151
|
The Intestinal Barrier and Its Dysfunction in Patients with Metabolic Diseases and Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23020662. [PMID: 35054847 PMCID: PMC8775587 DOI: 10.3390/ijms23020662] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents an increasing cause of liver disease worldwide, mirroring the epidemics of obesity and metabolic syndrome. As there are still no licensed medications for treating the disease, there is an ongoing effort to elucidate the pathophysiology and to discover new treatment pathways. An increasing body of evidence has demonstrated a crosstalk between the gut and the liver, which plays a crucial role in the development and progression of liver disease. Among other intestinal factors, gut permeability represents an interesting factor at the interface of the gut–liver axis. In this narrative review, we summarise the evidence from human studies showing the association between increased gut permeability and NAFLD, as well as with type-2 diabetes and obesity. We also discuss the manipulation of the gut permeability as a potential therapeutical target in patients with NAFLD.
Collapse
|
152
|
Current Status and Future Therapeutic Options for Fecal Microbiota Transplantation. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58010084. [PMID: 35056392 PMCID: PMC8780626 DOI: 10.3390/medicina58010084] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/23/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022]
Abstract
The intestinal microbiota plays an important role in maintaining human health, and its alteration is now associated with the development of various gastrointestinal (ulcerative colitis, irritable bowel syndrome, constipation, etc.) and extraintestinal diseases, such as cancer, metabolic syndrome, neuropsychiatric diseases. In this context, it is not surprising that gut microbiota modification methods may constitute a therapy whose potential has not yet been fully investigated. In this regard, the most interesting method is thought to be fecal microbiota transplantation, which consists of the simultaneous replacement of the intestinal microbiota of a sick recipient with fecal material from a healthy donor. This review summarizes the most interesting findings on the application of fecal microbiota transplantation in gastrointestinal and extraintestinal pathologies.
Collapse
|
153
|
Xiang H, Sun D, Liu X, She ZG, Chen Y. The Role of the Intestinal Microbiota in Nonalcoholic Steatohepatitis. Front Endocrinol (Lausanne) 2022; 13:812610. [PMID: 35211093 PMCID: PMC8861316 DOI: 10.3389/fendo.2022.812610] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a serious disease threatening public health, and its pathogenesis remains largely unclear. Recent scientific research has shown that intestinal microbiota and its metabolites have an important impact on the development of NASH. A balanced intestinal microbiota contributes to the maintenance of liver homeostasis, but when the intestinal microbiota is disequilibrated, it serves as a source of pathogens and molecules that lead to NASH. In this review, we mainly emphasize the key mechanisms by which the intestinal microbiota and its metabolites affect NASH. In addition, recent clinical trials and animal studies on the treatment of NASH by regulating the intestinal microbiota through prebiotics, probiotics, synbiotics and FMT have also been briefly elaborated. With the increasing understanding of interactions between the intestinal microbiota and liver, accurate and personalized detection and treatment methods for NASH are expected to be established.
Collapse
Affiliation(s)
- Hui Xiang
- Infectious Disease Department, Chongqing University Three Gorges Hospital, Chongqing, China
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Hui Xiang, ; Zhi-Gang She, ; Yonghong Chen,
| | - Dating Sun
- Department of Cardiology, Wuhan NO.1 Hospital, Wuhan, China
| | - Xin Liu
- Infectious Disease Department, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Zhi-Gang She
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Hui Xiang, ; Zhi-Gang She, ; Yonghong Chen,
| | - Yonghong Chen
- Infectious Disease Department, Chongqing University Three Gorges Hospital, Chongqing, China
- *Correspondence: Hui Xiang, ; Zhi-Gang She, ; Yonghong Chen,
| |
Collapse
|
154
|
Suk KT, Koh H. New perspective on fecal microbiota transplantation in liver diseases. J Gastroenterol Hepatol 2022; 37:24-33. [PMID: 34734433 DOI: 10.1111/jgh.15729] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 01/01/2023]
Abstract
Chronic liver disease including non-alcoholic fatty liver disease and alcohol-related liver disease is one of the most common diseases worldwide. The gut-liver axis plays an important role in the pathogenesis of liver disease. Small intestinal bacterial overgrowth, dysbiosis, leaky bowel, bacterial translocation, and imbalanced metabolites are related to the progression of chronic liver disease. Recently, novel therapeutic approaches for microbiota modulation such as personalized diet, probiotics, prebiotics, antibiotics, engineered microbiotas, phage therapy, stomach operation, and fecal microbiota transplantation (FMT) have been proposed with numerous promising results in the effectiveness and clinical application. Although the evidence is still lacking, FMT, a type of fecal bacteriotherapy, has been known as a candidate for the treatment of liver disease. This review article focuses on the most recent advances in our understanding of FMT in chronic liver disease such as non-alcoholic and alcohol-related liver disease.
Collapse
Affiliation(s)
- Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hong Koh
- Department of Pediatrics, Severance Fecal Microbiota Transplantation Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
155
|
Rong L, Zou J, Ran W, Qi X, Chen Y, Cui H, Guo J. Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD). Front Endocrinol (Lausanne) 2022; 13:1087260. [PMID: 36726464 PMCID: PMC9884828 DOI: 10.3389/fendo.2022.1087260] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a series of diseases, involving excessive lipid deposition in the liver and is often accompanied by obesity, diabetes, dyslipidemia, abnormal blood pressure, and other metabolic disorders. In order to more accurately reflect its pathogenesis, an international consensus renamed NAFLD in 2020 as metabolic (dysfunction) associated with fatty liver disease (MAFLD). The changes in diet and lifestyle are recognized the non-drug treatment strategies; however, due to the complex pathogenesis of NAFLD, the current drug therapies are mainly focused on its pathogenic factors, key links of pathogenesis, and related metabolic disorders as targets. There is still a lack of specific drugs. In clinical studies, the common NAFLD treatments include the regulation of glucose and lipid metabolism to protect the liver and anti-inflammation. The NAFLD treatments based on the enterohepatic axis, targeting gut microbiota, are gradually emerging, and various new metabolism-regulating drugs are also under clinical development. Therefore, this review article has comprehensively discussed the research advancements in NAFLD treatment in recent years.
Collapse
Affiliation(s)
- Li Rong
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Junyan Zou
- Medical Research Institute, Southwest University, Chongqing, China
- Medical Research Institute, Southwest University, Public Health Hospital Affiliated to Southwest University, Chongqing, China
| | - Wei Ran
- Medical Research Institute, Southwest University, Public Health Hospital Affiliated to Southwest University, Chongqing, China
| | - Xiaohong Qi
- Department of General surgery, Baoshan People’s Hospital of Yunnan Province, Baoshan, Yunnan, China
| | - Yaokai Chen
- Medical Research Institute, Southwest University, Public Health Hospital Affiliated to Southwest University, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
- *Correspondence: Jinjun Guo,
| |
Collapse
|
156
|
Schupack DA, Mars RAT, Voelker DH, Abeykoon JP, Kashyap PC. The promise of the gut microbiome as part of individualized treatment strategies. Nat Rev Gastroenterol Hepatol 2022; 19:7-25. [PMID: 34453142 PMCID: PMC8712374 DOI: 10.1038/s41575-021-00499-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/07/2023]
Abstract
Variability in disease presentation, progression and treatment response has been a central challenge in medicine. Although variability in host factors and genetics are important, it has become evident that the gut microbiome, with its vast genetic and metabolic diversity, must be considered in moving towards individualized treatment. In this Review, we discuss six broad disease groups: infectious disease, cancer, metabolic disease, cardiovascular disease, autoimmune or inflammatory disease, and allergic and atopic diseases. We highlight current knowledge on the gut microbiome in disease pathogenesis and prognosis, efficacy, and treatment-related adverse events and its promise for stratifying existing treatments and as a source of novel therapies. The Review is not meant to be comprehensive for each disease state but rather highlights the potential implications of the microbiome as a tool to individualize treatment strategies in clinical practice. Although early, the outlook is optimistic but challenges need to be overcome before clinical implementation, including improved understanding of underlying mechanisms, longitudinal studies with multiple data layers reflecting gut microbiome and host response, standardized approaches to testing and reporting, and validation in larger cohorts. Given progress in the microbiome field with concurrent basic and clinical studies, the microbiome will likely become an integral part of clinical care within the next decade.
Collapse
Affiliation(s)
- Daniel A Schupack
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Ruben A T Mars
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Dayne H Voelker
- Division of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jithma P Abeykoon
- Division of Hematology and Oncology, Mayo Clinic, Rochester, MN, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
157
|
The functional role of miRNAs in inflammatory pathways associated with intestinal epithelial tight junction barrier regulation in IBD. POSTEP HIG MED DOSW 2022. [DOI: 10.2478/ahem-2022-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Inflammatory bowel disease – Crohn's disease and ulcerative colitis – is an immune-mediated chronic disorder with still not fully elucidated complex mechanisms of pathogenesis and pathophysiology. Intestinal epithelial barrier (IEB) dysregulation is one of the major underlying mechanisms of inflammatory process induction in IBD. Proper IEB integrity is maintained to a large extent by intercellular tight junctions, the function of which can be modified by many molecules, including miRNAs. MiRNAs belong to noncoding and non-messenger RNAs, which can modulate gene expression by binding predicted mRNAs.
In this review, we summarize and discuss the potential role of miRNAs in the regulation of inflammatory signaling pathways affecting the function of the intestinal epithelial barrier in IBD, with particular emphasis on therapeutic potentials. The aim of the review is also to determine the further development directions of the studies on miRNA in the modulation of the intestinal epithelial barrier in IBD.
Collapse
|
158
|
Drożdż K, Nabrdalik K, Hajzler W, Kwiendacz H, Gumprecht J, Lip GYH. Metabolic-Associated Fatty Liver Disease (MAFLD), Diabetes, and Cardiovascular Disease: Associations with Fructose Metabolism and Gut Microbiota. Nutrients 2021; 14:103. [PMID: 35010976 PMCID: PMC8746577 DOI: 10.3390/nu14010103] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an increasingly common condition associated with type 2 diabetes (T2DM) and cardiovascular disease (CVD). Since systemic metabolic dysfunction underlies NAFLD, the current nomenclature has been revised, and the term metabolic-associated fatty liver disease (MAFLD) has been proposed. The new definition emphasizes the bidirectional relationships and increases awareness in looking for fatty liver disease among patients with T2DM and CVD or its risk factors, as well as looking for these diseases among patients with NAFLD. The most recommended treatment method of NAFLD is lifestyle changes, including dietary fructose limitation, although other treatment methods of NAFLD have recently emerged and are being studied. Given the focus on the liver-gut axis targeting, bacteria may also be a future aim of NAFLD treatment given the microbiome signatures discriminating healthy individuals from those with NAFLD. In this review article, we will provide an overview of the associations of fructose consumption, gut microbiota, diabetes, and CVD in patients with NAFLD.
Collapse
Affiliation(s)
- Karolina Drożdż
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.); (G.Y.H.L.)
| | - Katarzyna Nabrdalik
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.); (G.Y.H.L.)
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK
| | - Weronika Hajzler
- Doctoral School, Department of Pediatric Hematology and Oncology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Hanna Kwiendacz
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.); (G.Y.H.L.)
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.); (G.Y.H.L.)
| | - Gregory Y. H. Lip
- Department of Internal Medicine, Diabetology and Nephrology in Zabrze, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (K.D.); (H.K.); (J.G.); (G.Y.H.L.)
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart & Chest Hospital, Liverpool L14 3PE, UK
- Department of Clinical Medicine, Aalborg University, 9100 Aalborg, Denmark
| |
Collapse
|
159
|
Santos-Laso A, Gutiérrez-Larrañaga M, Alonso-Peña M, Medina JM, Iruzubieta P, Arias-Loste MT, López-Hoyos M, Crespo J. Pathophysiological Mechanisms in Non-Alcoholic Fatty Liver Disease: From Drivers to Targets. Biomedicines 2021; 10:biomedicines10010046. [PMID: 35052726 PMCID: PMC8773141 DOI: 10.3390/biomedicines10010046] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by the excessive and detrimental accumulation of liver fat as a result of high-caloric intake and/or cellular and molecular abnormalities. The prevalence of this pathological event is increasing worldwide, and is intimately associated with obesity and type 2 diabetes mellitus, among other comorbidities. To date, only therapeutic strategies based on lifestyle changes have exhibited a beneficial impact on patients with NAFLD, but unfortunately this approach is often difficult to implement, and shows poor long-term adherence. For this reason, great efforts are being made to elucidate and integrate the underlying pathological molecular mechanism, and to identify novel and promising druggable targets for therapy. In this regard, a large number of clinical trials testing different potential compounds have been performed, albeit with no conclusive results yet. Importantly, many other clinical trials are currently underway with results expected in the near future. Here, we summarize the key aspects of NAFLD pathogenesis and therapeutic targets in this frequent disorder, highlighting the most recent advances in the field and future research directions.
Collapse
Affiliation(s)
- Alvaro Santos-Laso
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- Correspondence: (A.S.-L.); (J.C.)
| | - María Gutiérrez-Larrañaga
- Department of Immunology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.G.-L.); (M.L.-H.)
| | - Marta Alonso-Peña
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
| | - Juan M. Medina
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
| | - Paula Iruzubieta
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - María Teresa Arias-Loste
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Marcos López-Hoyos
- Department of Immunology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.G.-L.); (M.L.-H.)
| | - Javier Crespo
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
- Correspondence: (A.S.-L.); (J.C.)
| |
Collapse
|
160
|
Yang M, Khoukaz L, Qi X, Kimchi ET, Staveley-O’Carroll KF, Li G. Diet and Gut Microbiota Interaction-Derived Metabolites and Intrahepatic Immune Response in NAFLD Development and Treatment. Biomedicines 2021; 9:biomedicines9121893. [PMID: 34944709 PMCID: PMC8698669 DOI: 10.3390/biomedicines9121893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) with pathogenesis ranging from nonalcoholic fatty liver (NAFL) to the advanced form of nonalcoholic steatohepatitis (NASH) affects about 25% of the global population. NAFLD is a chronic liver disease associated with obesity, type 2 diabetes, and metabolic syndrome, which is the most increasing factor that causes hepatocellular carcinoma (HCC). Although advanced progress has been made in exploring the pathogenesis of NAFLD and penitential therapeutic targets, no therapeutic agent has been approved by Food and Drug Administration (FDA) in the United States. Gut microbiota-derived components and metabolites play pivotal roles in shaping intrahepatic immunity during the progression of NAFLD or NASH. With the advance of techniques, such as single-cell RNA sequencing (scRNA-seq), each subtype of immune cells in the liver has been studied to explore their roles in the pathogenesis of NAFLD. In addition, new molecules involved in gut microbiota-mediated effects on NAFLD are found. Based on these findings, we first summarized the interaction of diet-gut microbiota-derived metabolites and activation of intrahepatic immunity during NAFLD development and progression. Treatment options by targeting gut microbiota and important molecular signaling pathways are then discussed. Finally, undergoing clinical trials are selected to present the potential application of treatments against NAFLD or NASH.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.); (L.K.); (X.Q.); (E.T.K.)
| | - Lea Khoukaz
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.); (L.K.); (X.Q.); (E.T.K.)
| | - Xiaoqiang Qi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.); (L.K.); (X.Q.); (E.T.K.)
| | - Eric T. Kimchi
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.); (L.K.); (X.Q.); (E.T.K.)
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
| | - Kevin F. Staveley-O’Carroll
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.); (L.K.); (X.Q.); (E.T.K.)
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
- Correspondence: (K.F.S.-O.); (G.L.)
| | - Guangfu Li
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA; (M.Y.); (L.K.); (X.Q.); (E.T.K.)
- Harry S. Truman Memorial VA Hospital, Columbia, MO 65201, USA
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65212, USA
- Correspondence: (K.F.S.-O.); (G.L.)
| |
Collapse
|
161
|
Li Y, Hou JJ, Wang X, Su S, Wang YM, Zhang J. New progress in research of intestinal microbiota in fatty liver disease. Shijie Huaren Xiaohua Zazhi 2021; 29:1355-1361. [DOI: 10.11569/wcjd.v29.i23.1355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
At present, intestinal microbiota has become one of hot issues in current research. Fatty liver disease refers to the pathology of excessive accumulation of fat in liver cells due to various reasons. Fatty liver disease can cause damage to the normal structure and physiological and biochemical functions of the liver, and lead to the appearance of clinical symptoms. And it generally includes two categories: Non-alcoholic fatty liver disease and alcoholic liver disease. Changes in intestinal flora and intestinal permeability can further affect the development of fatty liver disease through the gut-liver axis. Similarly, intestinal microbiota also changes to varying degrees during the occurrence and development of fatty liver disease. This paper mainly introduces the relationship between the gut-liver axis and fatty liver disease, changes of intestinal flora during the progression of fatty liver disease, and new advances in the application of probiotics in the treatment of fatty liver disease.
Collapse
Affiliation(s)
- Ying Li
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jun-Jie Hou
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shuai Su
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yu-Ming Wang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jie Zhang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
162
|
Tilg H, Adolph TE, Dudek M, Knolle P. Non-alcoholic fatty liver disease: the interplay between metabolism, microbes and immunity. Nat Metab 2021; 3:1596-1607. [PMID: 34931080 DOI: 10.1038/s42255-021-00501-9] [Citation(s) in RCA: 234] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged pandemically across the globe and particularly affects patients with obesity and type 2 diabetes. NAFLD is a complex systemic disease that is characterised by hepatic lipid accumulation, lipotoxicity, insulin resistance, gut dysbiosis and inflammation. In this review, we discuss how metabolic dysregulation, the gut microbiome, innate and adaptive immunity and their interplay contribute to NAFLD pathology. Lipotoxicity has been shown to instigate liver injury, inflammation and insulin resistance. Synchronous metabolic dysfunction, obesity and related nutritional perturbation may alter the gut microbiome, in turn fuelling hepatic and systemic inflammation by direct activation of innate and adaptive immune responses. We review evidence suggesting that, collectively, these unresolved exogenous and endogenous cues drive liver injury, culminating in liver fibrosis and advanced sequelae of this disorder such as liver cirrhosis and hepatocellular carcinoma. Understanding NAFLD as a complex interplay between metabolism, gut microbiota and the immune response will challenge the clinical perception of NAFLD and open new therapeutic avenues.
Collapse
Affiliation(s)
- Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria.
| | - Timon E Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University of Innsbruck, Innsbruck, Austria
| | - Michael Dudek
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Percy Knolle
- Institute of Molecular Immunology and Experimental Oncology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
163
|
Gu X, Lu Q, Zhang C, Tang Z, Chu L. Clinical Application and Progress of Fecal Microbiota Transplantation in Liver Diseases: A Review. Semin Liver Dis 2021; 41:495-506. [PMID: 34261137 PMCID: PMC8492191 DOI: 10.1055/s-0041-1732319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The human gut harbors a dense and highly diverse microbiota of approximately 1,000 bacterial species. The interaction between the host and gut bacteria strongly influences human health. Numerous evidence suggest that intestinal flora imbalance is closely associated with the development and treatment of liver diseases, including acute liver injury and chronic liver diseases (cirrhosis, autoimmune liver disease, and fatty liver). Therefore, regulating the gut microbiota is expected to be a new method for the adjuvant treatment of liver diseases. Fecal microbiota transplantation (FMT) is defined as the transplantation of gut microbiota from healthy donors to sick patients via the upper or lower gastrointestinal route to restore the normal intestinal balance. In this study, we briefly review the current research on the gut microbiota and its link to liver diseases and then summarize the evidence to elucidate the clinical application and development of FMT in liver disease treatment.
Collapse
Affiliation(s)
- Xinpei Gu
- Department of Human Anatomy, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Qin Lu
- Department of Prescription Science, School of Basic Medical Sciences, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chengcheng Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhewei Tang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China,Address for correspondence Liuxi Chu, PhD Institute of Child Development and Education, School of Biological Sciences and Medical Engineering, Southeast UniversityNanjing - 210096China
| | - Liuxi Chu
- Institute of Child Development and Education, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
164
|
Jacob JS, Ahmed A, Cholankeril G. The impact of alteration in gut microbiome in the pathogenesis of nonalcoholic fatty liver disease. Curr Opin Infect Dis 2021; 34:477-482. [PMID: 34267042 DOI: 10.1097/qco.0000000000000759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW We have increasing evidence that alterations of the intestinal microbiome have a strong influence on human health. Previous work has demonstrated the association between changes in the microbiome and metabolic risk factors. One related area of interest is the relationship between dysbiosis and nonalcoholic fatty liver disease (NAFLD), as the global prevalence of NAFLD, and its resultant complications, increases. RECENT FINDINGS In this review, we summarize the hypothesized pathophysiology of dysbiosis-mediated progression of NAFLD, including promotion of an inflammatory intestinal environment, increased intestinal permeability, endogenous ethanol production, short-chain fatty acid production, secondary bile acid metabolism, and choline depletion. We also review potential therapeutic interventions of the microbiome to slow or prevent NAFLD progression, including antibiotics, probiotics, prebiotics, fecal microbiota transplant, and farnesoid × receptor agonism. SUMMARY Much of the evidence supporting dysbiosis-mediated NAFLD progression has been gathered in high-quality animal trials. There remains a need for additional observational and randomized controlled trials in humans to establish causality between the suspected factors and pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Jake S Jacob
- Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford, California
| | - George Cholankeril
- Liver Center, Division of Abdominal Transplantation, Michael E DeBakey Department of General Surgery, Baylor College of Medicine
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
165
|
Nawrot M, Peschard S, Lestavel S, Staels B. Intestine-liver crosstalk in Type 2 Diabetes and non-alcoholic fatty liver disease. Metabolism 2021; 123:154844. [PMID: 34343577 DOI: 10.1016/j.metabol.2021.154844] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes (T2D) and Non-Alcoholic Fatty Liver Disease (NAFLD) are pathologies whose prevalence continues to increase worldwide. Both diseases are precipitated by an excessive caloric intake, which promotes insulin resistance and fatty liver. The role of the intestine and its crosstalk with the liver in the development of these metabolic diseases is receiving increasing attention. Alterations in diet-intestinal microbiota interactions lead to the dysregulation of intestinal functions, resulting in altered metabolite and energy substrate production and increased intestinal permeability. Connected through the portal circulation, these changes in intestinal functions impact the liver and other metabolic organs, such as visceral adipose tissue, hence participating in the development of insulin resistance, and worsening T2D and NAFLD. Thus, targeting the intestine may be an efficient therapeutic approach to cure T2D and NAFLD. In this review, we will first introduce the signaling pathways linking T2D and NAFLD. Next, we will address the role of the gut-liver crosstalk in the development of T2D and NAFLD, with a particular focus on the gut microbiota and the molecular pathways behind the increased intestinal permeability and inflammation. Finally, we will summarize the therapeutic strategies which target the gut and its functions and are currently used or under development to treat T2D and NAFLD.
Collapse
Affiliation(s)
- Margaux Nawrot
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Simon Peschard
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Sophie Lestavel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France
| | - Bart Staels
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011- EGID, F-59000 Lille, France.
| |
Collapse
|
166
|
Vanuytsel T, Tack J, Farre R. The Role of Intestinal Permeability in Gastrointestinal Disorders and Current Methods of Evaluation. Front Nutr 2021; 8:717925. [PMID: 34513903 PMCID: PMC8427160 DOI: 10.3389/fnut.2021.717925] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/04/2021] [Indexed: 12/12/2022] Open
Abstract
An increased intestinal permeability has been described in various gastrointestinal and non-gastrointestinal disorders. Nevertheless, the concept and definition of intestinal permeability is relatively broad and includes not only an altered paracellular route, regulated by tight junction proteins, but also the transcellular route involving membrane transporters and channels, and endocytic mechanisms. Paracellular intestinal permeability can be assessed in vivo by using different molecules (e.g., sugars, polyethylene glycols, 51Cr-EDTA) and ex vivo in Ussing chambers combining electrophysiology and probes of different molecular sizes. The latter is still the gold standard technique for assessing the epithelial barrier function, whereas in vivo techniques, including putative blood biomarkers such as intestinal fatty acid-binding protein and zonulin, are broadly used despite limitations. In the second part of the review, the current evidence of the role of impaired barrier function in the pathophysiology of selected gastrointestinal and liver diseases is discussed. Celiac disease is one of the conditions with the best evidence for impaired barrier function playing a crucial role with zonulin as its proposed regulator. Increased permeability is clearly present in inflammatory bowel disease, but the question of whether this is a primary event or a consequence of inflammation remains unsolved. The gut-liver axis with a crucial role in impaired intestinal barrier function is increasingly recognized in chronic alcoholic and metabolic liver disease. Finally, the current evidence does not support an important role for increased permeability in bile acid diarrhea.
Collapse
Affiliation(s)
- Tim Vanuytsel
- Department of Chronic Diseases, Translational Research Center for Gastrointestinal Disorders, Metabolism and Ageing, Catholic University Leuven, Leuven, Belgium.,Division of Gastroenterology and Hepatology, Leuven University Hospital, Leuven, Belgium
| | - Jan Tack
- Department of Chronic Diseases, Translational Research Center for Gastrointestinal Disorders, Metabolism and Ageing, Catholic University Leuven, Leuven, Belgium.,Division of Gastroenterology and Hepatology, Leuven University Hospital, Leuven, Belgium
| | - Ricard Farre
- Department of Chronic Diseases, Translational Research Center for Gastrointestinal Disorders, Metabolism and Ageing, Catholic University Leuven, Leuven, Belgium
| |
Collapse
|
167
|
Abstract
Antifibrotic therapies for the treatment of liver fibrosis represent an unconquered area of drug development. The significant involvement of the gut microbiota as a driving force in a multitude of liver disease, be it pathogenesis or fibrotic progression, suggest that targeting the gut–liver axis, relevant signaling pathways, and/or manipulation of the gut’s commensal microbial composition and its metabolites may offer opportunities for biomarker discovery, novel therapies and personalized medicine development. Here, we review potential links between bacterial translocation and deficits of host-microbiome compartmentalization and liver fibrosis that occur in settings of advanced chronic liver disease. We discuss established and emerging therapeutic strategies, translated from our current knowledge of the gut–liver axis, targeted at restoring intestinal eubiosis, ameliorating hepatic fibrosis and rising portal hypertension that characterize and define the course of decompensated cirrhosis.
Collapse
|
168
|
Jiang J, Xiong J, Ni J, Chen C, Wang K. Live Combined B. subtilis and E. faecium Alleviate Liver Inflammation, Improve Intestinal Barrier Function, and Modulate Gut Microbiota in Mice with Non-Alcoholic Fatty Liver Disease. Med Sci Monit 2021; 27:e931143. [PMID: 34482357 PMCID: PMC8428156 DOI: 10.12659/msm.931143] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a chronic, progressive liver disease with an increasing incidence rate. This study investigated the protective effects of live combined Bacillus subtilis and Enterococcus faecium (LCBE) on NAFLD, and its possible mechanisms. Material/Methods Five-week-old C57BL/6 mice were randomly divided into 3 groups: chow, HFD, and HFD+LCBE groups. The levels of serum biochemical markers, glucose tolerance, insulin, the inflammatory cytokines IL-1β, IL-6, and TNF-α, LPS, and histological staining were measured using commercial kits. qPCR was used to examine the mRNA expression levels of inflammatory cytokines in the liver. Western blotting was used to determine the protein levels of TLR4, NF-κB p65, PPAR-α, and CPT-1 in the liver, and occludin and Claudin1 in the intestine. The intestinal flora of the mice was analyzed by high-throughput sequencing of the V3–V4 region of 16S rDNA. Results LCBE significantly lowered the body weight, liver/body weight ratio, and serum glucose level, and increased the serum insulin level in NAFLD mice. In addition, LCBE treatment improved the liver function and lipid profile, decreased the levels of LPS and inflammatory cytokines, and downregulated the expression of TLR4 and NF-κB p65. Moreover, LCBE enhanced the intestinal barrier function by increasing the expression of occludin and Claudin1. Furthermore, LCBE modulated the composition of the gut microbiota by reducing the Firmicutes to Bacteroidetes ratio, and the proportion of inflammation-related and LPS-producing bacteria, thus re-arranging the structure of the gut microbiota. Conclusions LCBE protects against NAFLD by alleviating inflammation, restoring the intestinal barrier, and modulating gut microbiota composition.
Collapse
Affiliation(s)
- Jie Jiang
- Department of Gastroenterology and Hepatology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Jie Xiong
- Department of Gastroenterology and Hepatology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China (mainland)
| | - Jianbo Ni
- Department of Gastroenterology and Hepatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Congying Chen
- Department of Gastroenterology and Hepatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| | - Kezhou Wang
- Department of Pathology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China (mainland)
| |
Collapse
|
169
|
Liu C, Wang YL, Yang YY, Zhang NP, Niu C, Shen XZ, Wu J. Novel approaches to intervene gut microbiota in the treatment of chronic liver diseases. FASEB J 2021; 35:e21871. [PMID: 34473374 DOI: 10.1096/fj.202100939r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Recent investigations of gut microbiota have contributed to understanding of the critical role of microbial community in pathophysiology. Dysbiosis not only causes disturbance directly to the gastrointestinal tract but also affects the liver through gut-liver axis. Various types of dysbiosis have been documented in alcoholic liver disease (ALD), nonalcoholic fatty liver disease, autoimmune hepatitis (AIH), primary sclerosing cholangitis, and may be crucial for the initiation, progression, or deterioration to end-stage liver disease. A few microbial species have been identified as the causal factors leading to these chronic illnesses that either do not have clear etiologies or lack effective treatment. Notably, cytolysin-producing Enterococcus faecalis, Klebsiella pneumoniae and Enterococcus gallinarum were defined for ALD, NASH, and AIH, respectively. These groundbreaking discoveries drive a rapid development in innovative therapeutics, such as fecal microbial transplantation and implementation of specific bacteriophages in addition to prebiotics, probiotics, or synbiotics for intervention of dysbiosis. Although most emerging interventions are in preclinical development or early clinical trials, a better delineation of specific dysbiosis in these disorders at metabolic, immunogenic, or molecular levels in establishing particular causal effects aids in modulating or correcting the microbial community which is the part of daily life for human being.
Collapse
Affiliation(s)
- Chang Liu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology & Parasitology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yu-Li Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology & Parasitology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yong-Yu Yang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology & Parasitology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Ning-Ping Zhang
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Chen Niu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology & Parasitology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Xi-Zhong Shen
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| | - Jian Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology & Parasitology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China.,Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China.,Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
170
|
Papotto PH, Yilmaz B, Silva-Santos B. Crosstalk between γδ T cells and the microbiota. Nat Microbiol 2021; 6:1110-1117. [PMID: 34341528 DOI: 10.1038/s41564-021-00948-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
The role of the microbiota in the development and function of γδ T cells-a T cell subset characterized by a T cell receptor composed of one γ-chain and one δ-chain-has been investigated in multiple organs in mice and humans. Interactions between the microbiota and γδ T cells affect both tissue homeostasis and disease pathologies. Notably, microbiota-induced interleukin-17 (IL-17)-producing-γδ T cells can mediate a range of immunological processes, from metabolic disorders to neuroinflammation via the gut-brain axis. However, the bidirectional interactions between γδ T cells and the microbiota have not been fully determined. In this Perspective, we dissect the roles of microbiota in modulating γδ T cell development and function, and evaluate the evidence for γδ T cell selection of commensal communities. We also discuss the potential implications of these cells in health and disease and the major open questions and research avenues in the field.
Collapse
Affiliation(s)
- Pedro H Papotto
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| | - Bahtiyar Yilmaz
- Department for BioMedical Research, Inselspital, University of Bern, Bern, Switzerland
| | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
171
|
Brown E, Hydes T, Hamid A, Cuthbertson DJ. Emerging and Established Therapeutic Approaches for Nonalcoholic Fatty Liver Disease. Clin Ther 2021; 43:1476-1504. [PMID: 34446271 DOI: 10.1016/j.clinthera.2021.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE Nonalcoholic fatty liver disease (NAFLD), more recently referred to as metabolic-associated fatty liver disease, refers to a disease spectrum ranging from hepatic steatosis to nonalcoholic steatohepatitis (NASH), fibrosis, and cirrhosis, associated with hepatic complications (including liver fibrosis, cirrhosis, and hepatocellular carcinoma) and extrahepatic complications (particularly cardiometabolic complications, including type 2 diabetes and cardiovascular disease). Treatment options include lifestyle interventions (dietary modification and physical activity programs) and pharmacologic interventions. Treatment aims should be broad, with a hepatic focus (to improve/reverse hepatic inflammation, fibrosis, and steatohepatitis), ideally with additional extrahepatic effects affecting metabolic co-morbidities (eg, insulin resistance, glucose dysregulation, dyslipidemia), causing weight loss and affording cardiovascular protection. NASH and fibrosis represent the main histopathological features that warrant treatment to prevent disease progression. Despite a paucity of established treatments, the array of potential molecular targets, pathways, and potential treatments is continually evolving. The goal of this article was to provide a narrative review summarizing the emerging and more established therapeutic options considering the complex pathophysiology of NAFLD and the important long-term sequelae of this condition. METHODS The literature was reviewed by using PubMed, conference abstracts, and press releases from early-phase clinical studies to provide an overview of the evidence. FINDINGS As understanding of the pathophysiology of NASH/NAFLD evolves, drugs with different mechanisms of action, targeting different molecular targets and aberrant pathways that mediate hepatic steatosis, inflammation, and fibrosis, have been developed and are being tested in clinical trials. Pharmacologic therapies fall into 4 main categories according to the molecular targets/pathways they disrupt: (1) meta-bolic targets, targeting insulin resistance, hepatic de novo lipogenesis, or substrate utilization; (2) inflam-matory pathways, inhibiting inflammatory cell recruitment/signaling, reduce oxidative/endoplasmic reticulum stress or are antiapoptotic; (3) the liver-gut axis, which modulates bile acid enterohepatic circulation/signaling or alters gut microbiota; and (4) antifibrotic targets, targeting hepatic stellate cells, decrease collagen deposition or increase fibrinolysis. IMPLICATIONS Lifestyle modification must remain the cornerstone of treatment. Pharmacologic treatment is reserved for NASH or fibrosis, the presence of which requires histopathological confirmation. The disease complexity provides a strong rationale for combination therapies targeting multiple pathways simultaneously.
Collapse
Affiliation(s)
- Emily Brown
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom.
| | - T Hydes
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - A Hamid
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - D J Cuthbertson
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom; Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
172
|
Han H, Jiang Y, Wang M, Melaku M, Liu L, Zhao Y, Everaert N, Yi B, Zhang H. Intestinal dysbiosis in nonalcoholic fatty liver disease (NAFLD): focusing on the gut-liver axis. Crit Rev Food Sci Nutr 2021; 63:1689-1706. [PMID: 34404276 DOI: 10.1080/10408398.2021.1966738] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver disorders in humans, partly because it is closely related to metabolic disorders of the liver with increasing prevalence. NAFLD begins with hepatic lipid accumulation, which may cause inflammation and eventually lead to fibrosis in the liver. Numerous studies have demonstrated the close relationship between gut dysfunction (especially the gut microbiota and its metabolites) and the occurrence and progression of NAFLD. The bidirectional communication between the gut and liver, named the gut-liver axis, is mainly mediated by the metabolites derived from both the liver and gut through the biliary tract, portal vein, and systemic circulation. Herein, we review the effects of the gut-liver axis on the pathogenesis of NAFLD. We also comprehensively describe the potential molecular mechanisms from the perspective of the role of liver-derived metabolites and gut-related components in hepatic metabolism and inflammation and gut health, respectively. The study provides insights into the mechanisms underlying current summarizations that support the intricate interactions between a disordered gut and NAFLD and can provide novel strategies to lessen the prevalence and consequence of NAFLD.
Collapse
Affiliation(s)
- Hui Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Yi Jiang
- Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei, China
| | - Mengyu Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mebratu Melaku
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China.,Department of Animal Production and Technology, College of Agriculture, Woldia University, Woldia, Ethiopia
| | - Lei Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nadia Everaert
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Bao Yi
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
173
|
Ghorbani Y, Schwenger KJP, Allard JP. Manipulation of intestinal microbiome as potential treatment for insulin resistance and type 2 diabetes. Eur J Nutr 2021; 60:2361-2379. [PMID: 33651137 DOI: 10.1007/s00394-021-02520-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Increasing evidence suggests that the intestinal microbiome (IM) and bacterial metabolites may influence glucose homeostasis, energy expenditure and the intestinal barrier integrity and lead to the presence of systemic low-grade inflammation, all of which can contribute to insulin resistance (IR) and type 2 diabetes (T2D). The purpose of this review is to explore the role of the IM and bacterial metabolites in the pathogenesis and treatment of these conditions. RESULTS This review summarizes research focused on how to modulate the IM through diet, prebiotics, probiotics, synbiotics and fecal microbiota transplant in order to treat IR and T2D. CONCLUSION There is an abundance of evidence suggesting a role for IM in the pathogenesis of IR and T2D based on reviewed studies using various methods to modulate IM and metabolites. However, the results are inconsistent. Future research should further assess this relationship.
Collapse
Affiliation(s)
- Yasaman Ghorbani
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital, University Health Network, Toronto, Canada
| | | | - Johane P Allard
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Toronto General Hospital, University Health Network, Toronto, Canada.
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada.
- Department of Medicine, University of Toronto, Toronto, Canada.
- Department of Medicine, Division of Gastroenterology, Toronto General Hospital, 585 University Avenue, 9N-973, Toronto, ON, M5G 2N2, Canada.
| |
Collapse
|
174
|
Yuan X, Chang C, Chen X, Li K. Emerging trends and focus of human gastrointestinal microbiome research from 2010-2021: a visualized study. J Transl Med 2021; 19:327. [PMID: 34332587 PMCID: PMC8325541 DOI: 10.1186/s12967-021-03009-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The gastrointestinal microbiome is an important component of the human body and is closely related to human health and disease. This study describes the hotspots of the human gastrointestinal microbiome research and its evolution in the past decade, evaluates the scientific cooperation network, and finally predicts the field's future development trend using bibliometric analysis and a visualized study. METHODS We searched the original articles from January 2010 to February 2021 in the Scopus database using the term "gastrointestinal microbiome" and its synonyms. CiteSpace was used to construct country and author co-occurrence map; conduct journal, citation cocitation analysis, and reference co-citation knowledge map; and form a keywords co-occurrence map, a clustering knowledge map, timeline view of keywords, and burst term map. RESULT A total of 4444 documents published from January 2010 to February 2021 were analysed. In approximately the past decade, the number of articles on the human gastrointestinal microbiome has increased rapidly, and the research topics focus on different populations, research methods, and detection methods. All countries and regions in the world, led by the US, are studying the human gastrointestinal microbiome, and many research teams with close cooperation have been formed. The research has been published extensively in microbiology journals and clinical medicine journals, and the highly cited articles mainly describe the relationship between gastrointestinal microorganisms and human health and disease. Regarding the research emphasis, researchers' exploration of the human gastrointestinal microbiome (2011-2013) was at a relatively macro and superficial stage and sought to determine how the gastrointestinal microbiome relates to humans. From 2014 to 2017, increasingly more studies were conducted to determine the interaction between human gastrointestinal flora and various organs and systems. In addition, researchers (2018-2021) focused on the gastrointestinal microbial community and the diversity of certain types of microbes. CONCLUSION Over time, the scope of the research on the clinical uses of the gastrointestinal microbiome gradually increased, and the contents were gradually deepened and developed towards a more precise level. The study of the human gastrointestinal microbiome is an ongoing research hotspot and contributes to human health.
Collapse
Affiliation(s)
- Xingzhu Yuan
- West China School of Nursing/ West China Hospital, Sichuan University, No.8 Teaching Building, Chengdu City, 610041, Sichuan province, China
| | - Chengting Chang
- West China School of Nursing/ West China Hospital, Sichuan University, No.8 Teaching Building, Chengdu City, 610041, Sichuan province, China
| | - Xinrong Chen
- West China School of Nursing/ West China Hospital, Sichuan University, No.8 Teaching Building, Chengdu City, 610041, Sichuan province, China
| | - Ka Li
- West China School of Nursing/ West China Hospital, Sichuan University, No.8 Teaching Building, Chengdu City, 610041, Sichuan province, China.
| |
Collapse
|
175
|
Zhang C, Yang M. Current Options and Future Directions for NAFLD and NASH Treatment. Int J Mol Sci 2021; 22:ijms22147571. [PMID: 34299189 PMCID: PMC8306701 DOI: 10.3390/ijms22147571] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide, with a broad spectrum ranging from simple steatosis to advanced stage of nonalcoholic steatohepatitis (NASH). Although there are many undergoing clinical trials for NAFLD treatment, there is no currently approved treatment. NAFLD accounts as a major causing factor for the development of hepatocellular carcinoma (HCC), and its incidence rises accompanying the prevalence of obesity and diabetes. Reprogramming of antidiabetic and anti-obesity medicine is a major treatment option for NAFLD and NASH. Liver inflammation and cellular death, with or without fibrosis account for the progression of NAFLD to NASH. Therefore, molecules and signaling pathways involved in hepatic inflammation, fibrosis, and cell death are critically important targets for the therapy of NAFLD and NASH. In addition, the avoidance of aberrant infiltration of inflammatory cytokines by treating with CCR antagonists also provides a therapeutic option. Currently, there is an increasing number of pre-clinical and clinical trials undergoing to evaluate the effects of antidiabetic and anti-obesity drugs, antibiotics, pan-caspase inhibitors, CCR2/5 antagonists, and others on NAFLD, NASH, and liver fibrosis. Non-invasive serum diagnostic markers are developed for fulfilling the need of diagnostic testing in a large amount of NAFLD cases. Overall, a better understanding of the underlying mechanism of the pathogenesis of NAFLD is helpful to choose an optimized treatment.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
176
|
Zhu F, Ke Y, Luo Y, Wu J, Wu P, Ma F, Liu Y. Effects of Different Treatment of Fecal Microbiota Transplantation Techniques on Treatment of Ulcerative Colitis in Rats. Front Microbiol 2021; 12:683234. [PMID: 34335508 PMCID: PMC8317227 DOI: 10.3389/fmicb.2021.683234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/11/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Ulcerative colitis (UC) is a chronic non-specific inflammatory bowel disease with abdominal pain, mucus, pus and blood in the stool as the main clinical manifestations. The pathogenesis of UC is still not completely clear, and multiple factors, such as genetic susceptibility, immune response, intestinal microecological changes and environmental factors, together lead to the onset of UC. In recent years, the role of intestinal microbiota disturbances on the pathogenesis of UC has received widespread attention. Therefore, fecal microbiota transplantation (FMT), which changes the intestinal microecological environment of UC patients by transplantation of normal fecal bacteria, has attracted increasing attention from researchers. However, there are no guidelines to recommend fresh FMT or frozen FMT in the treatment of UC, and there are few studies on this. Therefore, the purpose of this study was to explore the effects of fresh and frozen FMT methods on the treatment of experimental UC models in rats. Results: Compared with the model control group, all FMT groups achieved better efficacy, mainly manifested as weight gain by the rats, improvements in fecal characteristics and blood stools, reduced inflammatory factors and normal bacterial microbiota. The efficacy of the frozen FMT group was better than that of the fresh FMT group in terms of behavior and colon length. Conclusion: FMT method supplements the gut microbiota with beneficial bacteria, such as short-chain fatty acid-producing bacteria. These bacteria can regulate intestinal function, protect the mucosal barrier and reduce harmful bacteria, thus mitigating the damage to the intestinal barrier and the associated inflammatory response, resulting in UC remission. FMT is a feasible method for treating UC, with frozen FMT having a superior therapeutic effect than that of fresh FMT.
Collapse
Affiliation(s)
- Fangyuan Zhu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yifan Ke
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiting Luo
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiaqian Wu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Pei Wu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangxiao Ma
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yingchao Liu
- Academic Affairs Office, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
177
|
Danne C, Rolhion N, Sokol H. Recipient factors in faecal microbiota transplantation: one stool does not fit all. Nat Rev Gastroenterol Hepatol 2021; 18:503-513. [PMID: 33907321 DOI: 10.1038/s41575-021-00441-5] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2021] [Indexed: 02/08/2023]
Abstract
Faecal microbiota transplantation (FMT) is a promising therapy for chronic diseases associated with gut microbiota alterations. FMT cures 90% of recurrent Clostridioides difficile infections. However, in complex diseases, such as inflammatory bowel disease, irritable bowel syndrome and metabolic syndrome, its efficacy remains variable. It is accepted that donor selection and sample administration are key determinants of FMT success, yet little is known about the recipient factors that affect it. In this Perspective, we discuss the effects of recipient parameters, such as genetics, immunity, microbiota and lifestyle, on donor microbiota engraftment and clinical efficacy. Emerging evidence supports the possibility that controlling inflammation in the recipient intestine might facilitate engraftment by reducing host immune system pressure on the newly transferred microbiota. Deciphering FMT engraftment rules and developing novel therapeutic strategies are priorities to alleviate the burden of chronic diseases associated with an altered gut microbiota such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Camille Danne
- INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France.,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France
| | - Nathalie Rolhion
- Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France.,Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France.,French Group of Fecal Microbiota Transplantation (GFTF), Paris, France
| | - Harry Sokol
- INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France. .,Paris Center for Microbiome Medicine (PaCeMM) FHU, Paris, France. .,Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, Paris, France. .,French Group of Fecal Microbiota Transplantation (GFTF), Paris, France. .,AP-HP Fecal Microbiota transplantation Center, Saint Antoine Hospital, Paris, France.
| |
Collapse
|
178
|
Wang B, Wang L, Wang H, Dai H, Lu X, Lee YK, Gu Z, Zhao J, Zhang H, Chen W, Wang G. Targeting the Gut Microbiota for Remediating Obesity and Related Metabolic Disorders. J Nutr 2021; 151:1703-1716. [PMID: 33982127 DOI: 10.1093/jn/nxab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/19/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
The rate of obesity is rapidly increasing and has become a health and economic burden worldwide. As recent studies have revealed that the gut microbiota is closely linked to obesity, researchers have used various approaches to modulate the gut microbiota to treat the condition. Dietary composition and energy intake strongly affect the composition and function of the gut microbiota. Intestinal microbial changes alter the composition of bile acids and fatty acids and regulate bacterial lipopolysaccharide production, all of which influence energy metabolism and immunity. Evidence also suggests that remodeling the gut microbiota through intake of probiotics, prebiotics, fermented foods, and dietary plants, as well as by fecal microbiota transplantation, are feasible methods to remediate obesity.
Collapse
Affiliation(s)
- Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Haojue Wang
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Hongyan Dai
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Xianyi Lu
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| |
Collapse
|
179
|
Kao TW, Huang CC. Recent Progress in Metabolic Syndrome Research and Therapeutics. Int J Mol Sci 2021; 22:6862. [PMID: 34202257 PMCID: PMC8269131 DOI: 10.3390/ijms22136862] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolic syndrome (MetS) is a well-defined yet difficult-to-manage disease entity. Both the precipitous rise in its incidence due to contemporary lifestyles and the growing heterogeneity among affected populations present unprecedented challenges. Moreover, the predisposed risk for developing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in populations with MetS, and the viral impacts on host metabolic parameters, underscores the need to investigate this mechanism thoroughly. Recent investigations of metabolomics and proteomics have revealed not only differentially expressed substances in MetS, but also the consequences of diet consumption and physical activity on energy metabolism. These variations in metabolites, as well as protein products, also influence a wide spectrum of host characteristics, from cellular behavior to phenotype. Research on the dysregulation of gut microbiota and the resultant inflammatory status has also contributed to our understanding of the underlying pathogenic mechanisms. As for state-of-the-art therapies, advancing depictions of the bio-molecular landscape of MetS have emerged and now play a key role in individualized precision medicine. Fecal microbiota transplantation, aiming to restore the host's homeostasis, and targeting of the bile acid signaling pathway are two approaches to combatting MetS. Comprehensive molecular inquiries about MetS by omics measures are mandatory to facilitate the development of novel therapeutic modalities.
Collapse
Affiliation(s)
- Ting-Wei Kao
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan;
| | - Chin-Chou Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei 112, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
180
|
Nonalcoholic Fatty Liver Disease (NAFLD) as Model of Gut-Liver Axis Interaction: From Pathophysiology to Potential Target of Treatment for Personalized Therapy. Int J Mol Sci 2021; 22:ijms22126485. [PMID: 34204274 PMCID: PMC8233936 DOI: 10.3390/ijms22126485] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading cause of liver disease worldwide, affecting both adults and children and will result, in the near future, as the leading cause of end-stage liver disease. Indeed, its prevalence is rapidly increasing, and NAFLD is becoming a major public health concern. For this reason, great efforts are needed to identify its pathogenetic factors and new therapeutic approaches. In the past decade, enormous advances understanding the gut-liver axis-the complex network of cross-talking between the gut, microbiome and liver through the portal circulation-have elucidated its role as one of the main actors in the pathogenesis of NAFLD. Indeed, evidence shows that gut microbiota is involved in the development and progression of liver steatosis, inflammation and fibrosis seen in the context of NAFLD, as well as in the process of hepatocarcinogenesis. As a result, gut microbiota is currently emerging as a non-invasive biomarker for the diagnosis of disease and for the assessment of its severity. Additionally, to its enormous diagnostic potential, gut microbiota is currently studied as a therapeutic target in NAFLD: several different approaches targeting the gut homeostasis such as antibiotics, prebiotics, probiotics, symbiotics, adsorbents, bariatric surgery and fecal microbiota transplantation are emerging as promising therapeutic options.
Collapse
|
181
|
Fecal Microbiota Transplantation in Patients with HBV Infection or Other Chronic Liver Diseases: Update on Current Knowledge and Future Perspectives. J Clin Med 2021; 10:jcm10122605. [PMID: 34204748 PMCID: PMC8231596 DOI: 10.3390/jcm10122605] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Liver disease and gut dysbiosis are strictly associated, and the pathophysiology of this bidirectional relationship has recently been the subject of several investigations. Growing evidence highlights the link between gut microbiota composition, impairment of the gut-liver axis, and the development or progression of liver disease. Therefore, the modulation of gut microbiota to maintain homeostasis of the gut-liver axis could represent a potential instrument to halt liver damage, modify the course of liver disease, and improve clinical outcomes. Among all the methods available to achieve this purpose, fecal microbiota transplantation (FMT) is one of the most promising, being able to directly reshape the recipient’s gut microbial communities. In this review, we report the main characteristics of gut dysbiosis and its pathogenetic consequences in cirrhotic patients, discussing the emerging data on the application of FMT for liver disease in different clinical settings.
Collapse
|
182
|
Response to Ianiro et al. Am J Gastroenterol 2021; 116:1361-1362. [PMID: 34074837 DOI: 10.14309/ajg.0000000000001160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
183
|
|
184
|
Fecal microbiota transplantation in human metabolic diseases: From a murky past to a bright future? Cell Metab 2021; 33:1098-1110. [PMID: 34077717 DOI: 10.1016/j.cmet.2021.05.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/26/2021] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Fecal microbiota transplantation (FMT) is gaining considerable traction as a therapeutic approach to influence the course of a plethora of chronic conditions, ranging from metabolic syndrome and malignancies to auto-immune and neurological diseases, and helped to establish the contribution of the gut microbiome to these conditions. Although FMT procedures have yielded important mechanistic insights, their use in clinical practice may be limited due to practical objections in the setting of metabolic diseases. While its applicability is established to treat recurrent Clostridiodes difficile, FMT is emerging in ulcerative colitis and various other diseases. A particularly new insight is that FMTs may not only alter insulin sensitivity but may also alter the course of type 1 diabetes by attenuating underlying auto-immunity. In this review, we will outline the major principles and pitfalls of FMT and where optimization of study design and the procedure itself will further advance the field of cardiometabolic medicine.
Collapse
|
185
|
Gawlik-Kotelnicka O, Strzelecki D. Probiotics as a Treatment for "Metabolic Depression"? A Rationale for Future Studies. Pharmaceuticals (Basel) 2021; 14:ph14040384. [PMID: 33924064 PMCID: PMC8074252 DOI: 10.3390/ph14040384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/06/2023] Open
Abstract
Depression and metabolic diseases often coexist, having several features in common, e.g., chronic low-grade inflammation and intestinal dysbiosis. Different microbiota interventions have been proposed to be used as a treatment for these disorders. In the paper, we review the efficacy of probiotics in depressive disorders, obesity, metabolic syndrome and its liver equivalent based on the published experimental studies, clinical trials and meta-analyses. Probiotics seem to be effective in reducing depressive symptoms when administered in addition to antidepressants. Additionally, probiotics intake may ameliorate some of the clinical components of metabolic diseases. However, standardized methodology regarding probiotics use in clinical trials has not been established yet. In this narrative review, we discuss current knowledge on the recently used methodology with its strengths and limitations and propose criteria that may be implemented to create a new study of the effectiveness of probiotics in depressive disorders comorbid with metabolic abnormalities. We put across our choice on type of study population, probiotics genus, strains, dosages and formulations, intervention period, as well as primary and secondary outcome measures.
Collapse
|
186
|
Martín-Mateos R, Albillos A. The Role of the Gut-Liver Axis in Metabolic Dysfunction-Associated Fatty Liver Disease. Front Immunol 2021; 12:660179. [PMID: 33936094 PMCID: PMC8085382 DOI: 10.3389/fimmu.2021.660179] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
The complex interplay between the gut microbiota, the intestinal barrier, the immune system and the liver is strongly influenced by environmental and genetic factors that can disrupt the homeostasis leading to disease. Among the modulable factors, diet has been identified as a key regulator of microbiota composition in patients with metabolic syndrome and related diseases, including the metabolic dysfunction-associated fatty liver disease (MAFLD). The altered microbiota disrupts the intestinal barrier at different levels inducing functional and structural changes at the mucus lining, the intercellular junctions on the epithelial layer, or at the recently characterized vascular barrier. Barrier disruption leads to an increased gut permeability to bacteria and derived products which challenge the immune system and promote inflammation. All these alterations contribute to the pathogenesis of MAFLD, and thus, therapeutic approaches targeting the gut-liver-axis are increasingly being explored. In addition, the specific changes induced in the intestinal flora may allow to characterize distinctive microbial signatures for non-invasive diagnosis, severity stratification and disease monitoring.
Collapse
Affiliation(s)
| | - Agustín Albillos
- Department of Gastroenterology and Hepatology, Hospital Universitario Ramón y Cajal, Universidad de Alcalá, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
187
|
Abstract
Fecal microbiota transplantation (FMT) has been recommended in clinical guidelines for the treatment of recurrent Clostridioides difficile infection (CDI). However, it is considered investigational by most regulatory agencies. As the adoption of FMT has increased from a small group of CDI experts alone to more widespread use, there has been a corresponding increase in concern regarding potential risk. FMT is largely considered a safe procedure although risks described range from mild gastrointestinal symptoms to serious infection. Currently, there is variability in how "FMT" is characterized specifically regarding testing approach, which, in turn, impacts the risk profile. This has been highlighted by the rare cases of multidrug-resistant organisms, Shiga toxin-producing Escherichia and enteropathogenic E. coli, recently reported, where these organisms were not screened. These cases have prompted additional screening mandates from the US Food and Drug Administration (FDA), which has maintained its policy of enforcement discretion for the use of FMT for CDI not responding to standard therapy. Here, we examine the evolving risk landscape of FMT.
Collapse
|
188
|
Stojsavljevic-Shapeski S, Duvnjak M, Virovic-Jukic L, Hrabar D, Smircic Duvnjak L. New Drugs on the Block-Emerging Treatments for Nonalcoholic Steatohepatitis. J Clin Transl Hepatol 2021; 9:51-59. [PMID: 33604255 PMCID: PMC7868699 DOI: 10.14218/jcth.2020.00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 09/18/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Patients with nonalcoholic steatohepatitis (NASH) are at higher risk of progression to advanced stages of fibrosis, cirrhosis, hepatocellular carcinoma and other end-stage liver disease complications. When addressing treatment of NASH, we have limited approved options, and the mainstay of therapy is lifestyle intervention. Extensive research and revelation in the field of pathogenesis of NASH has offered new possibilities of treatment and emerging new drugs that are being tested currently in numerous preclinical and clinical trials. These drugs target almost all steps in the pathogenesis of NASH to improve insulin sensitivity, glucose and lipid metabolism, to inhibit de novo lipogenesis and delivery of lipids to the liver, and to influence apoptosis, inflammation and fibrogenesis. Although NASH is a multifactorial disease, in the future we could identify the predominating pathological mechanism and, by choosing the most appropriate specific medication, tailor the treatment for every patient individually.
Collapse
Affiliation(s)
| | - Marko Duvnjak
- Polyclinic Duvnjak, Zagreb, Croatia
- University of Applied Health Science, Zagreb, Croatia
- Correspondence to: Marko Duvnjak, Polyclinic Duvnjak, Kukuljeviceva 2, Zagreb 10000, Croatia. Tel: +38-5989838930, E-mail:
| | - Lucija Virovic-Jukic
- Department of Gastroenterology and Hepatology, Clinical Hospital Center Sestre Milosrdnice, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Davor Hrabar
- Department of Gastroenterology and Hepatology, Clinical Hospital Center Sestre Milosrdnice, Zagreb, Croatia
- School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Lea Smircic Duvnjak
- University of Applied Health Science, Zagreb, Croatia
- Vuk Vrhovac University Clinic-UH Merkur, Zagreb, Croatia
| |
Collapse
|
189
|
Peiseler M, Tacke F. Inflammatory Mechanisms Underlying Nonalcoholic Steatohepatitis and the Transition to Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:730. [PMID: 33578800 PMCID: PMC7916589 DOI: 10.3390/cancers13040730] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/24/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a rising chronic liver disease and comprises a spectrum from simple steatosis to nonalcoholic steatohepatitis (NASH) to end-stage cirrhosis and risk of hepatocellular carcinoma (HCC). The pathogenesis of NAFLD is multifactorial, but inflammation is considered the key element of disease progression. The liver harbors an abundance of resident immune cells, that in concert with recruited immune cells, orchestrate steatohepatitis. While inflammatory processes drive fibrosis and disease progression in NASH, fueling the ground for HCC development, immunity also exerts antitumor activities. Furthermore, immunotherapy is a promising new treatment of HCC, warranting a more detailed understanding of inflammatory mechanisms underlying the progression of NASH and transition to HCC. Novel methodologies such as single-cell sequencing, genetic fate mapping, and intravital microscopy have unraveled complex mechanisms behind immune-mediated liver injury. In this review, we highlight some of the emerging paradigms, including macrophage heterogeneity, contributions of nonclassical immune cells, the role of the adaptive immune system, interorgan crosstalk with adipose tissue and gut microbiota. Furthermore, we summarize recent advances in preclinical and clinical studies aimed at modulating the inflammatory cascade and discuss how these novel therapeutic avenues may help in preventing or combating NAFLD-associated HCC.
Collapse
Affiliation(s)
- Moritz Peiseler
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany;
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pharmacology & Physiology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité University Medicine Berlin, 13353 Berlin, Germany;
| |
Collapse
|
190
|
Plaza-Díaz J, Solis-Urra P, Aragón-Vela J, Rodríguez-Rodríguez F, Olivares-Arancibia J, Álvarez-Mercado AI. Insights into the Impact of Microbiota in the Treatment of NAFLD/NASH and Its Potential as a Biomarker for Prognosis and Diagnosis. Biomedicines 2021; 9:145. [PMID: 33546191 PMCID: PMC7913217 DOI: 10.3390/biomedicines9020145] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an increasing cause of chronic liver illness associated with obesity and metabolic disorders, such as hypertension, dyslipidemia, or type 2 diabetes mellitus. A more severe type of NAFLD, non-alcoholic steatohepatitis (NASH), is considered an ongoing global health threat and dramatically increases the risks of cirrhosis, liver failure, and hepatocellular carcinoma. Several reports have demonstrated that liver steatosis is associated with the elevation of certain clinical and biochemical markers but with low predictive potential. In addition, current imaging methods are inaccurate and inadequate for quantification of liver steatosis and do not distinguish clearly between the microvesicular and the macrovesicular types. On the other hand, an unhealthy status usually presents an altered gut microbiota, associated with the loss of its functions. Indeed, NAFLD pathophysiology has been linked to lower microbial diversity and a weakened intestinal barrier, exposing the host to bacterial components and stimulating pathways of immune defense and inflammation via toll-like receptor signaling. Moreover, this activation of inflammation in hepatocytes induces progression from simple steatosis to NASH. In the present review, we aim to: (a) summarize studies on both human and animals addressed to determine the impact of alterations in gut microbiota in NASH; (b) evaluate the potential role of such alterations as biomarkers for prognosis and diagnosis of this disorder; and (c) discuss the involvement of microbiota in the current treatment for NAFLD/NASH (i.e., bariatric surgery, physical exercise and lifestyle, diet, probiotics and prebiotics, and fecal microbiota transplantation).
Collapse
Affiliation(s)
- Julio Plaza-Díaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
| | - Patricio Solis-Urra
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile;
| | - Jerónimo Aragón-Vela
- Department of Nutrition, Exercise, and Sport (NEXS), University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Fernando Rodríguez-Rodríguez
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
| | - Jorge Olivares-Arancibia
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
- Grupo AFySE, Investigación en Actividad Física y Salud Escolar, Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad de las Américas, Santiago 8370035, Chile
| | - Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18014 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. Armilla, 18016 Granada, Spain
| |
Collapse
|
191
|
D. Goldenberg S, Merrick B. The role of faecal microbiota transplantation: looking beyond Clostridioides difficile infection. Ther Adv Infect Dis 2021; 8:2049936120981526. [PMID: 33614028 PMCID: PMC7841662 DOI: 10.1177/2049936120981526] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
Faecal microbiota transplantation (FMT) is the transfer of screened and minimally processed faecal material from a 'healthy' donor to 'diseased' recipient. It has an established role, and is recommended as a therapeutic strategy, in the management of recurrent Clostridioides difficile infection (CDI). Recognition that gut dysbiosis is associated with, and may contribute to, numerous disease states has led to interest in exploiting FMT to 'correct' this microbial imbalance. Conditions for which it is proposed to be beneficial include inflammatory bowel disease, irritable bowel syndrome, liver disease and hepatic encephalopathy, neuropsychiatric conditions such as depression and anxiety, systemic inflammatory states like sepsis, and even coronavirus disease 2019. To understand what role, if any, FMT may play in the management of these conditions, it is important to consider the potential risks and benefits of the therapy. Regardless, there are several barriers to its more widespread adoption, which include incompletely understood mechanism of action (especially outside of CDI), inability to standardise treatment, disagreement on its active ingredients and how it should be regulated, and lack of long-term outcome and safety data. Whilst the transfer of faecal material from one individual to another to treat ailments or improve health has a history dating back thousands of years, there are fewer than 10 randomised controlled trials supporting its use. Moving forward, it will be imperative to gather as much data from FMT donors and recipients over as long a timeframe as possible, and for trials to be conducted with rigorous methodology, including appropriate control groups, in order to best understand the utility of FMT for indications beyond CDI. This review discusses the history of FMT, its appreciable mechanisms of action with reference to CDI, indications for FMT with an emerging evidence base above and beyond CDI, and future perspectives on the field.
Collapse
Affiliation(s)
- Simon D. Goldenberg
- Centre for Clinical Infection & Diagnostics Research, King’s College London and Guy’s & St. Thomas’ NHS Foundation Trust, 5th floor, North Wing, St Thomas’ hospital, Westminster Bridge Road, London, SE1 7EH, UK
| | - Blair Merrick
- Centre for Clinical Infection & Diagnostics Research, King’s College London and Guy’s & St. Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
192
|
Abstract
Aging is characterized by the functional decline of tissues and organs and increased risk of aging-associated disorders, which pose major societal challenges and are a public health priority. Despite extensive human genetics studies, limited progress has been made linking genetics with aging. There is a growing realization that the altered assembly, structure and dynamics of the gut microbiota actively participate in the aging process. Age-related microbial dysbiosis is involved in reshaping immune responses during aging, which manifest as immunosenescence (insufficiency) and inflammaging (over-reaction) that accompany many age-associated enteric and extraenteric diseases. The gut microbiota can be regulated, suggesting a potential target for aging interventions. This review summarizes recent findings on the physiological succession of gut microbiota across the life-cycle, the roles and mechanisms of gut microbiota in healthy aging, alterations of gut microbiota and aging-associated diseases, and the gut microbiota-targeted anti-aging strategies.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiumei Yan
- Department of Geriatrics, Lishui Second People's Hospital, Lishui, Zhejiang, China
| | - Shaochang Wu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
193
|
Jennison E, Byrne CD. The role of the gut microbiome and diet in the pathogenesis of non-alcoholic fatty liver disease. Clin Mol Hepatol 2020; 27:22-43. [PMID: 33291863 PMCID: PMC7820212 DOI: 10.3350/cmh.2020.0129] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver disease, with a prevalence that is increasing in parallel with the global rise in obesity and type 2 diabetes mellitus. The pathogenesis of NAFLD is complex and multifactorial, involving environmental, genetic and metabolic factors. The role of the diet and the gut microbiome is gaining interest as a significant factor in NAFLD pathogenesis. Dietary factors induce alterations in the composition of the gut microbiome (dysbiosis), commonly reflected by a reduction of the beneficial species and an increase in pathogenic microbiota. Due to the close relationship between the gut and liver, altering the gut microbiome can affect liver functions; promoting hepatic steatosis and inflammation. This review summarises the current evidence supporting an association between NAFLD and the gut microbiome and dietary factors. The review also explores potential underlying mechanisms underpinning these associations and whether manipulation of the gut microbiome is a potential therapeutic strategy to prevent or treat NAFLD.
Collapse
Affiliation(s)
- Erica Jennison
- Department of Chemical Pathology, Southampton General Hospital, University Hospital Southampton, Southampton, UK
| | - Christopher D Byrne
- Department of Nutrition and Metabolism, Faculty of Medicine, University of Southampton, Southampton, UK.,Southampton National Institute for Health Research Biomedical Research Centre, Southampton General Hospital, University Hospital Southampton, Southampton, UK
| |
Collapse
|
194
|
Plaza-Díaz J, Solís-Urra P, Rodríguez-Rodríguez F, Olivares-Arancibia J, Navarro-Oliveros M, Abadía-Molina F, Álvarez-Mercado AI. The Gut Barrier, Intestinal Microbiota, and Liver Disease: Molecular Mechanisms and Strategies to Manage. Int J Mol Sci 2020; 21:E8351. [PMID: 33171747 PMCID: PMC7664383 DOI: 10.3390/ijms21218351] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Liver disease encompasses pathologies as non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, alcohol liver disease, hepatocellular carcinoma, viral hepatitis, and autoimmune hepatitis. Nowadays, underlying mechanisms associating gut permeability and liver disease development are not well understood, although evidence points to the involvement of intestinal microbiota and their metabolites. Animal studies have shown alterations in Toll-like receptor signaling related to the leaky gut syndrome by the action of bacterial lipopolysaccharide. In humans, modifications of the intestinal microbiota in intestinal permeability have also been related to liver disease. Some of these changes were observed in bacterial species belonging Roseburia, Streptococcus, and Rothia. Currently, numerous strategies to treat liver disease are being assessed. This review summarizes and discusses studies addressed to determine mechanisms associated with the microbiota able to alter the intestinal barrier complementing the progress and advancement of liver disease, as well as the main strategies under development to manage these pathologies. We highlight those approaches that have shown improvement in intestinal microbiota and barrier function, namely lifestyle changes (diet and physical activity) and probiotics intervention. Nevertheless, knowledge about how such modifications are beneficial is still limited and specific mechanisms involved are not clear. Thus, further in-vitro, animal, and human studies are needed.
Collapse
Affiliation(s)
- Julio Plaza-Díaz
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada;
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
| | - Patricio Solís-Urra
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2531015, Chile;
| | - Fernando Rodríguez-Rodríguez
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
| | - Jorge Olivares-Arancibia
- IRyS Research Group, School of Physical Education, Pontificia Universidad Católica de Valparaíso, Valparaíso 2374631, Chile; (F.R.-R.); (J.O.-A.)
- Escuela de Pedagogía en Educación Física, Facultad de Educación, Universidad de las Américas, Santiago 8370035, Chile
| | - Miguel Navarro-Oliveros
- BioCritic. Group for Biomedical Research in Critical Care Medicine, 47005 Valladolid, Spain;
| | - Francisco Abadía-Molina
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain;
- Department of Cell Biology, School of Sciences, University of Granada, 18071 Granada, Spain
| | - Ana I. Álvarez-Mercado
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, 18071 Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix”, Center of Biomedical Research, University of Granada, Avda. del Conocimiento s/n. 18016 Armilla, Granada, Spain;
| |
Collapse
|
195
|
Sharma L, Riva A. Intestinal Barrier Function in Health and Disease-Any role of SARS-CoV-2? Microorganisms 2020; 8:E1744. [PMID: 33172188 PMCID: PMC7694956 DOI: 10.3390/microorganisms8111744] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/01/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations in the structure and function of the intestinal barrier play a role in the pathogenesis of a multitude of diseases. During the recent and ongoing coronavirus disease (COVID-19) pandemic, it has become clear that the gastrointestinal system and the gut barrier may be affected by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, and disruption of barrier functions or intestinal microbial dysbiosis may have an impact on the progression and severity of this new disease. In this review, we aim to provide an overview of current evidence on the involvement of gut alterations in human disease including COVID-19, with a prospective outlook on supportive therapeutic strategies that may be investigated to rescue intestinal barrier functions and possibly facilitate clinical improvement in these patients.
Collapse
Affiliation(s)
- Lakshya Sharma
- Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK;
| | - Antonio Riva
- Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, UK;
- Foundation for Liver Research, Institute of Hepatology, London SE5 9NT, UK
| |
Collapse
|
196
|
Acharya C, Bajaj JS. Transmitting Diet-Related Microbial Benefit through Fecal Microbiota Transplant in NASH: Can Microbiota Cut Through the Fat? Hepatol Commun 2020; 4:1559-1561. [PMID: 33163828 PMCID: PMC7603523 DOI: 10.1002/hep4.1596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Chathur Acharya
- Division of Gastroenterology, Hepatology and Nutrition Virginia Commonwealth University and Central Virginia Veterans Healthcare System Richmond VA USA
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition Virginia Commonwealth University and Central Virginia Veterans Healthcare System Richmond VA USA
| |
Collapse
|
197
|
Ding JH, Jin Z, Yang XX, Lou J, Shan WX, Hu YX, Du Q, Liao QS, Xie R, Xu JY. Role of gut microbiota via the gut-liver-brain axis in digestive diseases. World J Gastroenterol 2020; 26:6141-6162. [PMID: 33177790 PMCID: PMC7596643 DOI: 10.3748/wjg.v26.i40.6141] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/29/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The gut-brain axis is a bidirectional information interaction system between the central nervous system (CNS) and the gastrointestinal tract, in which gut microbiota plays a key role. The gut microbiota forms a complex network with the enteric nervous system, the autonomic nervous system, and the neuroendocrine and neuroimmunity of the CNS, which is called the microbiota-gut-brain axis. Due to the close anatomical and functional interaction of the gut-liver axis, the microbiota-gut-liver-brain axis has attracted increased attention in recent years. The microbiota-gut-liver-brain axis mediates the occurrence and development of many diseases, and it offers a direction for the research of disease treatment. In this review, we mainly discuss the role of the gut microbiota in the irritable bowel syndrome, inflammatory bowel disease, functional dyspepsia, non-alcoholic fatty liver disease, alcoholic liver disease, cirrhosis and hepatic encephalopathy via the gut-liver-brain axis, and the focus is to clarify the potential mechanisms and treatment of digestive diseases based on the further understanding of the microbiota-gut- liver-brain axis.
Collapse
Affiliation(s)
- Jian-Hong Ding
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Zhe Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Xiao-Xu Yang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Jun Lou
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Wei-Xi Shan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Yan-Xia Hu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Qian Du
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Qiu-Shi Liao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Rui Xie
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| | - Jing-Yu Xu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, Guizhou Province, China
| |
Collapse
|
198
|
Witjes JJ, Smits LP, Pekmez CT, Prodan A, Meijnikman AS, Troelstra MA, Bouter KEC, Herrema H, Levin E, Holleboom AG, Winkelmeijer M, Beuers UH, van Lienden K, Aron-Wisnewky J, Mannisto V, Bergman JJ, Runge JH, Nederveen AJ, Dragsted LO, Konstanti P, Zoetendal EG, de Vos W, Verheij J, Groen AK, Nieuwdorp M. Donor Fecal Microbiota Transplantation Alters Gut Microbiota and Metabolites in Obese Individuals With Steatohepatitis. Hepatol Commun 2020; 4:1578-1590. [PMID: 33163830 PMCID: PMC7603524 DOI: 10.1002/hep4.1601] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
The intestinal microbiota has been linked to the development and prevalence of steatohepatitis in humans. Interestingly, steatohepatitis is significantly lower in individuals taking a plant-based, low-animal-protein diet, which is thought to be mediated by gut microbiota. However, data on causality between these observations in humans is scarce. In this regard, fecal microbiota transplantation (FMT) using healthy donors is safe and is capable of changing microbial composition in human disease. We therefore performed a double-blind randomized controlled proof-of-principle study in which individuals with hepatic steatosis on ultrasound were randomized to two study arms: lean vegan donor (allogenic n = 10) or own (autologous n = 11) FMT. Both were performed three times at 8-week intervals. A liver biopsy was performed at baseline and after 24 weeks in every subject to determine histopathology (Nonalcoholic Steatohepatitis Clinical Research Network) classification and changes in hepatic gene expression based on RNA sequencing. Secondary outcome parameters were changes in intestinal microbiota composition and fasting plasma metabolomics. We observed a trend toward improved necro-inflammatory histology, and found significant changes in expression of hepatic genes involved in inflammation and lipid metabolism following allogenic FMT. Intestinal microbial community structure changed following allogenic FMT, which was associated with changes in plasma metabolites as well as markers of . Conclusion: Allogenic FMT using lean vegan donors in individuals with hepatic steatosis shows an effect on intestinal microbiota composition, which is associated with beneficial changes in plasma metabolites and markers of steatohepatitis.
Collapse
Affiliation(s)
- Julia J Witjes
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Loek P Smits
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Ceyda T Pekmez
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Andrei Prodan
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Abraham S Meijnikman
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Marian A Troelstra
- Department of Radiology & Nuclear Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Kristien E C Bouter
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Hilde Herrema
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Evgeni Levin
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Adriaan G Holleboom
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Maaike Winkelmeijer
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Ulrich H Beuers
- Department of Gastroenterology and Hepatology Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Krijn van Lienden
- Department of Radiology & Nuclear Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Judith Aron-Wisnewky
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Ville Mannisto
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Jacques J Bergman
- Department of Gastroenterology and Hepatology Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Jurgen H Runge
- Department of Radiology & Nuclear Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Aart J Nederveen
- Department of Radiology & Nuclear Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Lars O Dragsted
- Department of Nutrition, Exercise and Sports University of Copenhagen Copenhagen Denmark
| | - Prokopis Konstanti
- Laboratory of Microbiology Wageningen University Wageningen the Netherlands
| | - Erwin G Zoetendal
- Laboratory of Microbiology Wageningen University Wageningen the Netherlands
| | - Willem de Vos
- Laboratory of Microbiology Wageningen University Wageningen the Netherlands.,Faculty of Medicine Human Microbiome Research Program University of Helsinki Finland
| | - Joanne Verheij
- Department of Pathology Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| | - Albert K Groen
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands.,Department of Laboratory Medicine University of Groningen University Medical Center Groningen the Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine Amsterdam University Medical Centers Location AMC Amsterdam the Netherlands
| |
Collapse
|
199
|
Jiang X, Zheng J, Zhang S, Wang B, Wu C, Guo X. Advances in the Involvement of Gut Microbiota in Pathophysiology of NAFLD. Front Med (Lausanne) 2020; 7:361. [PMID: 32850884 PMCID: PMC7403443 DOI: 10.3389/fmed.2020.00361] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by hepatic steatosis and progresses to non-steatohepatitis (NASH) when the liver displays overt inflammatory damage. Increasing evidence has implicated critical roles for dysbiosis and microbiota-host interactions in NAFLD pathophysiology. In particular, microbiota alter intestine absorption of nutrients and intestine permeability, whose dysregulation enhances the delivery of nutrients, endotoxin, and microbiota metabolites to the liver and exacerbates hepatic fat deposition and inflammation. While how altered composition of gut microbiota attributes to NAFLD remains to be elucidated, microbiota metabolites are shown to be involved in the regulation of hepatocyte fat metabolism and liver inflammatory responses. In addition, intestinal microbes and circadian coordinately adjust metabolic regulation in different stages of life. During aging, altered composition of gut microbiota, along with circadian clock dysregulation, appears to contribute to increased incidence and/or severity of NAFLD.
Collapse
Affiliation(s)
- Xiaofan Jiang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Juan Zheng
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Shixiu Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baozhen Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chaodong Wu
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|