151
|
Abstract
Adipose-derived stem cells (ASCs) are considered a great alternative source of mesenchymal stem cells (MSCs). Unlike bone marrow stem cells (BMSCs), ASCs can be retrieved in high numbers from lipoaspirate, a by-product of liposuction procedures. Given that ASCs represent an easily accessible and abundant source of multipotent cells, ASCs have garnered attention and curiosity from both scientific and clinical communities for their potential in clinical applications. Furthermore, their unique immunobiology and secretome are attractive therapeutic properties. A decade since the discovery of a stem cell reservoir residing within adipose tissue, ASC-based clinical trials have grown over the years around the world along with assessments made on their safety and efficacy. With the progress of ASCs into clinical applications, the aim towards producing clinical-grade ASCs becomes increasingly important. Several countries have recognised the growing industry of cell therapies and have developed regulatory frameworks to assure their safety. With more research efforts made to understand their effects in both scientific and clinical settings, ASCs hold great promise as a future therapeutic strategy in treating a wide variety of diseases. Therefore, this review seeks to highlight the clinical applicability of ASCs as well as their progress in clinical trials across various medical disciplines.
Collapse
|
152
|
Kim WS, Han J, Hwang SJ, Sung JH. An update on niche composition, signaling and functional regulation of the adipose-derived stem cells. Expert Opin Biol Ther 2014; 14:1091-102. [DOI: 10.1517/14712598.2014.907785] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
153
|
Sundaramurthi D, Krishnan UM, Sethuraman S. Electrospun Nanofibers as Scaffolds for Skin Tissue Engineering. POLYM REV 2014. [DOI: 10.1080/15583724.2014.881374] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
154
|
Kokai LE, Marra K, Rubin JP. Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Transl Res 2014; 163:399-408. [PMID: 24361334 DOI: 10.1016/j.trsl.2013.11.009] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 11/06/2013] [Accepted: 11/18/2013] [Indexed: 12/17/2022]
Abstract
There is a clear clinical need for cell therapies to repair or regenerate tissue lost to disease or trauma. Adipose tissue is a renewable source of stem cells, called adipose-derived stem cells (ASCs), that release important growth factors for wound healing, modulate the immune system, decrease inflammation, and home in on injured tissues. Therefore, ASCs may offer great clinical utility in regenerative therapies for afflictions such as Parkinson's disease and Alzheimer's disease, spinal cord injury, heart disease, and rheumatoid arthritis, or for replacing lost tissue from trauma or tumor removal. This article discusses the regenerative properties of ASCs that can be harnessed for clinical applications, and explores current and future challenges for ASC clinical use. Such challenges include knowledge-based deficiencies, hurdles for translating research to the clinic, and barriers to establishing a new paradigm of medical care. Clinical experience with ASCs, ASCs as a portion of the heterogeneous stromal cell population extracted enzymatically from adipose tissue, and stromal vascular fraction are also described.
Collapse
Affiliation(s)
- Lauren E Kokai
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Kacey Marra
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - J Peter Rubin
- Department of Plastic Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA.
| |
Collapse
|
155
|
Autologous transplantation of adipose-derived stem cells enhances skin graft survival and wound healing in diabetic rats. Ann Plast Surg 2014; 71:225-32. [PMID: 23636118 DOI: 10.1097/sap.0b013e31826af01a] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Diabetes can lead to impaired wound healing and skin grafts used surgically for diabetic wounds are often complicated with necrosis, although different therapies have been proposed. Adipose-derived stem cells (ASCs) participate in tissue repair processes and may have a role during impaired wound healing. In this study, autologous transplantation of ASCs was used to determine if it increases angiogenesis and skin graft survival and enhances wound healing in diabetic rats. METHODS Adipose-derived stem cells were successfully isolated and cultured. A full-thickness skin graft model was used to determine the effects of locally administered ASCs in 10 rats rendered diabetic (group 1), whereas 10 others served as controls (group 2). Histological examination of skin grafts followed after 1 week. Additionally, immunohistochemical staining intensity of vascular endothelial growth factor (VEGF) and transforming growth factor β3 (TGF-β3) was assessed in all grafts. RESULTS The gross and histological results showed significantly increased survival, angiogenesis, and epithelialization. Mean area of graft necrosis was significantly less in group 1 than in group 2 (7.49% vs 39.67%, P < 0.001). Statistically significant increase of capillary density, collagen intensity, VEGF, and TGF-β3 expression was noted in group 1 compared with group 2. CONCLUSIONS These findings suggest that autologous ASC transplantation can enhance skin graft survival in diabetic rats through differentiation, vasculogenesis, and secretion of growth factors such as VEGF and TGF-β3. This might represent a novel therapeutic approach in skin graft surgery for diabetic wounds.
Collapse
|
156
|
Kang S, Kim SM, Sung JH. Cellular and molecular stimulation of adipose-derived stem cells under hypoxia. Cell Biol Int 2014; 38:553-62. [DOI: 10.1002/cbin.10246] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 12/27/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Sangjin Kang
- Department of Applied Bioscience; CHA University; Seoul Republic of Korea
| | - Soo-Min Kim
- Department of Applied Bioscience; CHA University; Seoul Republic of Korea
| | - Jong-Hyuk Sung
- Department of Applied Bioscience; CHA University; Seoul Republic of Korea
- Department of Pharmacy; Yonsei University; Incheon Republic of Korea
| |
Collapse
|
157
|
The effect of conditioned media of adipose-derived stem cells on wound healing after ablative fractional carbon dioxide laser resurfacing. BIOMED RESEARCH INTERNATIONAL 2013; 2013:519126. [PMID: 24381938 PMCID: PMC3867954 DOI: 10.1155/2013/519126] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 10/19/2013] [Accepted: 10/23/2013] [Indexed: 12/04/2022]
Abstract
Objective. To evaluate the benefits of conditioned medium of Adipose-derived stem cells (ADSC-CM) on wound healing after fractional carbon dioxide laser resurfacing (FxCR) on human skin. Materials and Methods. Nineteen subjects were treated with FxCR on the bilateral inner arms. ADSC-CM was applied on FxCR site of one randomly selected arm. Transepidermal water loss (TEWL), skin color, and gross-elasticity of FxCR site on both arms were measured. Skin samples were taken by biopsy from three subjects 3 weeks after treatment for histopathological manifestations and mRNA expressions of procollagen types I and III, elastin genes were noted. Results. The index of erythema, melanin, and TEWL of the ADSC-CM-treated skin were significantly lower than those of the control side. The mRNA expression of type III procollagen in ADSC-CM-treated group at 3 weeks posttreatment was 2.6 times of that of the control group. Conclusion. Application of allograft ADSC-CM is an effective method for enhancing wound healing after FxCR, by reducing transient adverse effects such as erythema, hyperpigmentation, and increased TEWL.
Collapse
|
158
|
Impact of low oxygen on the secretome of human adipose-derived stromal/stem cell primary cultures. Biochimie 2013; 95:2286-96. [DOI: 10.1016/j.biochi.2013.07.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 07/08/2013] [Indexed: 12/29/2022]
|
159
|
Kim J, Lee JH, Yeo SM, Chung HM, Chae JI. Stem cell recruitment factors secreted from cord blood-derived stem cells that are not secreted from mature endothelial cells enhance wound healing. In Vitro Cell Dev Biol Anim 2013; 50:146-54. [PMID: 24190329 DOI: 10.1007/s11626-013-9687-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 09/03/2013] [Indexed: 01/21/2023]
Abstract
Wounds are one of the most frequently occurring medical complication. Stem cells were recently highlighted as a novel therapeutic approach to treating wounds, although some negative aspects of allogenic stem cell transplantation were observed, such as cellular source limitations and unknown side effects in vivo. To address and eliminate these side effects, we examined the wound healing effect of secretory factors released from human cord blood-derived stem cells (hCB-SCs) and human umbilical vascular endothelial cells (HUVECs) on cutaneous excisional wound models. The hCB-SCs retained endothelial progenitor cell characteristics and expressed MSC markers such as CD73, CD105, and CD44. Analysis of hCB-SC-conditioned medium (CM) indicated that hCB-SCs secrete distinctly unique cytokines and chemokines such as TGF-β, PDGF, bFGF, EGF, KGF, and VEGF, which are well known to be important in normal angiogenesis and wound healing. Furthermore, hCB-SCs also secreted stem cell-recruiting factors such as G-CSF and GM-CSF, whereas HUVECs did not. When CB-SC-CM was applied to wound sites, hCB-SC-CM accelerated the wound healing rate compared with HUVEC-CM- and control medium-treated groups. In addition, hCB-SC-CM treatment caused a more rapid re-formation of granulation tissue and re-epithelialization of wounds, which indicates that the therapeutic effect of hCB-SC-CM is due to secreted stem cell-recruiting factors from stem cells, not just from endothelial lineage cells. Taken together, these results suggest that secretory factors released from stem cells, not just from endothelial cells, could be an important mediator of stem cell therapy in ischemic tissue diseases.
Collapse
Affiliation(s)
- Jumi Kim
- CHA Bio & Diostech Co., Ltd., 606-16 Yeoksam 1 dong, Gangnam gu, Seoul, 135-907, South Korea
| | | | | | | | | |
Collapse
|
160
|
Li Q, Zhang A, Tao C, Li X, Jin P. The role of SDF-1-CXCR4/CXCR7 axis in biological behaviors of adipose tissue-derived mesenchymal stem cells in vitro. Biochem Biophys Res Commun 2013; 441:675-80. [PMID: 24184476 DOI: 10.1016/j.bbrc.2013.10.071] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Accepted: 10/15/2013] [Indexed: 01/07/2023]
Abstract
Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study was designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy.
Collapse
Affiliation(s)
- Qiang Li
- Plastic Surgery Department, Xuzhou Medical College Affiliated Hospital, Jiangsu, China
| | | | | | | | | |
Collapse
|
161
|
Cerqueira MT, Pirraco RP, Santos TC, Rodrigues DB, Frias AM, Martins AR, Reis RL, Marques AP. Human Adipose Stem Cells Cell Sheet Constructs Impact Epidermal Morphogenesis in Full-Thickness Excisional Wounds. Biomacromolecules 2013; 14:3997-4008. [DOI: 10.1021/bm4011062] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. T. Cerqueira
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark4806-909, Taipas, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R. P. Pirraco
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark4806-909, Taipas, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - T. C. Santos
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark4806-909, Taipas, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - D. B. Rodrigues
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark4806-909, Taipas, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A. M. Frias
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark4806-909, Taipas, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A. R. Martins
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark4806-909, Taipas, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - R. L. Reis
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark4806-909, Taipas, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - A. P. Marques
- 3B’s
Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark4806-909, Taipas, Guimarães, Portugal
- ICVS/3B’s - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
162
|
Singh R, Chen C, Phelps RG, Elston DM. Stem cells in the skin and their role in oncogenesis. J Eur Acad Dermatol Venereol 2013; 28:542-9. [PMID: 24118325 DOI: 10.1111/jdv.12248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 07/22/2013] [Indexed: 12/18/2022]
Abstract
Stem cells generate great interest because they hold the promise for treatment of various incurable diseases. Several distinct stem cell populations have been identified in each organ, including the skin. As the skin is the largest organ in the body and is easily accessible, cutaneous stem cells have raised significant hopes for being a rich source of easily available multipotent stem cells. Genetic alterations and mutations in stem cells are being proposed as initiation step in multiple cancers. Small populations of oncogenic stem cells termed as cancer stem cells or tumour-initiating cells have been identified in multiple tumours, including squamous cell carcinomas, and melanomas that can sustain tumour growth, underlie its malignant behaviour and initiate distant metastases. These cells are controlled and regulated by the same pathways that are also responsible for maintenance and differentiation of normal stem cells. Developing a targeted therapy against the oncogenic stem cells and dysregulated members of the signalling pathways may be the key to understanding and treating skin cancers like melanomas, for which we still do not have an effective treatment.
Collapse
Affiliation(s)
- R Singh
- Department of Dermatology and Pathology, Mount Sinai School of Medicine, New York, NY, USA
| | | | | | | |
Collapse
|
163
|
Lakshmanan R, Krishnan UM, Sethuraman S. Polymeric scaffold aided stem cell therapeutics for cardiac muscle repair and regeneration. Macromol Biosci 2013; 13:1119-34. [PMID: 23982911 DOI: 10.1002/mabi.201300223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/05/2013] [Indexed: 12/13/2022]
Abstract
The constantly expanding repository of novel polymers and stem cells has opened up new vistas in the field of cardiac tissue engineering. Successful regeneration of the complex cardiac tissue mainly centres on the appropriate scaffold material with topographical features that mimic the native environment. The integration of stem cells on these scaffolds is expected to enhance the regeneration potential. This review elaborates on the interplay of these vital factors in achieving the functional cardiac tissue. The recent advances in polymers, nanocomposites, and stem cells from different sources are highlighted. Special emphasis is laid on the clinical trials involving stem cells and the state-of-the-art materials to obtain a balanced perspective on the translational potential of this strategy.
Collapse
Affiliation(s)
- Rajesh Lakshmanan
- Centre for Nanotechnology & Advanced Biomaterials, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | | | | |
Collapse
|
164
|
Sheng L, Yang M, Liang Y, Li Q. Adipose tissue-derived stem cells (ADSCs) transplantation promotes regeneration of expanded skin using a tissue expansion model. Wound Repair Regen 2013; 21:746-54. [PMID: 23937682 DOI: 10.1111/wrr.12080] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 06/05/2013] [Indexed: 01/09/2023]
Affiliation(s)
- Lingling Sheng
- Department of Plastic and Reconstructive Surgery; Shanghai Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai; China
| | | | - Yimin Liang
- Department of Plastic and Reconstructive Surgery; Shanghai Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai; China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery; Shanghai Ninth People's Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai; China
| |
Collapse
|
165
|
Pikuła M, Marek-Trzonkowska N, Wardowska A, Renkielska A, Trzonkowski P. Adipose tissue-derived stem cells in clinical applications. Expert Opin Biol Ther 2013; 13:1357-70. [PMID: 23919743 DOI: 10.1517/14712598.2013.823153] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION In the past decade human adipose tissue has been identified as a source of multipotent stem cells. Adipose tissue derived stem cells (ASCs) are characterised by immunosuppressive properties and low immunogenicity. Therefore, they can be used in regenerative medicine, as well as applied to induce graft tolerance or prevent autoimmunity. ASCs can be easily harvested with low morbidity, which is their main advantage over mesenchymal stem cells (MSCs) derived from other sources. AREAS COVERED The review focuses on reported clinical applications of ASCs and discusses technical approaches of their isolation and processing. The differences in phenotype and differentiation preferences between ASCs and other MSCs that may affect the choice of a particular cell type for the future therapy are also described. EXPERT OPINION ASCs seem to be the perfect tool for regenerative medicine and immunosuppressive cellular therapies. Nevertheless, there are some tasks that should be addressed by the future studies: i) ASCs require better characterisation; a set of markers determining ASCs should be clearly defined; ii) there is need for more studies on safety of reconstructive therapies with ASCs in cancer patients (e.g., after mastectomy); iii) release criteria should be determined for freshly isolated and ex vivo expanded ASCs designed for clinical applications.
Collapse
Affiliation(s)
- Michał Pikuła
- Medical University of Gdańsk, Department of Clinical Immunology and Transplantology , ul. Dębinki 7, 80-210 Gdańsk , Poland
| | | | | | | | | |
Collapse
|
166
|
Chang H, Do BR, Che JH, Kang BC, Kim JH, Kwon E, Kim JY, Min KH. Safety of adipose-derived stem cells and collagenase in fat tissue preparation. Aesthetic Plast Surg 2013; 37:802-8. [PMID: 23824057 DOI: 10.1007/s00266-013-0156-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/08/2013] [Indexed: 12/22/2022]
Abstract
UNLABELLED Recently, various studies using adipose-derived stem cells (ADSCs) have been performed. However, the safety of ADSCs has not been determined, and protocols for isolating ADSCs have not been established. This study evaluated the activity and toxicity of residual collagenase in isolated ADSCs and the carcinogenicity of these cells. It evaluated the current use of ADSC-related procedures in South Korea as reference data for the authors' studies. The study surveyed 100 private plastic surgical clinics, 68 plastic surgery departments at general and university hospitals, and 5 biotechnology companies by telephone. Among these, 14 institutions were surveyed using a more detailed questionnaire about ADSC-related procedures and methods of processing adipose tissue. The survey also evaluated the residual collagenase activity during five washes of the ADSC isolation procedure with furyl acryloyl-Leu-Gly-Pro-Ala (FALGPA) and ninhydrin assays. A 4-week toxicity study in non-obese diabetes/severe combined immunodeficiency (NOD/SCID) mice was performed as well as a tumorigenicity study in BALB/c-nu mice using ADSCs from the first and third washes. According to the findings, ADSC-related procedures were performed in 16 % of the private clinics and 14.7 % of the general hospitals surveyed. Among the 14 institutions, 0.1 % type 1 collagenase was used most frequently, and three washes generally were performed. After the first wash, residual collagenase activity was the same as in the blank group (saline only). No toxicity resulting from residual collagenase or tumorigenicity associated with the ADSCs was observed. The results of the current study may be beneficial for establishing safe ADSC isolation protocols and can be used as fundamental data for clinical applications involving ADSCs. LEVEL OF EVIDENCE II This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Hak Chang
- Department of Plastic and Reconstructive Surgery, College of Medicine, Seoul National University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
167
|
|
168
|
Effect of collagen scaffold with adipose-derived stromal vascular fraction cells on diabetic wound healing: A study in a diabetic porcine model. Tissue Eng Regen Med 2013. [DOI: 10.1007/s13770-013-0001-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
169
|
Zou JP, Huang S, Peng Y, Liu HW, Cheng B, Fu XB, Xiang XF. Mesenchymal stem cells/multipotent mesenchymal stromal cells (MSCs): potential role in healing cutaneous chronic wounds. INT J LOW EXTR WOUND 2013; 11:244-53. [PMID: 23222159 DOI: 10.1177/1534734612463935] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chronic wounds remain a major challenge in modern medicine and represent a significant health care burden. Several treatments have been suggested, but without a full understanding of the exact mechanism by which chronic wound occurs. Numerous studies have shown that mesenchymal stem cells/multipotent mesenchymal stromal cells (MSCs) may have therapeutic potential in healing cutaneous chronic wounds through various mechanisms. So far, a series of hypotheses have been proposed, but a holistic image of them is lacking. This review provides a systematic analysis of recent research in animal models and preclinical or clinic trails to evaluate the potential role of MSCs in chronic cutaneous wound healing. Most important, we highlight how mesenchymal stem cells could potentially revolutionize our approach to treating cutaneous chronic wounds. Special attention should be focused on ongoing research regarding the challenges in using and prospects of MSCs in clinical settings.
Collapse
Affiliation(s)
- Ji-Ping Zou
- Guangzhou General Hospital of Guangzhou Command, GuangDong, The Key Laboratory of Trauma Treatment & Tissue Repair of Tropical Area, PLA, P R China
| | | | | | | | | | | | | |
Collapse
|
170
|
Yang H, Shin S, Ahn J, Choi Y, Kim KH, Chung CJ. Local Injection of Pulp Cells Enhances Wound Healing during the Initial Proliferative Phase through the Stimulation of Host Angiogenesis. J Endod 2013; 39:788-94. [DOI: 10.1016/j.joen.2013.01.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 01/08/2013] [Accepted: 01/30/2013] [Indexed: 01/09/2023]
|
171
|
Abstract
Most therapeutics are based on the traditional method of reductionism where a clinically defined condition is broken down into a defined biochemical pathway underlying the condition, then a target in the pathway is identified, followed by developing a drug to interact with the target, modifying the target such that the disease is ameliorated. Biology acts as a system, therefore reductionist approaches to developing therapeutics are limited in therapeutic value because disease or traumatized tissue involves multiple underlying pathways, only a part of the pathways underlying the disease is manipulated by the traditional therapeutic. Much data regarding stem cells shows that their beneficial effects are not restricted to their ability to differentiate, but is more likely due in large part to their ability to release a multitude of molecules. Stem cells release potent combinations of factors that modulate the composition of the cellular milieu to evoke a multitude of responses from neighboring cells. Therefore, stem cells represent a natural systems-based biological factory for the production and release of a multitude of molecules that interact with the system of biomolecular circuits underlying an indication. Current research includes efforts to define, stimulate, enhance, and harness stem cell released molecules (SRM) to develop systems-therapeutics.
Collapse
|
172
|
Huang SJ, Fu RH, Shyu WC, Liu SP, Jong GP, Chiu YW, Wu HS, Tsou YA, Cheng CW, Lin SZ. Adipose-Derived Stem Cells: Isolation, Characterization, and Differentiation Potential. Cell Transplant 2013; 22:701-9. [PMID: 23068312 DOI: 10.3727/096368912x655127] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In mammals, the two main types of adipose tissues, white and brown adipose tissues, exert different physiological functions. White adipose tissue (WAT) is for storing energy, while brown adipose tissue (BAT) is for energy consumption. Adipose-derived stem cells (ADSCs) are abundant in WAT and BAT, have multipotent characteristics, and are easily extracted. ADSCs can be differentiated into several cell lineages, including adipocytes, osteoblasts, chondrocytes (cartilage cells), myocytes, and neuronal cells. Therefore, ADSC could be considered as a strategy for future regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Shyh-Jer Huang
- Center for Molecular Medicine, China Medical University Hospital, Taichung, Taiwan, ROC
- China Medical University, Taichung, Taiwan, ROC
| | - Ru-Huei Fu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, ROC
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC
| | - Woei-Cherng Shyu
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, ROC
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC
| | - Shih-Ping Liu
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, ROC
| | - Gwo-Ping Jong
- Division of Cardiology, Armed Forces Taichung General Hospital, Taichung, Taiwan, ROC
| | - Yung-Wei Chiu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan, ROC
- Emergency Department and Center of Hyperbaric Oxygen Therapy, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan, ROC
| | - Hsiao-Su Wu
- Department of Plastic Surgery, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Yung-An Tsou
- Department of Otolaryngology-Head and Neck Surgery, China Medical University Hospital, Taichung, Taiwan, ROC
| | - Chao-Wen Cheng
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University Hospital, Taichung, Taiwan, ROC
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC
- Department of Neurosurgery, China Medical University Beigang Hospital, Yunlin, Taiwan, ROC
| |
Collapse
|
173
|
Hassan W, Dong Y, Wang W. Encapsulation and 3D culture of human adipose-derived stem cells in an in-situ crosslinked hybrid hydrogel composed of PEG-based hyperbranched copolymer and hyaluronic acid. Stem Cell Res Ther 2013; 4:32. [PMID: 23517589 PMCID: PMC3707066 DOI: 10.1186/scrt182] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/14/2013] [Indexed: 12/16/2022] Open
Abstract
Introduction Cell therapy using adipose-derived stem cells has been reported to improve chronic wounds via differentiation and paracrine effects. One such strategy is to deliver stem cells in hydrogels, which are studied increasingly as cell delivery vehicles for therapeutic healing and inducing tissue regeneration. This study aimed to determine the behaviour of encapsulated adipose-derived stem cells and identify the secretion profile of suitable growth factors for wound healing in a newly developed thermoresponsive PEG–hyaluronic acid (HA) hybrid hydrogel to provide a novel living dressing system. Methods In this study, human adipose-derived stem cells (hADSCs) were encapsulated in situ in a water-soluble, thermoresponsive hyperbranched PEG-based copolymer (PEGMEMA–MEO2MA–PEGDA) with multiple acrylate functional groups in combination with thiolated HA, which was developed via deactivated enhanced atom transfer radical polymerisation of poly(ethylene glycol) methyl ether methacrylate (PEGMEMA, Mn = 475), 2-(2-methoxyethoxy) ethyl methacrylate (MEO2MA) and poly(ethylene glycol) diacrylate PEGDA (Mn = 258). hADSCs embedded in the PEGMEMA–MEO2MA–PEGDA and HA hybrid hydrogel system (P-SH-HA) were monitored and analysed for their cell viability, cell proliferation and secretion of growth factors (vascular endothelial growth factor, transforming growth factor beta and placental-derived growth factor) and cytokines (IFNγ, IL-2 and IL-10) under three-dimensional culture conditions via the ATP activity assay, alamarBlue® assay, LIVE/DEAD® assay and multiplex ELISA, respectively. Results hADSCs were successfully encapsulated in situ with high cell viability for up to 7 days in hydrogels. Although cellular proliferation was inhibited, cellular secretion of growth factors such as vascular endothelial growth factor and placental-derived growth factor production increased over 7 days, whereas IL-2 and IFNγ release were unaffected. Conclusion This study indicates that hADSCs can be maintained in a P-SH-HA hydrogel, and secrete pro-angiogenic growth factors with low cytotoxicity. With the potential to add more functionality for further structural modifications, this stem cell hydrogel system can be an ideal living dressing system for wound healing applications.
Collapse
|
174
|
Haubner F, Leyh M, Ohmann E, Pohl F, Prantl L, Gassner HG. Effects of external radiation in a co-culture model of endothelial cells and adipose-derived stem cells. Radiat Oncol 2013; 8:66. [PMID: 23514369 PMCID: PMC3653709 DOI: 10.1186/1748-717x-8-66] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/15/2013] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The inflammatory response clinically observed after radiation has been described to correlate with elevated expression of cytokines and adhesion molecules by endothelial cells. Therapeutic compensation for this microvascular compromise could be an important approach in the treatment of irradiated wounds. Clinical reports describe the potential of adipose-derived stem cells to enhance wound healing, but the underlying cellular mechanisms remain largely unclear. METHODS Human dermal microvascular endothelial cells (HDMEC) and human adipose-derived stem cells (ASC) were cultured in a co-culture setting and irradiated with sequential doses of 2 to 12 Gy. Cell count was determined 48 h after radiation using a semi-automated cell counting system. Levels of interleukin-6 (IL-6), basic fibroblast growth factor (FGF), intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were determined in the supernatants using enzyme-linked immunosorbent assay (ELISA). Irradiated HDMEC and ASC as well as non-irradiated co-cultures, HDMEC or ASC respectively were used as controls. RESULTS Cell count was significantly reduced in irradiated co-cultures of HDMEC and ASC compared to non-irradiated controls. Levels of IL-6, FGF, ICAM-1 and VCAM-1 in the supernatants of the co-cultures were significantly less affected by external radiation in comparison to HDMEC. CONCLUSION The increased expression of cytokines and adhesion molecules by HDMEC after external radiation is mitigated in the co-culture setting with ASC. These in vitro changes seem to support the clinical observation that ASC may have a stabilizing effect when injected into irradiated wounds.
Collapse
|
175
|
Hsiao ST, Lokmic Z, Peshavariya H, Abberton KM, Dusting GJ, Lim SY, Dilley RJ. Hypoxic conditioning enhances the angiogenic paracrine activity of human adipose-derived stem cells. Stem Cells Dev 2013; 22:1614-23. [PMID: 23282141 DOI: 10.1089/scd.2012.0602] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Human adipose-derived stem cells (ASCs) secrete cytokines and growth factors that can be harnessed in a paracrine fashion for promotion of angiogenesis, cell survival, and activation of endogenous stem cells. We recently showed that hypoxia is a powerful stimulus for an angiogenic activity from ASCs in vitro and here we investigate the biological significance of this paracrine activity in an in vivo angiogenesis model. A single in vitro exposure of ASCs to severe hypoxia (<0.1% O2) significantly increased both the transcriptional and translational level of the vascular endothelial growth factor-A (VEGF-A) and angiogenin (ANG). The angiogenicity of the ASC-conditioned medium (ASC(CM)) was assessed by implanting ASC(CM)-treated polyvinyl alcohol sponges subcutaneously for 2 weeks in mice. The morphometric analysis of anti-CD31-immunolabeled sponge sections demonstrated an increased angiogenesis with hypoxic ASC(CM) treatment compared to normoxic control ASC(CM) treatment (percentage vascular volume; 6.0%±0.5% in the hypoxic ASC(CM) vs. 4.1%±0.7% in the normoxic ASC(CM), P<0.05). Reduction of VEGF-A and ANG levels in the ASC(CM) with respective neutralizing antibodies before sponge implantation showed a significantly diminished angiogenic response (3.5%±0.5% in anti-VEGF-A treated, 3.2%±0.7% in anti-ANG treated, and 3.5%±0.6% in anti-VEGF-A/ANG treated). Further, both the normoxic and hypoxic ASC(CM) were able to sustain in vivo lymphangiogenesis in sponges. Collectively, the model demonstrated that the increased paracrine production of the VEGF-A and ANG in hypoxic-conditioned ASCs in vitro translated to an in vivo effect with a favorable biological significance. These results further illustrate the potential for utilization of an in vitro optimized ASC(CM) for in vivo angiogenesis-related applications as an effective cell-free technology.
Collapse
|
176
|
Bhang SH, Park J, Yang HS, Shin J, Kim BS. Platelet-Rich Plasma Enhances the Dermal Regeneration Efficacy of Human Adipose-Derived Stromal Cells Administered to Skin Wounds. Cell Transplant 2013; 22:437-45. [DOI: 10.3727/096368912x656162] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The administration of human adipose-derived stromal cells (hASCs) enhances skin wound healing. However, poor survival of hASCs that are administered to avascular wound regions may limit the therapeutic efficacy of the hASCs. The aim of this study was to determine whether the coadministration of platelet-rich plasma (PRP) and hASCs enhanced the skin wound-healing efficacy of hASCs. Skin regeneration was examined in skin wounds of athymic mice that were either untreated or treated with hASCs, PRP, or both hASCs and PRP. Coadministration of PRP and hASCs resulted in better skin regeneration than hASC administration alone in part by significantly improving the proliferation of administered hASCs by the angiogenic growth factor secretion of the hASCs and surrounding mouse host cells in the wound areas and by promoting neovascularization in the wound beds.
Collapse
Affiliation(s)
- Suk Ho Bhang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jooyeon Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hee Seok Yang
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jaehoon Shin
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Byung-Soo Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
- Bio-MAX Institute, Institute of Chemical Processes, Engineering Research Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
177
|
Das B, Bayat-Mokhtari R, Tsui M, Lotfi S, Tsuchida R, Felsher DW, Yeger H. HIF-2α suppresses p53 to enhance the stemness and regenerative potential of human embryonic stem cells. Stem Cells 2013; 30:1685-95. [PMID: 22689594 PMCID: PMC3584519 DOI: 10.1002/stem.1142] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Human embryonic stem cells (hESCs) have been reported to exert cytoprotective activity in the area of tissue injury. However, hypoxia/oxidative stress prevailing in the area of injury could activate p53, leading to death and differentiation of hESCs. Here we report that when exposed to hypoxia/oxidative stress, a small fraction of hESCs, namely the SSEA3+/ABCG2+ fraction undergoes a transient state of reprogramming to a low p53 and high hypoxia inducible factor (HIF)-2α state of transcriptional activity. This state can be sustained for a period of 2 weeks and is associated with enhanced transcriptional activity of Oct-4 and Nanog, concomitant with high teratomagenic potential. Conditioned medium obtained from the post-hypoxia SSEA3+/ABCG2+ hESCs showed cytoprotection both in vitro and in vivo. We termed this phenotype as the “enhanced stemness” state. We then demonstrated that the underlying molecular mechanism of this transient phenotype of enhanced stemness involved high Bcl-2, fibroblast growth factor (FGF)-2, and MDM2 expression and an altered state of the p53/MDM2 oscillation system. Specific silencing of HIF-2α and p53 resisted the reprogramming of SSEA3+/ABCG2+ to the enhanced stemness phenotype. Thus, our studies have uncovered a unique transient reprogramming activity in hESCs, the enhanced stemness reprogramming where a highly cytoprotective and undifferentiated state is achieved by transiently suppressing p53 activity. We suggest that this transient reprogramming is a form of stem cell altruism that benefits the surrounding tissues during the process of tissue regeneration.
Collapse
Affiliation(s)
- Bikul Das
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA.
| | | | | | | | | | | | | |
Collapse
|
178
|
Lin YC, Grahovac T, Oh SJ, Ieraci M, Rubin JP, Marra KG. Evaluation of a multi-layer adipose-derived stem cell sheet in a full-thickness wound healing model. Acta Biomater 2013; 9:5243-50. [PMID: 23022891 DOI: 10.1016/j.actbio.2012.09.028] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 09/13/2012] [Accepted: 09/21/2012] [Indexed: 01/31/2023]
Abstract
Cell sheet technology has been studied for applications such as bone, ligament and skin regeneration. There has been limited examination of adipose-derived stem cells (ASCs) for cell sheet applications. The specific aim of this study was to evaluate ASC sheet technology for wound healing. ASCs were isolated from discarded human abdominal subcutaneous adipose tissue, and ASC cell sheets were created on the surface of fibrin-grafted culture dishes. In vitro examination consisted of the histochemical characterization of the ASC sheets. In vivo experiments consisted of implanting single-layer cell sheets, triple-layer cell sheets or non-treated control onto a full-thickness wound defect (including epidermis, dermis, and subcutaneous fat) in nude mice for 3 weeks. Cell sheets were easily peeled off from the culture dishes using forceps. The single- and triple-layer ASC sheets showed complete extracellular structure via hematoxylin & eosin staining. In vivo, the injury area was measured 7, 10, 14 and 21 days post-treatment to assess wound recovery. The ASC sheet-treated groups' injury area was significantly smaller than that of the non-treated control group at all time points except day 21. The triple-layer ASC sheet treatment significantly enhanced wound healing compared to the single-layer ASC sheet at 7, 10 and 14 days. The density of blood vessels showed that ASC cell sheet treatment slightly enhanced total vessel proliferation compared to the empty wound injury treatment. Our studies indicate that ASC sheets present a potentially viable matrix for full-thickness defect wound healing in a mouse model. Consequently, our ASC sheet technology represents a substantial advance in developing various types of three-dimensional tissues.
Collapse
Affiliation(s)
- Yen-Chih Lin
- Department of Plastic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
179
|
Desando G, Cavallo C, Sartoni F, Martini L, Parrilli A, Veronesi F, Fini M, Giardino R, Facchini A, Grigolo B. Intra-articular delivery of adipose derived stromal cells attenuates osteoarthritis progression in an experimental rabbit model. Arthritis Res Ther 2013; 15:R22. [PMID: 23360790 PMCID: PMC3672720 DOI: 10.1186/ar4156] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 01/28/2013] [Indexed: 12/13/2022] Open
Abstract
Introduction Cell therapy is a rapidly growing area of research for the treatment of osteoarthritis (OA). This work is aimed to investigate the efficacy of intra-articular adipose-derived stromal cell (ASC) injection in the healing process on cartilage, synovial membrane and menisci in an experimental rabbit model. Methods The induction of OA was performed surgically through bilateral anterior cruciate ligament transection (ACLT) to achieve eight weeks from ACLT a mild grade of OA. A total of 2 × 106 and 6 × 106 autologous ASCs isolated from inguinal fat, expanded in vitro and suspended in 4% rabbit serum albumin (RSA) were delivered in the hind limbs; 4% RSA was used as the control. Local bio-distribution of the cells was verified by injecting chloro-methyl-benzamido-1,1'-dioctadecyl-3,3,3'3'-tetra-methyl-indo-carbocyanine per-chlorate (CM-Dil) labeled ASCs in the hind limbs. Cartilage and synovial histological sections were scored by Laverty's scoring system to assess the severity of the pathology. Protein expression of some extracellular matrix molecules (collagen I and II), catabolic (metalloproteinase-1 and -3) and inflammatory (tumor necrosis factor- α) markers were detected by immunohistochemistry. Assessments were carried out at 16 and 24 weeks. Results Labeled-ASCs were detected unexpectedly in the synovial membrane and medial meniscus but not in cartilage tissue at 3 and 20 days from ASC-treatment. Intra-articular ASC administration decreases OA progression and exerts a healing contribution in the treated animals in comparison to OA and 4% RSA groups. Conclusions Our data reveal a healing capacity of ASCs in promoting cartilage and menisci repair and attenuating inflammatory events in synovial membrane inhibiting OA progression. On the basis of the local bio-distribution findings, the benefits obtained by ASC treatment could be due to a trophic mechanism of action by the release of growth factors and cytokines.
Collapse
|
180
|
Lequeux C, Oni G, Wong C, Damour O, Rohrich R, Mojallal A, Brown SA. Subcutaneous fat tissue engineering using autologous adipose-derived stem cells seeded onto a collagen scaffold. Plast Reconstr Surg 2013. [PMID: 23190805 DOI: 10.1097/prs.0b013e31826d100e] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND This pilot study examined the efficacy of 5-bromo-2-deoxyuridine-labeled autologous adipose-derived stem cells seeded onto collagen scaffolds to augment and/or regenerate the fat-enriched hypodermal tissue in an acute porcine wound model. METHODS Porcine autologous adipose-derived stem cells were isolated and cultured. At passage 2, the cells were labeled with 5-bromo-2-deoxyuridine, seeded onto a three-dimensional collagen scaffold, and cultured for 10 days. Scaffolds were implanted subcutaneously in adult pigs with two adipose-derived stem cell scaffolds and two control scaffolds. Animals were euthanized at 2, 4, 8, and 12 weeks; all scaffold conditions were explanted for histology and immunohistochemistry analyses. RESULTS For all time points, adipose-derived stem cell scaffolds had increased connective tissue matrix within the subcutaneous tissue compared with scaffold alone and untreated porcine skin (p < 0.01). The neosynthesized connective tissue was vascularized and composed of small cells within an abundant extracellular matrix organized in layers. 5-Bromo-2-deoxyuridine cells were detectable only up to 4 weeks and mature adipocytes were absent. Levels of collagen types I, III, and VI differed among the experimental groups, with increased extracellular matrix associated with the presence of adipose-derived stem cells. CONCLUSIONS The authors' data clearly show the efficacy of adipose-derived stem cells for soft-tissue repair and skin aging because it induces a significant increase of the dermis thickness. Moreover, the authors' results demonstrate the interest of their acute wound model and allowed them to show the skin thickness variation over time of the experiment, which is one of the challenges with which clinicians struggle in fat grafting.
Collapse
Affiliation(s)
- Charlotte Lequeux
- Dallas, Texas; and Lyon, France From the Department of Plastic Surgery, University of Texas Southwestern Medical Center; Banque de Tissus et de Cellules, Hôpital Edouard Herriot; and the Department of Plastic Surgery, Hospices Civils de Lyon, Université Claude Bernard Lyon
| | | | | | | | | | | | | |
Collapse
|
181
|
Fukuoka H, Suga H, Narita K, Watanabe R, Shintani S. The Latest Advance in Hair Regeneration Therapy Using Proteins Secreted by Adipose-Derived Stem Cells. ACTA ACUST UNITED AC 2012. [DOI: 10.5992/ajcs-d-12-00015.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Introduction: Adipose-derived stem cells (ADSCs) that can be harvested from fat cells are one of the latest breakthroughs in the aesthetic field. In addition, basic studies have reported that ADSC conditioned medium (ADSC-CM) promotes skin and hair regeneration. We validate our novel approach, known as hair regenerative therapy, for hair growth treatment using ADSC-CM. Materials and Methods: ADSCs were cultured and expanded in hypoxic culture conditions, and ADSC-CM was collected. ADSC-CM includes various cytokines and growth factors that influence hair regrowth, to which we added buflomedyl, cysteine, coenzyme Q10, and vitamins. Protein solution from ADSC-CM was applied 4 to 6 times every 3 to 5 weeks by mesotherapy techniques such as nappage and papule injections. Satisfactory results of hair regenerative therapy in 12 women and 13 men were determined with a visual analog scale. Results: All patients experienced increased hair growth from the treatments with ADSC-CM. Four treatment sessions performed within 3 to 4 months provided especially good results. Scores on the visual analog scale increased with treatment frequency. Statistical significance was determined by Friedman's 2-way analysis of variance (P < .01) and Wilcoxon's signed rank test (P < .01). Discussion: ADSCs secrete cytokines, such as keratinocyte growth factor, vascular endotheliatl growth factor, platelet-derived growth factor, hepatocyte growth factor. Those cytokines and growth factor are very important for hair growth. Our new therapy with ADSC-CM does not require specialized facilities, such as a cell-processing center, and can be a valuable treatment.
Collapse
|
182
|
Abstract
The perception of adipose tissue has changed considerably with the dramatic increase in the incidence of obesity and obesity-related comorbidities over the past 3 decades. Excess fat is no longer associated with wealth, but is instead recognized as a risk factor for many diseases. Adipose tissue is increasingly being identified as a vital, complex endocrine organ, and not simply as a fat store. Not all fat is created equal--regional, developmental, structural, and functional variations exist. Epicardial adipose tissue is a metabolically active organ producing a number of factors that modulate cardiac structure and function. The global epidemic of obesity and metabolic syndrome imposes a major disease burden, particularly of cardiovascular disease. In this Review, we describe the various types of adipose tissue--their developmental biology, differentiation, cell heterogeneity, and functional characteristics. We discuss the link between adipose tissue and inflammation, the signaling factors released by adipose tissue, as well as cardiac adiposity and its relevance to cardiovascular diseases. Finally, we review the myocardial regenerative potential of adipose-tissue-derived stem cells. We believe that a thorough understanding of adipose tissue is of great clinical value.
Collapse
Affiliation(s)
- Mohamed Hassan
- Aswan Heart Center, Kasr El Hajjar Street, P. O. Box 81512, Aswan, Egypt
| | | | | |
Collapse
|
183
|
Jayarama Reddy V, Radhakrishnan S, Ravichandran R, Mukherjee S, Balamurugan R, Sundarrajan S, Ramakrishna S. Nanofibrous structured biomimetic strategies for skin tissue regeneration. Wound Repair Regen 2012; 21:1-16. [PMID: 23126632 DOI: 10.1111/j.1524-475x.2012.00861.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 08/28/2012] [Indexed: 01/09/2023]
Abstract
Mimicking porous topography of natural extracellular matrix is advantageous for successful regeneration of damaged tissues or organs. Nanotechnology being one of the most promising and growing technology today shows an extremely huge potential in the field of tissue engineering. Nanofibrous structures that mimic the native extracellular matrix and promote the adhesion of various cells are being developed as tissue-engineered scaffolds for skin, bone, vasculature, heart, cornea, nervous system, and other tissues. A range of novel biocomposite materials has been developed to enhance the bioactive or therapeutic properties of these nanofibrous scaffolds via surface modifications, including the immobilization of functional cell-adhesive ligands and bioactive molecules such as drugs, enzymes, and cytokines. In skin tissue engineering, usage of allogeneic skin is avoided to reestablish physiological continuity and also to address the challenge of curing acute and chronic wounds, which remains as the area of exploration with various biomimetic approaches. Two-dimensional, three-dimensional scaffolds and stem cells are presently used as dermal regeneration templates for the treatment of full-thickness skin defects resulting from injuries and severe burns. The present review elaborates specifically on the fabrication of nanofibrous structured strategies for wound dressings, wound healing, and controlled release of growth factors for skin tissue regeneration.
Collapse
Affiliation(s)
- Venugopal Jayarama Reddy
- Centre for Nanofibers & Nanotechnology, Faculty of Engineering, National University of Singapore, Singapore.
| | | | | | | | | | | | | |
Collapse
|
184
|
Nie C, Zhang G, Yang D, Liu T, Liu D, Xu J, Zhang J. Targeted delivery of adipose-derived stem cells via acellular dermal matrix enhances wound repair in diabetic rats. J Tissue Eng Regen Med 2012; 9:224-35. [PMID: 23038677 DOI: 10.1002/term.1622] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 07/04/2012] [Accepted: 08/25/2012] [Indexed: 12/31/2022]
Affiliation(s)
- Chunlei Nie
- Department of Head and Neck Surgery; Third Affiliated Hospital of Harbin Medical University; People's Republic of China
- Tissue Repair and Engineering Laboratory; Harbin Medical University; People's Republic of China
| | - Guoyou Zhang
- Department of Dermatology; University of Lübeck; Germany
- Department of Hand and Plastic Surgery; Second Affiliated Hospital of Wenzhou Medical College; Zhejiang People's Republic of China
| | - Daping Yang
- Tissue Repair and Engineering Laboratory; Harbin Medical University; People's Republic of China
- Department of Plastic Surgery; Second Affiliated Hospital of Harbin Medical University; People's Republic of China
| | - Tong Liu
- Department of Head and Neck Surgery; Third Affiliated Hospital of Harbin Medical University; People's Republic of China
| | - Dan Liu
- Department of Plastic Surgery; Second Affiliated Hospital of Harbin Medical University; People's Republic of China
| | - Jin Xu
- Department of Cell Biology; Harbin Medical University; People's Republic of China
| | - Jiewu Zhang
- Department of Head and Neck Surgery; Third Affiliated Hospital of Harbin Medical University; People's Republic of China
| |
Collapse
|
185
|
Abstract
Adipose tissue pathologies and defects have always represented a reconstructive challenge for plastic surgeons. In more recent years, several allogenic and alloplastic materials have been developed and used as fillers for soft tissue defects. However, their clinical use has been limited by further documented complications, such as foreign-body reactions potentially affecting function, degradation over time, and the risk for immunogenicity. Tissue-engineering strategies are thus being investigated to develop methods for generating adipose tissue. This paper will discuss the current state of the art in adipose tissue engineering techniques, exploring the biomaterials used, stem cells application, culture strategies, and current regulatory framework that are in use are here described and discussed.
Collapse
|
186
|
In vitro N-acetyl-L-cysteine promotes proliferation and suppresses interleukin-8 expression in adipose-derived stem cells. Aesthetic Plast Surg 2012; 36:1260-5. [PMID: 22936379 DOI: 10.1007/s00266-012-9960-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 07/09/2012] [Indexed: 12/16/2022]
Abstract
UNLABELLED Adipose-derived stem cells (ADSCs) hold great promise for repair and regeneration of burn wounds by producing growth factors, but proinflammatory cytokines such as interleukin-8 (IL-8) released by ADSCs would potentially deepen the wound and inhibit healing. The reported research aimed to identify the effects of N-acetyl-L-cysteine (NAC) on the proliferation, death, and IL-8 production of ADSCs. In the presence or absence of NAC, ADSC proliferation was examined using a CCK-8 Kit, and cell death was evaluated by flow cytometry analysis. Subsequently, IL-8 mRNA expression was detected by reverse transcriptase-polymerase chain reaction and protein production by enzyme-linked immunoassay. Findings showed that cell proliferation in the NAC-treated group was a significant 1.53-fold greater than in the control group, that the apoptosis rate of ADSCs decreased by 55.4 % compared with the control group, and that the necrosis rate decreased by 48.8 %. Additionally, the IL-8 mRNA expression decreased to 46.2 ± 8.7 % that of the control group, and the IL-8 protein production decreased to 9.98 ± 0.57 %. The authors believe that NAC might be helpful in burn wound repair and regeneration by stimulating the proliferation of ADSCs, inhibiting cell death, and suppressing IL-8 production. LEVEL OF EVIDENCE II This journal requires that authors assign a level of evidence to each article.
Collapse
|
187
|
Haubner F, Ohmann E, Pohl F, Strutz J, Gassner HG. Wound healing after radiation therapy: review of the literature. Radiat Oncol 2012; 7:162. [PMID: 23006548 PMCID: PMC3504517 DOI: 10.1186/1748-717x-7-162] [Citation(s) in RCA: 267] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/20/2012] [Indexed: 12/19/2022] Open
Abstract
Radiation therapy is an established modality in the treatment of head and neck cancer patients. Compromised wound healing in irradiated tissues is a common and challenging clinical problem. The pathophysiology and underlying cellular mechanisms including the complex interaction of cytokines and growth factors are still not understood completely. In this review, the current state of research regarding the pathomechanisms of compromised wound healing in irradiated tissues is presented. Current and possible future treatment strategies are critically reviewed.
Collapse
Affiliation(s)
- Frank Haubner
- Department of Otorhinolaryngology, Division of Facial Plastic Surgery, University of Regensburg, Regensburg, Germany.
| | | | | | | | | |
Collapse
|
188
|
Jiang XY, Lu DB, Chen B. Progress in stem cell therapy for the diabetic foot. Diabetes Res Clin Pract 2012; 97:43-50. [PMID: 22221581 DOI: 10.1016/j.diabres.2011.12.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/05/2011] [Accepted: 12/08/2011] [Indexed: 12/20/2022]
Abstract
The diabetic foot is a common and severe complication of diabetes comprising a group of lesions including vasculopathy, neuropathy, tissue damage and infection. Vasculopathy due to ischemia is a major contributor to the pathogenesis, natural history and outcome of the diabetic foot. Despite conventional revascularization interventions including angioplasty, stenting, atherectomy and bypass grafts to vessels, a high incidence of amputation persists. The need to develop alternative therapeutic options is compelling; stem cell therapy aims to increase revascularization and alleviate limb ischemia or improve wound healing by stimulating new blood vessel formation, and brings new hope for the treatment of the diabetic foot.
Collapse
Affiliation(s)
- Xiao-Yan Jiang
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | |
Collapse
|
189
|
Abstract
This review provides a thorough and clear discussion on the outcomes of stem cells in treating chronic wounds. With recent technological developments that now allow isolation and culture of stem cells, researchers are able to perform vigorous studies on somatic or adult stem cells. Human and animal stem cell studies are discussed with a focus on the basic process of stem cells in wound healing and the authors' first-hand clinical experience with stem cells used for chronic wound healing.
Collapse
|
190
|
Kim JH, Song SY, Park SG, Song SU, Xia Y, Sung JH. Primary involvement of NADPH oxidase 4 in hypoxia-induced generation of reactive oxygen species in adipose-derived stem cells. Stem Cells Dev 2012; 21:2212-21. [PMID: 22181007 DOI: 10.1089/scd.2011.0561] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously demonstrated that hypoxia stimulates adipose-derived stem cells (ASCs) through the generation of reactive oxygen species (ROS). However, the precise mechanism involved in the ROS generation by ASCs is not well understood. We sought to investigate in this work: (1) which subtype of NADPH oxidase (Nox) is primarily expressed in ASCs; (2) where Nox4 is localized in ASCs; and (3) whether silencing of Nox4 attenuates hypoxia-enhanced function of ASC. We used 2',7'-dichlorofluorescin diacetate (DCF-DA) as an indicator of ROS generation and found that the fluorescence intensity of DCF-DA was significantly increased after hypoxia exposure (2% oxygen). In addition, hypoxia enhanced the proliferation and migration of ASCs and upregulated the mRNA expression of Oct4 and Rex1. Quantitative analysis of mRNA expression of Nox family in ASCs demonstrated that Nox4 is primarily expressed in ASCs, while immunofluorescence assay showed that Nox4 is mainly localized in the perinuclear region and overlaps with Mitotracker, a mitochondria marker. Silencing of Nox4 by siRNA treatment downregulated the RNA and protein expression of Nox4, which significantly reduced the ROS generation under hypoxia. In addition, Nox4 silencing significantly reduced the proliferation and migration of ASCs and downregulated the mRNA expression of Oct4 and Rex1. Phosphorylation of platelet-derived growth factor receptor-β, AKT, and ERK1/2 also diminished following Nox4 silencing. In a nutshell, these results suggest that Nox4 is primarily expressed in ASCs and plays a pivotal role in the hypoxia-enhanced stimulation of ASCs.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Applied Bioscience, CHA University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
191
|
Ingenito EP, Tsai L, Murthy S, Tyagi S, Mazan M, Hoffman A. Autologous Lung-Derived Mesenchymal Stem Cell Transplantation in Experimental Emphysema. Cell Transplant 2012; 21:175-89. [DOI: 10.3727/096368910x550233] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Autologous lung-derived mesenchymal stem cells (LMSCs) were transplanted endoscopically into sheep with experimental emphysema to assess their capacity to regenerate functional tissue. LMSC lines were derived from transbronchial biopsies, cloned at passage 2, expanded in culture, and labeled. A delivery scaffold containing 1% fibrinogen, 20 μg/ml of fibronectin, and 20 μg/ml of poly-L-lysine was used to promote cell attachment and spreading. Treatment animals received scaffold containing 5–10 × 106 cells/site; control animals received scaffold alone. Phenotypic markers, differentiation capacity, extracellular matrix protein expression, and paracrine function of LMSCs were characterized in vitro. Responses to LMSC transplantation in vivo were assessed in terms of clinical toxicity, lung physiology, change in tissue mass (measured by CT scanning) and perfusion (measured by scintigraphy scanning), and tissue histology. At 4-week follow-up, transplants were well tolerated and associated with increased tissue mass and lung perfusion compared to control treatment. Histology confirmed cell retention, increased cellularity, and increased extracellular matrix content following LMSC treatment. Labeled cells were distributed in the alveolar septum and peribronchiolar interstitium. Some label was also present within phagocytes, indicating that a fraction of autologous LMSCs do not survive transplantation. These results suggest that endobronchial delivery of autologous LMSCs has potential therapeutic utility for regenerating functional lung in emphysema.
Collapse
Affiliation(s)
- Edward P. Ingenito
- Division of Pulmonary & Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Larry Tsai
- Division of Pulmonary & Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Shankar Murthy
- Division of Pulmonary & Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Shivraj Tyagi
- Division of Pulmonary & Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Melissa Mazan
- Tufts Cummings School of Veterinary Medicine, N. Grafton, MA, USA
| | - Andrew Hoffman
- Tufts Cummings School of Veterinary Medicine, N. Grafton, MA, USA
| |
Collapse
|
192
|
Park SG, Kim JH, Xia Y, Sung JH. Generation of reactive oxygen species in adipose-derived stem cells: friend or foe? Expert Opin Ther Targets 2011; 15:1297-306. [PMID: 21981031 DOI: 10.1517/14728222.2011.628315] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Reactive oxygen species (ROS) participate in cellular apoptosis and are involved in pathophysiological etiology of degenerative diseases. However, recent studies suggest that ROS at low levels may play a pivotal role as second messengers and activate normal cellular processes. Intracellular ROS increase the proliferation, migration, and regenerative potential of adipose-derived stem cells (ASCs). In contrast, manipulations that diminish intracellular ROS levels interfere with normal ASC function. ROS generation therefore acts like a double-edged sword. AREAS COVERED This review discusses the following research questions: i) Do ROS stimulate or suppress ASCs? ii) How are ROS generated from ASCs? iii) Which function(s) is/are regulated by intracellular ROS generation? In addition, the antioxidant/antiapoptotic effect of ASCs is briefly introduced. EXPERT OPINION Whether ROS is harmful or beneficial is primarily a question of dosage. Low or moderate ROS generation increases the proliferation, migration and regenerative potential of ASCs. Therefore, it is beneficial to expose ASCs to moderate oxidative stress during manipulation. The addition of a ROS donor in culture can reduce the cost for the expansion of ASCs and a ROS preconditioning can enhance the regenerative potential of ASCs.
Collapse
Affiliation(s)
- Sang Gyu Park
- CHA University, Department of Biomedical Science, Seoul, Korea
| | | | | | | |
Collapse
|
193
|
Baer PC. Adipose-Derived Stem Cells and Their Potential to Differentiate into the Epithelial Lineage. Stem Cells Dev 2011; 20:1805-16. [DOI: 10.1089/scd.2011.0086] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Patrick C. Baer
- Division of Nephrology, Department of Internal Medicine III, Goethe-University, Frankfurt/M, Germany
| |
Collapse
|
194
|
Lai K, Zeng K, Zeng F, Wei J, Tan G. Allogeneic adipose-derived stem cells suppress Th17 lymphocytes in patients with active lupus in vitro. Acta Biochim Biophys Sin (Shanghai) 2011; 43:805-12. [PMID: 21903637 DOI: 10.1093/abbs/gmr077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Interleukin-17 (IL-17)-producing CD4(+) T cells (Th17 cells) have been proven to play a critical role in the pathogenesis of systemic lupus erythematosus (SLE). To shed light on the mechanism of immunoregulation of adipose-derived stem cells (ADSCs), we investigated the effects of allogeneic ADSCs on the Th17 lymphocytes of patients with active SLE by co-culturing ADSCs and peripheral blood mononuclear cells of these patients in vitro. The results indicated that ADSCs from passage 3 (P3) down-regulated the proportion of Th17 cells and their abilities to produce IL-17, whereas ADSCs from passage 8 (P8) had contrasting effect. The results also showed cell-cell contact played a role in P3 down-regulation. Blocking the functional pathway of IL-23 (both its ligand and its receptor) also contributed to this suppression. These results suggested that immunomodulation of ADSCs may be achieved by partially suppressing the number and capability of Th17 lymphocytes, indicating that ADSCs could be employed as therapeutic tools for the autoimmune diseases.
Collapse
Affiliation(s)
- Kuan Lai
- Department of Dermatology and Rheumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | | | | | | | | |
Collapse
|
195
|
Ferris WF, Crowther NJ. Once fat was fat and that was that: our changing perspectives on adipose tissue. Cardiovasc J Afr 2011; 22:147-54. [PMID: 21713306 PMCID: PMC3721932 DOI: 10.5830/cvja-2010-083] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract Past civilisations saw excess body fat as a symbol of wealth and prosperity as the general population struggled with food shortages and famine. Nowadays it is recognised that obesity is associated with co-morbidities such as cardiovascular disease and diabetes. Our views on the roll of adipose tissue have also changed, from being solely a passive energy store, to an important endocrine organ that modulates metabolism, immunity and satiety. The relationship between increased visceral adiposity and obesity-related co-morbidities has lead to the recognition that variation in fat distribution contributes to ethnic differences in the prevalence of obesity-related diseases. Our current negative view of adipose tissue may change with the use of pluripotent adipose-derived stromal cells, which may lead to future autologous stem cell therapies for bone, muscle, cardiac and cartilage disorders. Here, we briefly review the concepts that adipose tissue is an endocrine organ, that differences in body fat distribution underline the aetiology of obesity-related co-morbidities, and the use of adipose-derived stem cells for future therapies.
Collapse
Affiliation(s)
- W F Ferris
- Division of Endocrinology, Department of Medicine, Faculty of Health Sciences, University of Stellenbosch, Stellenbosch, South Africa.
| | | |
Collapse
|
196
|
Zografou A, Tsigris C, Papadopoulos O, Kavantzas N, Patsouris E, Donta I, Perrea D. Improvement of skin-graft survival after autologous transplantation of adipose-derived stem cells in rats. J Plast Reconstr Aesthet Surg 2011; 64:1647-56. [PMID: 21839697 DOI: 10.1016/j.bjps.2011.07.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 06/21/2011] [Accepted: 07/09/2011] [Indexed: 12/23/2022]
Abstract
BACKGROUND Skin grafts are frequently used for a variety of indications in plastic and reconstructive surgery. Their necrosis is a common complication, while different therapies have been proposed. Currently, adipose-derived stem cells (ASCs) hold great promise for their angiogenic potential and role during tissue repair. In this study, autologous transplantation of ASCs was used in skin grafts in rats to determine if it increases angiogenesis, skin-graft survival and wound healing. METHODS ASCs were isolated, cultured, labelled with fluorescent dye and injected under full-thickness skin grafts in 10 rats (group 1), while 10 others served as controls (group 2). Skin grafts were analysed after 1 week. Collagen's framework was assessed with Masson's trichrome stain and angiogenesis with von Willebrand factor (vWF) immunohistochemistry. In addition, immunohistochemical staining intensity of vascular endothelial growth factor (VEGF) and transforming growth factor b3 (TGFb3) was assessed in all grafts. RESULTS Mean area of graft necrosis was significantly less in group 1 than in group 2 (6.12% vs. 32.62%, p<0.01). Statistically significant increase of microvessel density, collagen density, VEGF and TGFb3 expression was noted in group 1 compared with group 2 (all: p<0.01). CONCLUSIONS These findings suggest that autologous ASCs transplantation increases full-thickness skin-graft survival and shows promise for use in skin-graft surgery. This might be both due to in situ differentiation of ASCs into endothelial cells and increased secretion by ASCs of growth factors, such as VEGF and TGFb3 that enhance angiogenesis and wound healing.
Collapse
Affiliation(s)
- A Zografou
- Laboratory of Experimental Surgery and Research, Surgical Department, University of Athens School of Medicine, 15B Ag. Thoma Str., Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
197
|
Maharlooei MK, Bagheri M, Solhjou Z, Jahromi BM, Akrami M, Rohani L, Monabati A, Noorafshan A, Omrani GR. Adipose tissue derived mesenchymal stem cell (AD-MSC) promotes skin wound healing in diabetic rats. Diabetes Res Clin Pract 2011; 93:228-234. [PMID: 21632142 DOI: 10.1016/j.diabres.2011.04.018] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/25/2011] [Indexed: 12/21/2022]
Abstract
AIMS Stem cells are a new hope to ameliorate impaired diabetic wound healing. The purpose of this study was to evaluate the effect of adipose tissue derived mesenchymal stem cells (AD-MSCs) on wound healing in a diabetic rat model. METHODS Twenty-six rats became diabetic by a single intraperitoneal injection of streptozotocin. Six rats served as non-diabetic (non-DM). Diabetic rats were divided into two equal groups randomly; control and treatment. Six weeks later, a full-thickness circular excisional wound was created on the dorsum of each rat. AD-MSCs were injected intra-dermally around the wounds of treatment group. PBS was applied to control and non-DM groups. The wound area was measured every other day. After wound healing completion, full thickness skin samples were taken from the wound sites for evaluation of volume density of collagen fibers, length and volume density of vessels, and numerical density of fibroblasts by stereological methods. RESULTS AD-MSCs accelerated wound healing rate in diabetic rats, but did not increase length and volume density of the vessels and volume density of the collagen fibers. AD-MSCs decreased the numerical density of fibroblasts. CONCLUSIONS We concluded that AD-MSCs enhances diabetic wound healing rate probably by other mechanisms rather than enhancing angiogenesis or accumulating collagen fibers.
Collapse
Affiliation(s)
- Mohsen Khosravi Maharlooei
- Cell and Molecular Medicine Research Group, Student Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mansooreh Bagheri
- Cell and Molecular Medicine Research Group, Student Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Zhabiz Solhjou
- Cell and Molecular Medicine Research Group, Student Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Behnam Moein Jahromi
- Cell and Molecular Medicine Research Group, Student Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Majid Akrami
- Resident of General Surgery, Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Lili Rohani
- Laboratory for Stem Cell Research, Department of Anatomy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Monabati
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Noorafshan
- Histomorphometry & Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Gholamhossein Ranjbar Omrani
- Endocrine and Metabolism Research Centre, Department of Internal Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
198
|
Lee MJ, Kim J, Lee KI, Shin JM, Chae JI, Chung HM. Enhancement of wound healing by secretory factors of endothelial precursor cells derived from human embryonic stem cells. Cytotherapy 2011; 13:165-78. [PMID: 21235296 DOI: 10.3109/14653249.2010.512632] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND AIMS Stem cells have been shown to have a therapeutic effect in several ischemic animal models, including hindlimb ischemia and chronic wound. We examined the wound-healing effect of secretory factors released by human embryonic stem cell (hESC)-derived endothelial precursor cells (EPC) in cutaneous excisional wound models. METHODS hESC-EPC were sorted by CD133/KDR, and endothelial characteristics were confirmed by reverse transcription (RT)-polymerase chain reaction (PCR), Matrigel assay and ac-LDL uptake. Conditioned medium (CM) of hESC-EPC was prepared, and concentrated hESC-EPC CM was applied in a mouse excisional wound model. RESULTS hESC-EPC CM accelerated wound healing and increased the tensile strength of wounds after topical treatment and subcutaneous injection. In addition, hESC-EPC CM treatment caused more rapid re-formation of granulation tissue and re-epithelialization of wounds compared with control vehicle medium and CB-EPC CM-treated wounds. In vitro, hESC-EPC CM significantly improved the proliferation and migration of dermal fibroblasts and epidermal keratinocytes. hESC-EPC CM also increased the extracellular matrix synthesis of fibroblasts. Analysis of hESC-EPC CM with a multiplex cytokine array system indicated that hESC-EPC secreted distinctively different cytokines and chemokines, such as epidermal growth factor (EGF), fibroblast growth factor (bFGF), fractalkine, granulocyte-macrophage colony-stimulating factor (GM-CSF), interleukin (IL)-6, IL-8, platelet-derived growth factor-AA (PDGF-AA) and vascular endothelial growth factor (VEGF), which are well known to be important in normal angiogenesis and wound healing. CONCLUSIONS This study has demonstrated the wound-healing effect of hESC-EPC CM and characterized the spectrum of cytokines released by hESC-EPC that are functionally involved in the wound-healing process. These results suggest that secretory factors released from stem cells could be an important mediator of stem cell therapy in ischemic tissue diseases.
Collapse
Affiliation(s)
- Min Ji Lee
- Graduate School of Life Science, CHA Stem Cell Institute, College of Medicine, CHA University, Gangnam gu, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
199
|
Efficient gene delivery of primary human cells using peptide linked polyethylenimine polymer hybrid. Biomaterials 2011; 32:4647-58. [PMID: 21477858 DOI: 10.1016/j.biomaterials.2011.03.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 03/06/2011] [Indexed: 01/27/2023]
Abstract
Polyethylenimine (PEI) based polymers are efficient agents for cell transfection. However, their use has been hampered due to high cell death associated with transfection thereby resulting in low efficiency of gene delivery within the cells. To circumvent the problem of cellular toxicity, metal binding peptides were linked to PEI. Eight peptide-PEI derivatives were synthesized to improve cell survival and transfection efficiency. TAT linked PEI was used as a control polymer. Peptides linked with PEI amines formed nanogels as shown by electron microscopy and atomic force microscopic measurements. Polymers were characterized by spectroscopic methods and their ability to form complexes with plasmids was tested using electrophoretic studies. These modifications improved polymer biocompatibility as well as cell survival markedly, when compared to PEI alone. A subset of the modified peptide-polymers also showed significantly higher transfection efficiency in primary human cells with respect to the widely used transfection agent, lipofectamine. Study of the underlying mechanism of the observed phenomena revealed lower levels of 'reactive oxygen species' (ROS) in the presence of the peptide-polymers when compared to PEI alone. This was further corroborated with global gene expression analysis which showed upregulation of multiple genes and pathways involved in regulating intracellular oxidative stress.
Collapse
|
200
|
Kim JH, Park SH, Park SG, Choi JS, Xia Y, Sung JH. The pivotal role of reactive oxygen species generation in the hypoxia-induced stimulation of adipose-derived stem cells. Stem Cells Dev 2011; 20:1753-61. [PMID: 21265612 DOI: 10.1089/scd.2010.0469] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Adipose-derived stem cells (ASCs) offer a potential alternative for tissue repair and regeneration. We have recently shown that hypoxia stimulates ASCs and enhances the regenerative potential of ASCs, which is beneficial for ASC therapy. In the present study, we further investigated a key mediator and a signal pathway involved in the stimulation of ASC during hypoxia. Culturing ASC in a hypoxic incubator (2% oxygen tension) increased the proliferation and migration, and this was mediated by Akt and ERK pathways. To determine the generation of reactive oxygen species (ROS), 2',7'-dichlorofluorescin diacetate intensity was detected by fluorescence-activated cell sorting. Hypoxia significantly increased the dichlorofluorescin diacetate intensity, which was greatly reduced by N-acetyl-cysteine and diphenyleneiodonium treatment. Likewise, the hypoxia-induced proliferation and migration of ASCs were reversed by N-acetyl-cysteine and diphenyleneiodonium treatment, suggesting the involvement of ROS generation in ASC stimulation. Further, we examined the activation of receptor tyrosine kinases and observed that hypoxia stimulated the phosphorylation of platelet-derived growth factor receptor-β. In summary, the ROS produced by ASCs in response to hypoxia was mostly likely due to NADPH oxidase activity. The increased cellular ROS was accompanied by the phosphorylation of platelet-derived growth factor receptor-β as well as by the activation of ERK and Akt signal pathways. Our results suggest a pivotal role for ROS generation in the stimulation of ASCs by hypoxia.
Collapse
Affiliation(s)
- Ji Hye Kim
- Department of Applied Bioscience, CHA University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|