151
|
Kraupner N, Ebmeyer S, Bengtsson-Palme J, Fick J, Kristiansson E, Flach CF, Larsson DGJ. Selective concentration for ciprofloxacin resistance in Escherichia coli grown in complex aquatic bacterial biofilms. ENVIRONMENT INTERNATIONAL 2018; 116:255-268. [PMID: 29704804 DOI: 10.1016/j.envint.2018.04.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/27/2018] [Accepted: 04/17/2018] [Indexed: 05/27/2023]
Abstract
There is concern that antibiotics in the environment can select for and enrich bacteria carrying acquired antibiotic resistance genes, thus increasing the potential of those genes to emerge in a clinical context. A critical question for understanding and managing such risks is what levels of antibiotics are needed to select for resistance in complex bacterial communities. Here, we address this question by examining the phenotypic and genotypic profiles of aquatic communities exposed to ciprofloxacin, also evaluating the within-species selection of resistant E. coli in complex communities. The taxonomic composition was significantly altered at ciprofloxacin exposure concentrations down to 1 μg/L. Shotgun metagenomic analysis indicated that mobile quinolone resistance determinants (qnrD, qnrS and qnrB) were enriched as a direct consequence of ciprofloxacin exposure from 1 μg/L or higher. Only at 5-10 μg/L resistant E.coli increased relative to their sensitive counterparts. These resistant E. coli predominantly harbored non-transferrable, chromosomal triple mutations (gyrA S83 L, D87N and parC S80I), which confer high-level resistance. In a controlled experimental setup such as this, we interpret effects on taxonomic composition and enrichment of mobile quinolone resistance genes as relevant indicators of risk. Hence, the lowest observed effect concentration for resistance selection in complex communities by ciprofloxacin was 1 μg/L and the corresponding no observed effect concentration 0.1 μg/L. These findings can be used to define and implement discharge or surface water limits to reduce risks for selection of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Nadine Kraupner
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stefan Ebmeyer
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jerker Fick
- Department of Chemistry, Umeå University, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
152
|
Diwan V, Hanna N, Purohit M, Chandran S, Riggi E, Parashar V, Tamhankar AJ, Stålsby Lundborg C. Seasonal Variations in Water-Quality, Antibiotic Residues, Resistant Bacteria and Antibiotic Resistance Genes of Escherichia coli Isolates from Water and Sediments of the Kshipra River in Central India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1281. [PMID: 29914198 PMCID: PMC6024939 DOI: 10.3390/ijerph15061281] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To characterize the seasonal variation, over one year, in water-quality, antibiotic residue levels, antibiotic resistance genes and antibiotic resistance in Escherichia coli isolates from water and sediment of the Kshipra River in Central India. METHODS Water and sediment samples were collected from seven selected points from the Kshipra River in the Indian city of Ujjain in the summer, rainy season, autumn and winter seasons in 2014. Water quality parameters (physical, chemical and microbiological) were analyzed using standard methods. High-performance liquid chromatography⁻tandem mass spectrometry was used to determine the concentrations of antibiotic residues. In river water and sediment samples, antibiotic resistance and multidrug resistance patterns of isolated E. coli to 17 antibiotics were tested and genes coding for resistance and phylogenetic groups were detected using multiplex polymerase chain reaction. One-way analysis of variance (ANOVA) and Fisher tests were applied to determine seasonal variation. RESULTS In river water, seasonal variation was significantly associated with various water quality parameters, presence of sulfamethoxazole residues, bacteria resistant to ampicillin, cefepime, meropenem, amikacin, gentamicin, tigecycline, multidrug resistance and CTX-M-1 gene. The majority of the Extended Spectrum Beta-Lactamase (ESBL)-producing E. coli isolates from river water and sediment in all different seasons belonged to phylogenetic group A or B1. CONCLUSIONS Antibiotic pollution, resistance and resistance genes in the Kshipra River showed significant seasonal variation. Guidelines and regulatory standards are needed to control environmental dissemination of these “pollutants” in this holy river.
Collapse
Affiliation(s)
- Vishal Diwan
- Department of Public Health and Environment, R.D. Gardi Medical College, Ujjain 456006, India.
- Department of Public Health Sciences, Global Health, Health Systems and Policy (HSP): Medicines Focusing Antibiotics, Karolinska Institutet, Stockholm 171 77, Sweden.
- International Centre for Health Research, Ujjain Charitable Trust Hospital and Research Centre, Ujjain 456001, India.
| | - Nada Hanna
- Department of Public Health Sciences, Global Health, Health Systems and Policy (HSP): Medicines Focusing Antibiotics, Karolinska Institutet, Stockholm 171 77, Sweden.
| | - Manju Purohit
- Department of Public Health Sciences, Global Health, Health Systems and Policy (HSP): Medicines Focusing Antibiotics, Karolinska Institutet, Stockholm 171 77, Sweden.
- Department of Pathology, R.D. Gardi Medical College, Ujjain 456006, India.
| | - Salesh Chandran
- HLL Biotech Ltd., Integrated Vaccines Complex, Melaripakkam (Post), Thirukalukundram Taluk, Chengalpattu 603001, India.
| | - Emilia Riggi
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia 27100, Italy.
- Research Center in Epidemiology and Preventive Medicine (EPIMED), University of Insubria, Varese 21100, Italy.
| | - Vivek Parashar
- Department of Public Health and Environment, R.D. Gardi Medical College, Ujjain 456006, India.
| | - Ashok J Tamhankar
- Department of Public Health Sciences, Global Health, Health Systems and Policy (HSP): Medicines Focusing Antibiotics, Karolinska Institutet, Stockholm 171 77, Sweden.
- Indian Initiative for Management of Antibiotic Resistance, Department of Environmental Medicine, R.D. Gardi Medical College, Ujjain 456006, India.
| | - Cecilia Stålsby Lundborg
- Department of Public Health Sciences, Global Health, Health Systems and Policy (HSP): Medicines Focusing Antibiotics, Karolinska Institutet, Stockholm 171 77, Sweden.
| |
Collapse
|
153
|
Bengtsson-Palme J, Larsson DGJ, Kristiansson E. Using metagenomics to investigate human and environmental resistomes. J Antimicrob Chemother 2018; 72:2690-2703. [PMID: 28673041 DOI: 10.1093/jac/dkx199] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance is a global health concern declared by the WHO as one of the largest threats to modern healthcare. In recent years, metagenomic DNA sequencing has started to be applied as a tool to study antibiotic resistance in different environments, including the human microbiota. However, a multitude of methods exist for metagenomic data analysis, and not all methods are suitable for the investigation of resistance genes, particularly if the desired outcome is an assessment of risks to human health. In this review, we outline the current state of methods for sequence handling, mapping to databases of resistance genes, statistical analysis and metagenomic assembly. In addition, we provide an overview of important considerations related to the analysis of resistance genes, and recommend some of the currently used tools and methods that are best equipped to inform research and clinical practice related to antibiotic resistance.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-41346, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden
| | - D G Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-41346, Gothenburg, Sweden.,Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden.,Department of Mathematical Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| |
Collapse
|
154
|
Angeles LF, Aga DS. Establishing Analytical Performance Criteria for the Global Reconnaissance of Antibiotics and Other Pharmaceutical Residues in the Aquatic Environment Using Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2018; 2018:7019204. [PMID: 29967712 PMCID: PMC6008649 DOI: 10.1155/2018/7019204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/26/2018] [Indexed: 05/25/2023]
Abstract
The occurrence of antibiotics in the environment from discharges of wastewater treatment plants (WWTPs) and from the land application of antibiotic-laden manure from animal agriculture is a critical global issue because these residues have been associated with the increased emergence of antibiotic resistance in the environment. In addition, other classes of pharmaceuticals and personal care products (PPCPs) have been found in effluents of municipal WWTPs, many of which persist in the receiving environments. Analysis of antibiotics by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in samples from different countries presents unique challenges that should be considered, from ion suppression due to matrix effects, to lack of available stable isotopically labeled standards for accurate quantification. Understanding the caveats of LC-MS/MS is important for assessing samples with varying matrix complexity. Ion ratios between quantifying and qualifying ions have been used for quality assurance purposes; however, there is limited information regarding the significance of setting criteria for acceptable variabilities in their values in the literature. Upon investigation of 30 pharmaceuticals in WWTP influent and effluent samples, and in receiving surface water samples downstream and upstream of the WWTP, it was found that ion ratios have higher variabilities at lower concentrations in highly complex matrices, and the extent of variability may be exacerbated by the physicochemical properties of the analytes. In setting the acceptable ion ratio criterion, the overall mean, which was obtained by taking the average of the ion ratios at all concentrations (1.56 to 100 ppb), was used. Then, for many of the target analytes included in this study, the tolerance range was set at 40% for WWTP influent samples and 30% for WWTP effluent, upstream, and downstream samples. A separate tolerance range of 80% was set for tetracyclines and quinolones, which showed higher variations in the ion ratios compared to the other analytes.
Collapse
Affiliation(s)
- Luisa F. Angeles
- Department of Chemistry, The State University of New York, Buffalo, NY 14260, USA
| | - Diana S. Aga
- Department of Chemistry, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
155
|
Metagenomic analysis reveals the prevalence and persistence of antibiotic- and heavy metal-resistance genes in wastewater treatment plant. J Microbiol 2018; 56:408-415. [DOI: 10.1007/s12275-018-8195-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/18/2018] [Accepted: 04/19/2018] [Indexed: 12/31/2022]
|
156
|
Jia Y, Khanal SK, Shu H, Zhang H, Chen GH, Lu H. Ciprofloxacin degradation in anaerobic sulfate-reducing bacteria (SRB) sludge system: Mechanism and pathways. WATER RESEARCH 2018; 136:64-74. [PMID: 29494897 DOI: 10.1016/j.watres.2018.02.057] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
Ciprofloxacin (CIP), a fluoroquinolone antibiotic, removal was examined for the first time, in an anaerobic sulfate-reducing bacteria (SRB) sludge system. About 28.0% of CIP was biodegraded by SRB sludge when the influent CIP concentration was 5000 μg/L. Some SRB genera with high tolerance to CIP (i.e. Desulfobacter), were enriched at CIP concentration of 5000 μg/L. The changes in antibiotic resistance genes (ARGs) of SRB sludge coupled with CIP biodegradation intermediates were used to understand the mechanism of CIP biodegradation for the first time. The percentage of efflux pump genes associated with ARGs increased, while the percentage of fluoroquinolone resistance genes that inhibit the DNA copy of bacteria decreased during prolonged exposure to CIP. It implies that some intracellular CIP was extruded into extracellular environment of microbial cells via efflux pump genes to reduce fluoroquinolone resistance genes accumulation caused by exposure to CIP. Additionally, the degradation products and the possible pathways of CIP biodegradation were also examined using the new method developed in this study. The results suggest that CIP was biodegraded intracellularly via desethylation reaction in piperazinyl ring and hydroxylation reaction catalyzed by cytochrome P450 enzymes. This study provides an insight into the mechanism and pathways of CIP biodegradation by SRB sludge, and opens-up a new opportunity for the treatment of CIP-containing wastewater using sulfur-mediated biological process.
Collapse
Affiliation(s)
- Yanyan Jia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, USA
| | - Haoyue Shu
- State Key Laboratory of Biocontrol and Guangdong School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Huiqun Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guang-Hao Chen
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
157
|
Pan M, Chu LM. Occurrence of antibiotics and antibiotic resistance genes in soils from wastewater irrigation areas in the Pearl River Delta region, southern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:145-152. [PMID: 29258031 DOI: 10.1016/j.scitotenv.2017.12.008] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
The occurrence and distribution of tetracycline (TC) and sulfamethazine (SMZ), and the corresponding antibiotic resistance genes (ARGs) were investigated in six agricultural sites in the Pearl River Delta (PRD) region in southern China. Irrigation water and irrigated soils at two different depths (0-10 and 10-20cm) were analyzed. The total concentrations of TC and SMZ in irrigation water ranged from 69.3 to 234ng/L and from 4.00 to 58.2ng/L, respectively, while the total concentrations of TC and SMZ in irrigated soils ranged from 5.00 to 21.9μg/kg and from 1.30 to 4.20μg/kg, respectively. After long-term irrigation with domestic and fishpond wastewater in the field, the residual TC and SMZ and their corresponding ARGs in soils were significantly higher in fishpond-irrigated soils (Dongguan and Shenzhen) than in domestic wastewater-irrigated soils (Foshan, Guangzhou, Huizhou and Zhongshan). The concentrations of antibiotics and their ARGs were significantly higher in irrigation water than in irrigated soils, which indicated that wastewater was the primary source of antibiotics in the soil environments. The domestic and fishpond wastewater were important repositories of antibiotics and their ARGs, which require effective treatment before their discharge into the environment. Other factors such as soil physicochemical properties, manure application, irrigation water sources and cropping patterns also affect the antibiotic concentrations and ARG abundances. The residual antibiotic concentrations statistically correlated with the corresponding ARGs in irrigation water and irrigated soils, both of which decreased with increasing soil depth, indicating that the concentration of antibiotics in the environment exerted a selection pressure on the microorganisms in the environment.
Collapse
Affiliation(s)
- Min Pan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - L M Chu
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
158
|
Mansour I, Heppell CM, Ryo M, Rillig MC. Application of the microbial community coalescence concept to riverine networks. Biol Rev Camb Philos Soc 2018; 93:1832-1845. [PMID: 29700966 DOI: 10.1111/brv.12422] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 01/08/2023]
Abstract
Flows of water, soil, litter, and anthropogenic materials in and around rivers lead to the mixing of their resident microbial communities and subsequently to a resultant community distinct from its precursors. Consideration of these events through a new conceptual lens, namely, community coalescence, could provide a means of integrating physical, environmental, and ecological mechanisms to predict microbial community assembly patterns better in these habitats. Here, we review field studies of microbial communities in riverine habitats where environmental mixing regularly occurs, interpret some of these studies within the community coalescence framework and posit novel hypotheses and insights that may be gained in riverine microbial ecology through the application of this concept. Particularly in the face of a changing climate and rivers under increasing anthropogenic pressures, knowledge about the factors governing microbial community assembly is essential to forecast and/or respond to changes in ecosystem function. Additionally, there is the potential for microbial ecology studies in rivers to become a driver of theory development: riverine systems are ideal for coalescence studies because regular and predictable environmental mixing occurs. Data appropriate for testing community coalescence theory could be collected with minimal alteration to existing study designs.
Collapse
Affiliation(s)
- India Mansour
- Plant Ecology, Institut für Biologie, Freie Universität Berlin, D-14195 Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany.,School of Geography, Queen Mary University of London, London E1 4NS, UK
| | | | - Masahiro Ryo
- Plant Ecology, Institut für Biologie, Freie Universität Berlin, D-14195 Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| | - Matthias C Rillig
- Plant Ecology, Institut für Biologie, Freie Universität Berlin, D-14195 Berlin, Germany.,Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), D-14195 Berlin, Germany
| |
Collapse
|
159
|
Pereira MB, Wallroth M, Jonsson V, Kristiansson E. Comparison of normalization methods for the analysis of metagenomic gene abundance data. BMC Genomics 2018; 19:274. [PMID: 29678163 PMCID: PMC5910605 DOI: 10.1186/s12864-018-4637-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/28/2018] [Indexed: 01/17/2023] Open
Abstract
Background In shotgun metagenomics, microbial communities are studied through direct sequencing of DNA without any prior cultivation. By comparing gene abundances estimated from the generated sequencing reads, functional differences between the communities can be identified. However, gene abundance data is affected by high levels of systematic variability, which can greatly reduce the statistical power and introduce false positives. Normalization, which is the process where systematic variability is identified and removed, is therefore a vital part of the data analysis. A wide range of normalization methods for high-dimensional count data has been proposed but their performance on the analysis of shotgun metagenomic data has not been evaluated. Results Here, we present a systematic evaluation of nine normalization methods for gene abundance data. The methods were evaluated through resampling of three comprehensive datasets, creating a realistic setting that preserved the unique characteristics of metagenomic data. Performance was measured in terms of the methods ability to identify differentially abundant genes (DAGs), correctly calculate unbiased p-values and control the false discovery rate (FDR). Our results showed that the choice of normalization method has a large impact on the end results. When the DAGs were asymmetrically present between the experimental conditions, many normalization methods had a reduced true positive rate (TPR) and a high false positive rate (FPR). The methods trimmed mean of M-values (TMM) and relative log expression (RLE) had the overall highest performance and are therefore recommended for the analysis of gene abundance data. For larger sample sizes, CSS also showed satisfactory performance. Conclusions This study emphasizes the importance of selecting a suitable normalization methods in the analysis of data from shotgun metagenomics. Our results also demonstrate that improper methods may result in unacceptably high levels of false positives, which in turn may lead to incorrect or obfuscated biological interpretation. Electronic supplementary material The online version of this article (10.1186/s12864-018-4637-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mariana Buongermino Pereira
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Mikael Wallroth
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Viktor Jonsson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
160
|
Impact of Wastewater Treatment on the Prevalence of Integrons and the Genetic Diversity of Integron Gene Cassettes. Appl Environ Microbiol 2018; 84:AEM.02766-17. [PMID: 29475864 DOI: 10.1128/aem.02766-17] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 02/10/2018] [Indexed: 12/23/2022] Open
Abstract
The integron platform allows the acquisition, expression, and dissemination of antibiotic resistance genes within gene cassettes. Wastewater treatment plants (WWTPs) contain abundant resistance genes; however, knowledge about the impacts of wastewater treatment on integrons and their gene cassettes is limited. In this study, by using clone library analysis and high-throughput sequencing, we investigated the abundance of class 1, 2, and 3 integrons and their corresponding gene cassettes in three urban WWTPs. Our results showed that class 1 integrons were most abundant in WWTPs and that wastewater treatment significantly reduced the abundance of all integrons. The WWTP influents harbored the highest diversity of class 1 integron gene cassettes, whereas class 3 integron gene cassettes exhibited highest diversity in activated sludge. Most of the gene cassette arrays detected in class 1 integrons were novel. Aminoglycoside, beta-lactam, and trimethoprim resistance genes were highly prevalent in class 1 integron gene cassettes, while class 3 integrons mainly carried beta-lactam resistance gene cassettes. A core class 1 integron resistance gene cassette pool persisted during wastewater treatment, implying that these resistance genes could have high potential to spread into environments through WWTPs. These data provide new insights into the impact of wastewater treatment on integron pools and highlight the need for surveillance of resistance genes within both class 1 and 3 integrons.IMPORTANCE Wastewater treatment plants represent a significant sink and transport medium for antibiotic resistance bacteria and genes spreading into environments. Integrons are important genetic elements involved in the evolution of antibiotic resistance. To better understand the impact of wastewater treatment on integrons and their gene cassette contexts, we conducted clone library construction and high-throughput sequencing to analyze gene cassette contexts for class 1 and class 3 integrons during the wastewater treatment process. This study comprehensively profiled the distribution of integrons and their gene cassettes (especially class 3 integrons) in influents, activated sludge, and effluents of conventional municipal wastewater treatment plants. We further demonstrated that while wastewater treatment significantly reduced the abundance of integrons and the diversity of associated gene cassettes, a large fraction of integrons persisted in wastewater effluents and were consequentially discharged into downstream natural environments.
Collapse
|
161
|
Die Umwelt als Reservoir für Antibiotikaresistenzen. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2018; 61:533-542. [DOI: 10.1007/s00103-018-2729-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
162
|
Wang JH, Lu J, Zhang YX, Wu J, Luo Y, Liu H. Metagenomic analysis of antibiotic resistance genes in coastal industrial mariculture systems. BIORESOURCE TECHNOLOGY 2018; 253:235-243. [PMID: 29353751 DOI: 10.1016/j.biortech.2018.01.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/04/2018] [Accepted: 01/07/2018] [Indexed: 06/07/2023]
Abstract
The overuse of antibiotics has posed a propagation of antibiotic resistance genes (ARGs) in aquaculture systems. This study firstly explored the ARGs profiles of the typical mariculture farms including conventional and recirculating systems using metagenomics approach. Fifty ARGs subtypes belonging to 21 ARGs types were identified, showing the wide-spectrum profiles of ARGs in the coastal industrial mariculture systems. ARGs with multiple antibiotics resistance have emerged in the mariculure systems. The co-occurrence pattern between ARGs and microbial taxa showed that Proteobacteria and Bacteroidetes were potential dominant hosts of ARGs in the industrial mariculture systems. Typical nitrifying bacteria such as Nitrospinae in mariculture systems also carried with some resistance genes. Relative abundance of ARGs in fish ponds and wastewater treatment units was relatively high. The investigation showed that industrial mariculture systems were important ARGs reservoirs in coastal area, indicating the critical role of recirculating systems in the terms of ARGs pollution control.
Collapse
Affiliation(s)
- Jian-Hua Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, People's Republic of China
| | - Jian Lu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, People's Republic of China.
| | - Yu-Xuan Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, People's Republic of China
| | - Jun Wu
- Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, Qinghai 810008, People's Republic of China
| | - Yongming Luo
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, People's Republic of China
| | - Hao Liu
- Shandong Oriental Ocean Sci-tech Co. Ltd, Yantai, Shandong 264003, People's Republic of China
| |
Collapse
|
163
|
Marathe NP, Janzon A, Kotsakis SD, Flach CF, Razavi M, Berglund F, Kristiansson E, Larsson DGJ. Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste. ENVIRONMENT INTERNATIONAL 2018; 112:279-286. [PMID: 29316517 DOI: 10.1016/j.envint.2017.12.036] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/21/2017] [Accepted: 12/24/2017] [Indexed: 05/28/2023]
Abstract
Evolution has provided environmental bacteria with a plethora of genes that give resistance to antibiotic compounds. Under anthropogenic selection pressures, some of these genes are believed to be recruited over time into pathogens by horizontal gene transfer. River sediment polluted with fluoroquinolones and other drugs discharged from bulk drug production in India constitute an environment with unprecedented, long-term antibiotic selection pressures. It is therefore plausible that previously unknown resistance genes have evolved and/or are promoted here. In order to search for novel resistance genes, we therefore analyzed such river sediments by a functional metagenomics approach. DNA fragments providing resistance to different antibiotics in E. coli were sequenced using Sanger and PacBio RSII platforms. We recaptured the majority of known antibiotic resistance genes previously identified by open shot-gun metagenomics sequencing of the same samples. In addition, seven novel resistance gene candidates (six beta-lactamases and one amikacin resistance gene) were identified. Two class A beta-lactamases, blaRSA1 and blaRSA2, were phylogenetically close to clinically important ESBLs like blaGES, blaBEL and blaL2, and were further characterized for their substrate spectra. The blaRSA1 protein, encoded as an integron gene cassette, efficiently hydrolysed penicillins, first generation cephalosporins and cefotaxime, while blaRSA2 was an inducible class A beta-lactamase, capable of hydrolyzing carbapenems albeit with limited efficiency, similar to the L2 beta-lactamase from Stenotrophomonas maltophilia. All detected novel genes were associated with plasmid mobilization proteins, integrons, and/or other resistance genes, suggesting a potential for mobility. This study provides insight into a resistome shaped by an exceptionally strong and long-term antibiotic selection pressure. An improved knowledge of mobilized resistance factors in the external environment may make us better prepared for the resistance challenges that we may face in clinics in the future.
Collapse
Affiliation(s)
- Nachiket P Marathe
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Anders Janzon
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Stathis D Kotsakis
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Mohammad Razavi
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden
| | - Fanny Berglund
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-413 46 Gothenburg, Sweden.
| |
Collapse
|
164
|
Zhang S, Yang G, Hou S, Zhang T, Li Z, Liang F. Distribution of ARGs and MGEs among glacial soil, permafrost, and sediment using metagenomic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 234:339-346. [PMID: 29195175 DOI: 10.1016/j.envpol.2017.11.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
Antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) can be identified with metagenomic analyses comparing relatively pristine and human-impacted environments. We collected samples from 3 different environments: glacial soil little affected by anthropogenic activity, deep permafrost dated to 5821 BP (before human antibiotics), and sediment from the Pearl River. Sulfonamides, tetracyclines, and fluoroquinolones were common in the sediment samples. Sulfonamides and tetracycline were not found in permafrost; tetracycline was also not found in glacial soil. ARGs from the sediment were more abundant and diverse than those from glacial soil and permafrost. More types of resistance mechanisms were also present in the sediment. The diversity of MGEs was significantly correlated with the abundance and diversity of ARGs. The result will help future workers to better understand the distribution of ARGs among environments more or less impacted by anthropogenic activities.
Collapse
Affiliation(s)
- Shuhong Zhang
- College of Food and Science, Shangqiu Normal University, Shangqiu 476000, China.
| | - Guangli Yang
- College of Food and Science, Shangqiu Normal University, Shangqiu 476000, China
| | - Shugui Hou
- Department of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210023, China
| | - Tingjun Zhang
- Key Laboratory of Western China's Environmental Systems (DOE), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhiguo Li
- College of Environment & Planning, Shangqiu Normal University, Shangqiu 476000, China
| | - Feng Liang
- Biorefinery Engineering Lab of Henan Province, Shangqiu 476000, China
| |
Collapse
|
165
|
Shen G, Zhang Y, Hu S, Zhang H, Yuan Z, Zhang W. Adsorption and degradation of sulfadiazine and sulfamethoxazole in an agricultural soil system under an anaerobic condition: Kinetics and environmental risks. CHEMOSPHERE 2018; 194:266-274. [PMID: 29216546 DOI: 10.1016/j.chemosphere.2017.11.175] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
Sulfonamides, one of the commonest antibiotics, were widely used on humans and livestock to control pathema and bacterial infections resulting in further environmental risks. The present study evaluated the adsorption and degradation of sulfadiazine (SDZ) and sulfamethoxazole (SMX) in an agricultural soil system under an anaerobic condition. Low sorption coefficients (Kd, 1.22 L kg-1 for SDZ and 1.23 L kg-1 for SMX) obtained from Freundlich isotherms experiment indicated that poor sorption of both antibiotics may pose a high risk to environment due to their high mobility and possibility of entering surface and ground water. Degradation occurred at a lower rate under the anaerobic environment, where both two antibiotics had higher persistence in sterile and non-sterile soils with degradation ratio <75% and DT50 > 20 d. Additionally, the addition of manure slightly increased degradation rates of SDZ and SMX, but there were no significant differences between single and repeated manure application at a later stage (p > 0.05), which suggested that the degradation was affected by both biotic and abiotic factors. Degradation rates would be slower at a higher concentration, indicating that degradation kinetics of SDZ and SMX were dependent on initial concentrations. During the degradation period, the antibiotics removal may change temperature, pH, sulfate and nitrate in soil, which suggested that the variation of antibiotics concentrations was related to the changes of soil physicochemical properties. An equation was proposed to elucidate the link between adsorption and degradation under different conditions, and to predict potential environmental risks of antibiotics.
Collapse
Affiliation(s)
- Genxiang Shen
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yu Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuangqing Hu
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Hongchang Zhang
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Zhejun Yuan
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
166
|
Metagenomics Reveals the Impact of Wastewater Treatment Plants on the Dispersal of Microorganisms and Genes in Aquatic Sediments. Appl Environ Microbiol 2018; 84:AEM.02168-17. [PMID: 29269503 PMCID: PMC5812944 DOI: 10.1128/aem.02168-17] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/13/2017] [Indexed: 12/21/2022] Open
Abstract
Wastewater treatment plants (WWTPs) release treated effluent containing mobile genetic elements (MGEs), antibiotic resistance genes (ARGs), and microorganisms into the environment, yet little is known about their influence on nearby microbial communities and the retention of these factors in receiving water bodies. Our research aimed to characterize the genes and organisms from two different WWTPs that discharge into Lake Michigan, as well as from surrounding lake sediments to determine the dispersal and fate of these factors with respect to distance from the effluent outfall. Shotgun metagenomics coupled to distance-decay analyses showed a higher abundance of genes identical to those in WWTP effluent genes in sediments closer to outfall sites than in sediments farther away, indicating their possible WWTP origin. We also found genes attributed to organisms, such as those belonging to Helicobacteraceae, Legionellaceae, Moraxellaceae, and Neisseriaceae, in effluent from both WWTPs and decreasing in abundance in lake sediments with increased distance from WWTPs. Moreover, our results showed that the WWTPs likely influence the ARG composition in lake sediments close to the effluent discharge. Many of these ARGs were located on MGEs in both the effluent and sediment samples, indicating a relatively broad propensity for horizontal gene transfer (HGT). Our approach allowed us to specifically link genes to organisms and their genetic context, providing insight into WWTP impacts on natural microbial communities. Overall, our results suggest a substantial influence of wastewater effluent on gene content and microbial community structure in the sediments of receiving water bodies. IMPORTANCE Wastewater treatment plants (WWTPs) release their effluent into aquatic environments. Although treated, effluent retains many genes and microorganisms that have the potential to influence the receiving water in ways that are poorly understood. Here, we tracked the genetic footprint, including genes specific to antibiotic resistance and mobile genetic elements and their associated organisms, from WWTPs to lake sediments. Our work is novel in that we used metagenomic data sets to comprehensively evaluate total gene content and the genetic and taxonomic context of specific genes in environmental samples putatively impacted by WWTP inputs. Based on two different WWTPs with different treatment processes, our findings point to an influence of WWTPs on the presence, abundance, and composition of these factors in the environment.
Collapse
|
167
|
McCall C, Xagoraraki I. Comparative study of sequence aligners for detecting antibiotic resistance in bacterial metagenomes. Lett Appl Microbiol 2018; 66:162-168. [DOI: 10.1111/lam.12842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/24/2017] [Accepted: 12/26/2017] [Indexed: 12/01/2022]
Affiliation(s)
- C. McCall
- Department of Civil and Environmental Engineering; Michigan State University; East Lansing MI USA
| | - I. Xagoraraki
- Department of Civil and Environmental Engineering; Michigan State University; East Lansing MI USA
| |
Collapse
|
168
|
González-Plaza JJ, Šimatović A, Milaković M, Bielen A, Wichmann F, Udiković-Kolić N. Functional Repertoire of Antibiotic Resistance Genes in Antibiotic Manufacturing Effluents and Receiving Freshwater Sediments. Front Microbiol 2018; 8:2675. [PMID: 29387045 PMCID: PMC5776109 DOI: 10.3389/fmicb.2017.02675] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/21/2017] [Indexed: 11/21/2022] Open
Abstract
Environments polluted by direct discharges of effluents from antibiotic manufacturing are important reservoirs for antibiotic resistance genes (ARGs), which could potentially be transferred to human pathogens. However, our knowledge about the identity and diversity of ARGs in such polluted environments remains limited. We applied functional metagenomics to explore the resistome of two Croatian antibiotic manufacturing effluents and sediments collected upstream of and at the effluent discharge sites. Metagenomic libraries built from an azithromycin-production site were screened for resistance to macrolide antibiotics, whereas the libraries from a site producing veterinary antibiotics were screened for resistance to sulfonamides, tetracyclines, trimethoprim, and beta-lactams. Functional analysis of eight libraries identified a total of 82 unique, often clinically relevant ARGs, which were frequently found in clusters and flanked by mobile genetic elements. The majority of macrolide resistance genes identified from matrices exposed to high levels of macrolides were similar to known genes encoding ribosomal protection proteins, macrolide phosphotransferases, and transporters. Potentially novel macrolide resistance genes included one most similar to a 23S rRNA methyltransferase from Clostridium and another, derived from upstream unpolluted sediment, to a GTPase HflX from Emergencia. In libraries deriving from sediments exposed to lower levels of veterinary antibiotics, we found 8 potentially novel ARGs, including dihydrofolate reductases and beta-lactamases from classes A, B, and D. In addition, we detected 7 potentially novel ARGs in upstream sediment, including thymidylate synthases, dihydrofolate reductases, and class D beta-lactamase. Taken together, in addition to finding known gene types, we report the discovery of novel and diverse ARGs in antibiotic-polluted industrial effluents and sediments, providing a qualitative basis for monitoring the dispersal of ARGs from environmental hotspots such as discharge sites of pharmaceutical effluents.
Collapse
Affiliation(s)
- Juan J González-Plaza
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Šimatović
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Milena Milaković
- Division for Marine and Environmental Research, Ruđer Bošković Institute, Zagreb, Croatia
| | - Ana Bielen
- Department of Biochemical Engineering, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia
| | | | | |
Collapse
|
169
|
Barrios-Estrada C, de Jesús Rostro-Alanis M, Muñoz-Gutiérrez BD, Iqbal HMN, Kannan S, Parra-Saldívar R. Emergent contaminants: Endocrine disruptors and their laccase-assisted degradation - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:1516-1531. [PMID: 28915546 DOI: 10.1016/j.scitotenv.2017.09.013] [Citation(s) in RCA: 160] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/01/2017] [Accepted: 09/02/2017] [Indexed: 02/05/2023]
Abstract
Herein, an effort has been made to highlight the trends of the state-of-the-art of laccase-assisted degradation of emerging contaminants at large and endocrine disruptors in particular. Since first described in the 19th century, laccase has received particular interest for inter- and multidisciplinary investigations due to its uniqueness and remarkable biotechnological applicability. There has always been a paramount concern over the widespread occurrences of various pollutant types, around the globe. Therefore, pollution free processes are gaining ground all over the world. With ever increasing scientific knowledge, socioeconomic awareness, human health-related issues and ecological apprehensions, people are more concerned about the widespread environmental pollutants. In this context, the occurrences of newly identified pollutants so-called "emerging contaminants - ECs" in our main water bodies is of continued and burning concern worldwide. Undoubtedly, various efforts have already been made to tackle this challenging ECs concern though using different approaches including physical and chemical, however, each has considerable limitations. In this review, we present information on how laccase-assisted approach can change this limited tendency of physical and chemical based approaches. A special focus has been given to the laccase-assisted systems including pristine laccase, laccase-mediator catalyzed system and immobilized-laccase catalyzed system that promotes the endocrine disruptors removal. Towards the end, a list of outstanding questions and research gaps are given that can pave the way for future studies.
Collapse
Affiliation(s)
- Carlos Barrios-Estrada
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Magdalena de Jesús Rostro-Alanis
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Blanca Delia Muñoz-Gutiérrez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| | - Soundarapandian Kannan
- Division of Cancer Nanomedicine laboratory, Department of Zoology, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
170
|
Guo X, Yan Z, Zhang Y, Xu W, Kong D, Shan Z, Wang N. Behavior of antibiotic resistance genes under extremely high-level antibiotic selection pressures in pharmaceutical wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:119-128. [PMID: 28850832 DOI: 10.1016/j.scitotenv.2017.08.229] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/04/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
Pharmaceutical wastewater treatment plants (PWWTPs), which receive wastewater containing extremely high levels of antibiotics, are regarded as potential hot spots for antibiotic-resistance development in the environment. Six sampling campaigns in six PWWTPs in Southeastern China were carried out to assess the prevalence and fate of antibiotic resistance genes (ARGs). Different genes were monitored in different PWWTPs (PWWTP A: lincosamides; PWWTP B: aminoglycosides and macrolides; PWWTP C: quinolones; PWWTP D: macrolides and quinolones; PWWTP E: cephalosporins; and PWWTP F: quinolones and macrolides) using real-time quantitative polymerase chain reactions (PCRs), according to the antibiotic type produced. The levels of typical ARG subtypes in the final effluents ranged from (1.03±0.91)×101 to (6.78±0.21)×107copies/mL. The absolute abundance of ARGs in effluents accounted for 0%-577% of influents to the six PWWTPs with a median value of 6%. Most of the ARGs are transported to the dewatered sludge, with concentrations from (1.38±0.21)×105 to (6.84±0.43)×1010copies/g dry weight (dw). In different treatment units (before/after biological units), a clear trend of proliferation or attenuation was not observed for the ARGs, aside from a strong attenuation in moving bed bio-film reactor (MBBR) in PWWTP C. Through correlation analyses, this study demonstrated that the bacterial abundance and antibiotic concentrations within the PWWTPs influenced the fate of the associated ARGs, and this was possibly related primarily to the intrinsic resistance mechanisms of corresponding ARGs. Macrolide ARGs, which tend to locate in plasmids and transposons, positively correlate weakly with total macrolide antibiotic concentrations but positively correlate strongly with 16S rRNA concentrations. Furthermore, ARG concentrations in the wastewater from fermentation were significantly higher than in the wastewater from chemical synthesis and preparation. This is the first comprehensive study on the behavior of antibiotic resistance genes under extremely high-level antibiotic selection pressures in pharmaceutical wastewater treatment plants (PWWTPs) in Southeastern China.
Collapse
Affiliation(s)
- Xinyan Guo
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Zheng Yan
- Chinese Society for Environmental Sciences, Beijing 100082, China
| | - Yi Zhang
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection, Nanjing 210042, China
| | - Weili Xu
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Deyang Kong
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Zhengjun Shan
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Na Wang
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection of China, Nanjing 210042, China.
| |
Collapse
|
171
|
Characteristics of ARG-carrying plasmidome in the cultivable microbial community from wastewater treatment system under high oxytetracycline concentration. Appl Microbiol Biotechnol 2018; 102:1847-1858. [DOI: 10.1007/s00253-018-8738-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/19/2017] [Accepted: 12/26/2017] [Indexed: 11/26/2022]
|
172
|
Philip JM, Aravind UK, Aravindakumar CT. Emerging contaminants in Indian environmental matrices - A review. CHEMOSPHERE 2018; 190:307-326. [PMID: 28992484 DOI: 10.1016/j.chemosphere.2017.09.120] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 05/03/2023]
Abstract
The emergence of issues related to environment from ECs is a topic under serious discussions worldwide in recent years. Indian scenario is not an exception as it is tremendously growing in its rate of production and consumption of compounds belongs to ECs categories. However, a comprehensive documentation on the occurrence of ECs and consequent ARGs as well as their toxic effects on vertebrates on Indian context is still lacking. In the present study, an extensive literature survey was carried out to get an idea on the geographical distribution of ECs in various environmental matrices (water, air, soil, sediment and sludge) and biological samples by dividing the entire subcontinent into six zones based on climatic, geographical and cultural features. A comprehensive assessment of the toxicological effects of ECs and the consequent antibiotic resistant genes has been included. It is found that studies on the screening of ECs are scarce and concentrated in certain geological locations. A total of 166 individual compounds belonging to 36 categories have been reported so far. Pharmaceuticals and drugs occupy the major share in these compounds followed by PFASs, EDCs, PCPs, ASWs and flame retardants. This review throws light on the alarming situation in India where the highest ever reported values of concentrations of some of these compounds are from India. This necessitates a national level monitoring system for ECs in order to assess the magnitude of environmental risks posed by these compounds.
Collapse
Affiliation(s)
- Jeeva M Philip
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Usha K Aravind
- Advanced Centre of Environmental Studies and Sustainable Development, Mahatma Gandhi University, Kottayam, 686560, Kerala, India
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, 686560, Kerala, India; Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, 686560, Kerala, India.
| |
Collapse
|
173
|
Kelly KR, Brooks BW. Global Aquatic Hazard Assessment of Ciprofloxacin: Exceedances of Antibiotic Resistance Development and Ecotoxicological Thresholds. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:59-77. [DOI: 10.1016/bs.pmbts.2018.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
174
|
Razavi M, Marathe NP, Gillings MR, Flach CF, Kristiansson E, Joakim Larsson DG. Discovery of the fourth mobile sulfonamide resistance gene. MICROBIOME 2017; 5:160. [PMID: 29246178 PMCID: PMC5732528 DOI: 10.1186/s40168-017-0379-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 11/29/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Over the past 75 years, human pathogens have acquired antibiotic resistance genes (ARGs), often from environmental bacteria. Integrons play a major role in the acquisition of antibiotic resistance genes. We therefore hypothesized that focused exploration of integron gene cassettes from microbial communities could be an efficient way to find novel mobile resistance genes. DNA from polluted Indian river sediments were amplified using three sets of primers targeting class 1 integrons and sequenced by long- and short-read technologies to maintain both accuracy and context. RESULTS Up to 89% of identified open reading frames encode known resistance genes, or variations thereof (> 1000). We identified putative novel ARGs to aminoglycosides, beta-lactams, trimethoprim, rifampicin, and chloramphenicol, including several novel OXA variants, providing reduced susceptibility to carbapenems. One dihydropteroate synthase gene, with less than 34% amino acid identity to the three known mobile sulfonamide resistance genes (sul1-3), provided complete resistance when expressed in Escherichia coli. The mobilized gene, here named sul4, is the first mobile sulfonamide resistance gene discovered since 2003. Analyses of adjacent DNA suggest that sul4 has been decontextualized from a set of chromosomal genes involved in folate synthesis in its original host, likely within the phylum Chloroflexi. The presence of an insertion sequence common region element could provide mobility to the entire integron. Screening of 6489 metagenomic datasets revealed that sul4 is already widespread in seven countries across Asia and Europe. CONCLUSIONS Our findings show that exploring integrons from environmental communities with a history of antibiotic exposure can provide an efficient way to find novel, mobile resistance genes. The mobilization of a fourth sulfonamide resistance gene is likely to provide expanded opportunities for sulfonamide resistance to spread, with potential impacts on both human and animal health.
Collapse
Affiliation(s)
- Mohammad Razavi
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P. Marathe
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michael R. Gillings
- Department of Biological Sciences, Genes to Geoscience Research Centre, Macquarie University, Sydney, New South Wales Australia
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - D. G. Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
175
|
Impact of point sources on antibiotic resistance genes in the natural environment: a systematic review of the evidence. Anim Health Res Rev 2017; 18:112-127. [DOI: 10.1017/s146625231700007x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractThere is a growing concern about the role of the environment in the dissemination of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG). In this systematic review, we summarize evidence for increases of ARG in the natural environment associated with potential sources of ARB and ARG such as agricultural facilities and wastewater treatment plants. A total of 5247 citations were identified, including studies that ascertained both ARG and ARB outcomes. All studies were screened for relevance to the question and methodology. This paper summarizes the evidence only for those studies with ARG outcomes (n= 24). Sixteen studies were at high (n= 3) or at unclear (n= 13) risk of bias in the estimation of source effects due to lack of information or failure to control for confounders. Statistical methods were used in nine studies; three studies assessed the effect of multiple sources using modeling approaches, and none reported effect measures. Most studies reported higher ARG concentration downstream/near the source, but heterogeneous findings hindered making any sound conclusions. To quantify increases of ARG in the environment due to specific point sources, there is a need for studies that emphasize analytic or design control of confounding, and that provide effect measure estimates.
Collapse
|
176
|
Tahrani L, Mehri I, Reyns T, Anthonissen R, Verschaeve L, Khalifa ABH, Loco JV, Abdenaceur H, Mansour HB. UPLC-MS/MS analysis of antibiotics in pharmaceutical effluent in Tunisia: ecotoxicological impact and multi-resistant bacteria dissemination. Arch Microbiol 2017; 200:553-565. [PMID: 29230492 DOI: 10.1007/s00203-017-1467-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/23/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
The UPLC MS/MS analysis showed the presence of the two antibiotics in the pharmaceutical industry discharges during 3 months; norfloxacin and spiramycin which were quantified with the mean concentrations of 226.7 and 84.2 ng mL-1, respectively. Sixteen resistant isolates were obtained from the pharmaceutical effluent and identified by sequencing. These isolates belong to different genera, namely Citrobacter, Acinetobacter, Pseudomonas, Delftia, Shewanella, and Rheinheimera. The antibiotic resistance phenotypes of these isolates were determined (27 tested antibiotics-discs). All the studied isolates were found resistant to amoxicillin and gentamicin, and 83.33% of isolates were resistant to ciprofloxacin. Multiple antibiotic resistances were revealed against β-lactams, quinolones, and aminoglycosides families. Our overall results suggest that the obtained bacterial isolates may constitute potential candidates for bioremediation and can be useful for biotechnological applications. Genotoxic effects were assessed by a battery of biotests; the pharmaceutical wastewater was genotoxic according to the bacterial Vitotox test and micronuclei test. Genotoxicity was also evaluated by the comet test; the tail DNA damages reached 38 and 22% for concentrated sample (10×) and non-concentrated sample (1×), respectively. However, the histological sections of kidney and liver's mice treated by pharmaceutical effluent showed normal histology and no visible structural effects or alterations as cytolysis, edema, or ulcerative necrosis were observed. Residual antibiotics can reach water environment through wastewater and provoke dissemination of the antibiotics resistance and induce genotoxic effects.
Collapse
Affiliation(s)
- Leyla Tahrani
- Laboratory of Chemical Residues and Contaminants, Direction of Food Medicines and Consumer Safety, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium.,Laboratory of toxicology, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium.,Research Unit of Analysis and Process Applied to the Environment, APAE UR17ES32 Higher Institute of Applied Sciences and Technology Mahdia "ISSAT", Monastir University, 5100, Monastir, Tunisia
| | - Ines Mehri
- Laboratoire Traitement et recyclage des eaux, Centre de recherche et technologie des eaux, Borj Cedria, Tunisia
| | - Tim Reyns
- Laboratory of Chemical Residues and Contaminants, Direction of Food Medicines and Consumer Safety, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Roel Anthonissen
- Laboratory of toxicology, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Luc Verschaeve
- Laboratory of toxicology, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Joris Van Loco
- Laboratory of Chemical Residues and Contaminants, Direction of Food Medicines and Consumer Safety, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Hassen Abdenaceur
- Laboratoire Traitement et recyclage des eaux, Centre de recherche et technologie des eaux, Borj Cedria, Tunisia
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to the Environment, APAE UR17ES32 Higher Institute of Applied Sciences and Technology Mahdia "ISSAT", Monastir University, 5100, Monastir, Tunisia.
| |
Collapse
|
177
|
Rico A, Jacobs R, Van den Brink PJ, Tello A. A probabilistic approach to assess antibiotic resistance development risks in environmental compartments and its application to an intensive aquaculture production scenario. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:918-928. [PMID: 28886537 DOI: 10.1016/j.envpol.2017.08.079] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 08/11/2017] [Accepted: 08/20/2017] [Indexed: 06/07/2023]
Abstract
Estimating antibiotic pollution and antibiotic resistance development risks in environmental compartments is important to design management strategies that advance our stewardship of antibiotics. In this study we propose a modelling approach to estimate the risk of antibiotic resistance development in environmental compartments and demonstrate its application in aquaculture production systems. We modelled exposure concentrations for 12 antibiotics used in Vietnamese Pangasius catfish production using the ERA-AQUA model. Minimum selective concentration (MSC) distributions that characterize the selective pressure of antibiotics on bacterial communities were derived from the European Committee on Antimicrobial Susceptibility Testing (EUCAST) Minimum Inhibitory Concentration dataset. The antibiotic resistance development risk (RDR) for each antibiotic was calculated as the probability that the antibiotic exposure distribution exceeds the MSC distribution representing the bacterial community. RDRs in pond sediments were nearly 100% for all antibiotics. Median RDR values in pond water were high for the majority of the antibiotics, with rifampicin, levofloxacin and ampicillin having highest values. In the effluent mixing area, RDRs were low for most antibiotics, with the exception of amoxicillin, ampicillin and trimethoprim, which presented moderate risks, and rifampicin and levofloxacin, which presented high risks. The RDR provides an efficient means to benchmark multiple antibiotics and treatment regimes in the initial phase of a risk assessment with regards to their potential to develop resistance in different environmental compartments, and can be used to derive resistance threshold concentrations.
Collapse
Affiliation(s)
- Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, P.O. Box 28805, Alcalá de Henares, Madrid, Spain.
| | - Rianne Jacobs
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, The Netherlands
| | - Paul J Van den Brink
- Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands; Wageningen Environmental Research, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| | - Alfredo Tello
- Instituto Tecnológico del Salmón, INTESAL de Salmon Chile, Juan Soler Manfredini 41, Oficina, 1802, Puerto Montt, Chile
| |
Collapse
|
178
|
Bielen A, Šimatović A, Kosić-Vukšić J, Senta I, Ahel M, Babić S, Jurina T, González Plaza JJ, Milaković M, Udiković-Kolić N. Negative environmental impacts of antibiotic-contaminated effluents from pharmaceutical industries. WATER RESEARCH 2017; 126:79-87. [PMID: 28923406 DOI: 10.1016/j.watres.2017.09.019] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 05/28/2023]
Abstract
Effluents from pharmaceutical industries are recognized as significant contributors to aquatic pollution with antibiotics. Although such pollution has been mostly reported in Asia, knowledge on industrial discharges in other regions of the world, including Europe, and on the effects associated with such exposures is still limited. Thus, we performed chemical, microbiological and ecotoxicological analyses of effluents from two Croatian pharmaceutical industries during four seasons. In treated effluents of the company synthesizing macrolide antibiotic azithromycin (AZI), the total concentration of AZI and two macrolide by-products from its synthesis was 1-3 orders of magnitude higher in winter and springtime (up to 10.5 mg/L) than during the other two seasons (up to 638 μg/L). Accordingly, the highest total concentrations (up to 30 μg/L) in the recipient river were measured in winter and spring. Effluents from second company formulating veterinary antibiotics contained fluoroquinolones, trimethoprim, sulfonamides and tetracyclines ranging from low μg/L to approx. 200 μg/L. Low concentrations of these antibiotics, from below the limit of quantification to approx. few μg/L, have also been measured in the recipient stream. High frequency of culturable bacteria resistant to AZI (up to 83%) or sulfamethazine (up to 90%) and oxytetracycline (up to 50%) were also found in studied effluents. Finally, we demonstrated that toxicity to algae and water fleas often exceeded the permitted values. Most highly contaminated effluents induced multiple abnormalities in zebrafish embryos. In conclusion, using a wide array of analyses we have demonstrated that discharges from pharmaceutical industries can pose a significant ecological and public health concern due to their toxicity to aquatic organisms and risks for promoting development and spread of antibiotic resistance.
Collapse
Affiliation(s)
- Ana Bielen
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| | - Ana Šimatović
- Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Josipa Kosić-Vukšić
- Andrija Štampar Teaching Institute of Public Health, Mirogojska cesta 16, Zagreb, Croatia
| | - Ivan Senta
- Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Marijan Ahel
- Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Sanja Babić
- Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Tamara Jurina
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, Zagreb, Croatia
| | | | | | | |
Collapse
|
179
|
Lekunberri I, Villagrasa M, Balcázar JL, Borrego CM. Contribution of bacteriophage and plasmid DNA to the mobilization of antibiotic resistance genes in a river receiving treated wastewater discharges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:206-209. [PMID: 28551539 DOI: 10.1016/j.scitotenv.2017.05.174] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 05/25/2023]
Abstract
In this study, we quantified eleven antibiotic compounds and nine antibiotic resistance genes (ARGs) in water samples collected upstream and downstream of the discharge point from a municipal wastewater treatment plant (WWTP) into the Ter River. Antibiotics were analyzed by liquid chromatography coupled to mass spectrometry, whereas the concentration of ARGs in bacterial, phage and plasmid DNA fractions was determined by real-time PCR to explore their contribution to environmental antibiotic resistance. WWTP discharges resulted in higher concentrations of antibiotic residues as well as ARGs in water samples collected downstream the impact point. Specifically, genes conferring resistance to macrolides (ermB), fluoroquinolones (qnrS) and tetracyclines (tetW) showed significant differences (p<0.05) between upstream and downstream sites in the three DNA fractions (i.e. bacteria, plasmids and phages). Interestingly, genes conferring resistance to β-lactams (blaTEM, blaNDM and blaKPC) and glycopeptides (vanA) only showed significant differences (p<0.05) between upstream and downstream sites in phage and plasmid DNA but not in the bacterial DNA fraction. Our results show for the first time the extent to which phages and plasmids contribute to the mobilization of ARGs in an aquatic environment exposed to chronic antibiotic pollution via WWTP discharges. Accordingly, these mobile genetic elements should be included in further studies to get a global view of the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Itziar Lekunberri
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Marta Villagrasa
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain.
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, Girona, Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Girona, Spain
| |
Collapse
|
180
|
Liu P, Jia S, He X, Zhang X, Ye L. Different impacts of manure and chemical fertilizers on bacterial community structure and antibiotic resistance genes in arable soils. CHEMOSPHERE 2017; 188:455-464. [PMID: 28898777 DOI: 10.1016/j.chemosphere.2017.08.162] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 07/03/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Both manure and chemical fertilizers are widely used in modern agriculture. However, the impacts of different fertilizers on bacterial community structure and antibiotic resistance genes (ARGs) in arable soils still remain unclear. In this study, high-throughput sequencing and quantitative PCR were employed to investigate the bacterial community structure, ARGs and mobile genetic elements (MGEs) influenced by the application of different fertilizers, including chemical fertilizers, piggery manure and straw ash. The results showed that the application of fertilizers could significantly change the soil bacterial community and the abundance of Gaiella under phylum Actinobacteria was significantly reduced from 12.9% in unfertilized soil to 4.1%-7.4% in fertilized soil (P < 0.05). It was also found that the application of manure could cause a transient effect on soil resistome composition and the relative abundance of ARGs increased from 7.37 ppm to 32.10 ppm. The abundance of aminoglycoside, sulfonamide and tetracycline resistance genes greatly increased after manure fertilization and then gradually returned to normal levels with the decay of some intestinal bacteria carrying ARGs. In contrast, the application of chemical fertilizers and straw ash significantly changed the bacterial community structure but exerted little effect on soil resistome. Overall, the results of this study illustrated the different effects of different fertilizers on the soil resistome and revealed that the changes of soil resistome induced by manure application mainly resulted from alteration of bacteria community rather than the horizontal gene transfer.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shuyu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
181
|
Chen S, Blom J, Loch TP, Faisal M, Walker ED. The Emerging Fish Pathogen Flavobacterium spartansii Isolated from Chinook Salmon: Comparative Genome Analysis and Molecular Manipulation. Front Microbiol 2017; 8:2339. [PMID: 29250046 PMCID: PMC5714932 DOI: 10.3389/fmicb.2017.02339] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/13/2017] [Indexed: 01/29/2023] Open
Abstract
Flavobacterium spartansii strain T16T was isolated from a disease outbreak in hatchery-reared Chinook salmon (Oncorhynchus tshawytscha) fingerlings. To gain insight into its genomic content, structure and virulence pathogenesis factors, comparative genome analyses were performed using genomes from environmental and virulent Flavobacterium strains. F. spartansii shared low average nucleotide identity (ANI) to well-known fish-pathogenic flavobacteria (e.g., F. columnare, F. psychrophilum, and F. branchiophilum), indicating that it is a new and emerging fish pathogen. The genome in T16T had a length of 5,359,952 bp, a GC-content 35.7%, and 4,422 predicted protein-coding sequences. Flavobacterium core genome analysis showed that the number of shared genes decreased with the addition of input genomes and converged at 1182 genes. At least 8 genomic islands and 5 prophages were predicted in T16T. At least 133 virulence factors associated with virulence in pathogenic bacteria were highly conserved in F. spartansii T16T. Furthermore, genes linked to virulence in other bacterial species (e.g., those encoding for a type IX secretion system, collagenase and hemolysin) were found in the genome of F. spartansii T16T and were conserved in most of the analyzed pathogenic Flavobacterium. F. spartansii was resistant to ampicillin and penicillin, consistent with the presence of multiple genes encoding diverse lactamases and the penicillin-binding protein in the genome. To allow for future investigations into F. spartansii virulence in vivo, a transposon-based random mutagenesis strategy was attempted in F. spartansii T16T using pHimarEm1. Four putative gliding motility deficient mutants were obtained and the insertion sites of pHimarEm1 in the genome of these mutants were characterized. In total, study results clarify some of the mechanisms by which emerging flavobacterial fish pathogens may cause disease and also provide direly needed tools to investigate their pathogenesis.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University, Giessen, Germany
| | - Thomas P Loch
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States
| | - Mohamed Faisal
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, United States.,Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI, United States
| | - Edward D Walker
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
182
|
Vikesland PJ, Pruden A, Alvarez PJJ, Aga D, Bürgmann H, Li XD, Manaia CM, Nambi I, Wigginton K, Zhang T, Zhu YG. Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13061-13069. [PMID: 28976743 DOI: 10.1021/acs.est.7b03623] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Antibiotic resistance is a pervasive global health threat. To combat the spread of resistance, it is necessary to consider all possible sources and understand the pathways and mechanisms by which resistance disseminates. Best management practices are urgently needed to provide barriers to the spread of resistance and maximize the lifespan of antibiotics as a precious resource. Herein we advise upon the need for coordinated national and international strategies, highlighting three essential components: (1) Monitoring, (2) Risk Assessment, and (3) Mitigation of antibiotic resistance. Central to all three components is What exactly to monitor, assess, and mitigate? We address this question within an environmental framework, drawing from fundamental microbial ecological processes driving the spread of resistance.
Collapse
Affiliation(s)
- Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, Virginia United States
- Virginia Tech Global Change Center and Virginia Tech Institute of Critical Technology and Applied Science, Virginia Tech , Blacksburg, Virginia United States
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech , Blacksburg, Virginia United States
- Virginia Tech Global Change Center and Virginia Tech Institute of Critical Technology and Applied Science, Virginia Tech , Blacksburg, Virginia United States
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University , Houston, Texas United States
| | - Diana Aga
- Department of Chemistry, University at Buffalo , Buffalo, New York United States
| | - Helmut Bürgmann
- Eawag: Swiss Federal Institute of Aquatic Science and Technology , 6047 Kastanienbaum, Switzerland
| | - Xiang-Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University , Hong Kong
| | - Celia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia , Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal
| | - Indumathi Nambi
- Department of Civil Engineering, Indian Institute of Technology - Madras , Chennai, India
| | - Krista Wigginton
- Department of Civil and Environmental Engineering, The University of Michigan , Ann Arbor, Michigan United States
| | - Tong Zhang
- Department of Civil Engineering, Hong Kong University , Hong Kong
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021, China
| |
Collapse
|
183
|
Jia S, Zhang XX, Miao Y, Zhao Y, Ye L, Li B, Zhang T. Fate of antibiotic resistance genes and their associations with bacterial community in livestock breeding wastewater and its receiving river water. WATER RESEARCH 2017; 124:259-268. [PMID: 28763642 DOI: 10.1016/j.watres.2017.07.061] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/16/2017] [Accepted: 07/23/2017] [Indexed: 05/12/2023]
Abstract
Large amounts of antibiotics are currently used in livestock breeding, which is the main driving factor contributing to the occurrence, spread and proliferation of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment. In this study, high-throughput sequencing based metagenomic approaches were employed to characterize the tempo-spacial changes of antibiotic resistome, bacterial community and their correlations in pig farming wastewater and its receiving river. A total of 194 ARG subtypes within 14 ARG types were detectable in all the samples, and their total relative abundance increased in the river water after receiving wastewater discharge, while decreased in the downstream river water. Network analysis showed that 25.26% ARGs within the same type or among the different types showed higher incidences of non-random co-occurrence. The wastewater discharge evidently increased bacterial diversity and induced bacterial community shift in the receiving river water. The genera of Treponema, Prevotella, Pseudomonas, Bacteroides, Oscillibacter and Acholeplasma dominated in the wastewater samples and almost disappeared in the receiving river water, but bacterial pathogens Clostridium difficile and Arcobacter butzleri still occurred in the receiving water. Correlation analysis and host analysis consistently showed that the changes in the abundances of several key genera like Prevotella and Treponema were significantly and positively correlated with the antibiotic resistome alteration. Variation partitioning analysis indicated that bacterial community played a more important role in the resistome alteration than mobile genetic elements. This study may help to understand the correlations among antibiotic resistome, microbiota and environmental conditions in the wastewater-receiving river water.
Collapse
Affiliation(s)
- Shuyu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
| | - Yu Miao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yanting Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Bing Li
- Environmental Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Tong Zhang
- Environmental Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
184
|
Garner E, Benitez R, von Wagoner E, Sawyer R, Schaberg E, Hession WC, Krometis LAH, Badgley BD, Pruden A. Stormwater loadings of antibiotic resistance genes in an urban stream. WATER RESEARCH 2017; 123:144-152. [PMID: 28662396 DOI: 10.1016/j.watres.2017.06.046] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/16/2017] [Accepted: 06/17/2017] [Indexed: 06/07/2023]
Abstract
Antibiotic resistance presents a critical public health challenge and the transmission of antibiotic resistance via environmental pathways continues to gain attention. Factors driving the spread of antibiotic resistance genes (ARGs) in surface water and sources of ARGs in urban stormwater have not been well-characterized. In this study, five ARGs (sul1, sul2, tet(O), tet(W), and erm(F)) were quantified throughout the duration of three storm runoff events in an urban inland stream. Storm loads of all five ARGs were significantly greater than during equivalent background periods. Neither fecal indicator bacteria measured (E. coli or enterococci) was significantly correlated with sul1, sul2, or erm(F), regardless of whether ARG concentration was absolute or normalized to 16S rRNA levels. Both E. coli and enterococci were correlated with the tetracycline resistance genes, tet(O) and tet(W). Next-generation shotgun metagenomic sequencing was conducted to more thoroughly characterize the resistome (i.e., full complement of ARGs) and profile the occurrence of all ARGs described in current databases in storm runoff in order to inform future watershed monitoring and management. Between 37 and 121 different ARGs were detected in each stream sample, though the ARG profiles differed among storms. This study establishes that storm-driven transport of ARGs comprises a considerable fraction of overall downstream loadings and broadly characterizes the urban stormwater resistome to identify potential marker ARGs indicative of impact.
Collapse
Affiliation(s)
- Emily Garner
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States.
| | - Romina Benitez
- Department of Crop and Soil Environmental Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Emily von Wagoner
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Richard Sawyer
- Department of Crop and Soil Environmental Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Erin Schaberg
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - W Cully Hession
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Leigh-Anne H Krometis
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| | - Brian D Badgley
- Department of Crop and Soil Environmental Science, Virginia Tech, Blacksburg, VA 24061, United States
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, United States
| |
Collapse
|
185
|
Guo J, Li J, Chen H, Bond PL, Yuan Z. Metagenomic analysis reveals wastewater treatment plants as hotspots of antibiotic resistance genes and mobile genetic elements. WATER RESEARCH 2017; 123:468-478. [PMID: 28689130 DOI: 10.1016/j.watres.2017.07.002] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/25/2017] [Accepted: 07/01/2017] [Indexed: 05/22/2023]
Abstract
The intensive use of antibiotics results in their continuous release into the environment and the subsequent widespread occurrence of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs). This study used Illumina high-throughput sequencing to investigate the broad-spectrum profiles of both ARGs and MGEs in activated sludge and anaerobically digested sludge from a full-scale wastewater treatment plant. A pipeline for identifying antibiotic resistance determinants was developed that consisted of four categories: gene transfer potential, ARG potential, ARGs pathway and ARGs phylogenetic origin. The metagenomic analysis showed that the activated sludge and the digested sludge exhibited different microbial communities and changes in the types and occurrence of ARGs and MGEs. In total, 42 ARGs subtypes were identified in the activated sludge, while 51 ARG subtypes were detected in the digested sludge. Additionally, MGEs including plasmids, transposons, integrons (intI1) and insertion sequences (e.g. ISSsp4, ISMsa21 and ISMba16) were abundant in the two sludge samples. The co-occurrence pattern between ARGs and microbial taxa revealed by network analysis indicated that some environmental bacteria (e.g. Clostridium and Nitrosomonas) might be potential hosts of multiple ARGs. The findings increase our understanding of WWTPs as hotspots of ARGs and MGEs, and contribute towards preventing their release into the downstream environment.
Collapse
Affiliation(s)
- Jianhua Guo
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.
| | - Jie Li
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518083, China
| | - Hui Chen
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Philip L Bond
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
186
|
Berglund F, Marathe NP, Österlund T, Bengtsson-Palme J, Kotsakis S, Flach CF, Larsson DGJ, Kristiansson E. Identification of 76 novel B1 metallo-β-lactamases through large-scale screening of genomic and metagenomic data. MICROBIOME 2017; 5:134. [PMID: 29020980 PMCID: PMC5637372 DOI: 10.1186/s40168-017-0353-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/25/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Metallo-β-lactamases are bacterial enzymes that provide resistance to carbapenems, the most potent class of antibiotics. These enzymes are commonly encoded on mobile genetic elements, which, together with their broad substrate spectrum and lack of clinically useful inhibitors, make them a particularly problematic class of antibiotic resistance determinants. We hypothesized that there is a large and unexplored reservoir of unknown metallo-β-lactamases, some of which may spread to pathogens, thereby threatening public health. The aim of this study was to identify novel metallo-β-lactamases of class B1, the most clinically important subclass of these enzymes. RESULTS Based on a new computational method using an optimized hidden Markov model, we analyzed over 10,000 bacterial genomes and plasmids together with more than 5 terabases of metagenomic data to identify novel metallo-β-lactamase genes. In total, 76 novel genes were predicted, forming 59 previously undescribed metallo-β-lactamase gene families. The ability to hydrolyze imipenem in an Escherichia coli host was experimentally confirmed for 18 of the 21 tested genes. Two of the novel B1 metallo-β-lactamase genes contained atypical zinc-binding motifs in their active sites, which were previously undescribed for metallo-β-lactamases. Phylogenetic analysis showed that B1 metallo-β-lactamases could be divided into five major groups based on their evolutionary origin. Our results also show that, except for one, all of the previously characterized mobile B1 β-lactamases are likely to have originated from chromosomal genes present in Shewanella spp. and other Proteobacterial species. CONCLUSIONS This study more than doubles the number of known B1 metallo-β-lactamases. The findings have further elucidated the diversity and evolutionary history of this important class of antibiotic resistance genes and prepare us for some of the challenges that may be faced in clinics in the future.
Collapse
Affiliation(s)
- Fanny Berglund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P. Marathe
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tobias Österlund
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Stathis Kotsakis
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
187
|
Boulund F, Berglund F, Flach CF, Bengtsson-Palme J, Marathe NP, Larsson DGJ, Kristiansson E. Computational discovery and functional validation of novel fluoroquinolone resistance genes in public metagenomic data sets. BMC Genomics 2017; 18:682. [PMID: 28865446 PMCID: PMC5581476 DOI: 10.1186/s12864-017-4064-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fluoroquinolones are broad-spectrum antibiotics used to prevent and treat a wide range of bacterial infections. Plasmid-mediated qnr genes provide resistance to fluoroquinolones in many bacterial species and are increasingly encountered in clinical settings. Over the last decade, several families of qnr genes have been discovered and characterized, but their true prevalence and diversity still remain unclear. In particular, environmental and host-associated bacterial communities have been hypothesized to maintain a large and unknown collection of qnr genes that could be mobilized into pathogens. RESULTS In this study we used computational methods to screen genomes and metagenomes for novel qnr genes. In contrast to previous studies, we analyzed an almost 20-fold larger dataset comprising almost 13 terabases of sequence data. In total, 362,843 potential qnr gene fragments were identified, from which 611 putative qnr genes were reconstructed. These gene sequences included all previously described plasmid-mediated qnr gene families. Fifty-two of the 611 identified qnr genes were reconstructed from metagenomes, and 20 of these were previously undescribed. All of the novel qnr genes were assembled from metagenomes associated with aquatic environments. Nine of the novel genes were selected for validation, and six of the tested genes conferred consistently decreased susceptibility to ciprofloxacin when expressed in Escherichia coli. CONCLUSIONS The results presented in this study provide additional evidence for the ubiquitous presence of qnr genes in environmental microbial communities, expand the number of known qnr gene variants and further elucidate the diversity of this class of resistance genes. This study also strengthens the hypothesis that environmental bacterial communities act as sources of previously uncharacterized qnr genes.
Collapse
Affiliation(s)
- Fredrik Boulund
- Department of Mathematical sciences, Chalmers university of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
| | - Fanny Berglund
- Department of Mathematical sciences, Chalmers university of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
| | - Carl-Fredrik Flach
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johan Bengtsson-Palme
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nachiket P. Marathe
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - DG Joakim Larsson
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Erik Kristiansson
- Department of Mathematical sciences, Chalmers university of Technology and University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
188
|
Tong P, Ji X, Chen L, Liu J, Xu L, Zhu L, Zhou W, Liu G, Wang S, Guo X, Feng S, Sun Y. Metagenome analysis of antibiotic resistance genes in fecal microbiota of chickens. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.aggene.2017.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
189
|
Su JQ, An XL, Li B, Chen QL, Gillings MR, Chen H, Zhang T, Zhu YG. Metagenomics of urban sewage identifies an extensively shared antibiotic resistome in China. MICROBIOME 2017; 5:84. [PMID: 28724443 PMCID: PMC5517792 DOI: 10.1186/s40168-017-0298-y] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/04/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Antibiotic-resistant pathogens are challenging treatment of infections worldwide. Urban sewage is potentially a major conduit for dissemination of antibiotic resistance genes into various environmental compartments. However, the diversity and abundance of such genes in wastewater are not well known. METHODS Here, seasonal and geographical distributions of antibiotic resistance genes and their host bacterial communities from Chinese urban sewage were characterized, using metagenomic analyses and 16S rRNA gene-based Illumina sequencing, respectively. RESULTS In total, 381 different resistance genes were detected, and these genes were extensively shared across China, with no geographical clustering. Seasonal variation in abundance of resistance genes was observed, with average concentrations of 3.27 × 1011 and 1.79 × 1012 copies/L in summer and winter, respectively. Bacterial communities did not exhibit geographical clusters, but did show a significant distance-decay relationship (P < 0.01). The core, shared resistome accounted for 57.7% of the total resistance genes, and was significantly associated with the core microbial community (P < 0.01). The core human gut microbiota was also strongly associated with the shared resistome, demonstrating the potential contribution of human gut microbiota to the dissemination of resistance elements via sewage disposal. CONCLUSIONS This study provides a baseline for investigating environmental dissemination of resistance elements and raises the possibility of using the abundance of resistance genes in sewage as a tool for antibiotic stewardship.
Collapse
Affiliation(s)
- Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, 361021, Xiamen, China
| | - Xin-Li An
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, 361021, Xiamen, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Bing Li
- Division of Energy & Environment, Graduate School at Shenzhen, Tsinghua University, 518055, Shenzhen, China
| | - Qing-Lin Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, 361021, Xiamen, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | - Michael R Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, 361021, Xiamen, China.
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China.
| |
Collapse
|
190
|
Abstract
Antibiotic resistance is a global public health issue of growing proportions. All antibiotics are susceptible to resistance. The evidence is now clear that the environment is the single largest source and reservoir of resistance. Soil, aquatic, atmospheric, animal-associated, and built ecosystems are home to microbes that harbor antibiotic resistance elements and the means to mobilize them. The diversity and abundance of resistance in the environment is consistent with the ancient origins of antibiotics and a variety of studies support a long natural history of associated resistance. The implications are clear: Understanding the evolution of resistance in the environment, its diversity, and mechanisms is essential to the management of our existing and future antibiotic resources.
Collapse
Affiliation(s)
- Matthew D Surette
- M.G. DeGroote Institute for Infectious Disease Research and.,Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Ontario L8N 4K1;
| | - Gerard D Wright
- M.G. DeGroote Institute for Infectious Disease Research and.,Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, Ontario L8N 4K1;
| |
Collapse
|
191
|
Egervärn M, Englund S, Ljunge M, Wiberg C, Finn M, Lindblad M, Börjesson S. Unexpected common occurrence of transferable extended spectrum cephalosporinase-producing Escherichia coli in Swedish surface waters used for drinking water supply. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 587-588:466-472. [PMID: 28258755 DOI: 10.1016/j.scitotenv.2017.02.157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 06/06/2023]
Abstract
The presence of Enterobacteriaceae producing extended spectrum beta-lactamases (ESBL) or transferable AmpC beta-lactamases (pAmpC) is increasingly being reported in humans, food-producing animals and food world-wide. However, the occurrence and impact of these so-called extended spectrum cephalosporinase (ESC)-producing Enterobacteriaceae in aquatic environments are poorly documented. This study investigated the occurrence, concentrations and characteristics of ESC-producing E. coli (ESC-Ec) in samples of surface water collected at five Swedish water treatment plants that normally have relatively high prevalence and concentration of E. coli in surface water. ESC-Ec was found in 27 of 98 surface water samples analysed. All but two positive samples were collected at two of the water treatment plants studied. The ESC-Ec concentration, 1-3cfu/100mL, represented approximately 4% of the total amount of E. coli in the respective surface water sample. In total, 74% of the isolates were multi-resistant, but no isolate was resistant to carbapenems. Six types of ESBL/pAmpC genes were found in the 27 E. coli isolates obtained from the positive samples, of which four (blaCTX-M-15, blaCMY-2, blaCTX-M-1 and blaCTX-M-14) were found during the whole sampling period, in samples taken at more than one water treatment plant. In addition, the genes were situated on various types of plasmids and most E. coli isolates were not closely related with regard to MLST types. The combinations of ESBL/pAmpC genes, plasmids and E. coli isolates were generally similar to those found previously in healthy and sick individuals in Sweden. In conclusion, the occurrence of ESC-Ec in Swedish surface water shows that resistant bacteria of clinical concern are present in aquatic environments even in a low-prevalence country such as Sweden.
Collapse
Affiliation(s)
- Maria Egervärn
- National Food Agency, Box 622, SE-75126 Uppsala, Sweden.
| | - Stina Englund
- National Veterinary Institute (SVA), SE-75189 Uppsala, Sweden
| | | | | | - Maria Finn
- National Veterinary Institute (SVA), SE-75189 Uppsala, Sweden
| | - Mats Lindblad
- National Food Agency, Box 622, SE-75126 Uppsala, Sweden
| | | |
Collapse
|
192
|
Blum KM, Norström SH, Golovko O, Grabic R, Järhult JD, Koba O, Söderström Lindström H. Removal of 30 active pharmaceutical ingredients in surface water under long-term artificial UV irradiation. CHEMOSPHERE 2017; 176:175-182. [PMID: 28260657 DOI: 10.1016/j.chemosphere.2017.02.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/09/2017] [Accepted: 02/11/2017] [Indexed: 06/06/2023]
Abstract
This study investigated the i) kinetics, and ii) proportion of photolysis of 30 relatively stable active pharmaceutical ingredients (APIs) during artificial UV irradiation for 28 d in ammonium acetate buffer, filtered and unfiltered river water. Buffer was included to control removal kinetics under stable pH conditions and without particulate matter. Dark controls were used to determine removal due to other processes than photolysis and calculate the proportion of photolysis of the total removal. The removal of each API in each matrix was determined using online solid phase extraction/liquid chromatography tandem mass spectrometry (online SPE/LC-MS/MS). Most APIs transformed during the 28 d of UV irradiation and the dark controls showed that photolysis was the major removal process for the majority of the APIs studied. The half-lives ranged from 6 h (amitriptyline) in unfiltered river water to 884 h (37 d, carbamazepine) in buffer. In unfiltered river water, the proportion of APIs with short half-lives (<48 h) was much higher (29%) than in the other matrices (4%), probably due to additional organic carbon, which could have promoted indirect photolysis. Furthermore, two APIs, memantine and fluconazole, were stable in all three matrices, while alprazolam was stable in buffer and unfiltered river water and four additional APIs were stable in buffer. Considering the relatively long-term UV-exposure, this study enabled the investigation of environmentally relevant half-lives in natural waters. Many APIs showed high persistence, which is environmentally concerning and emphasizes the importance of further studies on their environmental fate and effects.
Collapse
Affiliation(s)
- Kristin M Blum
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Sara H Norström
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden
| | - Oksana Golovko
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Josef D Järhult
- Section for Infectious Diseases, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden; Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 23 Uppsala, Sweden
| | - Olga Koba
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25 Vodnany, Czech Republic
| | - Hanna Söderström Lindström
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden; Department of Public Health and Clinical Medicine, Occupational and Environmental Medicine, Umeå University, 901 87 Umeå, Sweden.
| |
Collapse
|
193
|
Ma L, Li AD, Yin XL, Zhang T. The Prevalence of Integrons as the Carrier of Antibiotic Resistance Genes in Natural and Man-Made Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5721-5728. [PMID: 28426231 DOI: 10.1021/acs.est.6b05887] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Class 1 integrase intI1 has been considered as a good proxy for anthropogenic pollution because of being linked to genes conferring resistance to antibiotics. The gene cassettes of class 1 integrons could carry diverse antibiotic resistance genes (ARGs) and conduct horizontal gene transfer among microorganisms. The present study applied high-throughput sequencing technique combined with an intI1 database and genome assembly to quantify the abundance of intI1 in 64 environmental samples from 8 ecosystems, and to investigate the diverse arrangements of ARG-carrying gene cassettes (ACGCs) carried by class 1 integrons. The abundance of detected intI1 ranged from 3.83 × 10-4 to 4.26 × 10° intI1/cell. High correlation (Pearson's r = 0.852) between intI1 and ARG abundance indicated that intI1 could be considered as an important indicator of ARGs in environments. Aminoglycoside resistance genes were most frequently observed on gene cassettes, carried by 57% assembled ACGCs, followed by trimethoprim and beta-lactam resistance genes. This study established the pipeline for broad monitoring of intI1 in various environmental samples and scanning the ARGs carried by integrons. These findings supplemented our knowledge on the distribution of class 1 integrons and ARGs carried on mobile genetic elements, benefiting future studies on horizontal gene transfer of ARGs.
Collapse
Affiliation(s)
- Liping Ma
- Environmental Biotechnology Laboratory, The University of Hong Kong , Hong Kong
| | - An-Dong Li
- Environmental Biotechnology Laboratory, The University of Hong Kong , Hong Kong
| | - Xiao-Le Yin
- Environmental Biotechnology Laboratory, The University of Hong Kong , Hong Kong
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong , Hong Kong
- International Center for Antibiotic Resistance in the Environment, School of Environmental Science and Engineering, Southern University of Science and Technology , Shenzhen, China
| |
Collapse
|
194
|
Luo G, Li B, Li LG, Zhang T, Angelidaki I. Antibiotic Resistance Genes and Correlations with Microbial Community and Metal Resistance Genes in Full-Scale Biogas Reactors As Revealed by Metagenomic Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4069-4080. [PMID: 28272884 DOI: 10.1021/acs.est.6b05100] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Digested residues from biogas plants are often used as biofertilizers for agricultural crops cultivation. The antibiotic resistance genes (ARGs) in digested residues pose a high risk to public health due to their potential spread to the disease-causing microorganisms and thus reduce the susceptibility of disease-causing microorganisms to antibiotics in medical treatment. A high-throughput sequencing (HTS)-based metagenomic approach was used in the present study to investigate the variations of ARGs in full-scale biogas reactors and the correlations of ARGs with microbial communities and metal resistance genes (MRGs). The total abundance of ARGs in all the samples varied from 7 × 10-3 to 1.08 × 10-1 copy of ARG/copy of 16S-rRNA gene, and the samples obtained from thermophilic biogas reactors had a lower total abundance of ARGs, indicating the superiority of thermophilic anaerobic digestion for ARGs removal. ARGs in all the samples were composed of 175 ARG subtypes; however, only 7 ARG subtypes were shared by all the samples. Principal component analysis and canonical correspondence analysis clustered the samples into three groups (samples from manure-based mesophilic reactors, manure-based thermophilic reactors, and sludge-based mesophilic reactors), and substrate, temperature, and hydraulic retention time (HRT) as well as volatile fatty acids (VFAs) were identified as crucial environmental variables affecting the ARGs compositions. Procrustes analysis revealed microbial community composition was the determinant of ARGs composition in biogas reactors, and there was also a significant correlation between ARGs composition and MRGs composition. Network analysis further revealed the co-occurrence of ARGs with specific microorganisms and MRGs.
Collapse
Affiliation(s)
- Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University , 200433, Shanghai, China
| | - Bing Li
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University , Shenzhen, Guangdong 518055, China
| | - Li-Guan Li
- Environmental Biotechnology Laboratory, The University of Hong Kong , Hong Kong SAR, China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong , Hong Kong SAR, China
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark , DK-2800, Kongens Lyngby, Denmark
| |
Collapse
|
195
|
Balakrishna K, Rath A, Praveenkumarreddy Y, Guruge KS, Subedi B. A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:113-120. [PMID: 27915141 DOI: 10.1016/j.ecoenv.2016.11.014] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/24/2016] [Accepted: 11/23/2016] [Indexed: 05/03/2023]
Abstract
Little information exists on the occurrence and the ultimate fate of pharmaceuticals in the water bodies in India despite being one of the world leaders in pharmaceutical production and consumption. This paper has reviewed 19 published reports of pharmaceutical occurrence in the aquatic environment in India [conventional activated sludge wastewater treatment plants (WTPs), hospital WTPs, rivers, and groundwater]. Carbamazepine (antipsychoactive), atenolol (antihypertensive), triclocarban and triclosan (antimicrobials), trimethoprim and sulfamethoxazole (antibacterials), ibuprofen and acetaminophen (analgesics), and caffeine (stimulant) are the most commonly detected at higher concentrations in Indian WTPs that treat predominantly the domestic sewage. The concentration of ciprofloxacin, sulfamethoxazole, amoxicillin, norfloxacin, and ofloxacin in Indian WTPs were up to 40 times higher than that in other countries in Europe, Australia, Asia, and North America. A very few studies in Indian rivers reported the presence of ciprofloxacin, enoxacin, ketoprofen, erythromycin, naproxen, ibuprofen, diclofenac and enrofloxacin. Similar compounds were reported in rivers in China, indicating a similar usage pattern in both of these developing countries. In a study reported from an open well in southern India, the groundwater showed the presence of cetirizine, ciprofloxacin, enoxacin, citalopram and terbinafine, which was close to a WTP receiving effluents from pharmaceutical production.
Collapse
Affiliation(s)
- Keshava Balakrishna
- Department of Civil Engineering, Manipal Institute of Technology, Manipal University, Manipal 576 104, India
| | - Amlan Rath
- Department of Civil Engineering, Manipal Institute of Technology, Manipal University, Manipal 576 104, India; Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yerabham Praveenkumarreddy
- Department of Civil Engineering, Manipal Institute of Technology, Manipal University, Manipal 576 104, India
| | - Keerthi Siri Guruge
- Pathology and Pathophysiology Research Division, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305 859, Japan
| | - Bikram Subedi
- Department of Chemistry, Murray State University, 1201 Jesse D Jones Hall, Murray, KY 42071, USA.
| |
Collapse
|
196
|
Delforno TP, Lacerda Júnior GV, Noronha MF, Sakamoto IK, Varesche MBA, Oliveira VM. Microbial diversity of a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment: integration of 16S rRNA gene amplicon and shotgun metagenomic sequencing. Microbiologyopen 2017; 6. [PMID: 28229558 PMCID: PMC5458456 DOI: 10.1002/mbo3.443] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023] Open
Abstract
The 16S rRNA gene amplicon and whole-genome shotgun metagenomic (WGSM) sequencing approaches were used to investigate wide-spectrum profiles of microbial composition and metabolic diversity from a full-scale UASB reactor applied to poultry slaughterhouse wastewater treatment. The data were generated by using MiSeq 2 × 250 bp and HiSeq 2 × 150 bp Illumina sequencing platforms for 16S amplicon and WGSM sequencing, respectively. Each approach revealed a distinct microbial community profile, with Pseudomonas and Psychrobacter as predominant genus for the WGSM dataset and Clostridium and Methanosaeta for the 16S rRNA gene amplicon dataset. The virome characterization revealed the presence of two viral families with Bacteria and Archaea as host, Myoviridae, and Siphoviridae. A wide functional diversity was found with predominance of genes involved in the metabolism of acetone, butanol, and ethanol synthesis; and one-carbon metabolism (e.g., methanogenesis). Genes related to the acetotrophic methanogenesis pathways were more abundant than methylotrophic and hydrogenotrophic, corroborating the taxonomic results that showed the prevalence of the acetotrophic genus Methanosaeta. Moreover, the dataset indicated a variety of metabolic genes involved in sulfur, nitrogen, iron, and phosphorus cycles, with many genera able to act in all cycles. BLAST analysis against Antibiotic Resistance Genes Database (ARDB) revealed that microbial community contained 43 different types of antibiotic resistance genes, some of them were associated with growth chicken promotion (e.g., bacitracin, tetracycline, and polymyxin).
Collapse
Affiliation(s)
- Tiago Palladino Delforno
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP, Campinas, São Paulo, Brazil
| | - Gileno Vieira Lacerda Júnior
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP, Campinas, São Paulo, Brazil
| | - Melline F Noronha
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP, Campinas, São Paulo, Brazil
| | - Isabel K Sakamoto
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, Engineering School of São Carlos - University of São Paulo (EESC - USP) Campus II, São Carlos, São Paulo, Brazil
| | - Maria Bernadete A Varesche
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, Engineering School of São Carlos - University of São Paulo (EESC - USP) Campus II, São Carlos, São Paulo, Brazil
| | - Valéria M Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP, Campinas, São Paulo, Brazil
| |
Collapse
|
197
|
Fahrenfeld NL, Delos Reyes H, Eramo A, Akob DM, Mumford AC, Cozzarelli IM. Shifts in microbial community structure and function in surface waters impacted by unconventional oil and gas wastewater revealed by metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1205-1213. [PMID: 28034542 DOI: 10.1016/j.scitotenv.2016.12.079] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Unconventional oil and gas (UOG) production produces large quantities of wastewater with complex geochemistry and largely uncharacterized impacts on surface waters. In this study, we assessed shifts in microbial community structure and function in sediments and waters upstream and downstream from a UOG wastewater disposal facility. To do this, quantitative PCR for 16S rRNA and antibiotic resistance genes along with metagenomic sequencing were performed. Elevated conductivity and markers of UOG wastewater characterized sites sampled downstream from the disposal facility compared to background sites. Shifts in overall high level functions and microbial community structure were observed between background sites and downstream sediments. Increases in Deltaproteobacteria and Methanomicrobia and decreases in Thaumarchaeota were observed at downstream sites. Genes related to dormancy and sporulation and methanogenic respiration were 18-86 times higher at downstream, impacted sites. The potential for these sediments to serve as reservoirs of antimicrobial resistance was investigated given frequent reports of the use of biocides to control the growth of nuisance bacteria in UOG operations. A shift in resistance profiles downstream of the UOG facility was observed including increases in acrB and mexB genes encoding for multidrug efflux pumps, but not overall abundance of resistance genes. The observed shifts in microbial community structure and potential function indicate changes in respiration, nutrient cycling, and markers of stress in a stream impacted by UOG waste disposal operations.
Collapse
Affiliation(s)
- N L Fahrenfeld
- Rutgers, The State University of New Jersey, Civil and Environmental Engineering, 96 Frelinghuysen Rd, Piscataway, NJ 08504, United States.
| | - Hannah Delos Reyes
- Rutgers, The State University of New Jersey, Civil and Environmental Engineering, 96 Frelinghuysen Rd, Piscataway, NJ 08504, United States
| | - Alessia Eramo
- Rutgers, The State University of New Jersey, Civil and Environmental Engineering, 96 Frelinghuysen Rd, Piscataway, NJ 08504, United States
| | - Denise M Akob
- U.S. Geological Survey, National Research Program, 12201 Sunrise Valley Dr., Reston, VA 20192, United States
| | - Adam C Mumford
- U.S. Geological Survey, National Research Program, 12201 Sunrise Valley Dr., Reston, VA 20192, United States
| | - Isabelle M Cozzarelli
- U.S. Geological Survey, National Research Program, 12201 Sunrise Valley Dr., Reston, VA 20192, United States
| |
Collapse
|
198
|
Koba O, Golovko O, Kodešová R, Fér M, Grabic R. Antibiotics degradation in soil: A case of clindamycin, trimethoprim, sulfamethoxazole and their transformation products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:1251-1263. [PMID: 27838062 DOI: 10.1016/j.envpol.2016.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Twelve different soil types that represent the soil compartments of the Czech Republic were fortified with three antibiotics (clindamycin (CLI), sulfamethoxazole (SUL), and trimethoprim (TRI)) to investigate their fate. Five metabolites (clindamycin sulfoxide (CSO), hydroxy clindamycin sulfoxide (HCSO), S-(SDC) and N-demethyl clindamycin (NDC), N4-acetyl sulfamethoxazole (N4AS), and hydroxy trimethoprim (HTR)) were detected and identified using HPLC/HRMS and HRPS in the soil matrix in this study. The identities of CSO and N4AS were confirmed using commercially available reference standards. The parent compounds degraded in all soils. Almost all of the metabolites have been shown to be persistent in soils, with the exception of N4AS, which was formed and degraded completely within 23 days of exposure. The rate of degradation mainly depended on the soil properties. The PCA results showed a high dependence between the soil type and behaviour of the pharmaceutical metabolites. The mentioned metabolites can be formed in soils, and the most persistent ones may be transported to the ground water and environmental water bodies. Because no information on the effects of those metabolites on living organism are available, more studies should be performed in the future to predict the risk to the environment.
Collapse
Affiliation(s)
- Olga Koba
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czechia.
| | - Oksana Golovko
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czechia
| | - Radka Kodešová
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16521 Prague 6, Czechia
| | - Miroslav Fér
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Dept. of Soil Science and Soil Protection, Kamýcká 129, 16521 Prague 6, Czechia
| | - Roman Grabic
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czechia
| |
Collapse
|
199
|
Ben W, Wang J, Pan X, Qiang Z. Dissemination of antibiotic resistance genes and their potential removal by on-farm treatment processes in nine swine feedlots in Shandong Province, China. CHEMOSPHERE 2017; 167:262-268. [PMID: 27728885 DOI: 10.1016/j.chemosphere.2016.10.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
This work investigated the dissemination of antibiotic resistance genes (ARGs) encoding resistance to sulfonamide and tetracycline antibiotics in nine swine feedlots located in Shandong Province of China, and examined their potential removal by various on-farm treatment processes. Results indicate that the target ARGs were widely distributed in swine wastes, with mean relative abundances ranging from 3.3 × 10-5 (tetC) to 5.2 × 10-1 (tetO) in swine manure and from 7.3 × 10-3 (tetC) to 1.7 × 10-1 (tetO) in swine wastewater. The mean relative ARG abundances ranged from 9.9 × 10-5 (tetW) to 1.1 × 10-2 (tetO) in soils and from 3.1 × 10-4 (tetW) to 1.1 × 10-2 (sul2) in receiving river sediments, indicating that the farmland application of swine manure compost and the discharge of swine wastewater promoted the dissemination of ARGs into adjacent environments. Microbial fermentation bed (MFB) could reduce the relative ARG abundances by 0-1.18 logs. However, septic tank, biogas digester and natural drying methods were relatively ineffective for ARG removal, and the relative abundances of some ARGs (i.e., tetC, tetG, sul1, and sul2) even increased by 0.74-3.90 logs in treated wastes. Bacterial diversity analysis indicates that the evolution of bacterial communities in the MFB played a crucial role in eliminating the ARGs. This study helps the effective assessment and management of ecological risks arising from ARGs in swine feedlots.
Collapse
Affiliation(s)
- Weiwei Ben
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China
| | - Jian Wang
- Institute of Energy and Environmental Protection, Chinese Academy of Agricultural Engineering, 41 Maizidian Street, Beijing 100125, China; Key Laboratory of Energy Resource Utilization from Agricultural Residues, Ministry of Agriculture, 41 Maizidian Street, Beijing 100125, China
| | - Xun Pan
- Foreign Economic Cooperation Office, Ministry of Environmental Protection, Beijing 100035, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing 100085, China.
| |
Collapse
|
200
|
Adegoke AA, Faleye AC, Singh G, Stenström TA. Antibiotic Resistant Superbugs: Assessment of the Interrelationship of Occurrence in Clinical Settings and Environmental Niches. Molecules 2016; 22:E29. [PMID: 28035988 PMCID: PMC6155606 DOI: 10.3390/molecules22010029] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/11/2016] [Accepted: 12/22/2016] [Indexed: 02/06/2023] Open
Abstract
The increasing threat to global health posed by antibiotic resistance remains of serious concern. Human health remains at higher risk due to several reported therapeutic failures to many life threatening drug resistant microbial infections. The resultant effects have been prolonged hospital stay, higher cost of alternative therapy, increased mortality, etc. This opinionated review considers the two main concerns in integrated human health risk assessment (i.e., residual antibiotics and antibiotic resistant genes) in various compartments of human environment, as well as clinical dynamics associated with the development and transfer of antibiotic resistance (AR). Contributions of quorum sensing, biofilms, enzyme production, and small colony variants in bacteria, among other factors in soil, water, animal farm and clinical settings were also considered. Every potential factor in environmental and clinical settings that brings about AR needs to be identified for the summative effects in overall resistance. There is a need to embrace coordinated multi-locational approaches and interrelationships to track the emergence of resistance in different niches in soil and water versus the hospital environment. The further integration with advocacy, legislation, enforcement, technological innovations and further research input and recourse to WHO guidelines on antibiotic policy would be advantageous towards addressing the emergence of antibiotic resistant superbugs.
Collapse
Affiliation(s)
- Anthony Ayodeji Adegoke
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
- Department of Microbiology, University of Uyo, 520211 Uyo, Akwa Ibom State, Nigeria.
- Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, Eastern Cape, South Africa.
| | - Adekunle Christopher Faleye
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| | - Gulshan Singh
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| | - Thor Axel Stenström
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban 4000, South Africa.
| |
Collapse
|