151
|
Vanholder R, Schepers E, Pletinck A, Nagler EV, Glorieux G. The uremic toxicity of indoxyl sulfate and p-cresyl sulfate: a systematic review. J Am Soc Nephrol 2014; 25:1897-907. [PMID: 24812165 DOI: 10.1681/asn.2013101062] [Citation(s) in RCA: 501] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A growing number of publications supports a biologic effect of the protein-bound uremic retention solutes indoxyl sulfate and p-cresyl sulfate. However, the use of unrealistically high free concentrations of these compounds and/or inappropriately low albumin concentrations may blur the interpretation of these results. Here, we performed a systematic review, selecting only studies in which, depending on the albumin concentration, real or extrapolated free concentrations of indoxyl sulfate and p-cresyl sulfate remained in the uremic range. The 27 studies retrieved comprised in vitro and animal studies. A quality score was developed, giving 1 point for each of the following criteria: six or more experiments, confirmation by more than one experimental approach, neutralization of the biologic effect by counteractive reagents or antibodies, use of a real-life model, and use of dose-response analyses in vitro and/or animal studies. The overall average score was 3 of 5 points, with five studies scoring 5 of 5 points and six studies scoring 4 of 5 points, highlighting the superior quality of a substantial number of the retrieved studies. In the 11 highest scoring studies, most functional deteriorations were related to uremic cardiovascular disease and kidney damage. We conclude that our systematic approach allowed the retrieval of methodologically correct studies unbiased by erroneous conditions related to albumin binding. Our data seem to confirm the toxicity of indoxyl sulfate and p-cresyl sulfate and support their roles in vascular and renal disease progression.
Collapse
Affiliation(s)
| | - Eva Schepers
- Nephrology Section, Ghent University Hospital, Ghent, Belgium
| | | | - Evi V Nagler
- Nephrology Section, Ghent University Hospital, Ghent, Belgium
| | - Griet Glorieux
- Nephrology Section, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
152
|
Plummer MP, Chapman MJ, Horowitz M, Deane AM. Incretins and the intensivist: what are they and what does an intensivist need to know about them? Crit Care 2014; 18:205. [PMID: 24602388 PMCID: PMC4015118 DOI: 10.1186/cc13737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hyperglycaemia occurs frequently in the critically ill, even in those patients without a history of diabetes. The mechanisms underlying hyperglycaemia in this group are complex and incompletely defined. In health, the gastrointestinal tract is an important modulator of postprandial glycaemic excursions and both the rate of gastric emptying and the so-called incretin hormones, glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide, are pivotal determinants of postprandial glycaemia. Incretin-based therapies (that is, glucagon-like peptide- 1 agonists and dipeptidyl-peptidase-4 inhibitors) have recently been incorporated into standard algorithms for the management of hyperglycaemia in ambulant patients with type 2 diabetes and, inevitably, an increasing number of patients who were receiving these classes of drugs prior to their acute illness will present to ICUs. This paper summarises current knowledge of the incretin effect as well as the incretin-based therapies that are available for the management of type 2 diabetes, and provides suggestions for the potential relevance of these agents in the management of dysglycaemia in the critically ill, particularly to normalise elevated blood glucose levels.
Collapse
Affiliation(s)
- Mark P Plummer
- />Intensive Care Unit, Level 4, Royal Adelaide Hospital, Adelaide, South Australia 5000 Australia
- />Discipline of Acute Care Medicine, Adelaide University, Adelaide, South Australia 5000 Australia
| | - Marianne J Chapman
- />Intensive Care Unit, Level 4, Royal Adelaide Hospital, Adelaide, South Australia 5000 Australia
- />Discipline of Acute Care Medicine, Adelaide University, Adelaide, South Australia 5000 Australia
| | - Michael Horowitz
- />Intensive Care Unit, Level 4, Royal Adelaide Hospital, Adelaide, South Australia 5000 Australia
- />Discipline of Acute Care Medicine, Adelaide University, Adelaide, South Australia 5000 Australia
| | - Adam M Deane
- />Intensive Care Unit, Level 4, Royal Adelaide Hospital, Adelaide, South Australia 5000 Australia
- />Discipline of Acute Care Medicine, Adelaide University, Adelaide, South Australia 5000 Australia
| |
Collapse
|
153
|
Dixon J, Lane K, Macphee I, Philips B. Xenobiotic metabolism: the effect of acute kidney injury on non-renal drug clearance and hepatic drug metabolism. Int J Mol Sci 2014; 15:2538-53. [PMID: 24531139 PMCID: PMC3958866 DOI: 10.3390/ijms15022538] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 12/12/2013] [Accepted: 12/27/2013] [Indexed: 01/20/2023] Open
Abstract
Acute kidney injury (AKI) is a common complication of critical illness, and evidence is emerging that suggests AKI disrupts the function of other organs. It is a recognized phenomenon that patients with chronic kidney disease (CKD) have reduced hepatic metabolism of drugs, via the cytochrome P450 (CYP) enzyme group, and drug dosing guidelines in AKI are often extrapolated from data obtained from patients with CKD. This approach, however, is flawed because several confounding factors exist in AKI. The data from animal studies investigating the effects of AKI on CYP activity are conflicting, although the results of the majority do suggest that AKI impairs hepatic CYP activity. More recently, human study data have also demonstrated decreased CYP activity associated with AKI, in particular the CYP3A subtypes. Furthermore, preliminary data suggest that patients expressing the functional allele variant CYP3A5*1 may be protected from the deleterious effects of AKI when compared with patients homozygous for the variant CYP3A5*3, which codes for a non-functional protein. In conclusion, there is a need to individualize drug prescribing, particularly for the more sick and vulnerable patients, but this needs to be explored in greater depth.
Collapse
Affiliation(s)
- John Dixon
- General Intensive Care Unit, St. George's Hospital, London SW17 0QT, UK.
| | - Katie Lane
- General Intensive Care Unit, St. George's Hospital, London SW17 0QT, UK.
| | - Iain Macphee
- Division of Clinical Sciences, St. George's, University of London, London SW17 0RE, UK.
| | - Barbara Philips
- General Intensive Care Unit, St. George's Hospital, London SW17 0QT, UK.
| |
Collapse
|
154
|
Olesen AE, Brokjaer A, Fisher IW, Larsen IM. Pharmacological challenges in chronic pancreatitis. World J Gastroenterol 2013; 19:7302-7307. [PMID: 24259961 PMCID: PMC3831212 DOI: 10.3748/wjg.v19.i42.7302] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 02/06/2023] Open
Abstract
Drug absorption in patients with chronic pancreatitis might be affected by the pathophysiology of the disease. The exocrine pancreatic insufficiency is associated with changes in gastrointestinal intraluminal pH, motility disorder, bacterial overgrowth and changed pancreatic gland secretion. Together these factors can result in malabsorption and may also affect the efficacy of pharmacological intervention. The lifestyle of chronic pancreatitis patients may also contribute to gastrointestinal changes. Many patients limit their food intake because of the pain caused by eating and in some cases food intake is more or less substituted with alcohol, tobacco and coffee. Alcohol and drug interaction are known to influence the pharmacokinetics by altering either drug absorption or by affecting liver metabolism. Since patients suffering from chronic pancreatitis experience severe pain, opioids are often prescribed as pain treatment. Opioids have intrinsic effects on gastrointestinal motility and hence can modify the absorption of other drugs taken at the same time. Furthermore, the increased fluid absorption caused by opioids will decrease water available for drug dissolution and may hereby affect absorption of the drug. As stated above many factors can influence drug absorption and metabolism in patients with chronic pancreatitis. The factors may not have clinical relevance, but may explain inter-individual variations in responses to a given drug, in patients with chronic pancreatitis.
Collapse
|
155
|
Philips BJ, Lane K, Dixon J, MacPhee I. The effects of acute renal failure on drug metabolism. Expert Opin Drug Metab Toxicol 2013; 10:11-23. [DOI: 10.1517/17425255.2013.835802] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
156
|
Davis SL, Scheetz MH, Bosso JA, Goff DA, Rybak MJ. Adherence to the 2009 consensus guidelines for vancomycin dosing and monitoring practices: a cross-sectional survey of U.S. hospitals. Pharmacotherapy 2013; 33:1256-63. [PMID: 23897602 DOI: 10.1002/phar.1327] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
STUDY OBJECTIVES To describe the implementation of vancomycin dosing and monitoring practices recommended by the consensus guidelines in a diverse sample of hospitals, and to identify needs for quality improvement and research. DESIGN Cross-sectional study using an online survey instrument. SETTING Making a Difference in Infectious Diseases Pharmacotherapy (MAD-ID) Research Network. PARTICIPANTS A total of 163 respondents from MAD-ID who work in antimicrobial stewardship and represent unique hospitals. MEASUREMENTS AND MAIN RESULTS The survey population represented a wide range of patient populations (96% adult, 49% pediatric, and 23% long-term care) and settings (52% not-for-profit nonuniversity, 31% university based, and 11% for profit). Automatic consultation of pharmacy services for all vancomycin dosing was reported in 51% of the institutions. Among the dosing and monitoring practices endorsed by the consensus guidelines, participant institutions commonly followed these recommendations: use of trough concentrations without peak concentrations, maintenance of trough concentration higher than 10 mg/L, and target trough concentrations of 15-20 mg/L for complicated infections. In contrast, there was less consistent application of appropriate timing of trough concentrations, use of loading doses, and use of actual body weight. The remaining challenges and controversies surrounding vancomycin dosing are discussed. CONCLUSION Despite the availability of consensus guideline recommendations, practices for dosing and monitoring of vancomycin are not universally applied. The findings of this survey highlight many opportunities for future research and quality improvement strategies.
Collapse
Affiliation(s)
- Susan L Davis
- Anti-Infective Research Laboratory, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan; Henry Ford Hospital, Detroit, Michigan
| | | | | | | | | |
Collapse
|
157
|
Abstract
PURPOSE OF REVIEW Pneumonia continues to be a common reason for, or complication of, ICU admission. Associated morbidity and mortality remain high, with an increasing incidence of multidrug-resistant organisms. Appropriate antibiotic therapy, both in terms of spectrum of cover and dose, remains the cornerstone of effective management. RECENT FINDINGS Critically ill patients will frequently manifest significantly altered end-organ function, as compared with an ambulatory or ward-based setting. Such changes can have profound effects on antibiotic drug handling, promoting subtherapeutic concentrations, treatment failure or the selection of resistant organisms. Standard antibiotic regimens typically fail to consider such issues, with recent literature highlighting the need for improved dosing to achieve sufficient intrapulmonary concentrations, particularly in the setting of augmented elimination. Although recent clinical trials utilizing strategies that optimize drug exposure (either through the use of agents with improved penetration, or continuous infusions) demonstrate superior surrogate outcomes, a mortality benefit is still uncertain. SUMMARY Antibiotic dosing strategies that are adapted to a critical care environment are urgently needed, both to improve clinical outcomes and ensure therapeutic longevity. Similarly, study protocols investigating emerging antibiotics must also be designed accordingly, to prevent potential setbacks in drug availability.
Collapse
|
158
|
Roberts DJ, Hall RI. Drug absorption, distribution, metabolism and excretion considerations in critically ill adults. Expert Opin Drug Metab Toxicol 2013; 9:1067-84. [PMID: 23682923 DOI: 10.1517/17425255.2013.799137] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION All critically ill patients require medication to treat organ dysfunction. However, the pharmacokinetics of drugs used to treat these patients is complex due to frequent alterations in drug absorption, distribution, metabolism, and excretion (ADME). AREAS COVERED This review examines pharmacokinetic aspects of drug administration for adult intensive care unit (ICU) patients. Specifically, the authors examine the ADME changes that occur and which should be considered by clinicians when delivering drug therapy to critically ill patients. EXPERT OPINION Dosage pharmacokinetics determined from single-dose or limited-duration administration studies in healthy volunteers may not apply to critically ill patients. Organ dysfunction among these patients may be due to pre-existing disease or the effects of a systemic or locoregional inflammatory response precipitated by their illness. Alterations in pharmacokinetics observed among the critically ill include altered bioavailability after enteral administration, increased volume of distribution and blood-brain barrier permeability and changes in P-glycoprotein and cytochrome P450 enzyme function. However, the effect of these changes on clinically important outcomes remains uncertain and poorly studied. Future investigations should examine not only pharmacokinetic changes among the critically ill, but also whether recognition of these changes and alterations in drug therapy directed as a consequence of their observation alters patient outcomes.
Collapse
Affiliation(s)
- Derek J Roberts
- University of Calgary, Departments of Surgery and Community Health Sciences, Calgary, Alberta T2N 5A1, Canada
| | | |
Collapse
|
159
|
|
160
|
Bhalodi AA, Keel RA, Quintiliani R, Lodise TP, Nicolau DP, Kuti JL. Pharmacokinetics of Doripenem in Infected Patients Treated Within and Outside the Intensive Care Unit. Ann Pharmacother 2013; 47:617-27. [DOI: 10.1345/aph.1r789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Doripenem often is used in the intensive care unit (ICU) to treat serious infections. However, pharmacokinetics in this population often are altered by various physiologic changes. Current pharmacokinetic data in critically ill patients receiving doripenem are limited. OBJECTIVE To determine the pharmacokinetics of doripenem in patients treated in the ICU versus outside the ICU. METHODS A total of 3–4 serum samples were collected from 25 infected patients receiving doripenem. A 2-compartment model was fit to serum pharmacokinetic data with nonparametric adaptive grid with adaptive γ. In the structural pharmacokinetic model, clearance (Cl) was made proportional to creatinine clearance (CrCl) and an intercept term. Bayesian pharmacokinetic parameters were compared between the 2 populations. A 5000-patient Monte Carlo simulation was performed for various CrCl ranges. The probability of pharmacodynamic target attainment was calculated over a range of minimum inhibitory concentrations (MICs), assuming a target of 35% of the dosing interval that unbound drug concentrations remain above the MIC. RESULTS Mean (range) age, body mass index, and CrCl were 61 (31–90) years, 31.2 (15.1–55.5) kg/m2, and 86 (15–221) mL/min, respectively. After the Bayesian step, r2, bias, and precision were 0.97, 0.04, and 1.44 μg/mL, respectively. Mean (SD) parameters for ICU (n = 13) and non-ICU (n = 12) patients were not significantly different (p > 0.05): volume of central compartment (17.3 [11.2] vs 18.5 [11.7] L), Cl (10.1 [10.2] vs 15.5 [16.9] L/h), k12 (4.7 [4.7] vs 4.7 [4.8] h−1), and k21 (7.1 [5.5] vs 5.7 [5.3] h−1), respectively. Optimal target attainments were obtained for patients with normal renal function up to MICs of 2 μg/mL with a dose of 500 mg every 8 hours as 1-hour and 4-hour infusions. CONCLUSIONS Doripenem pharmacokinetics were similar between ICU and non-ICU patients in this population. Optimal dosing regimens should be selected based on underlying renal function and suspected MIC of the infecting pathogen.
Collapse
Affiliation(s)
- Amira A Bhalodi
- Amira A Bhalodi PharmD, Research Fellow, Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, CT
| | - Rebecca A Keel
- Rebecca A Keel PharmD, Research Fellow, Center for Anti-Infective Research and Development, Hartford Hospital
| | - Richard Quintiliani
- Richard Quintiliani MD, Infectious Diseases Physician, Division of Infectious Diseases, Hartford Hospital and Connecticut Multi-Specialty Group
| | - Thomas P Lodise
- Thomas P Lodise PharmD, Associate Professor, Albany College of Pharmacy and Health Sciences, Albany, NY
| | - David P Nicolau
- David P Nicolau PharmD, Director, Center for Anti-Infective Research and Development and Division of Infectious Diseases, Hartford Hospital
| | - Joseph L Kuti
- Joseph L Kuti PharmD, Associate Director, Center for Anti-Infective Research and Development, Hartford Hospital
| |
Collapse
|
161
|
Gurevich KG. Effect of blood protein concentrations on drug-dosing regimes: practical guidance. Theor Biol Med Model 2013; 10:20. [PMID: 23506635 PMCID: PMC3606132 DOI: 10.1186/1742-4682-10-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 03/11/2013] [Indexed: 01/21/2023] Open
Abstract
In this article the importance of blood proteins for drug dosing regimes is discussed. A simple mathematical model is presented for estimating recommended drug doses when the concentration of blood proteins is decreased. Practical guidance for drug dosing regimes is discussed and given in the form of a figure. It is demonstrated that correction of drug dosing regimes is needed only for when there is a high level of drug conjugation with blood proteins and a high degree of hypoalbuminaemia. An example of the use of this model is given.
Collapse
Affiliation(s)
- Konstantin G Gurevich
- Moscow State University of Medicine and Dentistry, Russian Federation, Moscow, Russia.
| |
Collapse
|
162
|
Bhalodi AA, Papasavas PK, Tishler DS, Nicolau DP, Kuti JL. Pharmacokinetics of intravenous linezolid in moderately to morbidly obese adults. Antimicrob Agents Chemother 2013; 57:1144-9. [PMID: 23254421 PMCID: PMC3591894 DOI: 10.1128/aac.01453-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 12/08/2012] [Indexed: 11/20/2022] Open
Abstract
The pharmacokinetics of linezolid was assessed in 20 adult volunteers with body mass indices (BMI) of 30 to 54.9 kg/m(2) receiving 5 intravenous doses of 600 mg every 12 h. Pharmacokinetic analyses were conducted using compartmental and noncompartmental methods. The mean (±standard deviation) age, height, and weight were 42.2 ± 12.2 years, 64.8 ± 3.5 in, and 109.5 ± 18.2 kg (range, 78.2 to 143.1 kg), respectively. Linezolid pharmacokinetics in this population were best described by a 2-compartment model with nonlinear clearance (original value, 7.6 ± 1.9 liters/h), which could be inhibited to 85.5% ± 12.2% of its original value depending on the concentration in an empirical inhibition compartment, the volume of the central compartment (24.4 ± 9.6 liters), and the intercompartment transfer constants (K(12) and K(21)) of 8.04 ± 6.22 and 7.99 ± 5.46 h(-1), respectively. The areas under the curve for the 12-h dosing interval (AUCτ) were similar between moderately obese and morbidly obese groups: 130.3 ± 60.1 versus 109.2 ± 25.5 μg · h/ml (P = 0.32), and there was no significant relationship between the AUC or clearance and any body size descriptors. A significant positive relationship was observed for the total volume of distribution with total body weight (r(2) = 0.524), adjusted body weight (r(2) = 0.587), lean body weight (r(2) = 0.495), and ideal body weight (r(2) = 0.398), but not with BMI (r(2) = 0.171). Linezolid exposure in these obese participants was similar overall to that of nonobese patients, implying that dosage adjustments based on BMI alone are not required, and standard doses for patients with body weights up to approximately 150 kg should provide AUCτ values similar to those seen in nonobese participants.
Collapse
Affiliation(s)
- Amira A. Bhalodi
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| | - Pavlos K. Papasavas
- Section of Metabolic and Bariatric Surgery, Hartford Hospital, Hartford, Connecticut, USA
| | - Darren S. Tishler
- Section of Metabolic and Bariatric Surgery, Hartford Hospital, Hartford, Connecticut, USA
| | - David P. Nicolau
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
- Division of Infectious Diseases, Hartford Hospital, Hartford, Connecticut, USA
| | - Joseph L. Kuti
- Center for Anti-Infective Research and Development, Hartford Hospital, Hartford, Connecticut, USA
| |
Collapse
|