151
|
Yu RK, Nakatani Y, Yanagisawa M. The role of glycosphingolipid metabolism in the developing brain. J Lipid Res 2008; 50 Suppl:S440-5. [PMID: 18845618 DOI: 10.1194/jlr.r800028-jlr200] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glycosphingolipids (GSLs) are amphipathic lipids ubiquitously expressed in all vertebrate cells and body fluids, but they are especially abundant in the nervous system. The synthesis of GSLs generally is initiated in the endoplasmic reticulum and completed in the Golgi apparatus, followed by transportation to the plasma membrane surface as an integral component. The amount and expression patterns of GSLs change drastically in brains during the embryonic to postnatal stages. Recent studies have revealed that GSLs are highly localized in cell surface microdomains and function as important components that mediate signal transduction and cell adhesion. Also in developing brains, GSLs are suggested to play important roles in nervous system formation. Disturbance of GSL expression and metabolism affects brain function, resulting in a variety of diseases, particularly lysosomal storage diseases. In this review, we describe some aspects of the roles of GSLs, especially of gangliosides, in brain development.
Collapse
Affiliation(s)
- Robert K Yu
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA, USA.
| | | | | |
Collapse
|
152
|
Yamamoto N, Matsubara T, Sato T, Yanagisawa K. Age-dependent high-density clustering of GM1 ganglioside at presynaptic neuritic terminals promotes amyloid beta-protein fibrillogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:2717-26. [PMID: 18727916 DOI: 10.1016/j.bbamem.2008.07.028] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/15/2008] [Accepted: 07/30/2008] [Indexed: 11/25/2022]
Abstract
The deposition of amyloid beta-protein (Abeta) is an invariable feature of Alzheimer's disease (AD); however, the biological mechanism underlying Abeta assembly into fibrils in the brain remains unclear. Here, we show that a high-density cluster of GM1 ganglioside (GM1), which was detected by the specific binding of a novel peptide (p3), appeared selectively on synaptosomes prepared from aged mouse brains. Notably, the synaptosomes bearing the high-density GM1 cluster showed extraordinary potency to induce Abeta assembly, which was suppressed by an antibody specific to GM1-bound Abeta, an endogenous seed for AD amyloid. Together with evidence that Abeta deposition starts at presynaptic terminals in the AD brain and that GM1 levels significantly increase in amyloid-positive synaptosomes prepared from the AD brain, our results suggest that the age-dependent high-density GM1 clustering at presynaptic neuritic terminals is a critical step for Abeta deposition in AD.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu 474-8522, Japan
| | | | | | | |
Collapse
|
153
|
Okada T, Ikeda K, Wakabayashi M, Ogawa M, Matsuzaki K. Formation of toxic Abeta(1-40) fibrils on GM1 ganglioside-containing membranes mimicking lipid rafts: polymorphisms in Abeta(1-40) fibrils. J Mol Biol 2008; 382:1066-74. [PMID: 18692507 DOI: 10.1016/j.jmb.2008.07.072] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2008] [Revised: 07/24/2008] [Accepted: 07/24/2008] [Indexed: 02/02/2023]
Abstract
The abnormal aggregation and deposition of amyloid beta protein (Abeta) on neuronal cells are critical to the onset of Alzheimer's disease. The entity (oligomers or fibrils) of toxic Abeta species responsible for the pathogenesis of the disease has been controversial. We have reported that the Abeta aggregates on ganglioside-rich domains of neuronal PC12 cells as well as in raft-like model membranes. Here, we identified toxic Abeta(1-40) aggregates formed with GM1-ganglioside-containing membranes. Abeta(1-40) was incubated with raft-like liposomes composed of GM1/cholesterol/sphingomyelin at 1:2:2 and 37 degrees C. After a lag period, toxic amyloid fibrils with a width of 12 nm were formed and subsequently laterally assembled with slight changes in their secondary structure as confirmed by viability assay, thioflavin-T fluorescence, circular dichroism, and transmission electron microscopy. In striking contrast, Abeta fibrils formed without membranes were thinner (6.7 nm) and much less toxic because of weaker binding to cell membranes and a smaller surface hydrophobicity. This study suggests that toxic Abeta(1-40) species formed on membranes are not soluble oligomers but amyloid fibrils and that Abeta(1-40) fibrils exhibit polymorphisms.
Collapse
Affiliation(s)
- Takuma Okada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
154
|
Matsuzaki K, Okada T, Tsukuda M, Ikeda K, Sohma Y, Chiyomori Y, Taniguchi A, Nakamura S, Ito N, Hayashi Y, Kiso Y. Design, synthesis, and biophysical properties of a helical Aβ1–42 analog: Inhibition of fibrillogenesis and cytotoxicity. Biochem Biophys Res Commun 2008; 371:777-80. [DOI: 10.1016/j.bbrc.2008.04.158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Accepted: 04/24/2008] [Indexed: 10/22/2022]
|
155
|
Ookoshi T, Hasegawa K, Ohhashi Y, Kimura H, Takahashi N, Yoshida H, Miyazaki R, Goto Y, Naiki H. Lysophospholipids induce the nucleation and extension of 2-microglobulin-related amyloid fibrils at a neutral pH. Nephrol Dial Transplant 2008; 23:3247-55. [DOI: 10.1093/ndt/gfn231] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
156
|
Popiel HA, Nagai Y, Fujikake N, Toda T. Delivery of the aggregate inhibitor peptide QBP1 into the mouse brain using PTDs and its therapeutic effect on polyglutamine disease mice. Neurosci Lett 2008; 449:87-92. [PMID: 18603372 DOI: 10.1016/j.neulet.2008.06.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 05/12/2008] [Accepted: 06/05/2008] [Indexed: 12/01/2022]
Abstract
The polyglutamine (polyQ) diseases are neurodegenerative diseases caused by proteins with an abnormally expanded polyQ stretch, which triggers abnormal aggregation of these proteins in the brain. We previously showed that the polyQ-binding peptide QBP1 inhibits polyQ aggregation, and further that administration of QBP1 fused with a protein transduction domain (PTD) suppresses polyQ-induced neurodegeneration in Drosophila. As the next step towards developing a therapy using QBP1, we investigated the delivery of PTD-QBP1 to the mouse brain upon its administration. Here we successfully detected delivery of PTD-QBP1 into mouse brain cells upon its single intracerebroventricular injection. In addition, long-term administration of PTD-QBP1 to polyQ disease mice improved their weight loss phenotype, suggesting a possible therapeutic effect. Our study indicates the potential of PTD-mediated delivery of QBP1 as a therapeutic strategy for the currently untreatable polyQ diseases.
Collapse
Affiliation(s)
- H Akiko Popiel
- Division of Clinical Genetics, Department of Medical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
157
|
Hatzifilippou E, Koutsouraki E, Banaki T, Traka M, Costa VG, Baloyannis SJ. Antibodies against GM1 in demented patients. Am J Alzheimers Dis Other Demen 2008; 23:274-9. [PMID: 18509104 PMCID: PMC10846108 DOI: 10.1177/1533317508317816] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
The aim of this study was to evaluate the levels of anti-GM1 in demented patients, correlating them with the type and severity of dementia as well as with the eventually coexistent polyneuropathy. Anti-GM1 concentrations were measured in the sera of 33 demented patients with a male-to-female ratio of 1:2.7 (the mean age was 69.7 years for males and 70.1 years for females). Eighty-two percent of the patients revealed increased values of anti-GM1, but only 18.2% demonstrated polyneuropathies. Fifty-nine percent of the patients suffered from vascular dementia. The most severely demented patients demonstrated a Mini-Mental State Examination score of 5 to 23 out of 30 and revealed the most increased levels of anti-GM1 (>40 EU/mL). The findings of this study are indicative of a possible correlation between the levels of anti-GM1 and the severity of dementia, mainly of the vascular type.
Collapse
Affiliation(s)
- Eleni Hatzifilippou
- Neuroimmunological Laboratory of the 1st Department of Neurology Aristotelian University, AHEPA Hospital, Thessaloniki, Greece
| | | | | | | | | | | |
Collapse
|
158
|
Williamson R, Usardi A, Hanger DP, Anderton BH. Membrane-bound beta-amyloid oligomers are recruited into lipid rafts by a fyn-dependent mechanism. FASEB J 2008; 22:1552-9. [PMID: 18096814 DOI: 10.1096/fj.07-9766com] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2025]
Abstract
Recently published research indicates that soluble oligomers of beta-amyloid (Abeta) may be the key neurotoxic species associated with the progression of Alzheimer's disease (AD) and that the process of Abeta aggregation may drive this event. Furthermore, soluble oligomers of Abeta and tau accumulate in the lipid rafts of brains from AD patients through an as yet unknown mechanism. Using cell culture models we report a novel action of Abeta on neuronal plasma membranes where exogenously applied Abeta in the form of ADDLs can be trafficked on the neuronal membrane and accumulate in lipid rafts. ADDL-induced dynamic alterations in lipid raft protein composition were found to facilitate this movement. We show clear associations between Abeta accumulation and redistribution on the neuronal membrane and alterations in the protein composition of lipid rafts. In addition, our data from fyn(-/-) transgenic mice show that accumulation of Abeta on the neuronal surface was not sufficient to cause cell death but that fyn is required for both the redistribution of Abeta and subsequent cell death. These results identify fyn-dependent Abeta redistribution and accumulation in lipid rafts as being key to ADDL-induced cell death and defines a mechanism by which oligomers of Abeta and tau accumulate in lipid rafts.
Collapse
Affiliation(s)
- Ritchie Williamson
- MRC Centre for Neurodegeneration Research, Department of Neuroscience (Box 037), Institute of Psychiatry, King's College London, De Crespigny Park, Denmark Hill, London SE5 8AF, UK.
| | | | | | | |
Collapse
|
159
|
Kumar-Singh S. Cerebral amyloid angiopathy: pathogenetic mechanisms and link to dense amyloid plaques. GENES BRAIN AND BEHAVIOR 2008; 7 Suppl 1:67-82. [PMID: 18184371 DOI: 10.1111/j.1601-183x.2007.00380.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cerebral amyloid angiopathy (CAA) of the amyloid-beta (Abeta) type is the most common form of sporadic CAA and is now also accepted as an early and integral part of Alzheimer's disease (AD) pathogenesis. Cerebral amyloid angiopathy is a risk factor for haemorrhagic stroke and is believed to independently contribute to dementia. Rare forms of hereditary cerebral amyloidosis caused by mutations within the Abeta domain of amyloid precursor protein (APP) have been identified, where mutant Abeta preferably deposits in vessels because of a decreased fibrillogenic potential and/or increased vasotopicity. A review of factors involved in CAA caused by wild-type Abeta suggests that increased Abeta levels in brain without an increased Abeta42/Abeta40 ratio is one of the most important prerequisites for vascular amyloidosis. This is exemplified by CAA observed in APP duplication and Down's syndrome patients, neprilysin polymorphism patients and knockout mice and Swedish APP (KM670/671NL) mice. Select presenilin mutations also lead to a prominent CAA, and importantly, presenilin mutations are shown to have varied effects on the production of Abeta40, the predominant amyloid found in CAA. Conversely, APP mutations such as Austrian APP (T714I) drastically decrease Abeta40 production and are deficient in CAA. Apolipoprotein E-epsilon4 is also shown to be a risk factor for CAA, and this might be because of its specific role in the aggregation of Abeta40. Recent data also suggest that dense-core senile plaques in humans and dense plaques in transgenic mice, composed predominantly of Abeta40, associate with vessels. This review highlights some of these aspects of genetics and biochemistry of CAA and pathological descriptions linked to a prominent CAA and/or dense plaques in humans and relevant mouse models and discusses how this knowledge has led to a better understanding of the processes involved in vascular amyloidosis, and in causing dementia, and thus has important therapeutic implications.
Collapse
Affiliation(s)
- S Kumar-Singh
- Neurodegenerative Brain Diseases Group, VIB Department of Molecular Genetics, University of Antwerp, Antwerpen, Belgium.
| |
Collapse
|
160
|
Ariga T, McDonald MP, Yu RK. Role of ganglioside metabolism in the pathogenesis of Alzheimer's disease--a review. J Lipid Res 2008; 49:1157-75. [PMID: 18334715 DOI: 10.1194/jlr.r800007-jlr200] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Gangliosides are expressed in the outer leaflet of the plasma membrane of the cells of all vertebrates and are particularly abundant in the nervous system. Ganglioside metabolism is closely associated with the pathology of Alzheimer's disease (AD). AD, the most common form of dementia, is a progressive degenerative disease of the brain characterized clinically by progressive loss of memory and cognitive function and eventually death. Neuropathologically, AD is characterized by amyloid deposits or "senile plaques," which consist mainly of aggregated variants of amyloid beta-protein (Abeta). Abeta undergoes a conformational transition from random coil to ordered structure rich in beta-sheets, especially after addition of lipid vesicles containing GM1 ganglioside. In AD brain, a complex of GM1 and Abeta, termed "GAbeta," has been found to accumulate. In recent years, Abeta and GM1 have been identified in microdomains or lipid rafts. The functional roles of these microdomains in cellular processes are now beginning to unfold. Several articles also have documented the involvement of these microdomains in the pathogenesis of certain neurodegenerative diseases, such as AD. A pivotal neuroprotective role of gangliosides has been reported in in vivo and in vitro models of neuronal injury, Parkinsonism, and related diseases. Here we describe the possible involvement of gangliosides in the development of AD and the therapeutic potentials of gangliosides in this disorder.
Collapse
Affiliation(s)
- Toshio Ariga
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, GA 30912, USA
| | | | | |
Collapse
|
161
|
Wilhelmus MMM, de Waal RMW, Verbeek MM. Heat shock proteins and amateur chaperones in amyloid-Beta accumulation and clearance in Alzheimer's disease. Mol Neurobiol 2008; 35:203-16. [PMID: 17917109 PMCID: PMC2039847 DOI: 10.1007/s12035-007-0029-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 11/30/1999] [Accepted: 11/10/2006] [Indexed: 01/17/2023]
Abstract
The pathologic lesions of Alzheimer’s disease (AD) are characterized by accumulation of protein aggregates consisting of intracellular or extracellular misfolded proteins. The amyloid-β (Aβ) protein accumulates extracellularly in senile plaques and cerebral amyloid angiopathy, whereas the hyperphosphorylated tau protein accumulates intracellularly as neurofibrillary tangles. “Professional chaperones”, such as the heat shock protein family, have a function in the prevention of protein misfolding and subsequent aggregation. “Amateur” chaperones, such as apolipoproteins and heparan sulfate proteoglycans, bind amyloidogenic proteins and may affect their aggregation process. Professional and amateur chaperones not only colocalize with the pathological lesions of AD, but may also be involved in conformational changes of Aβ, and in the clearance of Aβ from the brain via phagocytosis or active transport across the blood–brain barrier. Thus, both professional and amateur chaperones may be involved in the aggregation, accumulation, persistence, and clearance of Aβ and tau and in other Aβ-associated reactions such as inflammation associated with AD lesions, and may, therefore, serve as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Department of Neurology and Alzheimer Centre, Radboud University Nijmegen Medical Centre, 830 LKN, Nijmegen, 6500 HB, Netherlands
| | | | | |
Collapse
|
162
|
Kim WS, Weickert CS, Garner B. Role of ATP-binding cassette transporters in brain lipid transport and neurological disease. J Neurochem 2008; 104:1145-66. [DOI: 10.1111/j.1471-4159.2007.05099.x] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
163
|
Endosomal accumulation of GM1 ganglioside-bound amyloid beta-protein in neurons of aged monkey brains. Neuroreport 2008; 18:1669-73. [PMID: 17921865 DOI: 10.1097/wnr.0b013e3282f0d2ab] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We performed an immunohistochemical analysis of the GM1 ganglioside-bound amyloid beta-protein (GAbeta), an endogenous seed of Alzheimer amyloids, in sections of cerebral cortices of cynomolgus monkeys of different ages from 4 to 36 years old. Here, we show that neuronal GAbeta immunostaining significantly increases in the sections obtained from animals at ages below 19 years, even without senile plaque formation, and that GAbeta accumulation exclusively occurs in organelles involved in the endocytic pathway, including early, late, and recycling endosomes, not in those involved in the secretory pathway. Together with previous findings that Abeta generation likely occurs in early endosomes and that GM1 accumulation in early endosomes is induced by endocytic pathway abnormalities, our results provide further evidence that endosomes are intimately involved in the Abeta-associated pathology of Alzheimer's disease.
Collapse
|
164
|
Gan L, Qiao S, Lan X, Chi L, Luo C, Lien L, Yan Liu Q, Liu R. Neurogenic responses to amyloid-beta plaques in the brain of Alzheimer's disease-like transgenic (pPDGF-APPSw,Ind) mice. Neurobiol Dis 2008; 29:71-80. [PMID: 17916429 PMCID: PMC2180424 DOI: 10.1016/j.nbd.2007.08.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2007] [Revised: 07/17/2007] [Accepted: 08/06/2007] [Indexed: 12/31/2022] Open
Abstract
Formation and accumulation of amyloid-beta (A beta) plaques are associated with declined memory and other neurocognitive function in Alzheimer's disease (AD) patients. However, the effects of A beta plaques on neural progenitor cells (NPCs) and neurogenesis from NPCs remain largely unknown. The existing data on neurogenesis in AD patients and AD-like animal models remain controversial. For this reason, we utilized the nestin second-intron enhancer controlled LacZ (pNes-LacZ) reporter transgenic mice (pNes-Tg) and Bi-transgenic mice (Bi-Tg) containing both pPDGF-APPSw,Ind and pNes-LacZ transgenes to investigate the effects of A beta plaques on neurogenesis in the hippocampus and other brain regions of the AD-like mice. We chose transgenic mice at 2, 8 and 12 months of age, corresponding to the stages of A beta plaque free, plaque onset and plaque progression to analyze the effects of A beta plaques on the distribution and de novo neurogenesis of (from) NPCs. We demonstrated a slight increase in the number of NPCs in the hippocampal regions at the A beta plaque free stage, while a significant decrease in the number of NPCs at A beta plaque onset and progression stages. On the other hand, we showed that A beta plaques increase neurogenesis, but not gliogenesis from post-mitotic NPCs in the hippocampus of Bi-Tg mice compared with age-matched control pNes-Tg mice. The neurogenic responses of NPCs to A beta plaques suggest that experimental approaches to promote de novo neurogenesis may potentially improve neurocognitive function and provide an effective therapy for AD.
Collapse
Affiliation(s)
- Li Gan
- Department of Anatomy and Cell Biology, University of North Dakota School of Medicine, Grand Forks, ND 58202, USA
| | | | | | | | | | | | | | | |
Collapse
|
165
|
920 MHz ultra-high field NMR approaches to structural glycobiology. Biochim Biophys Acta Gen Subj 2007; 1780:619-25. [PMID: 18157953 DOI: 10.1016/j.bbagen.2007.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/25/2007] [Accepted: 11/19/2007] [Indexed: 11/23/2022]
Abstract
Although NMR spectroscopy has great potential to provide us with detailed structural information on oligosaccharides and glycoconjugates, the carbohydrate NMR analyses have been hampered by the severe spectral overlapping and the insufficiency of the conformational restraints. Recently, ultra-high field NMR spectrometers have become available for applications to structural analyses of biological macromolecules. Here we demonstrate that ultra-high fields offer not only increases in sensitivity and chemical shift dispersion but also potential benefits for providing unique information on chemical exchange and relaxation, by displaying NMR spectral data of oligosaccharide, glycoprotein, and glycolipid systems recorded at a 21.6 T magnetic field (corresponding to 920 MHz (1)H observation frequency). The ultra-high field NMR spectroscopy combined with sugar library and stable-isotope labeling approaches will open new horizons in structural glycobiology.
Collapse
|
166
|
Yuyama K, Yamamoto N, Yanagisawa K. Accelerated release of exosome-associated GM1 ganglioside (GM1) by endocytic pathway abnormality: another putative pathway for GM1-induced amyloid fibril formation. J Neurochem 2007; 105:217-24. [PMID: 18021298 DOI: 10.1111/j.1471-4159.2007.05128.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Exosomes are extracellularly released small vesicles that are derived from multivesicular bodies formed via the endocytic pathway. We treated pheochromocytoma PC12 cells with chloroquine, an acidotropic agent, which potently perturbs membrane trafficking from endosomes to lysosomes. Chloroquine treatment increased the level of GM1 ganglioside in cell media only when the cells were exposed to KCl for depolarization, which is known to enhance exosome release from neurons. In the sucrose-density-gradient fractionation of cell media, GM1 ganglioside was exclusively recovered with Alix, a specific marker of exosomes, in the fractions with the density corrresponding to that of exosomes. Notably, amyloid-beta assembly was markedly accelerated when incubated with the exosome fraction prepared from the culture media of PC12 cells treated with chloroquine and KCl. Furthermore, amyloid-beta assembly was significantly suppressed by the co-incubation with an antibody specific to GM1-bound amyloid-beta, an endogenous seed for amyloid formation of Alzheimer's disease. Together with our previous finding that chloroquine treatment induces the accumulation of GM1 ganglioside in early endosomes, results of this study suggest that endocytic pathway abnormality accelerates the release of exosome-associated GM1 ganglioside following its accumulation in early endosomes. Furthermore, this study also suggests that extracellular amyloid fibril formation is induced by not only GM1 gangliosides accumulated on the surface of the cells but also those released in association with exosomes.
Collapse
Affiliation(s)
- Kohei Yuyama
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Japan
| | | | | |
Collapse
|
167
|
Yanagisawa K. Role of gangliosides in Alzheimer’s disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1943-51. [PMID: 17321494 DOI: 10.1016/j.bbamem.2007.01.018] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 01/18/2007] [Accepted: 01/23/2007] [Indexed: 11/22/2022]
Abstract
One of the fundamental questions regarding the pathogenesis of Alzheimer's disease (AD) is how the monomeric, nontoxic amyloid beta-protein (Abeta) is converted to its toxic assemblies in the brain. A unique Abeta species was identified previously in an AD brain, which is characterized by its binding to the GM1 ganglioside (GM1). On the basis of the molecular characteristics of this GM1-bound Abeta (GAbeta), it was hypothesized that Abeta adopts an altered conformation through its binding to GM1, and GAbeta acts as a seed for Abeta fibrillogenesis in an AD brain. To date, various in vitro and in vivo studies of GAbeta have been performed, and their results support the hypothesis. Using a novel monoclonal antibody specific to GAbeta, it was confirmed that GAbeta is endogenously generated in the brain. Regarding the role of gangliosides in the facilitation of Abeta assembly, it has recently been reported that region-specific deposition of hereditary variant-type Abetas is determined by local gangliosides in the brain. Furthermore, it is likely that risk factors for AD, including aging and the expression of apolipoprotein E4, alter GM1 distribution on the neuronal surface, leading to GAbeta generation.
Collapse
Affiliation(s)
- Katsuhiko Yanagisawa
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Obu 474-8522, Japan.
| |
Collapse
|
168
|
Wakabayashi M, Matsuzaki K. Formation of Amyloids by Aβ-(1–42) on NGF-differentiated PC12 Cells: Roles of Gangliosides and Cholesterol. J Mol Biol 2007; 371:924-33. [PMID: 17597153 DOI: 10.1016/j.jmb.2007.06.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Revised: 06/01/2007] [Accepted: 06/01/2007] [Indexed: 01/10/2023]
Abstract
The conversion of soluble, non-toxic amyloid beta-protein (Abeta) to aggregated, toxic Abeta could be the key step in the development of Alzheimer's disease. Liposomal studies have proposed that Abeta-(1-40) preferentially recognizes a cholesterol-dependent cluster of gangliosides and a conformationally altered form of Abeta promotes the aggregation of the protein. Cell experiments using fluorescein-labeled Abeta-(1-40) supported this model. Here, the interaction of native Abeta-(1-42) with unfixed rat pheochromocytoma PC12 cells was visualized using the amyloid-specific dye Congo red. Abeta-(1-42) preferentially bound to ganglioside and cholesterol-rich domains of cell membranes and formed amyloids in a time-dependent manner. These observations corroborate the model involving ganglioside-mediated accumulation of Abeta. The NGF-induced differentiation of PC12 cells into neuron-like cells caused a marked increase in both gangliosides and cholesterol, and thereby greatly potentiated the accumulation and cytotoxicity of Abeta-(1-42). NGF-differentiated cells exposed to Abeta-(1-42) had degenerated neurites, in which ganglioside and cholesterol-rich domains were localized, preceding cell death. A reduction in the amount of cholesterol by the cholesterol synthesis inhibitor compactin almost nullified the formation of amyloids by Abeta-(1-42). Our system using NGF-differentiated PC12 cells and Congo red is useful for screening inhibitors of the formation of amyloids by and cytotoxicity of Abeta.
Collapse
Affiliation(s)
- Masaki Wakabayashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | | |
Collapse
|
169
|
Okada T, Wakabayashi M, Ikeda K, Matsuzaki K. Formation of Toxic Fibrils of Alzheimer’s Amyloid β-Protein-(1–40) by Monosialoganglioside GM1, a Neuronal Membrane Component. J Mol Biol 2007; 371:481-9. [PMID: 17582434 DOI: 10.1016/j.jmb.2007.05.069] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/08/2007] [Accepted: 05/21/2007] [Indexed: 10/23/2022]
Abstract
A pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid beta-protein (Abeta) in fibrillar form on neuronal cells. However, the role of Abeta fibrils in neuronal dysfunction is highly controversial. This study demonstrates that monosialoganglioside GM1 (GM1) released from damaged neurons catalyzes the formation of Abeta fibrils, the toxicity and the cell affinity of which are much stronger than those of Abeta fibrils formed in phosphate-buffered saline. Abeta-(1-40) was incubated with equimolar GM1 at 37 degrees C. After a lag period of 6-12 h, amyloid fibrils were formed, as confirmed by circular dichroism, thioflavin-T fluorescence, size-exclusion chromatography, and transmission electron microscopy. The fibrils showed significant cytotoxicity against PC12 cells differentiated with nerve growth factor. Trisialoganglioside GT1b also facilitated the fibrillization, although the effect was weaker than that of GM1. Our study suggests an exacerbation mechanism of AD and an importance of polymorphisms in Abeta fibrils during the pathogenesis of the disease.
Collapse
Affiliation(s)
- Takuma Okada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | |
Collapse
|
170
|
Popiel HA, Nagai Y, Fujikake N, Toda T. Protein transduction domain-mediated delivery of QBP1 suppresses polyglutamine-induced neurodegeneration in vivo. Mol Ther 2007; 15:303-9. [PMID: 17235308 DOI: 10.1038/sj.mt.6300045] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and the polyglutamine (polyQ) diseases share common features including abnormal aggregation of misfolded proteins and their deposition as inclusion bodies in the brain. The polyQ diseases are caused by abnormal expansion of a polyQ stretch in each disease-causing protein, which triggers these proteins to form aggregates. We previously showed that genetic expression of the aggregate inhibitor peptide polyQ binding peptide 1 (QBP1) suppresses polyQ-induced neurodegeneration in Drosophila. However, to establish a molecular therapy using QBP1, QBP1 needs to be delivered into cells by its administration. In this study, we employed protein transduction domains (PTDs) to enable the efficient intracellular delivery of QBP1. We show here that fusion with a PTD enables the efficient intracellular delivery of QBP1, and that PTD-QBP1 treatment suppressed polyQ-induced cytotoxicity in cultured cells. Most importantly, oral administration of PTD-QBP1 successfully suppressed polyQ-induced premature death as well as polyQ inclusion body formation in a Drosophila model of the polyQ diseases, demonstrating its therapeutic effect against polyQ-induced neurodegeneration in vivo. Our study indicates that PTD-mediated delivery of aggregate inhibitor peptides is a promising therapeutic strategy for neurodegenerative diseases with abnormal aggregation of misfolded proteins.
Collapse
Affiliation(s)
- H Akiko Popiel
- Division of Clinical Genetics, Department of Medical Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | |
Collapse
|
171
|
Requirement of aggregation propensity of Alzheimer amyloid peptides for neuronal cell surface binding. BMC Neurosci 2007; 8:29. [PMID: 17475015 PMCID: PMC1871596 DOI: 10.1186/1471-2202-8-29] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 05/02/2007] [Indexed: 02/03/2023] Open
Abstract
Background Aggregation of the amyloid peptides, Aβ40 and Aβ42, is known to be involved in the pathology of Alzheimer's disease (AD). Here we investigate the relationship between peptide aggregation and cell surface binding of three forms of Aβ (Aβ40, Aβ42, and an Aβ mutant). Results Using confocal microscopy and flow cytometry with fluorescently labelled Aβ, we demonstrate a correlation between the aggregation propensity of the Alzheimer amyloid peptides and their neuronal cell surface association. We find that the highly aggregation prone Aβ42 associates with the surface of neuronal cells within one hour, while the less aggregation prone Aβ40 associates over 24 hours. We show that a double mutation in Aβ42 that reduces its aggregation propensity also reduces its association with the cell surface. Furthermore, we find that a cell line that is resistant to Aβ cytotoxicity, the non-neuronal human lymphoma cell line U937, does not bind either Aβ40 or Aβ42. Conclusion Taken together, our findings reveal that amyloid peptide aggregation propensity is an essential determinant of neuronal cell surface association. We anticipate that our approach, involving Aβ imaging in live cells, will be highly useful for evaluating the efficacy of therapeutic drugs that prevent toxic Aβ association with neuronal cells.
Collapse
|
172
|
Yamamoto N, Fukata Y, Fukata M, Yanagisawa K. GM1-ganglioside-induced Aβ assembly on synaptic membranes of cultured neurons. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1128-37. [PMID: 17306220 DOI: 10.1016/j.bbamem.2007.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 01/09/2007] [Accepted: 01/11/2007] [Indexed: 10/23/2022]
Abstract
The cell-surface expression of GM1 ganglioside was studied using various cultured cells, including brain-derived endothelial cells, astrocytes, neuroblastoma cells (SH-SY5Y), and pheochromocytoma cells (PC12). GM1 ganglioside was detected only on the surface of native and nerve-growth-factor (NGF)-treated PC12 cells. We investigated whether GM1 ganglioside on the surface of these cells is sufficiently potent to induce the assembly of an exogenous soluble amyloid beta-protein (Abeta). A marked Abeta assembly was observed in the culture of NGF-treated PC12 cells. Notably, immunocytochemical study revealed that, despite the ubiquitous surface expression of GM1 ganglioside throughout cell bodies and neurites, Abeta assembly initially occurred at the terminals of SNAP25-immunopositive neurites. Abeta assembly in the culture was completely suppressed by the coincubation of Abeta with the subunit B of cholera toxin, a natural ligand for GM1 ganglioside, or 4396C, a monoclonal antibody specific to GM1-ganglioside-bound Abeta (GAbeta). In primary neuronal cultures, Abeta assembly initially occurred at synaptophysin-positive sites. These results suggest that the cell-surface expression of GM1 ganglioside is strictly cell-type-specific, and that expression of GM1 ganglioside on synaptic membranes is unique in terms of its high potency to induce Abeta assembly through the generation of GAbeta, which is an endogenous seed for Abeta assembly in Alzheimer brain.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Alzheimer's Disease Research National Institute for Longevity Sciences National Center for Geriatrics and Gerontology 36-3 Gengo, Morioka, Obu 474-8522, Japan
| | | | | | | |
Collapse
|
173
|
Murray IVJ, Liu L, Komatsu H, Uryu K, Xiao G, Lawson JA, Axelsen PH. Membrane-mediated amyloidogenesis and the promotion of oxidative lipid damage by amyloid beta proteins. J Biol Chem 2007; 282:9335-9345. [PMID: 17255094 PMCID: PMC2253689 DOI: 10.1074/jbc.m608589200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Evidence of oxidative stress and the accumulation of fibrillar amyloid beta proteins (Abeta) in senile plaques throughout the cerebral cortex are consistent features in the pathology of Alzheimer disease. To define a mechanistic link between these two processes, various aspects of the relationship between oxidative lipid membrane damage and amyloidogenesis were characterized by chemical and physical techniques. Earlier studies of this relationship demonstrated that oxidatively damaged synthetic lipid membranes promoted amyloidogenesis. The studies reported herein specify that 4-hydroxy-2-nonenal (HNE) is produced in both synthetic lipids and human brain lipid extracts by oxidative lipid damage and that it can account for accelerated amyloidogenesis. Abeta promotes the copper-mediated generation of HNE from polyunsaturated lipids, and in turn, HNE covalently modifies the histidine side chains of Abeta. HNE-modified Abeta have an increased affinity for lipid membranes and an increased tendency to aggregate into amyloid fibrils. Thus, the prooxidant activity of Abeta leads to its own covalent modification and to accelerated amyloidogenesis. These results illustrate how lipid membranes may be involved in templating the pathological misfolding of Abeta, and they suggest a possible chemical mechanism linking oxidative stress with amyloid formation.
Collapse
Affiliation(s)
- Ian V J Murray
- Departments of Pharmacology, Biochemistry and Biophysics, and Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Liu Liu
- Departments of Pharmacology, Biochemistry and Biophysics, and Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Hiroaki Komatsu
- Departments of Pharmacology, Biochemistry and Biophysics, and Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Kunihiro Uryu
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Gang Xiao
- Proteomics Core Facility, Penn Genomics Institute, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - John A Lawson
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Paul H Axelsen
- Departments of Pharmacology, Biochemistry and Biophysics, and Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
174
|
Yamamoto N, Van Nostrand WE, Yanagisawa K. Further evidence of local ganglioside-dependent amyloid beta-protein assembly in brain. Neuroreport 2007; 17:1735-7. [PMID: 17047463 DOI: 10.1097/01.wnr.0000239958.53072.14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated the molecular mechanism underlying the region-specific deposition of amyloid beta-protein in brains affected with Alzheimer's disease or cerebral amyloid angiopathy. Here, we show that a hereditary variant-type ('Iowa') amyloid beta-protein, which predominantly deposits in the cerebral vessel wall similar to Dutch and Italian-type amyloid beta-proteins, preferably assembles in the presence of GM3 ganglioside. On the basis of our previous findings that first, cerebrovascular smooth muscle cells that provide favorable sites for these variant-type amyloid beta-proteins exclusively express GM3 ganglioside, and second, Dutch and Italian-type amyloid beta-proteins also require GM3 ganglioside for their assembly, our results provide further evidence that local gangliosides play a crucial role in the region-specific amyloid beta-protein deposition in the brain.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu, Japan
| | | | | |
Collapse
|
175
|
Zinser EG, Hartmann T, Grimm MOW. Amyloid beta-protein and lipid metabolism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1991-2001. [PMID: 17418089 DOI: 10.1016/j.bbamem.2007.02.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Revised: 02/14/2007] [Accepted: 02/15/2007] [Indexed: 01/16/2023]
Abstract
Lipids play an important part as risk or protective factors for Alzheimer's disease. This review summarizes the current findings in which lipids influence Alzheimer's disease and introduces the molecular mechanism how these lipids are linked to amyloid production. Besides the pathological impact of amyloid in Alzheimer's disease, amyloid has a physiological function in regulating lipid homeostasis in return. The understanding of the resulting regulatory cycles between amyloid precursor protein processing and lipids provides a platform for the development of new causal therapeutic approaches for Alzheimer's disease.
Collapse
Affiliation(s)
- Eva G Zinser
- Universität des Saarlandes, Uniklinikum Homburg, Neurobiologie, Neurologie, Gebäude 90, 66421 Homburg/Saar, Germany
| | | | | |
Collapse
|
176
|
Matsuzaki K. Physicochemical interactions of amyloid beta-peptide with lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1935-42. [PMID: 17382287 DOI: 10.1016/j.bbamem.2007.02.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 02/05/2007] [Accepted: 02/08/2007] [Indexed: 11/15/2022]
Abstract
The aggregation and deposition onto neuronal cells of amyloid beta-peptide (Abeta) is central to the pathogenesis of Alzheimer's disease. Accumulating evidence suggests that membranes play a catalytic role in the aggregation of Abeta. This article summarizes the structures and properties of Abeta in solution and the physicochemical interaction of Abeta with lipid bilayers of various compositions. Reasons for discrepancies between results by different research groups are discussed. The importance of ganglioside clusters in the aggregation of Abeta is emphasized. Finally, a hypothetical physicochemical cascade in the pathogenesis of the disease is proposed.
Collapse
Affiliation(s)
- Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
177
|
Abstract
The mammalian central nervous system is organized by a variety of cells such as neurons and glial cells. These cells are generated from a common progenitor, the neural stem cell (NSC). NSCs are defined as undifferentiated neural cells that are characterized by their high proliferative potential while retaining the capacity for self-renewal and multipotency. Glycoconjugates carrying carbohydrate antigens, including glycoproteins, glycolipids, and proteoglycans, are primarily localized on the plasma-membrane surface of cells and serve as excellent biomarkers at various stages of cellular differentiation. Moreover, they also play important functional roles in determining cell fate such as self-renewal, proliferation, and differentiation. In the present review, we discuss the expression pattern and possible functions of glycoconjugates and carbohydrate antigens in NSCs, with an emphasis on stage-specific embryonic antigen-1, human natural killer antigen-1, polysialic acid-neural cell-adhesion molecule, prominin-1, gp130, chondroitin sulfate proteoglycans, heparan sulfate proteoglycans, cystatin C, galectin-1, glycolipids, and Notch.
Collapse
Affiliation(s)
- Makoto Yanagisawa
- Institute of Molecular Medicine and Genetics and Institute of Neuroscience, Medical College of Georgia, Augusta, GA 30912, USA
| | | |
Collapse
|
178
|
Yanagisawa M, Ariga T, Yu RK. Fucosyl-GM1 expression and amyloid-beta protein accumulation in PC12 cells. J Neurosci Res 2007; 84:1343-9. [PMID: 16941490 DOI: 10.1002/jnr.21031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Gangliosides, sialic acid-containing glycosphingolipids, are ubiquitously expressed in all eukaryotic cells and are localized primarily in the plasma membrane. For a rat pheochromocytoma cell line, PC12, which has been used frequently as a model for investigating events leading to neuronal differentiation, it is generally thought that GM1 is a major ganglioside, based on reactivity with the probe cholera toxin B subunit (Ctxb). From a series of biochemical studies, however, it has been reported that no GM1 is expressed in PC12 cells. In this study, we have reevaluated GM1 expression and Ctxb reactivity in PC12 cells and a subcloned line, PC12D cells. Flow cytometric analysis with Ctxb revealed that about 30-50% of PC12 cells were reactive with Ctxb. However, a detailed biochemical analysis showed that PC12 cells express abundantly a different ganglioside, fucosyl-GM1, instead of GM1, and the reactivity of Ctxb in the PC12 cells actually arose from its interaction with fucosyl-GM1, which also interacts with this ligand. Because it has been claimed that amyloid-beta protein (Abeta) interacts with GM1 in PC12 cells to provide "seeding" for amyloid to accumulate, we further evaluated this possibility and found that Abeta is mostly likely interacting with fucosyl-GM1 in this cell line. Our data thus suggest that a specific interaction may occur between Abeta and fucosyl-GM1 for the accumulation of amyloid in PC12 cells.
Collapse
Affiliation(s)
- Makoto Yanagisawa
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA.
| | | | | |
Collapse
|
179
|
Matsuzaki K, Noguch T, Wakabayashi M, Ikeda K, Okada T, Ohashi Y, Hoshino M, Naiki H. Inhibitors of amyloid β-protein aggregation mediated by GM1-containing raft-like membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:122-30. [PMID: 17069749 DOI: 10.1016/j.bbamem.2006.09.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Revised: 08/11/2006] [Accepted: 09/05/2006] [Indexed: 11/16/2022]
Abstract
The aggregation (fibril formation) of amyloid beta-protein (Abeta) is considered to be a crucial step in the etiology of Alzheimer's disease (AD). The inhibition of Abeta aggregation and/or decomposition of fibrils formed in aqueous solution by small compounds have been studied extensively for the prevention and treatment of AD. However, recent studies suggest that Abeta aggregation also occurs in lipid rafts mediated by a cluster of monosialoganglioside GM1. This study examined the effects of representative compounds on Abeta aggregation and fibril destabilization in the presence of GM1-containing raft-like liposomes. Among the compounds tested, nordihydroguaiaretic acid (NDGA), rifampicin (RIF), tannic acid (TA), and quercetin (QUE) showed strong fibrillization inhibitory activity. NDGA and RIF inhibited the binding of Abeta to GM1 liposomes by competitively binding to the membranes and/or direct interaction with Abeta in solution, thus at least partly preventing fibrils from forming. Coincubation of Abeta with NDGA, RIF, and QUE in the presence of GM1 liposomes resulted in elongate particles, whereas the presence of TA yielded protofibrillar structures. TA and RIF also destabilized fibrils. The most potent NDGA prevented Abeta-induced toxicity in PC12 cells by inhibiting Abeta accumulation. Furthermore, a comparison of the inhibitory effects of various compounds between aqueous-phase and GM1-mediated aggregation of Abeta suggested that the two aggregation processes are not identical.
Collapse
Affiliation(s)
- Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
180
|
Yuyama K, Yamamoto N, Yanagisawa K. Chloroquine-induced endocytic pathway abnormalities: Cellular model of GM1 ganglioside-induced Abeta fibrillogenesis in Alzheimer's disease. FEBS Lett 2006; 580:6972-6. [PMID: 17161396 DOI: 10.1016/j.febslet.2006.11.072] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 11/24/2006] [Accepted: 11/29/2006] [Indexed: 11/29/2022]
Abstract
Endocytic pathway abnormalities were previously observed in brains affected with Alzheimer's disease (AD). To clarify the pathological relevance of these abnormalities to assembly of amyloid beta-protein (Abeta), we treated PC12 cells with chloroquine, which potently perturbs membrane trafficking from endosomes to lysosomes. Chloroquine treatment induced accumulation of GM1 ganglioside (GM1) in Rab5-positive enlarged early endosomes and on the cell surface. Notably, an increase in GM1 level on the cell surface was sufficient to induce Abeta assembly. Our results suggest that endocytic pathway abnormalities in AD brain induce GM1 accumulation on the cell surface, leading to amyloid fibril formation in brain.
Collapse
Affiliation(s)
- Kohei Yuyama
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Obu 474-8522, Japan
| | | | | |
Collapse
|
181
|
Yamamoto N, Matsubara E, Maeda S, Minagawa H, Takashima A, Maruyama W, Michikawa M, Yanagisawa K. A ganglioside-induced toxic soluble Abeta assembly. Its enhanced formation from Abeta bearing the Arctic mutation. J Biol Chem 2006; 282:2646-55. [PMID: 17135262 DOI: 10.1074/jbc.m606202200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mechanism underlying plaque-independent neuronal death in Alzheimer disease (AD), which is probably responsible for early cognitive decline in AD patients, remains unclarified. Here, we show that a toxic soluble Abeta assembly (TAbeta) is formed in the presence of liposomes containing GM1 ganglioside more rapidly and to a greater extent from a hereditary variant-type ("Arctic") Abeta than from wild-type Abeta. TAbeta is also formed from soluble Abeta through incubation with natural neuronal membranes prepared from aged mouse brains in a GM1 ganglioside-dependent manner. An oligomer-specific antibody (anti-Oligo) significantly suppresses TAbeta toxicity. Biophysical and structural analyses by atomic force microscopy and size exclusion chromatography revealed that TAbeta is spherical with diameters of 10-20 nm and molecular masses of 200-300 kDa. TAbeta induces neuronal death, which is abrogated by the small interfering RNA-mediated knockdown of nerve growth factor receptors, including TrkA and p75 neurotrophin receptor. Our results suggest that soluble Abeta assemblies, such as TAbeta, can cause plaque-independent neuronal death that favorably occurs in nerve growth factor-dependent neurons in the cholinergic basal forebrain in AD.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu 474-8522, Japan
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Walter J. Control of Amyloid-β-Peptide Generation by Subcellular Trafficking of the β-Amyloid Precursor Protein and β-Secretase. NEURODEGENER DIS 2006; 3:247-54. [PMID: 17047364 DOI: 10.1159/000095263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Amyloid-beta (Abeta) peptides are major components of Alzheimer's disease (AD)-associated senile plaques and generated by sequential cleavage of the beta-amyloid precursor protein (betaAPP) by beta-secretase and gamma-secretase. While beta-secretase activity is exerted by the aspartic protease BACE1, gamma-secretase consists of a protein complex of at least four essential proteins with the presenilins as the catalytically active components. The understanding of the subcellular trafficking of betaAPP and proteases involved in its proteolytic processing has increased rapidly in the last years. BetaAPP as well as the secretases are membrane proteins, and recent work demonstrated that alterations in the lipid composition of cellular membranes could affect the proteolytic processing of betaAPP and Abeta generation. We identified glycosphingolipids as membrane components that modulate the subcellular transport of betaAPP and the generation of Abeta. By cell biological and biochemical methods we also characterized the role of BACE1 and its homologue BACE2 in the proteolytic processing of betaAPP. Here, I summarize and discuss these findings in the context of other studies focused on the function of BACE1 and BACE2 and the role of subcellular trafficking in the proteolytic processing of betaAPP.
Collapse
Affiliation(s)
- Jochen Walter
- Department of Neurology, University of Bonn, Bonn, Germany.
| |
Collapse
|
183
|
Liu Z, Ruan Y, Yue W, Zhu Z, Hartmann T, Beyreuther K, Zhang D. GM1 up-regulates Ubiquilin 1 expression in human neuroblastoma cells and rat cortical neurons. Neurosci Lett 2006; 407:59-63. [PMID: 16949204 DOI: 10.1016/j.neulet.2006.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 07/28/2006] [Accepted: 08/01/2006] [Indexed: 11/30/2022]
Abstract
GM1 ganglioside was reported to mediate the amyloid beta-protein (Abeta) secretion and accumulation in the pathogenesis of Alzheimer's disease (AD). The objective of this project was to comprehend the underlying molecular changes related to amyloid beta-protein precursor (APP) processing pathway induced by GM1. Using suppression subtractive hybridisation (SSH), we detected one prominent sequence with increased expression in human neuroblastoma cells that stably transfected with human APP695 cDNA treated with GM1. This transcript has high identity to human Ubiquilin 1 gene. Differential expression was initially confirmed by dot blot hybridization. This result was further authenticated with quantitative real-time polymerase chain reaction (RT-PCR) analysis. Furthermore, using Western blots, we discovered that GM1 stimulated the expression of Ubiquilin 1 in human neuroblastoma cells and rat cortical neurons while other gangliosides Asialo-GM1 and GD1b did not. Ubiquilin 1 is one of the candidate genes of AD, which have been shown to modulate the gamma-secretase components in the proteolytic processing of APP, and is therefore a putative candidate for further investigation of GM1 mechanisms in the etiology and pathology of AD.
Collapse
Affiliation(s)
- Zhonghua Liu
- Department of Biochemistry, Institute of Mental Health, Peking University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
184
|
Zheng W, Kollmeyer J, Symolon H, Momin A, Munter E, Wang E, Kelly S, Allegood JC, Liu Y, Peng Q, Ramaraju H, Sullards MC, Cabot M, Merrill AH. Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1864-84. [PMID: 17052686 DOI: 10.1016/j.bbamem.2006.08.009] [Citation(s) in RCA: 436] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 08/16/2006] [Indexed: 12/14/2022]
Abstract
Sphingolipids are comprised of a backbone sphingoid base that may be phosphorylated, acylated, glycosylated, bridged to various headgroups through phosphodiester linkages, or otherwise modified. Organisms usually contain large numbers of sphingolipid subspecies and knowledge about the types and amounts is imperative because they influence membrane structure, interactions with the extracellular matrix and neighboring cells, vesicular traffic and the formation of specialized structures such as phagosomes and autophagosomes, as well as participate in intracellular and extracellular signaling. Fortunately, "sphingolipidomic" analysis is becoming feasible (at least for important subsets such as all of the backbone "signaling" subspecies: ceramides, ceramide 1-phosphates, sphingoid bases, sphingoid base 1-phosphates, inter alia) using mass spectrometry, and these profiles are revealing many surprises, such as that under certain conditions cells contain significant amounts of "unusual" species: N-mono-, di-, and tri-methyl-sphingoid bases (including N,N-dimethylsphingosine); 3-ketodihydroceramides; N-acetyl-sphingoid bases (C2-ceramides); and dihydroceramides, in the latter case, in very high proportions when cells are treated with the anticancer drug fenretinide (4-hydroxyphenylretinamide). The elevation of DHceramides by fenretinide is befuddling because the 4,5-trans-double bond of ceramide has been thought to be required for biological activity; however, DHceramides induce autophagy and may be important in the regulation of this important cellular process. The complexity of the sphingolipidome is hard to imagine, but one hopes that, when partnered with other systems biology approaches, the causes and consequences of the complexity will explain how these intriguing compounds are involved in almost every aspect of cell behavior and the malfunctions of many diseases.
Collapse
Affiliation(s)
- Wenjing Zheng
- School of Biology, Chemistry and Biochemistry, Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Martins IJ, Hone E, Foster JK, Sünram-Lea SI, Gnjec A, Fuller SJ, Nolan D, Gandy SE, Martins RN. Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer's disease and cardiovascular disease. Mol Psychiatry 2006; 11:721-36. [PMID: 16786033 DOI: 10.1038/sj.mp.4001854] [Citation(s) in RCA: 250] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 05/23/2006] [Accepted: 05/24/2006] [Indexed: 02/08/2023]
Abstract
High fat diets and sedentary lifestyles are becoming major concerns for Western countries. They have led to a growing incidence of obesity, dyslipidemia, high blood pressure, and a condition known as the insulin-resistance syndrome or metabolic syndrome. These health conditions are well known to develop along with, or be precursors to atherosclerosis, cardiovascular disease, and diabetes. Recent studies have found that most of these disorders can also be linked to an increased risk of Alzheimer's disease (AD). To complicate matters, possession of one or more apolipoprotein E epsilon4 (APOE epsilon4) alleles further increases the risk or severity of many of these conditions, including AD. ApoE has roles in cholesterol metabolism and Abeta clearance, both of which are thought to be significant in AD pathogenesis. The apparent inadequacies of ApoE epsilon4 in these roles may explain the increased risk of AD in subjects carrying one or more APOE epsilon4 alleles. This review describes some of the physiological and biochemical changes that the above conditions cause, and how they are related to the risk of AD. A diversity of topics is covered, including cholesterol metabolism, glucose regulation, diabetes, insulin, ApoE function, amyloid precursor protein metabolism, and in particular their relevance to AD. It can be seen that abnormal lipid, cholesterol and glucose metabolism are consistently indicated as central in the pathophysiology, and possibly the pathogenesis of AD. As diagnosis of mild cognitive impairment and early AD are becoming more reliable, and as evidence is accumulating that health conditions such as diabetes, obesity, and coronary artery disease are risk factors for AD, appropriate changes to diets and lifestyles will likely reduce AD risk, and also improve the prognosis for people already suffering from such conditions.
Collapse
Affiliation(s)
- I J Martins
- Alzheimer's and Ageing, School of Biomedical and Sports Science, Edith Cowan University, Perth, WA, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Isaacs AM, Senn DB, Yuan M, Shine JP, Yankner BA. Acceleration of amyloid beta-peptide aggregation by physiological concentrations of calcium. J Biol Chem 2006; 281:27916-23. [PMID: 16870617 PMCID: PMC1595535 DOI: 10.1074/jbc.m602061200] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Alzheimer disease is characterized by the accumulation of aggregated amyloid beta-peptide (Abeta) in the brain. The physiological mechanisms and factors that predispose to Abeta aggregation and deposition are not well understood. In this report, we show that calcium can predispose to Abeta aggregation and fibril formation. Calcium increased the aggregation of early forming protofibrillar structures and markedly increased conversion of protofibrils to mature amyloid fibrils. This occurred at levels 20-fold below the calcium concentration in the extracellular space of the brain, the site at which amyloid plaque deposition occurs. In the absence of calcium, protofibrils can remain stable in vitro for several days. Using this approach, we directly compared the neurotoxicity of protofibrils and mature amyloid fibrils and demonstrate that both species are inherently toxic to neurons in culture. Thus, calcium may be an important predisposing factor for Abeta aggregation and toxicity. The high extracellular concentration of calcium in the brain, together with impaired intraneuronal calcium regulation in the aging brain and Alzheimer disease, may play an important role in the onset of amyloid-related pathology.
Collapse
Affiliation(s)
- Adrian M. Isaacs
- From the Department of Neurology and Division of Neuroscience, The Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115 and the
| | - David B. Senn
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02215
| | - Menglan Yuan
- From the Department of Neurology and Division of Neuroscience, The Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115 and the
| | - James P. Shine
- Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts 02215
| | - Bruce A. Yankner
- From the Department of Neurology and Division of Neuroscience, The Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115 and the
- ¶To whom correspondence should be addressed: Dept. of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, NRB-858C, Boston, MA 02115.
| |
Collapse
|
187
|
Rajendran L, Honsho M, Zahn TR, Keller P, Geiger KD, Verkade P, Simons K. Alzheimer's disease beta-amyloid peptides are released in association with exosomes. Proc Natl Acad Sci U S A 2006; 103:11172-7. [PMID: 16837572 PMCID: PMC1544060 DOI: 10.1073/pnas.0603838103] [Citation(s) in RCA: 1046] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although the exact etiology of Alzheimer's disease (AD) is a topic of debate, the consensus is that the accumulation of beta-amyloid (Abeta) peptides in the senile plaques is one of the hallmarks of the progression of the disease. The Abeta peptide is formed by the amyloidogenic cleavage of the amyloid precursor protein (APP) by beta- and gamma-secretases. The endocytic system has been implicated in the cleavages leading to the formation of Abeta. However, the identity of the intracellular compartment where the amyloidogenic secretases cleave and the mechanism by which the intracellularly generated Abeta is released into the extracellular milieu are not clear. Here, we show that beta-cleavage occurs in early endosomes followed by routing of Abeta to multivesicular bodies (MVBs) in HeLa and N2a cells. Subsequently, a minute fraction of Abeta peptides can be secreted from the cells in association with exosomes, intraluminal vesicles of MVBs that are released into the extracellular space as a result of fusion of MVBs with the plasma membrane. Exosomal proteins were found to accumulate in the plaques of AD patient brains, suggesting a role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Lawrence Rajendran
- *Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Masanori Honsho
- *Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Tobias R. Zahn
- *Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | - Kathrin D. Geiger
- Department of Neuropathology, Institute of Pathology, University Clinic, University of Technology, 01307 Dresden, Germany
| | - Paul Verkade
- *Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Kai Simons
- *Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
188
|
Schneider A, Schulz-Schaeffer W, Hartmann T, Schulz JB, Simons M. Cholesterol depletion reduces aggregation of amyloid-beta peptide in hippocampal neurons. Neurobiol Dis 2006; 23:573-7. [PMID: 16777421 DOI: 10.1016/j.nbd.2006.04.015] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2005] [Revised: 04/18/2006] [Accepted: 04/30/2006] [Indexed: 11/28/2022] Open
Abstract
A key event in the pathogenesis of Alzheimer's disease is the conversion of soluble amyloid Abeta-peptide into toxic aggregates. Here, we studied the effect of cholesterol depletion on the formation of insoluble Abeta. We found that reduction of neuronal cholesterol by approximately 25% reduced the neuronal formation of insoluble Abeta without affecting the secretion of soluble Abeta. Moreover, we demonstrate that Abeta-oligomers from Alzheimer's disease brains associate with a detergent-resistant membrane fraction in a cholesterol-dependent manner. These results suggest a key role for cholesterol in aggregation of Abeta.
Collapse
Affiliation(s)
- Anja Schneider
- Center for Biochemistry and Molecular Cell Biology, University of Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
189
|
van Echten-Deckert G, Herget T. Sphingolipid metabolism in neural cells. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1978-94. [PMID: 16843432 DOI: 10.1016/j.bbamem.2006.06.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2005] [Revised: 05/29/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
Sphingolipids were discovered more than a century ago in the brain. Cerebrosides and sphingomyelins were named so because they were first isolated from neural tissue. Although glycosphingolipids and especially those containing sialic acid in their oligosaccharide moiety are particularly abundant in the brain, sphingolipids are ubiquitous cellular membrane components. They form cell- and species-specific profiles at the cell surfaces that characteristically change in development, differentiation, and oncogenic transformation, indicating the significance of these lipid molecules for cell-cell and cell-matrix interactions as well as for cell adhesion, modulation of membrane receptors and signal transduction. This review summarizes sphingolipid metabolism with emphasis on aspects particularly relevant in neural cell types, including neurons, oligodendrocytes and neuroblastoma cells. In addition, the reader is briefly introduced into the methodology of lipid evaluation techniques and also into the putative physiological functions of glycosphingolipids and their metabolites in neural tissue.
Collapse
Affiliation(s)
- Gerhild van Echten-Deckert
- Kekulé-Institute for Organic Chemistry and Biochemistry, University Bonn, Gerhard-Domagk-Strasse 1, 53121 Bonn, Germany.
| | | |
Collapse
|
190
|
Yamamoto N, Matsuzaki K, Yanagisawa K. Cross-seeding of wild-type and hereditary variant-type amyloid beta-proteins in the presence of gangliosides. J Neurochem 2006; 95:1167-76. [PMID: 16271050 DOI: 10.1111/j.1471-4159.2005.03444.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated the molecular mechanism underlying the ganglioside-induced initiation of the assembly of wild and hereditary variant-type amyloid beta-proteins, including Arctic-, Dutch-, and Flemish-type amyloid beta-proteins. We monitored the assembly of amyloid beta-protein by thioflavin-T assay, western blotting and electron microscopy. We also examined how externally added amyloid beta-protein assembles in a cell culture. The assembly of wild-, Arctic-, Dutch-, and Flemish-type amyloid beta-proteins were accelerated in the presence of GM1, GM1, GM3 and GD3 gangliosides. Notably, all of these amyloid beta-proteins accelerated the assembly of different type of amyloid beta-protein, following prior binding to a specific ganglioside. A specific-ganglioside-bound form of variant-type amyloid beta-protein was recognized by the antibody (4396C) specific to the GM1-ganglioside-induced altered conformation of wild-type amyloid beta-protein. Moreover, the assembly of these amyloid beta-proteins in the presence of a specific ganglioside was markedly suppressed by coincubation with 4396C. This study suggests that cross-seeding can occur between wild and hereditary variant-type amyloid beta-proteins despite differences in their amino acid sequences.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Morioka, Obu, Japan
| | | | | |
Collapse
|
191
|
Boutaud O, Montine TJ, Chang L, Klein WL, Oates JA. PGH2-derived levuglandin adducts increase the neurotoxicity of amyloid beta1-42. J Neurochem 2006; 96:917-23. [PMID: 16412101 PMCID: PMC1621054 DOI: 10.1111/j.1471-4159.2005.03586.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The body of evidence indicating that oligomers of amyloid beta(1-42) (Abeta(1-42)) produce toxicity to neurons, together with our demonstration that prostaglandin H(2) (PGH(2)) oligomerizes amyloid beta(1-42), led to the examination of the neurotoxicity of amyloid beta(1-42) treated with PGH(2). The neurotoxic effects of Abeta(1-42) incubated with PGH(2) was examined in primary cultures of cerebral neurons of mice, monitoring the reduction of 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) as an indicator of cell toxicity. Whereas Abeta(1-42) itself, incubated for 24 h, has little or no effect on MTT reduction, Abeta(1-42) 24 h after exposure to PGH(2) produced a marked inhibition of MTT reduction, comparable with the inhibition resulting from Abeta(1-42) that has been oligomerized by incubation for 6 days. Similar results were obtained when Abeta(1-42) was incubated with levuglandin E(2) (LGE(2)), a reactive aldehyde formed by spontaneous rearrangement of PGH(2). The oligomers formed from reaction of Abeta(1-42) with LGE(2) exhibit immunochemical similarity with amyloid-derived diffusible ligands (ADDLs), as determined by analysis of the products of reaction of Abeta(1-42) with LGE(2) using western blotting with an antibody that is selective for ADDLs.
Collapse
Affiliation(s)
- Olivier Boutaud
- Department of Pharmacology, Vanderbilt University, Nashville 37232-6602, Tennessee, USA.
| | | | | | | | | |
Collapse
|
192
|
Yamamoto N, Yokoseki T, Shibata M, Yamaguchi H, Yanagisawa K. Suppression of Abeta deposition in brain by peripheral administration of Fab fragments of anti-seed antibody. Biochem Biophys Res Commun 2005; 335:45-7. [PMID: 16051187 DOI: 10.1016/j.bbrc.2005.06.208] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 06/29/2005] [Indexed: 11/19/2022]
Abstract
Assembly and deposition of amyloid beta-protein (Abeta) in the brain is a fundamental process of Alzheimer's disease (AD). We previously hypothesized that GM1 ganglioside-bound Abeta (GAbeta) is an endogenous seed for Abeta assembly in brain. Recently, we have succeeded in generation of a monoclonal antibody specific to GAbeta. Notably, this antibody, 4396C, per se substantially inhibits Abeta assembly in vitro. Here we report that the peripheral administration of Fab fragments of 4396C into transgenic mice expressing a mutant amyloid precursor protein gene, following the conjugation of the protein transduction domain of the Tat protein, markedly suppressed Abeta deposition in the brain. This result further supports our previous hypothesis and also provides a new insight into develop AD therapy through targeting seed Abeta in the brain, which selectively inhibits the initial step of the pathological process of AD.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, Obu 474-8522, Japan
| | | | | | | | | |
Collapse
|
193
|
Kumar-Singh S, Pirici D, McGowan E, Serneels S, Ceuterick C, Hardy J, Duff K, Dickson D, Van Broeckhoven C. Dense-core plaques in Tg2576 and PSAPP mouse models of Alzheimer's disease are centered on vessel walls. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:527-43. [PMID: 16049337 PMCID: PMC1603563 DOI: 10.1016/s0002-9440(10)62995-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/26/2005] [Indexed: 10/18/2022]
Abstract
Occurrence of amyloid beta (Abeta) dense-core plaques in the brain is one of the chief hallmarks of Alzheimer's disease (AD). It is not yet clear what factors are responsible for the aggregation of Abeta in the formation of these plaques. Using Tg2576 and PSAPP mouse models that exhibit age-related development of amyloid plaques similar to that observed in AD, we showed that approximately 95% of dense plaques in Tg2576 and approximately 85% in PSAPP mice are centered on vessel walls or in the immediate perivascular regions. Stereoscopy and simulation studies focusing on smaller plaques suggested that vascular associations for both Tg2576 and PSAPP mice were dramatically higher than those encountered by chance alone. We further identified ultrastructural microvascular abnormalities occurring in association with dense plaques. Although occurrence of gross cerebral hemorrhage was infrequent, we identified considerable infiltration of the serum proteins immunoglobulin and albumin in association with dense plaques. Together with earlier evidence of vascular clearance of Abeta, our data suggest that perturbed vascular transport and/or perivascular enrichment of Abeta leads to the formation of vasocentric dense plaques in Tg2576 and PSAPP mouse models of AD.
Collapse
Affiliation(s)
- Samir Kumar-Singh
- Department of Molecular Genetics VIB8, Neurodegenerative Brain Diseases Research Group, Molecular Neuropathology Project, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Tamboli IY, Prager K, Barth E, Heneka M, Sandhoff K, Walter J. Inhibition of Glycosphingolipid Biosynthesis Reduces Secretion of the β-Amyloid Precursor Protein and Amyloid β-Peptide*[boxs]. J Biol Chem 2005; 280:28110-7. [PMID: 15923191 DOI: 10.1074/jbc.m414525200] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alzheimer disease is associated with extracellular deposits of amyloid beta-peptides in the brain. Amyloid beta-peptides are generated by proteolytic processing of the beta-amyloid precursor protein by beta- and gamma-secretases. The cleavage by secretases occurs predominantly in post-Golgi secretory and endocytic compartments and is influenced by cholesterol, indicating a role of the membrane lipid composition in proteolytic processing of the beta-amyloid precursor protein. To analyze the role of glycosphingolipids in these processes we inhibited glycosyl ceramide synthase, which catalyzes the first step in glycosphingolipid biosynthesis. The depletion of glycosphingolipids markedly reduced the secretion of endogenous beta-amyloid precursor protein in different cell types, including human neuroblastoma SH-SY5Y cells. Importantly, secretion of amyloid beta-peptides was also strongly decreased by inhibition of glycosphingolipid biosynthesis. Conversely, the addition of exogenous brain gangliosides to cultured cells reversed these effects. Biochemical and cell biological experiments demonstrate that the pharmacological reduction of cellular glycosphingolipid levels inhibited maturation and cell surface transport of the beta-amyloid precursor protein. In the glycosphingolipid-deficient cell line GM95, cellular levels and maturation of beta-amyloid precursor protein were also significantly reduced as compared with normal B16 cells. Together, these data demonstrate that glycosphingolipids are implicated in the regulation of the subcellular transport of the beta-amyloid precursor protein in the secretory pathway and its proteolytic processing. Thus, enzymes involved in glycosphingolipid metabolism might represent targets to inhibit the production of amyloid beta-peptides.
Collapse
Affiliation(s)
- Irfan Y Tamboli
- Department of Neurology, University of Bonn, Sigmund-Freud-Strasse 25, 53127 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
195
|
Sato T, Tanimura Y, Hirotani N, Saido TC, Morishima-Kawashima M, Ihara Y. Blocking the cleavage at midportion between gamma- and epsilon-sites remarkably suppresses the generation of amyloid beta-protein. FEBS Lett 2005; 579:2907-12. [PMID: 15890346 DOI: 10.1016/j.febslet.2005.04.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 04/04/2005] [Accepted: 04/18/2005] [Indexed: 11/29/2022]
Abstract
To examine how gamma- and epsilon-cleavages of beta-amyloid precursor protein (APP) are related, each cleavage site was replaced with a stretch of Trp that cannot be cleaved by gamma-secretase. Replacement of the gamma- or epsilon-site significantly suppressed secretion of amyloid beta-protein (Abeta), and produced longer Abeta or longer APP intracellular domain, respectively. This cleavage at the midportion between gamma- and epsilon-sites was also gamma-secretase-dependent. Blocking this cleavage with a Trp stretch remarkably suppressed Abeta generation, indicating that the midportion cleavage is required for the generation of Abeta.
Collapse
Affiliation(s)
- Toru Sato
- Department of Neuropathology, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
196
|
Christopeit T, Hortschansky P, Schroeckh V, Gührs K, Zandomeneghi G, Fändrich M. Mutagenic analysis of the nucleation propensity of oxidized Alzheimer's beta-amyloid peptide. Protein Sci 2005; 14:2125-31. [PMID: 15987892 PMCID: PMC2279324 DOI: 10.1110/ps.051470405] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The formation of polypeptide aggregates represents a nucleated polymerization reaction in which an initial nucleation event (lag phase) is followed by the extension of newly formed nuclei into larger aggregates, including fibrils (growth phase). The efficiencies of these reactions relate to the lag time (lag phase) and to the rate of aggregation (growth phase), which can be determined from experimental aggregation curves. Here we present a mutagenic analysis in which we replace valine 18 of the Alzheimer's Abeta (1-40) peptide with 17 different amino acids and determine its effect on the lag time, and therefore, on the propensity of nucleation. Comparison with various physico-chemical properties shows that nucleation is affected in a predictable manner depending on the beta-sheet propensity and hydrophobicity of residue 18. In addition, we observe a direct proportionality between the lag time and the rate of aggregation. These data imply that the two reactions, nucleation and polymerization, are governed by very similar physicochemical principles and that they involve the formation of the same types of noncovalent interactions.
Collapse
|
197
|
Boutaud O, Andreasson KI, Zagol-Ikapitte I, Oates JA. Cyclooxygenase-dependent lipid-modification of brain proteins. Brain Pathol 2005; 15:139-42. [PMID: 15912886 PMCID: PMC8096006 DOI: 10.1111/j.1750-3639.2005.tb00510.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Substantial evidence indicates that both beta-amyloid and cyclooxygenase activity contribute to the pathogenesis of Alzheimer disease. The immediate product of the cyclooxygenases, prostaglandin H2, rapidly rearranges in aqueous solution, with approximately 20% being converted to levuglandins E2 and D2. These gamma-ketoaldehydes are highly reactive and rapidly adduct to accessible amine groups on macromolecules, particularly the epsilon-amine of lysine residues on proteins. The immediate LG-lysine adducts are themselves reactive, and can covalently crosslink proteins. PGH2, acting via LGs, accelerates the formation of the type of oligomers of amyloid beta that has been associated with neurotoxicity. In this review, we discuss the cyclooxygenase-dependent lipid-modification of proteins by levuglandins in vitro, in cells in culture and in vivo in transgenic mice over-expressing COX in the brain.
Collapse
Affiliation(s)
- Olivier Boutaud
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232-6602, USA.
| | | | | | | |
Collapse
|
198
|
Yamamoto N, Hirabayashi Y, Amari M, Yamaguchi H, Romanov G, Van Nostrand WE, Yanagisawa K. Assembly of hereditary amyloid beta-protein variants in the presence of favorable gangliosides. FEBS Lett 2005; 579:2185-90. [PMID: 15811339 DOI: 10.1016/j.febslet.2005.03.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 03/06/2005] [Accepted: 03/07/2005] [Indexed: 10/25/2022]
Abstract
The mechanisms underlying regional amyloid beta-protein (Abeta) deposition in brain remain unclear. Here we show that assembly of hereditary variant Dutch- and Italian-type Abetas, and Flemish-type Abeta was accelerated by GM3 ganglioside, and GD3 ganglioside, respectively. Notably, cerebrovascular smooth muscle cells, which compose the cerebral vessel wall at which the Dutch- and Italian-type Abetas deposit, exclusively express GM3 whereas GD3 is upregulated in the co-culture of endothelial cells and astrocytes, which forms the cerebrovascular basement membrane, the site of Flemish-type Abeta deposition. Our results suggest that regional Abeta deposition is induced by the local gangliosides in the brain.
Collapse
Affiliation(s)
- Naoki Yamamoto
- Department of Alzheimer's Disease Research, National Institute for Longevity Sciences, National Center for Geriatrics and Gerontology, 36-3 Gengo, Morioka, Obu 474-8522, Japan
| | | | | | | | | | | | | |
Collapse
|
199
|
Bieberich E. Integration of glycosphingolipid metabolism and cell-fate decisions in cancer and stem cells: review and hypothesis. Glycoconj J 2005; 21:315-27. [PMID: 15514480 DOI: 10.1023/b:glyc.0000046274.35732.47] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The metabolism of glycosphingolipids is strictly regulated during the mitotic cell cycle. Before the G1-to-S transition, the ceramide and glucosylceramide concentration is elevated. Ceramide induces apoptosis synergistically with the pro-apoptotic protein prostate apoptosis response 4 (PAR-4) that may be asymmetrically inherited during cell division. Only one daughter cell dies shortly after mitosis, a mechanism we suggested to regulate the number of neural stem cells during embryonic development. The progeny cells, however, may protect themselves by converting ceramide to glucosylceramide and other glycosphingolipids. In particular, complex gangliosides have been found to sustain cell survival and differentiation. The cell cycle may thus be a turning point for (glyco)sphingolipid metabolism and explain rapid changes of the sphingolipid composition in cells that undergo mitotic cell-fate decisions. In the proposed model termed "Shiva cycle", progression through the cell cycle, differentiation, or apoptosis may rely on a delicate balance of (glyco)sphingolipid second messengers that modulate the retinoblastoma-dependent G1-to-S transition or caspase-dependent G1-to-apoptosis program. Ceramide-induced cell cycle delay at G0/G1 is either followed by ceramide-induced apoptosis or by conversion of ceramide to glucosylceramide, a proposed key regulatory rheostat that rescues cells from re-entry into a life/death decision at G1-to-S. We propose a mechanistic model for sphingolpid-induced protein scaffolds ("slip") that regulate cell-fate decisions and will discuss the biological consequences and pharmacological potential of manipulating the (glyco)sphingolipid-dependent cell fate program in cancer and stem cells.
Collapse
Affiliation(s)
- Erhard Bieberich
- Institute of Molecular Medicine and Genetics, School of Medicine, Medical College of Georgia, 1120 15th Street Room CB-2803, Augusta, GA 30912, USA.
| |
Collapse
|
200
|
Kokubo H, Kayed R, Glabe CG, Saido TC, Iwata N, Helms JB, Yamaguchi H. Oligomeric proteins ultrastructurally localize to cell processes, especially to axon terminals with higher density, but not to lipid rafts in Tg2576 mouse brain. Brain Res 2005; 1045:224-8. [PMID: 15910781 DOI: 10.1016/j.brainres.2005.03.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2004] [Revised: 03/12/2005] [Accepted: 03/15/2005] [Indexed: 10/25/2022]
Abstract
We examined the ultrastructural localization of oligomeric proteins, Abeta42, and flotillin-1 in Tg2576 mouse brains by triple immunoelectron microscopy. Oligomer-specific immunoreactions localized to cell processes, especially to axon terminals with higher density in Tg than in nonTg mouse brains. The oligomer was less frequently colocalized to flotillin-1-immunoreactive rafts than Abeta42, suggesting that rafts are one of the sites of polymeric Abeta deposition, but not of oligomeric proteins including Abeta.
Collapse
Affiliation(s)
- Hideko Kokubo
- Gunma University School of Health Sciences, 3-39-15 Showa-machi, Maebashi 371-8514, Japan
| | | | | | | | | | | | | |
Collapse
|