FCPI-PSIs) were prepared by a newly developed simple fast procedure from centric diatoms Chaetoceros gracilis and Thalassiosira pseudonana to study the mechanism of their efficient solar energy accumulation. FCPI-PSI purified from C. gracilis contained 252 Chl a, 23 Chl c, 56 Fucox, 34 diadinoxanthin+diatoxanthin, 1 violaxanthin, 21 ß-carotene, and 2 menaquinone-4 per P700. The complex showed a high electron transfer activity at 185,000μmolmg Chl a(-1)·h(-1) to reduce methyl viologen from added cytochrome c6. We identified 14 and 21 FCP proteins in FCPI-PSI of C. gracilis and T. pseudonana, respectively, determined by N-terminal and internal amino acid sequences and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses. PsaO and a red lineage Chla/b-binding-like protein (RedCAP), Thaps3:270215, were also identified. Severe detergent treatment of FCPI-PSI released FCPI-1 first, leaving the FCPI-2-PSI-core complex. FCPI-1 contained more Chl c and showed Chl a fluorescence at a shorter wavelength than FCPI-2, suggesting an excitation-energy transfer from FCPI-1 to FCPI-2 and then to the PSI core. Fluorescence emission spectra at 17K in FCPI-2 varied depending on the excitation wavelength, suggesting two independent energy transfer routes. We formulated a model of FCPI-PSI based on the biochemical assay results.
Collapse
Affiliation(s)
- Yohei Ikeda
- Graduate School of Life Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1297, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Chauton MS, Winge P, Brembu T, Vadstein O, Bones AM. Gene regulation of carbon fixation, storage, and utilization in the diatom Phaeodactylum tricornutum acclimated to light/dark cycles. PLANT PHYSIOLOGY 2013; 161:1034-48. [PMID: 23209127 PMCID: PMC3561001 DOI: 10.1104/pp.112.206177] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The regulation of carbon metabolism in the diatom Phaeodactylum tricornutum at the cell, metabolite, and gene expression levels in exponential fed-batch cultures is reported. Transcriptional profiles and cell chemistry sampled simultaneously at all time points provide a comprehensive data set on carbon incorporation, fate, and regulation. An increase in Nile Red fluorescence (a proxy for cellular neutral lipids) was observed throughout the light period, and water-soluble glucans increased rapidly in the light period. A near-linear decline in both glucans and lipids was observed during the dark period, and transcription profile data indicated that this decline was associated with the onset of mitosis. More than 4,500 transcripts that were differentially regulated during the light/dark cycle are identified, many of which were associated with carbohydrate and lipid metabolism. Genes not previously described in algae and their regulation in response to light were integrated in this analysis together with proposed roles in metabolic processes. Some very fast light-responding genes in, for example, fatty acid biosynthesis were identified and allocated to biosynthetic processes. Transcripts and cell chemistry data reflect the link between light energy availability and light energy-consuming metabolic processes. Our data confirm the spatial localization of processes in carbon metabolism to either plastids or mitochondria or to glycolysis/gluconeogenesis, which are localized to the cytosol, chloroplast, and mitochondria. Localization and diel expression pattern may be of help to determine the roles of different isoenzymes and the mining of genes involved in light responses and circadian rhythms.
Collapse
|
153
|
Lepetit B, Sturm S, Rogato A, Gruber A, Sachse M, Falciatore A, Kroth PG, Lavaud J. High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool. PLANT PHYSIOLOGY 2013; 161:853-65. [PMID: 23209128 PMCID: PMC3561024 DOI: 10.1104/pp.112.207811] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/30/2012] [Indexed: 05/20/2023]
Abstract
In diatoms, the process of energy-dependent chlorophyll fluorescence quenching (qE) has an important role in photoprotection. Three components are essential for qE: (1) the light-dependent generation of a transthylakoidal proton gradient; (2) the deepoxidation of the xanthophyll diadinoxanthin (Dd) into diatoxanthin (Dt); and (3) specific nucleus-encoded antenna proteins, called Light Harvesting Complex Protein X (LHCX). We used the model diatom Phaeodactylum tricornutum to investigate the concerted light acclimation response of the qE key components LHCX, proton gradient, and xanthophyll cycle pigments (Dd+Dt) and to identify the intracellular light-responsive trigger. At high-light exposure, the up-regulation of three of the LHCX genes and the de novo synthesis of Dd+Dt led to a pronounced rise of qE. By inhibiting either the conversion of Dd to Dt or the translation of LHCX genes, qE amplification was abolished and the diatom cells suffered from stronger photoinhibition. Artificial modification of the redox state of the plastoquinone (PQ) pool via 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone resulted in a disturbance of Dd+Dt synthesis in an opposite way. Moreover, we could increase the transcription of two of the four LHCX genes under low-light conditions by reducing the PQ pool using 5-dibromo-6-isopropyl-3-methyl-1,4-benzoquinone. Altogether, our results underline the central role of the redox state of the PQ pool in the light acclimation of diatoms. Additionally, they emphasize strong evidence for the existence of a plastid-to-nucleus retrograde signaling mechanism in an organism with plastids that derived from secondary endosymbiosis.
Collapse
Affiliation(s)
- Bernard Lepetit
- Littoral Environnement et Sociétés, Unité Mixte de Recherche 7266, Centre National de la Recherche Scientifique-University of La Rochelle, Institute for Coastal and Environmental Research, 17000 La Rochelle, France.
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Allorent G, Tokutsu R, Roach T, Peers G, Cardol P, Girard-Bascou J, Seigneurin-Berny D, Petroutsos D, Kuntz M, Breyton C, Franck F, Wollman FA, Niyogi KK, Krieger-Liszkay A, Minagawa J, Finazzi G. A dual strategy to cope with high light in Chlamydomonas reinhardtii. THE PLANT CELL 2013; 25:545-57. [PMID: 23424243 PMCID: PMC3608777 DOI: 10.1105/tpc.112.108274] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Absorption of light in excess of the capacity for photosynthetic electron transport is damaging to photosynthetic organisms. Several mechanisms exist to avoid photodamage, which are collectively referred to as nonphotochemical quenching. This term comprises at least two major processes. State transitions (qT) represent changes in the relative antenna sizes of photosystems II and I. High energy quenching (qE) is the increased thermal dissipation of light energy triggered by lumen acidification. To investigate the respective roles of qE and qT in photoprotection, a mutant (npq4 stt7-9) was generated in Chlamydomonas reinhardtii by crossing the state transition-deficient mutant (stt7-9) with a strain having a largely reduced qE capacity (npq4). The comparative phenotypic analysis of the wild type, single mutants, and double mutants reveals that both state transitions and qE are induced by high light. Moreover, the double mutant exhibits an increased photosensitivity with respect to the single mutants and the wild type. Therefore, we suggest that besides qE, state transitions also play a photoprotective role during high light acclimation of the cells, most likely by decreasing hydrogen peroxide production. These results are discussed in terms of the relative photoprotective benefit related to thermal dissipation of excess light and/or to the physical displacement of antennas from photosystem II.
Collapse
Affiliation(s)
- Guillaume Allorent
- Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
- Université Grenoble 1, F-38041 Grenoble, France
- Institut National Recherche Agronomique, Unité Mixte de Recherche 1200, F-38054 Grenoble, France
| | - Ryutaro Tokutsu
- Division of Environmental Photobiology, National Institute for Basic Biology, 444-8585 Okazaki, Japan
| | - Thomas Roach
- Commissariat à l'Energie Atomique et Energies Alternatives Saclay, Institute of Biology and Technology-Saclay, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8221, Service de Bioénergétique, Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette cedex, France
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523-1062
| | - Pierre Cardol
- Laboratoire de Génétique des Microorganismes Département des Sciences de la Vie, Université de Liège, B-4000 Liege, Belgium
| | - Jacqueline Girard-Bascou
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie Institut de Biologie Physico Chimique, F-75005 Paris, France
| | - Daphné Seigneurin-Berny
- Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
- Université Grenoble 1, F-38041 Grenoble, France
- Institut National Recherche Agronomique, Unité Mixte de Recherche 1200, F-38054 Grenoble, France
| | - Dimitris Petroutsos
- Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
- Université Grenoble 1, F-38041 Grenoble, France
- Institut National Recherche Agronomique, Unité Mixte de Recherche 1200, F-38054 Grenoble, France
| | - Marcel Kuntz
- Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
- Université Grenoble 1, F-38041 Grenoble, France
- Institut National Recherche Agronomique, Unité Mixte de Recherche 1200, F-38054 Grenoble, France
| | - Cécile Breyton
- Unité Mixte de Recherche 5075, Centre National de la Recherche Scientifique/Commissariat à l’Energie Atomique/Université Grenoble 1, Institut de Biologie Structurale, F-38054 Grenoble, France
| | - Fabrice Franck
- Laboratoire de Bioénergétique, Département des Sciences de la Vie, Université de Liège, B-4000 Liege, Belgium
| | - Francis-André Wollman
- Unité Mixte de Recherche 7141, Centre National de la Recherche Scientifique/Université Pierre et Marie Curie Institut de Biologie Physico Chimique, F-75005 Paris, France
| | - Krishna K. Niyogi
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-3102
| | - Anja Krieger-Liszkay
- Commissariat à l'Energie Atomique et Energies Alternatives Saclay, Institute of Biology and Technology-Saclay, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8221, Service de Bioénergétique, Biologie Structurale et Mécanisme, 91191 Gif-sur-Yvette cedex, France
| | - Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology, 444-8585 Okazaki, Japan
| | - Giovanni Finazzi
- Centre National Recherche Scientifique, Unité Mixte Recherche 5168, Laboratoire Physiologie Cellulaire et Végétale, F-38054 Grenoble, France
- Commissariat à l'Energie Atomique et Energies Alternatives, l'Institut de Recherches en Technologies et Sciences pour le Vivant, F-38054 Grenoble, France
- Université Grenoble 1, F-38041 Grenoble, France
- Institut National Recherche Agronomique, Unité Mixte de Recherche 1200, F-38054 Grenoble, France
- Address correspondence to
| |
Collapse
|
155
|
Cirulis JT, Scott JA, Ross GM. Management of oxidative stress by microalgae. Can J Physiol Pharmacol 2013; 91:15-21. [PMID: 23368282 DOI: 10.1139/cjpp-2012-0249] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this review is to provide an overview of the current research on oxidative stress in eukaryotic microalgae and the antioxidant compounds microalgae utilize to control oxidative stress. With the potential to exploit microalgae for the large-scale production of antioxidants, interest in how microalgae manage oxidative stress is growing. Microalgae can experience increased levels of oxidative stress and toxicity as a result of environmental conditions, metals, and chemicals. The defence mechanisms for microalgae include antioxidant enzymes such as superoxide dismutase, catalase, peroxidases, and glutathione reductase, as well as non-enzymatic antioxidant molecules such as phytochelatins, pigments, polysaccharides, and polyphenols. Discussed herein are the 3 areas the literature has focused on, including how conditions stress microalgae and how microalgae respond to oxidative stress by managing reactive oxygen species. The third area is how beneficial microalgae antioxidants are when administered to cancerous mammalian cells or to rodents experiencing oxidative stress.
Collapse
Affiliation(s)
- Judith T Cirulis
- Medical Sciences, Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | | | | |
Collapse
|
156
|
Huysman MJJ, Fortunato AE, Matthijs M, Costa BS, Vanderhaeghen R, Van den Daele H, Sachse M, Inzé D, Bowler C, Kroth PG, Wilhelm C, Falciatore A, Vyverman W, De Veylder L. AUREOCHROME1a-mediated induction of the diatom-specific cyclin dsCYC2 controls the onset of cell division in diatoms (Phaeodactylum tricornutum). THE PLANT CELL 2013; 25:215-28. [PMID: 23292736 PMCID: PMC3584536 DOI: 10.1105/tpc.112.106377] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cell division in photosynthetic organisms is tightly regulated by light. Although the light dependency of the onset of the cell cycle has been well characterized in various phototrophs, little is known about the cellular signaling cascades connecting light perception to cell cycle activation and progression. Here, we demonstrate that diatom-specific cyclin 2 (dsCYC2) in Phaeodactylum tricornutum displays a transcriptional peak within 15 min after light exposure, long before the onset of cell division. The product of dsCYC2 binds to the cyclin-dependent kinase CDKA1 and can complement G1 cyclin-deficient yeast. Consistent with the role of dsCYC2 in controlling a G1-to-S light-dependent cell cycle checkpoint, dsCYC2 silencing decreases the rate of cell division in diatoms exposed to light-dark cycles but not to constant light. Transcriptional induction of dsCYC2 is triggered by blue light in a fluence rate-dependent manner. Consistent with this, dsCYC2 is a transcriptional target of the blue light sensor AUREOCHROME1a, which functions synergistically with the basic leucine zipper (bZIP) transcription factor bZIP10 to induce dsCYC2 transcription. The functional characterization of a cyclin whose transcription is controlled by light and whose activity connects light signaling to cell cycle progression contributes significantly to our understanding of the molecular mechanisms underlying light-dependent cell cycle onset in diatoms.
Collapse
Affiliation(s)
- Marie J J Huysman
- Protistology and Aquatic Ecology, Department of Biology, Ghent University, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Genome, functional gene annotation, and nuclear transformation of the heterokont oleaginous alga Nannochloropsis oceanica CCMP1779. PLoS Genet 2012; 8:e1003064. [PMID: 23166516 PMCID: PMC3499364 DOI: 10.1371/journal.pgen.1003064] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 08/29/2012] [Indexed: 11/18/2022] Open
Abstract
Unicellular marine algae have promise for providing sustainable and scalable biofuel feedstocks, although no single species has emerged as a preferred organism. Moreover, adequate molecular and genetic resources prerequisite for the rational engineering of marine algal feedstocks are lacking for most candidate species. Heterokonts of the genus Nannochloropsis naturally have high cellular oil content and are already in use for industrial production of high-value lipid products. First success in applying reverse genetics by targeted gene replacement makes Nannochloropsis oceanica an attractive model to investigate the cell and molecular biology and biochemistry of this fascinating organism group. Here we present the assembly of the 28.7 Mb genome of N. oceanica CCMP1779. RNA sequencing data from nitrogen-replete and nitrogen-depleted growth conditions support a total of 11,973 genes, of which in addition to automatic annotation some were manually inspected to predict the biochemical repertoire for this organism. Among others, more than 100 genes putatively related to lipid metabolism, 114 predicted transcription factors, and 109 transcriptional regulators were annotated. Comparison of the N. oceanica CCMP1779 gene repertoire with the recently published N. gaditana genome identified 2,649 genes likely specific to N. oceanica CCMP1779. Many of these N. oceanica-specific genes have putative orthologs in other species or are supported by transcriptional evidence. However, because similarity-based annotations are limited, functions of most of these species-specific genes remain unknown. Aside from the genome sequence and its analysis, protocols for the transformation of N. oceanica CCMP1779 are provided. The availability of genomic and transcriptomic data for Nannochloropsis oceanica CCMP1779, along with efficient transformation protocols, provides a blueprint for future detailed gene functional analysis and genetic engineering of Nannochloropsis species by a growing academic community focused on this genus.
Collapse
|
158
|
The harmful alga Aureococcus anophagefferens utilizes 19′-butanoyloxyfucoxanthin as well as xanthophyll cycle carotenoids in acclimating to higher light intensities. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1557-64. [DOI: 10.1016/j.bbabio.2012.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/09/2012] [Accepted: 05/14/2012] [Indexed: 12/13/2022]
|
159
|
Heinrich S, Valentin K, Frickenhaus S, John U, Wiencke C. Transcriptomic analysis of acclimation to temperature and light stress in Saccharina latissima (Phaeophyceae). PLoS One 2012; 7:e44342. [PMID: 22937172 PMCID: PMC3429442 DOI: 10.1371/journal.pone.0044342] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 08/02/2012] [Indexed: 01/13/2023] Open
Abstract
Kelps, brown algae of the order Laminariales, dominate rocky shores and form huge kelp beds which provide habitat and nurseries for various marine organisms. Whereas the basic physiological and ecophysiological characteristics of kelps are well studied, the molecular processes underlying acclimation to different light and temperature conditions are still poorly understood. Therefore we investigated the molecular mechanisms underlying the physiological acclimation to light and temperature stress. Sporophytes of S. latissima were exposed to combinations of light intensities and temperatures, and microarray hybridizations were performed to determine changes in gene expression patterns. This first large-scale transcriptomic study of a kelp species shows that S. latissima responds to temperature and light stress with a multitude of transcriptional changes: up to 32% of genes showed an altered expression after the exposure experiments. High temperature had stronger effects on gene expression in S. latissima than low temperature, reflected by the higher number of temperature-responsive genes. We gained insights into underlying molecular processes of acclimation, which includes adjustment of the primary metabolism as well as induction of several ROS scavengers and a sophisticated regulation of Hsps. We show that S. latissima, as a cold adapted species, must make stronger efforts for acclimating to high than to low temperatures. The strongest response was caused by the combination of high temperatures with high light intensities, which proved most harmful for the alga.
Collapse
Affiliation(s)
- Sandra Heinrich
- Department of Functional Ecology, Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany.
| | | | | | | | | |
Collapse
|
160
|
Domingues N, Matos AR, Marques da Silva J, Cartaxana P. Response of the diatom Phaeodactylum tricornutum to photooxidative stress resulting from high light exposure. PLoS One 2012; 7:e38162. [PMID: 22675519 PMCID: PMC3365893 DOI: 10.1371/journal.pone.0038162] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Accepted: 05/04/2012] [Indexed: 11/19/2022] Open
Abstract
The response of microalgae to photooxidative stress resulting from high light exposure is a well-studied phenomenon. However, direct analyses of photosystem II (PSII) D1 protein (the main target of photoinhibition) in diatoms are scarce. In this study, the response of the diatom model species Phaeodactylum tricornutum to short-term exposure to high light was examined and the levels of D1 protein determined immunochemically. Low light (LL) acclimated cells (40 µmol photons m(-2) s(-1)) subjected to high light (HL, 1,250 µmol photons m(-2) s(-1)) showed rapid induction of non-photochemical quenching (NPQ) and ca. 20-fold increase in diatoxanthin (DT) concentration. This resulted from the conversion of diadinoxanthin (DD) to DT through the activation of the DD-cycle. D1 protein levels under LL decreased about 30% after 1 h of the addition of lincomycin (LINC), a chloroplast protein synthesis inhibitor, showing significant D1 degradation and repair under low irradiance. Exposure to HL lead to a 3.2-fold increase in D1 degradation rate, whereas average D1 repair rate was 1.3-x higher under HL than LL, leading to decreased levels of D1 protein under HL. There were significant effects of both HL and LINC on P. tricornutum maximum quantum yield of PSII (F(v)/F(m)), showing a reduction of active PSII reaction centres. Partial recovery of F(v)/F(m) in the dark demonstrates the photosynthetic resilience of this diatom to changes in the light regime. P. tricornutum showed high allocation of total protein to D1 and an active D1-repair cycle to limit photoinhibition.
Collapse
Affiliation(s)
- Nuno Domingues
- Centro de Biodiversidade, Genómica Integrativa e Funcional, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Ana Rita Matos
- Centro de Biodiversidade, Genómica Integrativa e Funcional, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Jorge Marques da Silva
- Centro de Biodiversidade, Genómica Integrativa e Funcional, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Paulo Cartaxana
- Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
161
|
Juhas M, Büchel C. Properties of photosystem I antenna protein complexes of the diatom Cyclotella meneghiniana. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3673-81. [PMID: 22442408 PMCID: PMC3388839 DOI: 10.1093/jxb/ers049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Analysis of photosystem I (PSI) complexes from Cyclotella meneghiniana cultured under different growth conditions led to the identification of three groups of antenna proteins, having molecular weights of around 19, 18, and 17 kDa. The 19-kDa proteins have earlier been demonstrated to be more peripherally bound to PSI, and their amount in the PSI complexes was significantly reduced when the iron supply in the growth medium was lowered. This polypeptide was almost missing, and thus the total amount of fucoxanthin-chlorophyll proteins (Fcps) bound to PSI was reduced as well. When treating cells with high light in addition, no further changes in antenna polypeptide composition were detected. Xanthophyll cycle pigments were found to be bound to all Fcps of PSI. However, PSI of high light cultures had a significantly higher diatoxanthin to diadinoxanthin ratio, which is assumed to protect against a surplus of excitation energy. PSI complexes from the double-stressed cultures (high light plus reduced iron supply) were slightly more sensitive against destruction by the detergent treatment. This could be seen as a higher 674-nm emission at 77 K in comparison to the PSI complexes isolated from other growth conditions. Two major emission bands of the Fcps bound to PSI at 77 K could be identified, whereby chlorophyll a fluorescing at 697 nm was more strongly coupled to the PSI core than those fluorescing at 685 nm. Thus, the build up of the PSI antenna of several Fcp components enables variable reactions to several stress factors commonly experienced by the diatoms in vivo, in particular diatoxanthin enrichment under high light and reduction of antenna size under reduced iron conditions.
Collapse
|
162
|
Lavaud J, Materna AC, Sturm S, Vugrinec S, Kroth PG. Silencing of the violaxanthin de-epoxidase gene in the diatom Phaeodactylum tricornutum reduces diatoxanthin synthesis and non-photochemical quenching. PLoS One 2012; 7:e36806. [PMID: 22629333 PMCID: PMC3356336 DOI: 10.1371/journal.pone.0036806] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Accepted: 04/13/2012] [Indexed: 11/19/2022] Open
Abstract
Diatoms are a major group of primary producers ubiquitous in all aquatic ecosystems. To protect themselves from photooxidative damage in a fluctuating light climate potentially punctuated with regular excess light exposures, diatoms have developed several photoprotective mechanisms. The xanthophyll cycle (XC) dependent non-photochemical chlorophyll fluorescence quenching (NPQ) is one of the most important photoprotective processes that rapidly regulate photosynthesis in diatoms. NPQ depends on the conversion of diadinoxanthin (DD) into diatoxanthin (DT) by the violaxanthin de-epoxidase (VDE), also called DD de-epoxidase (DDE). To study the role of DDE in controlling NPQ, we generated transformants of P. tricornutum in which the gene (Vde/Dde) encoding for DDE was silenced. RNA interference was induced by genetic transformation of the cells with plasmids containing either short (198 bp) or long (523 bp) antisense (AS) fragments or, alternatively, with a plasmid mediating the expression of a self-complementary hairpin-like construct (inverted repeat, IR). The silencing approaches generated diatom transformants with a phenotype clearly distinguishable from wildtype (WT) cells, i.e. a lower degree as well as slower kinetics of both DD de-epoxidation and NPQ induction. Real-time PCR based quantification of Dde transcripts revealed differences in transcript levels between AS transformants and WT cells but also between AS and IR transformants, suggesting the possible presence of two different gene silencing mediating mechanisms. This was confirmed by the differential effect of the light intensity on the respective silencing efficiency of both types of transformants. The characterization of the transformants strengthened some of the specific features of the XC and NPQ and confirmed the most recent mechanistic model of the DT/NPQ relationship in diatoms.
Collapse
Affiliation(s)
- Johann Lavaud
- Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
- UMR7266 ‘LIENSs,’ CNRS/University of La Rochelle, Institute for Coastal and Environmental Research, La Rochelle, France
| | - Arne C. Materna
- Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Sabine Sturm
- Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
- * E-mail:
| | - Sascha Vugrinec
- Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Peter G. Kroth
- Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
163
|
Lepetit B, Goss R, Jakob T, Wilhelm C. Molecular dynamics of the diatom thylakoid membrane under different light conditions. PHOTOSYNTHESIS RESEARCH 2012; 111:245-57. [PMID: 21327535 DOI: 10.1007/s11120-011-9633-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 02/01/2011] [Indexed: 05/25/2023]
Abstract
During the last years significant progress was achieved in unraveling molecular characteristics of the thylakoid membrane of different diatoms. With the present review it is intended to summarize the current knowledge about the structural and functional changes within the thylakoid membrane of diatoms acclimated to different light conditions. This aspect is addressed on the level of the organization and regulation of light-harvesting proteins, the dissipation of excessively absorbed light energy by the process of non-photochemical quenching, and the lipid composition of diatom thylakoid membranes. Finally, a working hypothesis of the domain formation of the diatom thylakoid membrane is presented to highlight the most prominent differences of heterokontic thylakoids in comparison to vascular plants and green algae during the acclimation to low and high light conditions.
Collapse
Affiliation(s)
- Bernard Lepetit
- CNRS UMR6250 'LIENSs', Institute for Coastal and Environmental Research (ILE), University of La Rochelle, 2 rue Olympe de Gouges, 17042, La Rochelle cedex, France
| | | | | | | |
Collapse
|
164
|
Depauw FA, Rogato A, Ribera d'Alcalá M, Falciatore A. Exploring the molecular basis of responses to light in marine diatoms. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1575-91. [PMID: 22328904 DOI: 10.1093/jxb/ers005] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Light is an essential source of energy for life on Earth and is one of the most important signals that organisms use to obtain information from the surrounding environment, on land and in the oceans. Prominent marine microalgae, such as diatoms, display a suite of sophisticated responses (physiological, biochemical, and behavioural) to optimize their photosynthesis and growth under changing light conditions. However, the molecular mechanisms controlling diatom responses to light are still largely unknown. Recent progress in marine diatom genomics and genetics, combined with well-established (eco) physiological and biophysical approaches, now offers novel opportunities to address these issues. This review provides a description of the molecular components identified in diatom genomes that are involved in light perception and acclimation mechanisms. How the initial functional characterizations of specific light regulators provide the basis to investigate the conservation or diversification of light-mediated processes in diatoms is also discussed. Hypotheses on the role of the identified factors in determining the growth, distribution, and adaptation of diatoms in different marine environments are reported.
Collapse
Affiliation(s)
- Frauke Angelique Depauw
- Université Pierre et Marie Curie, Paris 06, Centre National de la Recherche Scientifique, UMR7238, Laboratoire de Génomique des Microorganismes, 75006 Paris, France
| | | | | | | |
Collapse
|
165
|
Beer A, Juhas M, Büchel C. INFLUENCE OF DIFFERENT LIGHT INTENSITIES AND DIFFERENT IRON NUTRITION ON THE PHOTOSYNTHETIC APPARATUS IN THE DIATOM CYCLOTELLA MENEGHINIANA (BACILLARIOPHYCEAE)(1). JOURNAL OF PHYCOLOGY 2011; 47:1266-73. [PMID: 27020350 DOI: 10.1111/j.1529-8817.2011.01060.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The diatom Cyclotella meneghiniana Kütz. (SAG 1020-a) was cultured under high-light (HL) and low-light (LL) conditions with either high (12 μM) or low (1 μM) iron in the media. Changes in cell morphology, especially cell volume and chloroplast size, were observed in cells grown under low iron. In contrast, HL had a much stronger influence on the photosynthetic apparatus. PSII function was unimpaired under lowered iron supply, but its quantum efficiency and reoxidation rate were reduced under HL conditions. As reported before, HL induced changes in antenna polypeptide composition. Especially the amount of Fcp6, an antenna protein related to LI818 and known to be involved in photoprotection, was increased under HL but was significantly reduced under lowered iron. The diatoxanthin content correlated with the amount of Fcp6 in isolated FCPa antenna complexes and was thus increased under HL and reduced under low iron as well. While the diatoxanthin (Dt) content of whole cells was enhanced under HL, no decrease was observed under lowered iron supply, ruling out the possibility that the decreased amounts in FCPa were due to a hampered diadinoxanthin de-epoxidase activity under these conditions. Thus, diatoxanthin not bound to FCPa has to be responsible for protection under the slight reduction in iron supply used here.
Collapse
Affiliation(s)
- Anja Beer
- Institute of Molecular Bioscience, University of Frankfurt, Siesmayerstr. 70, 60323 Frankfurt, Germany
| | - Matthias Juhas
- Institute of Molecular Bioscience, University of Frankfurt, Siesmayerstr. 70, 60323 Frankfurt, Germany
| | - Claudia Büchel
- Institute of Molecular Bioscience, University of Frankfurt, Siesmayerstr. 70, 60323 Frankfurt, Germany
| |
Collapse
|
166
|
Brembu T, Jørstad M, Winge P, Valle KC, Bones AM. Genome-wide profiling of responses to cadmium in the diatom Phaeodactylum tricornutum. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:7640-7647. [PMID: 21812388 DOI: 10.1021/es2002259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The only group of organisms in which a biological function for cadmium has been shown is the diatoms, which are unicellular phytoplankton. Yet diatoms exhibit similar sensitivity to Cd as other groups of phytoplankton. We have investigated responses of Cd on molecular, metabolic, and physiological levels in the diatom Phaeodactylum tricornutum. P. tricornutum apparently has a high tolerance to Cd; only minor responses were observed on growth, pigment, and transcriptional changes at cadmium concentrations of 123 μg/L. No significant changes in chlorophyll and xanthophyll levels were observed, and the very few transcripts affected strongly indicate that the cells were able to respond to the increased Cd(2+) levels without changing proteins levels. At 10 times this concentration, 1230 μg/L, a much clearer response was observed, including transcripts encoding proteins involved in metal transport, cell signaling, and detoxification processes. Our results point toward putative pathways for the removal or detoxification of Cd and its metabolites as well as a possible Cd uptake mechanism. We predict that ATPase5-1B is involved in removal of Cd by pumping Cd(2+) ions out of the cell, whereas VIT1/CCC1 sequesters Cd(2+) in the vacuole.
Collapse
Affiliation(s)
- Tore Brembu
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | | | | | | |
Collapse
|
167
|
Wu H, Cockshutt AM, McCarthy A, Campbell DA. Distinctive photosystem II photoinactivation and protein dynamics in marine diatoms. PLANT PHYSIOLOGY 2011; 156:2184-95. [PMID: 21617029 PMCID: PMC3149953 DOI: 10.1104/pp.111.178772] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 05/24/2011] [Indexed: 05/17/2023]
Abstract
Diatoms host chlorophyll a/c chloroplasts distinct from green chloroplasts. Diatoms now dominate the eukaryotic oceanic phytoplankton, in part through their exploitation of environments with variable light. We grew marine diatoms across a range of temperatures and then analyzed their PSII function and subunit turnover during an increase in light to mimic an upward mixing event. The small diatom Thalassiosira pseudonana initially responds to increased photoinactivation under blue or white light with rapid acceleration of the photosystem II (PSII) repair cycle. Increased red light provoked only modest PSII photoinactivation but triggered a rapid clearance of a subpool of PsbA. Furthermore, PsbD and PsbB content was greater than PsbA content, indicating a large pool of partly assembled PSII repair cycle intermediates lacking PsbA. The initial replacement rates for PsbD (D2) were, surprisingly, comparable to or higher than those for PsbA (D1), and even the supposedly stable PsbB (CP47) dropped rapidly upon the light shift, showing a novel aspect of rapid protein subunit turnover in the PSII repair cycle in small diatoms. Under sustained high light, T. pseudonana induces sustained nonphotochemical quenching, which correlates with stabilization of PSII function and the PsbA pool. The larger diatom Coscinodiscus radiatus showed generally similar responses but had a smaller allocation of PSII complexes relative to total protein content, with nearly equal stiochiometries of PsbA and PsbD subunits. Fast turnover of multiple PSII subunits, pools of PSII repair cycle intermediates, and photoprotective induction of nonphotochemical quenching are important interacting factors, particularly for small diatoms, to withstand and exploit high, fluctuating light.
Collapse
Affiliation(s)
| | | | | | - Douglas A. Campbell
- Biology Department, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G7 (H.W., D.A.C.); State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361005, China (H.W.); Chemistry and Biochemistry Department, Mount Allison University, Sackville, New Brunswick, Canada E4L 1G8 (A.M.C., A.M.)
| |
Collapse
|
168
|
Brunet C, Lavaud J. Can the xanthophyll cycle help extract the essence of the microalgal functional response to a variable light environment? JOURNAL OF PLANKTON RESEARCH 2010; 32:1609-1617. [PMID: 0 DOI: 10.1093/plankt/fbq104] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
169
|
Lepetit B, Volke D, Gilbert M, Wilhelm C, Goss R. Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. PLANT PHYSIOLOGY 2010; 154:1905-20. [PMID: 20935178 PMCID: PMC2996015 DOI: 10.1104/pp.110.166454] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 10/07/2010] [Indexed: 05/18/2023]
Abstract
We studied the localization of diadinoxanthin cycle pigments in the diatoms Cyclotella meneghiniana and Phaeodactylum tricornutum. Isolation of pigment protein complexes revealed that the majority of high-light-synthesized diadinoxanthin and diatoxanthin is associated with the fucoxanthin chlorophyll protein (FCP) complexes. The characterization of intact cells, thylakoid membranes, and pigment protein complexes by absorption and low-temperature fluorescence spectroscopy showed that the FCPs contain certain amounts of protein-bound diadinoxanthin cycle pigments, which are not significantly different in high-light and low-light cultures. The largest part of high-light-formed diadinoxanthin cycle pigments, however, is not bound to antenna apoproteins but located in a lipid shield around the FCPs, which is copurified with the complexes. This lipid shield is primarily composed of the thylakoid membrane lipid monogalactosyldiacylglycerol. We also show that the photosystem I (PSI) fraction contains a tightly connected FCP complex that is enriched in protein-bound diadinoxanthin cycle pigments. The peripheral FCP and the FCP associated with PSI are composed of different apoproteins. Tandem mass spectrometry analysis revealed that the peripheral FCP is composed mainly of the light-harvesting complex protein Lhcf and also significant amounts of Lhcr. The PSI fraction, on the other hand, shows an enrichment of Lhcr proteins, which are thus responsible for the diadinoxanthin cycle pigment binding. The existence of lipid-dissolved and protein-bound diadinoxanthin cycle pigments in the peripheral antenna and in PSI is discussed with respect to different specific functions of the xanthophylls.
Collapse
|
170
|
Bowler C, De Martino A, Falciatore A. Diatom cell division in an environmental context. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:623-630. [PMID: 20970371 DOI: 10.1016/j.pbi.2010.09.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/26/2010] [Accepted: 09/23/2010] [Indexed: 05/30/2023]
Abstract
Studies of cell division in organisms derived from secondary endosymbiosis such as diatoms have revealed that the mechanisms are far from those found in more conventional model eukaryotes. An atypical acentriolar microtuble-organizing centre, centripetal cytokinesis combined with centrifugal cell wall neosynthesis, and the role of sex in relation to cell size restoration make diatoms an exciting system to re-investigate the evolution, differentiation and regulation of cell division. Such studies are further justified considering the ecological relevance of these microalgae in contemporary oceans and the need to understand the mechanisms controlling their growth and distribution in an environmental context. Recent work derived from genome-wide analyses on representative model diatoms reveals that the cell cycle is finely tuned to inputs derived from both endogenous and environmental signals.
Collapse
Affiliation(s)
- Chris Bowler
- Environmental and Evolutionary Genomics Section, Institut de Biologie de l'Ecole Normale Supérieure, Centre National de la Recherche Scientifique UMR8197 INSERM U1024, F-75005 Paris, France.
| | | | | |
Collapse
|
171
|
Dittami SM, Michel G, Collén J, Boyen C, Tonon T. Chlorophyll-binding proteins revisited--a multigenic family of light-harvesting and stress proteins from a brown algal perspective. BMC Evol Biol 2010; 10:365. [PMID: 21110855 PMCID: PMC3008699 DOI: 10.1186/1471-2148-10-365] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Accepted: 11/26/2010] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Chlorophyll-binding proteins (CBPs) constitute a large family of proteins with diverse functions in both light-harvesting and photoprotection. The evolution of CBPs has been debated, especially with respect to the origin of the LI818 subfamily, members of which function in non-photochemical quenching and have been found in chlorophyll a/c-containing algae and several organisms of the green lineage, but not in red algae so far. The recent publication of the Ectocarpus siliculosus genome represents an opportunity to expand on previous work carried out on the origin and function of CBPs. RESULTS The Ectocarpus genome codes for 53 CBPs falling into all major families except the exclusively green family of chlorophyll a/b binding proteins. Most stress-induced CBPs belong to the LI818 family. However, we highlight a few stress-induced CBPs from Phaeodactylum tricornutum and Chondrus crispus that belong to different sub-families and are promising targets for future functional studies. Three-dimensional modeling of two LI818 proteins revealed features common to all LI818 proteins that are likely to interfere with their capacity to bind chlorophyll b and lutein, but may enable binding of chlorophyll c and fucoxanthin. In the light of this finding, we examined the possibility that LI818 proteins may have originated in a chlorophyll c/fucoxanthin containing organism and compared this scenario to three alternatives: an independent evolution of LI818 proteins in different lineages, an ancient origin together with the first CBPs, before the separation of the red and the green lineage, or an origin in the green lineage and a transfer to an ancestor of haptophytes and heterokonts during a cryptic endosymbiosis event. CONCLUSIONS Our findings reinforce the idea that the LI818 family of CBPs has a role in stress response. In addition, statistical analyses of phylogenetic trees show an independent origin in different eukaryotic lineages or a green algal origin of LI818 proteins to be highly unlikely. Instead, our data favor an origin in an ancestral chlorophyll a/c-containing organism and a subsequent lateral transfer to some green algae, although an origin of LI818 proteins in a common ancestor of red and green algae cannot be ruled out.
Collapse
Affiliation(s)
- Simon M Dittami
- UPMC Univ Paris 06, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
| | - Gurvan Michel
- UPMC Univ Paris 06, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
| | - Jonas Collén
- UPMC Univ Paris 06, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
| | - Catherine Boyen
- UPMC Univ Paris 06, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
| | - Thierry Tonon
- UPMC Univ Paris 06, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
- CNRS, UMR 7139 Marine Plants and Biomolecules, Station Biologique, 29680, Roscoff, France
| |
Collapse
|
172
|
Bertrand M. Carotenoid biosynthesis in diatoms. PHOTOSYNTHESIS RESEARCH 2010; 106:89-102. [PMID: 20734232 DOI: 10.1007/s11120-010-9589-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 07/24/2010] [Indexed: 05/20/2023]
Abstract
Diatoms are ubiquitous and constitute an important group of the phytoplankton community having a major contribution to the total marine primary production. These microalgae exhibit a characteristic golden-brown colour due to a high amount of the xanthophyll fucoxanthin that plays a major role in the light-harvesting complex of photosystems. In the water column, diatoms are exposed to light intensities that vary quickly from lower to higher values. Xanthophyll cycles prevent photodestruction of the cells in excessive light intensities. In diatoms, the diadinoxanthin-diatoxanthin cycle is the most important short-term photoprotective mechanism. If the biosynthetic pathways of chloroplast pigments have been extensively studied in higher plants and green algae, the research on carotenoid biosynthesis in diatoms is still in its infancy. In this study, the data on the biosynthetic pathway of diatom carotenoids are reviewed. The early steps occur through the 2-C-methyl-D: -erythritol 4-phosphate (MEP) pathway. Then a hypothetical pathway is suggested from dimethylallyl diphosphate (DMAPP) and isopentenyl pyrophosphate (IPP). Most of the enzymes of the pathway have not been so far isolated from diatoms, but candidate genes for each of them were identified using protein similarity searches of genomic data.
Collapse
Affiliation(s)
- Martine Bertrand
- MiMeTox, National Institute for Marine Sciences and Techniques, CNAM, BP 324, 50103 Cherbourg-Octeville Cedex, France.
| |
Collapse
|
173
|
An atypical member of the light-harvesting complex stress-related protein family modulates diatom responses to light. Proc Natl Acad Sci U S A 2010; 107:18214-9. [PMID: 20921421 DOI: 10.1073/pnas.1007703107] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Diatoms are prominent phytoplanktonic organisms that contribute around 40% of carbon assimilation in the oceans. They grow and perform optimally in variable environments, being able to cope with unpredictable changes in the amount and quality of light. The molecular mechanisms regulating diatom light responses are, however, still obscure. Using knockdown Phaeodactylum tricornutum transgenic lines, we reveal the key function of a member of the light-harvesting complex stress-related (LHCSR) protein family, denoted LHCX1, in modulation of excess light energy dissipation. In contrast to green algae, this gene is already maximally expressed in nonstressful light conditions and encodes a protein required for efficient light responses and growth. LHCX1 also influences natural variability in photoresponse, as evidenced in ecotypes isolated from different latitudes that display different LHCX1 protein levels. We conclude, therefore, that this gene plays a pivotal role in managing light responses in diatoms.
Collapse
|
174
|
Finazzi G, Moreau H, Bowler C. Genomic insights into photosynthesis in eukaryotic phytoplankton. TRENDS IN PLANT SCIENCE 2010; 15:565-572. [PMID: 20800533 DOI: 10.1016/j.tplants.2010.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/21/2010] [Accepted: 07/22/2010] [Indexed: 05/29/2023]
Abstract
The evolution of photosynthesis completely altered the biogeochemistry of our planet and permitted the evolution of more complex multicellular organisms. Curiously, terrestrial photosynthesis is carried out largely by green algae and their descendents the higher plants, whereas in the ocean the most abundant photosynthetic eukaryotes are microscopic and have red algal affiliations. Although primary productivity is approximately equal between the land and the ocean, the marine microbes represent less than 1% of the photosynthetic biomass found on land. This review focuses on this highly successful and diverse group of organisms collectively known as phytoplankton and reviews how insights from whole genome analyses have improved our understanding of the novel innovations employed by them to maximize photosynthetic efficiency in variable light environments.
Collapse
Affiliation(s)
- Giovanni Finazzi
- Laboratoire de Physiologie Vegetale et Cellulaire, UMR 5168 Centre National de la Recherche Scientifique/Commissariat à l'énergie atomique et aux énergies alternatives/Université Joseph Fourier, CEA Grenoble, 17 rue des Martyrs, 38054 Grenoble, France
| | | | | |
Collapse
|
175
|
Zhu SH, Green BR. Photoprotection in the diatom Thalassiosira pseudonana: Role of LI818-like proteins in response to high light stress. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1449-57. [DOI: 10.1016/j.bbabio.2010.04.003] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 03/11/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
|