151
|
Differential coding of reward and movement information in the dorsomedial striatal direct and indirect pathways. Nat Commun 2018; 9:404. [PMID: 29374173 PMCID: PMC5786099 DOI: 10.1038/s41467-017-02817-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/31/2017] [Indexed: 11/30/2022] Open
Abstract
The direct and indirect pathways of the basal ganglia have long been thought to mediate behavioral promotion and inhibition, respectively. However, this classic dichotomous model has been recently challenged. To better understand neural processes underlying reward-based learning and movement control, we recorded from direct (dSPNs) and indirect (iSPNs) pathway spiny projection neurons in the dorsomedial striatum of D1-Cre and D2-Cre mice performing a probabilistic Pavlovian conditioning task. dSPNs tend to increase activity while iSPNs decrease activity as a function of reward value, suggesting the striatum represents value in the relative activity levels of dSPNs versus iSPNs. Lick offset-related activity increase is largely dSPN selective, suggesting dSPN involvement in suppressing ongoing licking behavior. Rapid responses to negative outcome and previous reward-related responses are more frequent among iSPNs than dSPNs, suggesting stronger contributions of iSPNs to outcome-dependent behavioral adjustment. These findings provide new insights into striatal neural circuit operations. Classically the direct and indirect pathways of basal ganglia are understood to have opposing roles in movement and reward learning, but recent work suggests a more complicated view. Here the authors further study indirect and direct pathway neurons, in the context of a probabilistic reward task.
Collapse
|
152
|
Fan X, Donsante Y, Jinnah HA, Hess EJ. Dopamine Receptor Agonist Treatment of Idiopathic Dystonia: A Reappraisal in Humans and Mice. J Pharmacol Exp Ther 2018; 365:20-26. [PMID: 29348266 DOI: 10.1124/jpet.117.246348] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/17/2018] [Indexed: 01/21/2023] Open
Abstract
Although dystonia is often associated with abnormal dopamine neurotransmission, dopaminergic drugs are not currently used to treat dystonia because there is a general view that dopaminergic drugs are ineffective. However, there is little conclusive evidence to support or refute this assumption. Therefore, to assess the therapeutic potential of these compounds, we analyzed results from multiple trials of dopamine receptor agonists in patients with idiopathic dystonias and also tested the efficacy of dopamine receptor agonists in a mouse model of generalized dystonia. Our results suggest that dopamine receptor agonists were effective in some, but not all, patients tested. Further, the mixed D1/D2 dopamine receptor agonist apomorphine was apparently more effective than subtype selective D2 dopamine receptor agonists. However, rigorously controlled trials are still needed. In a mouse model of dystonia, a selective D1 dopamine receptor agonist was not effective while a selective D2 dopamine receptor had modest efficacy. However, when combined, these receptor-selective agonists acted synergistically to ameliorate the dystonia. Coactivation of D1 and D2 dopamine receptors using apomorphine or by increasing extracellular concentrations of dopamine was also effective. Thus, results from both clinical trials and tests in mice suggest that coactivation of D1 and D2 dopamine receptors may be an effective therapeutic strategy in some patients. These results support a reconsideration of dopamine receptors as targets for the treatment of dystonia, particularly because recent genetic and diagnostic advances may facilitate the identification of the subtypes of dystonia patients who respond and those who do not.
Collapse
Affiliation(s)
- Xueliang Fan
- Department of Pharmacology (X.F., Y.D., E.J.H.), Department of Neurology (H.A.J., E.J.H.), and Department of Human Genetics (H.A.J.), School of Medicine, Emory University, Atlanta, Georgia
| | - Yuping Donsante
- Department of Pharmacology (X.F., Y.D., E.J.H.), Department of Neurology (H.A.J., E.J.H.), and Department of Human Genetics (H.A.J.), School of Medicine, Emory University, Atlanta, Georgia
| | - H A Jinnah
- Department of Pharmacology (X.F., Y.D., E.J.H.), Department of Neurology (H.A.J., E.J.H.), and Department of Human Genetics (H.A.J.), School of Medicine, Emory University, Atlanta, Georgia
| | - Ellen J Hess
- Department of Pharmacology (X.F., Y.D., E.J.H.), Department of Neurology (H.A.J., E.J.H.), and Department of Human Genetics (H.A.J.), School of Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
153
|
Hearing M, Graziane N, Dong Y, Thomas MJ. Opioid and Psychostimulant Plasticity: Targeting Overlap in Nucleus Accumbens Glutamate Signaling. Trends Pharmacol Sci 2018; 39:276-294. [PMID: 29338873 DOI: 10.1016/j.tips.2017.12.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/11/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022]
Abstract
Commonalities in addictive behavior, such as craving, stimuli-driven drug seeking, and a high propensity for relapse following abstinence, have pushed for a unified theory of addiction that encompasses most abused substances. This unitary theory has recently been challenged - citing distinctions in structural neural plasticity, biochemical signaling, and neural circuitry to argue that addiction to opioids and psychostimulants is behaviorally and neurobiologically distinct. Recent more selective examination of drug-induced plasticity has highlighted that these two drug classes promote an overall reward circuitry signaling overlap through modifying excitatory synapses in the nucleus accumbens - a key constituent of the reward system. We discuss adaptations in presynaptic/postsynaptic and extrasynaptic glutamate signaling produced by opioids and psychostimulants, and their relevance to circuit remodeling and addiction-related behavior - arguing that these core neural adaptations are important targets for developing pharmacotherapies to treat addiction to multiple drugs.
Collapse
Affiliation(s)
- Matthew Hearing
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53233, USA.
| | - Nicholas Graziane
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA 17033, USA; Departments of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yan Dong
- Departments of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mark J Thomas
- Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Translational Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
154
|
Suzuki K, Kimura H. TAK-063, a novel PDE10A inhibitor with balanced activation of direct and indirect pathways, provides a unique opportunity for the treatment of schizophrenia. CNS Neurosci Ther 2018; 24:604-614. [PMID: 29318783 DOI: 10.1111/cns.12798] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 01/04/2023] Open
Abstract
The basal ganglia regulates motor, cognitive, and emotional behaviors. Dysfunction of dopamine system in this area is implicated in the pathophysiology of schizophrenia characterized by positive symptoms, negative symptoms, and cognitive deficits. Medium spiny neurons (MSNs) are principal output neurons of striatum in the basal ganglia. Similar to current antipsychotics with dopamine D2 receptor antagonism or partial agonism, phosphodiesterase 10A (PDE10A) inhibitors activate indirect pathway MSNs, leading to the expectation of therapeutic potential for the treatment of psychosis. PDE10A inhibitors also activate direct pathway MSNs which may be associated with cognitive functions. These pathways have competing effects on antipsychotic-like activities and extrapyramidal symptoms in rodents. Therefore, careful consideration of activation pattern of these pathways by a PDE10A inhibitor is critical to produce potent efficacy and superior safety profiles. In this review, we outline the pharmacological profile of TAK-063, a novel PDE10A selective inhibitor. Our study revealed that off-rates of PDE10A inhibitors may characterize their pharmacological profiles via regulation of each MSN pathway. TAK-063, with a faster off-rate property, could provide a unique opportunity as a novel therapeutic approach to treatment of psychosis and cognitive deficits in schizophrenia. TAK-063 also has a therapeutic potential in other basal ganglia disorders.
Collapse
Affiliation(s)
- Kazunori Suzuki
- CNS Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Haruhide Kimura
- CNS Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
155
|
Hasbi A, Perreault ML, Shen MYF, Fan T, Nguyen T, Alijaniaram M, Banasikowski TJ, Grace AA, O'Dowd BF, Fletcher PJ, George SR. Activation of Dopamine D1-D2 Receptor Complex Attenuates Cocaine Reward and Reinstatement of Cocaine-Seeking through Inhibition of DARPP-32, ERK, and ΔFosB. Front Pharmacol 2018; 8:924. [PMID: 29354053 PMCID: PMC5758537 DOI: 10.3389/fphar.2017.00924] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/05/2017] [Indexed: 12/12/2022] Open
Abstract
A significant subpopulation of neurons in rat nucleus accumbens (NAc) coexpress dopamine D1 and D2 receptors, which can form a D1-D2 receptor complex, but their relevance in addiction is not known. The existence of the D1-D2 heteromer in the striatum of rat and monkey was established using in situ PLA, in situ FRET and co-immunoprecipitation. In rat, D1-D2 receptor heteromer activation led to place aversion and abolished cocaine CPP and locomotor sensitization, cocaine intravenous self-administration and reinstatement of cocaine seeking, as well as inhibited sucrose preference and abolished the motivation to seek palatable food. Selective disruption of this heteromer by a specific interfering peptide induced reward-like effects and enhanced the above cocaine-induced effects, including at a subthreshold dose of cocaine. The D1-D2 heteromer activated Cdk5/Thr75-DARPP-32 and attenuated cocaine-induced pERK and ΔFosB accumulation, together with inhibition of cocaine-enhanced local field potentials in NAc, blocking thus the signaling pathway activated by cocaine: D1R/cAMP/PKA/Thr34-DARPP-32/pERK with ΔFosB accumulation. In conclusion, our results show that the D1-D2 heteromer exerted tonic inhibitory control of basal natural and cocaine reward, and therefore initiates a fundamental physiologic function that limits the liability to develop cocaine addiction.
Collapse
Affiliation(s)
- Ahmed Hasbi
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | | | - Maurice Y F Shen
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Theresa Fan
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Tuan Nguyen
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | | | - Tomek J Banasikowski
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brian F O'Dowd
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| | - Paul J Fletcher
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Departments of Psychology and Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Susan R George
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
156
|
Grissom NM, McKee SE, Schoch H, Bowman N, Havekes R, O'Brien WT, Mahrt E, Siegel S, Commons K, Portfors C, Nickl-Jockschat T, Reyes TM, Abel T. Male-specific deficits in natural reward learning in a mouse model of neurodevelopmental disorders. Mol Psychiatry 2018; 23:544-555. [PMID: 29038598 PMCID: PMC5822461 DOI: 10.1038/mp.2017.184] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/03/2017] [Accepted: 07/13/2017] [Indexed: 02/04/2023]
Abstract
Neurodevelopmental disorders, including autism spectrum disorders, are highly male biased, but the underpinnings of this are unknown. Striatal dysfunction has been strongly implicated in the pathophysiology of neurodevelopmental disorders, raising the question of whether there are sex differences in how the striatum is impacted by genetic risk factors linked to neurodevelopmental disorders. Here we report male-specific deficits in striatal function important to reward learning in a mouse model of 16p11.2 hemideletion, a genetic mutation that is strongly associated with the risk of neurodevelopmental disorders, particularly autism and attention-deficit hyperactivity disorder. We find that male, but not female, 16p11.2 deletion animals show impairments in reward-directed learning and maintaining motivation to work for rewards. Male, but not female, deletion animals overexpress mRNA for dopamine receptor 2 and adenosine receptor 2a in the striatum, markers of medium spiny neurons signaling via the indirect pathway, associated with behavioral inhibition. Both sexes show a 50% reduction of mRNA levels of the genes located within the 16p11.2 region in the striatum, including the kinase extracellular-signal related kinase 1 (ERK1). However, hemideletion males show increased activation in the striatum for ERK1, both at baseline and in response to sucrose, a signaling change associated with decreased striatal plasticity. This increase in ERK1 phosphorylation is coupled with a decrease in the abundance of the ERK phosphatase striatum-enriched protein-tyrosine phosphatase in hemideletion males. In contrast, females do not show activation of ERK1 in response to sucrose, but notably hemideletion females show elevated protein levels for ERK1 as well as the related kinase ERK2 over what would be predicted by mRNA levels. These data indicate profound sex differences in the impact of a genetic lesion linked with neurodevelopmental disorders, including mechanisms of male-specific vulnerability and female-specific resilience impacting intracellular signaling in the brain.
Collapse
Affiliation(s)
- N M Grissom
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA,Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - S E McKee
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA,Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - H Schoch
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - N Bowman
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA,Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - R Havekes
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - W T O'Brien
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA,Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - E Mahrt
- School of Biological Sciences, Washington State University Vancouver, Vancouver, WA, USA
| | - S Siegel
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | - K Commons
- Department of Anesthesia, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - C Portfors
- School of Biological Sciences, Washington State University Vancouver, Vancouver, WA, USA
| | - T Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany,Jülich Aachen Research Alliance—Translational Brain Medicine, Aachen, Germany
| | - T M Reyes
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA, USA,Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - T Abel
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA,Department of Biology, University of Pennsylvania, Philadelphia, PA, USA,Iowa Neuroscience Institute, University of Iowa, 2312 Pappajohn Biomedical Discovery Building, 162 Newton Road, Iowa City, IA, 52242, USA. E-mail:
| |
Collapse
|
157
|
Cuzon Carlson VC. GABA and Glutamate Synaptic Coadaptations to Chronic Ethanol in the Striatum. Handb Exp Pharmacol 2018; 248:79-112. [PMID: 29460153 DOI: 10.1007/164_2018_98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alcohol (ethanol) is a widely used and abused drug with approximately 90% of adults over the age of 18 consuming alcohol at some point in their lifetime. Alcohol exerts its actions through multiple neurotransmitter systems within the brain, most notably the GABAergic and glutamatergic systems. Alcohol's actions on GABAergic and glutamatergic neurotransmission have been suggested to underlie the acute behavioral effects of ethanol. The striatum is the primary input nucleus of the basal ganglia that plays a role in motor and reward systems. The effect of ethanol on GABAergic and glutamatergic neurotransmission within striatal circuitry has been thought to underlie ethanol taking, seeking, withdrawal and relapse. This chapter reviews the effects of ethanol on GABAergic and glutamatergic transmission, highlighting the dynamic changes in striatal circuitry from acute to chronic exposure and withdrawal.
Collapse
|
158
|
Mahler SV. Stay alert, don't get hurt. Nat Neurosci 2017; 21:3-5. [PMID: 29269760 DOI: 10.1038/s41593-017-0045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stephen V Mahler
- Department of Neurobiology & Behavior, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
159
|
Satta R, Certa B, He D, Lasek AW. Estrogen Receptor β in the Nucleus Accumbens Regulates the Rewarding Properties of Cocaine in Female Mice. Int J Neuropsychopharmacol 2017; 21:382-392. [PMID: 29294029 PMCID: PMC5887286 DOI: 10.1093/ijnp/pyx118] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/21/2017] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Females are more vulnerable to developing cocaine addiction compared with males, a phenomenon that may be regulated by the steroid hormone 17β-estradiol. 17β-Estradiol enhances cocaine reward as measured by the conditioned place preference test. It is currently not known which estrogen receptor is involved or the neuroanatomical locations in which estrogen receptors act to enhance cocaine responses. The purpose of this study was to determine if the estrogen receptors ERα and ERβ regulate cocaine conditioned place preference in mice and whether they act in the nucleus accumbens, a brain region critically involved in the development of cocaine abuse. METHODS Ovariectomized mice were treated with 17β-estradiol or agonists selective for ERα or ERβ and tested for cocaine conditioned place preference and for c-fos expression in the nucleus accumbens. Female mice with intact ovaries were also tested for cocaine conditioned place preference after RNA interference-mediated knockdown of ERα or ERβ in the nucleus accumbens. RESULTS We found that mice treated with 17β-estradiol or an ERβ agonist exhibited increased cocaine conditioned place preference, while knockdown of ERβ, but not ERα, in the nucleus accumbens of females with intact ovaries abrogated cocaine conditioned place preference. Acute treatment with 17β-estradiol or an ERβ agonist induced expression of the immediate-early gene c-fos in the nucleus accumbens, whereas the ERα agonist did not. CONCLUSIONS These data indicate that ERβ in the nucleus accumbens regulates the development of cocaine conditioned place preference in female mice. 17β-Estradiol may activate neurons in the nucleus accumbens via ERβ. We speculate that this might increase the saliency of cocaine cues that predict drug reward.
Collapse
Affiliation(s)
- Rosalba Satta
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| | - Briana Certa
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| | - Donghong He
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL
| | - Amy W Lasek
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL,Correspondence: Amy W. Lasek, PhD, Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, M/C 912, Chicago, IL 60612. ()
| |
Collapse
|
160
|
Shariati G, Ahangari G, Asadi M, Poyafard F, Ahmadkhaniha H. Dopamine Receptor Gene Expression Changes in Peripheral Blood Mononuclear Cells from Schizophrenic Patients Treated with Haloperidol and Olanzapine. EUR J INFLAMM 2017. [DOI: 10.1177/1721727x0900700203] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We investigated dopamine receptor gene expression in peripheral blood mononuclear cells of schizophrenic patients before and after treatment. Also dopamine receptor genes expression profile was compared in two treatment groups including haloperidol and olanzapine. The peripheral blood mononuclear cells were separated from whole blood by Ficoll-hypaque; the total cellular RNA was extracted and the cDNA was synthesized. This process was followed by real-time polymerase chain reaction using primer pairs specific for five dopamine receptor mRNAs and β-actin as internal control. The results show the presence of all types of dopamine receptor in lymphocytes. Dopamine receptor gene expression profile in dopamine receptor D2 gene and dopamine receptor D4 gene showed significant changes that were correlated with the type of treatment and Clinical Global Impressions score improvement. In conclusion, the present study shows that human lymphocytes express dopamine receptor D1–D5 genes. Moreover, investigated dopamine receptors gene expression in peripheral blood mononuclear cells of schizophrenic patients correlated with clinical symptom improvement.
Collapse
Affiliation(s)
- G.H. Shariati
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran
- Department of Genetic & Biology, Jundishahpour Medical Science University, Ahwaz
| | - G. Ahangari
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran
| | - M.R. Asadi
- Department of Psychiatric, Rozbeh Hospital, Tehran Medical University, Tehran
| | - F. Poyafard
- Department of Psychiatric, Rozbeh Hospital, Tehran Medical University, Tehran
| | - H.R. Ahmadkhaniha
- Tehran Psychiatric Institute, Iran University of Medical Sciences, Tehran; World Health Organization Collaborating Center for Mental Health, Tehran, Iran
| |
Collapse
|
161
|
Yapo C, Nair AG, Clement L, Castro LR, Hellgren Kotaleski J, Vincent P. Detection of phasic dopamine by D1 and D2 striatal medium spiny neurons. J Physiol 2017; 595:7451-7475. [PMID: 28782235 PMCID: PMC5730852 DOI: 10.1113/jp274475] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Brief dopamine events are critical actors of reward-mediated learning in the striatum; the intracellular cAMP-protein kinase A (PKA) response of striatal medium spiny neurons to such events was studied dynamically using a combination of biosensor imaging in mouse brain slices and in silico simulations. Both D1 and D2 medium spiny neurons can sense brief dopamine transients in the sub-micromolar range. While dopamine transients profoundly change cAMP levels in both types of medium spiny neurons, the PKA-dependent phosphorylation level remains unaffected in D2 neurons. At the level of PKA-dependent phosphorylation, D2 unresponsiveness depends on protein phosphatase-1 (PP1) inhibition by DARPP-32. Simulations suggest that D2 medium spiny neurons could detect transient dips in dopamine level. ABSTRACT The phasic release of dopamine in the striatum determines various aspects of reward and action selection, but the dynamics of the dopamine effect on intracellular signalling remains poorly understood. We used genetically encoded FRET biosensors in striatal brain slices to quantify the effect of transient dopamine on cAMP or PKA-dependent phosphorylation levels, and computational modelling to further explore the dynamics of this signalling pathway. Medium-sized spiny neurons (MSNs), which express either D1 or D2 dopamine receptors, responded to dopamine by an increase or a decrease in cAMP, respectively. Transient dopamine showed similar sub-micromolar efficacies on cAMP in both D1 and D2 MSNs, thus challenging the commonly accepted notion that dopamine efficacy is much higher on D2 than on D1 receptors. However, in D2 MSNs, the large decrease in cAMP level triggered by transient dopamine did not translate to a decrease in PKA-dependent phosphorylation level, owing to the efficient inhibition of protein phosphatase 1 by DARPP-32. Simulations further suggested that D2 MSNs can also operate in a 'tone-sensing' mode, allowing them to detect transient dips in basal dopamine. Overall, our results show that D2 MSNs may sense much more complex patterns of dopamine than previously thought.
Collapse
Affiliation(s)
- Cedric Yapo
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
- Université Pierre et Marie Curie (UPMC, Paris 6)Sorbonne UniversitésF‐75005ParisFrance
| | - Anu G. Nair
- Science for Life Laboratory, School of Computer Science and CommunicationKTH Royal Institute of Technology10044StockholmSweden
- National Centre for Biological SciencesTata Institute of Fundamental ResearchBangalore560065KarnatakaIndia
- Manipal UniversityManipal576104KarnatakaIndia
| | - Lorna Clement
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
| | - Liliana R. Castro
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
- Université Pierre et Marie Curie (UPMC, Paris 6)Sorbonne UniversitésF‐75005ParisFrance
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Computer Science and CommunicationKTH Royal Institute of Technology10044StockholmSweden
- Department of NeuroscienceKarolinska Institutet17177SolnaSweden
| | - Pierre Vincent
- CNRS, UMR8256 “Biological Adaptation and Ageing”Institut de Biologie Paris‐Seine (IBPS)F‐75005ParisFrance
- Université Pierre et Marie Curie (UPMC, Paris 6)Sorbonne UniversitésF‐75005ParisFrance
| |
Collapse
|
162
|
Dos Santos M, Salery M, Forget B, Garcia Perez MA, Betuing S, Boudier T, Vanhoutte P, Caboche J, Heck N. Rapid Synaptogenesis in the Nucleus Accumbens Is Induced by a Single Cocaine Administration and Stabilized by Mitogen-Activated Protein Kinase Interacting Kinase-1 Activity. Biol Psychiatry 2017; 82:806-818. [PMID: 28545678 DOI: 10.1016/j.biopsych.2017.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Repeated cocaine exposure produces new spine formation in striatal projection neurons (SPNs) of the nucleus accumbens. However, an acute exposure to cocaine can trigger long-lasting synaptic plasticity in SPNs leading to behavioral alterations. This raises the intriguing question as to whether a single administration of cocaine could enduringly modify striatal connectivity. METHODS A three-dimensional morphometric analysis of presynaptic glutamatergic boutons and dendritic spines was performed on SPNs 1 hour and 1 week after a single cocaine administration. Time-lapse two-photon microscopy in adult slices was used to determine the precise molecular-events sequence responsible for the rapid spine formation. RESULTS A single injection triggered a rapid synaptogenesis and persistent increase in glutamatergic connectivity in SPNs from the shell part of the nucleus accumbens, specifically. Synapse formation occurred through clustered growth of active spines contacting pre-existing axonal boutons. Spine growth required extracellular signal-regulated kinase activation, while spine stabilization involved transcription-independent protein synthesis driven by mitogen-activated protein kinase interacting kinase-1, downstream from extracellular signal-regulated kinase. The maintenance of new spines driven by mitogen-activated protein kinase interacting kinase-1 was essential for long-term connectivity changes induced by cocaine in vivo. CONCLUSIONS Our study originally demonstrates that a single administration of cocaine is able to induce stable synaptic rewiring in the nucleus accumbens, which will likely influence responses to subsequent drug exposure. It also unravels a new functional role for cocaine-induced extracellular signal-regulated kinase pathway independently of nuclear targets. Finally, it reveals that mitogen-activated protein kinase interacting kinase-1 has a pivotal role in cocaine-induced connectivity.
Collapse
Affiliation(s)
- Marc Dos Santos
- Neurosciences Paris Seine, Institut de Biologie Paris Seine, University Pierre and Marie Curie University of Paris 06, Sorbonne Universités, Centre National pour la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Marine Salery
- Neurosciences Paris Seine, Institut de Biologie Paris Seine, University Pierre and Marie Curie University of Paris 06, Sorbonne Universités, Centre National pour la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Benoit Forget
- Neurosciences Paris Seine, Institut de Biologie Paris Seine, University Pierre and Marie Curie University of Paris 06, Sorbonne Universités, Centre National pour la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Maria Alexandra Garcia Perez
- Neurosciences Paris Seine, Institut de Biologie Paris Seine, University Pierre and Marie Curie University of Paris 06, Sorbonne Universités, Centre National pour la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Sandrine Betuing
- Neurosciences Paris Seine, Institut de Biologie Paris Seine, University Pierre and Marie Curie University of Paris 06, Sorbonne Universités, Centre National pour la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Thomas Boudier
- Neurosciences Paris Seine, Institut de Biologie Paris Seine, University Pierre and Marie Curie University of Paris 06, Sorbonne Universités, Centre National pour la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France; Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore
| | - Peter Vanhoutte
- Neurosciences Paris Seine, Institut de Biologie Paris Seine, University Pierre and Marie Curie University of Paris 06, Sorbonne Universités, Centre National pour la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Jocelyne Caboche
- Neurosciences Paris Seine, Institut de Biologie Paris Seine, University Pierre and Marie Curie University of Paris 06, Sorbonne Universités, Centre National pour la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France.
| | - Nicolas Heck
- Neurosciences Paris Seine, Institut de Biologie Paris Seine, University Pierre and Marie Curie University of Paris 06, Sorbonne Universités, Centre National pour la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Paris, France
| |
Collapse
|
163
|
Beloate LN, Coolen LM. Influences of social reward experience on behavioral responses to drugs of abuse: Review of shared and divergent neural plasticity mechanisms for sexual reward and drugs of abuse. Neurosci Biobehav Rev 2017; 83:356-372. [DOI: 10.1016/j.neubiorev.2017.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/13/2017] [Accepted: 10/17/2017] [Indexed: 10/25/2022]
|
164
|
Ghanta M, Panchanathan E, Lakkakula BVKS, Narayanaswamy A. Retrospection on the Role of Soluble Guanylate Cyclase in Parkinson's Disease. J Pharmacol Pharmacother 2017; 8:87-91. [PMID: 29081615 PMCID: PMC5642137 DOI: 10.4103/jpp.jpp_45_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Soluble guanylate cyclase (sGC) is an important transducing enzyme of cyclic guanosine monophosphate (cGMP) signaling pathway in striatum which has been considered as a potential target for the treatment of Parkinson's disease. Etiology of Parkinson's disease is multifactorial, finally resulting in abnormal proteinopathies causing degeneration of nigrostriatal pathways. Understanding the pathological basis of Parkinson's disease at molecular level is still an achievable target for the researchers and clinical practitioners. sGCs may be one of the causative factors resulting in Parkinson's disease due to glutamate toxicity or other event. This review presents the literature from articles of past five decades nearly as still this enzyme protein and its role in Parkinson's disease is not that clearly understood or presented till date. Recent interventions of this protein inhibition in the treatment of Parkinson's disease preclinically gave a chance to review the literature about this enzyme and its correlation with factors causing Parkinson's disease. We explored literature using PubMed and EMBASE for the role of sGC in Parkinson's disease. Databases were searched using the following terms: Parkinson's disease, neurotoxins, guanylate cyclase, sGC-cGMP pathway, and neurodegeneration. This review listed out the factors that have probability for stimulating sGC which already have been listed as a neurotoxins causing Parkinson's disease.
Collapse
Affiliation(s)
- Mohankrishna Ghanta
- Department of Pharmacology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| | - Elango Panchanathan
- Department of Pharmacology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| | - Bhaskar V K S Lakkakula
- Department of Molecular Genetics, Research Division, Sickle Cell Institute Chhattisgarh, Raipur, Chhattisgarh, India
| | - Anbumani Narayanaswamy
- Department of Microbiology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai, Tamil Nadu, India
| |
Collapse
|
165
|
Burke DA, Rotstein HG, Alvarez VA. Striatal Local Circuitry: A New Framework for Lateral Inhibition. Neuron 2017; 96:267-284. [PMID: 29024654 DOI: 10.1016/j.neuron.2017.09.019] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/09/2017] [Accepted: 09/12/2017] [Indexed: 12/01/2022]
Abstract
This Perspective will examine the organization of intrastriatal circuitry, review recent findings in this area, and discuss how the pattern of connectivity between striatal neurons might give rise to the behaviorally observed synergism between the direct/indirect pathway neurons. The emphasis of this Perspective is on the underappreciated role of lateral inhibition between striatal projection cells in controlling neuronal firing and shaping the output of this circuit. We review some classic studies in combination with more recent anatomical and functional findings to lay out a framework for an updated model of the intrastriatal lateral inhibition, where we explore its contribution to the formation of functional units of processing and the integration and filtering of inputs to generate motor patterns and learned behaviors.
Collapse
Affiliation(s)
- Dennis A Burke
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA; Department of Neuroscience, Brown University, Providence, Providence, RI 02912, USA
| | - Horacio G Rotstein
- Federated Department of Biological Sciences, New Jersey Institute of Technology and Rutgers University, Newark, NJ 07102, USA; Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, Intramural Research Program, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD 20892, USA; Intramural Research Program, National Institute on Drug Abuse, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
166
|
NCS-Rapgef2, the Protein Product of the Neuronal Rapgef2 Gene, Is a Specific Activator of D1 Dopamine Receptor-Dependent ERK Phosphorylation in Mouse Brain. eNeuro 2017; 4:eN-NWR-0248-17. [PMID: 28948210 PMCID: PMC5611689 DOI: 10.1523/eneuro.0248-17.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/21/2017] [Accepted: 08/26/2017] [Indexed: 01/11/2023] Open
Abstract
The neuritogenic cAMP sensor (NCS), encoded by the Rapgef2 gene, links cAMP elevation to activation of extracellular signal-regulated kinase (ERK) in neurons and neuroendocrine cells. Transducing human embryonic kidney (HEK)293 cells, which do not express Rapgef2 protein or respond to cAMP with ERK phosphorylation, with a vector encoding a Rapgef2 cDNA reconstituted cAMP-dependent ERK activation. Mutation of a single residue in the cyclic nucleotide-binding domain (CNBD) conserved across cAMP-binding proteins abrogated cAMP-ERK coupling, while deletion of the CNBD altogether resulted in constitutive ERK activation. Two types of mRNA are transcribed from Rapgef2 in vivo. Rapgef2 protein expression was limited to tissues, i.e., neuronal and endocrine, expressing the second type of mRNA, initiated exclusively from an alternative first exon called here exon 1’, and an alternative 5’ protein sequence leader fused to a common remaining open reading frame, which is termed here NCS-Rapgef2. In the male mouse brain, NCS-Rapgef2 is prominently expressed in corticolimbic excitatory neurons, and striatal medium spiny neurons (MSNs). Rapgef2-dependent ERK activation by the dopamine D1 agonist SKF81297 occurred in neuroendocrine neuroscreen-1 (NS-1) cells expressing the human D1 receptor and was abolished by deletion of Rapgef2. Corticolimbic [e.g., dentate gyrus (DG), basolateral amygdala (BLA)] ERK phosphorylation induced by SKF81297 was significantly attenuated in CamK2α-Cre+/−; Rapgef2cko/cko male mice. ERK phosphorylation in nucleus accumbens (NAc) MSNs induced by treatment with SKF81297, or the psychostimulants cocaine or amphetamine, was abolished in male Rapgef2cko/cko mice with NAc NCS-Rapgef2-depleting AAV-Synapsin-Cre injections. We conclude that D1-dependent ERK phosphorylation in mouse brain requires NCS-Rapgef2 expression.
Collapse
|
167
|
Serotonin 2B Receptors in Mesoaccumbens Dopamine Pathway Regulate Cocaine Responses. J Neurosci 2017; 37:10372-10388. [PMID: 28935766 DOI: 10.1523/jneurosci.1354-17.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/21/2022] Open
Abstract
Addiction is a maladaptive pattern of behavior following repeated use of reinforcing drugs in predisposed individuals, leading to lifelong changes. Common among these changes are alterations of neurons releasing dopamine in the ventral and dorsal territories of the striatum. The serotonin 5-HT2B receptor has been involved in various behaviors, including impulsivity, response to antidepressants, and response to psychostimulants, pointing toward putative interactions with the dopamine system. Despite these findings, it remains unknown whether 5-HT2B receptors directly modulate dopaminergic activity and the possible mechanisms involved. To answer these questions, we investigated the contribution of 5-HT2B receptors to cocaine-dependent behavioral responses. Male mice permanently lacking 5-HT2B receptors, even restricted to dopamine neurons, developed heightened cocaine-induced locomotor responses. Retrograde tracing combined with single-cell mRNA amplification indicated that 5-HT2B receptors are expressed by mesolimbic dopamine neurons. In vivo and ex vivo electrophysiological recordings showed that 5-HT2B-receptor inactivation in dopamine neurons affects their neuronal activity and increases AMPA-mediated over NMDA-mediated excitatory synaptic currents. These changes are associated with lower ventral striatum dopamine activity and blunted cocaine self-administration. These data identify the 5-HT2B receptor as a pharmacological intermediate and provide mechanistic insight into attenuated dopamine tone following exposure to drugs of abuse.SIGNIFICANCE STATEMENT Here we report that mice lacking 5-HT2B receptors totally or exclusively in dopamine neurons exhibit heightened cocaine-induced locomotor responses. Despite the sensitized state of these mice, we found that associated changes include lower ventral striatum dopamine activity and lower cocaine operant self-administration. We described the selective expression of 5-HT2B receptors in a subpopulation of dopamine neurons sending axons to the ventral striatum. Increased bursting in vivo properties of these dopamine neurons and a concomitant increase in AMPA synaptic transmission to ex vivo dopamine neurons were found in mice lacking 5-HT2B receptors. These data support the idea that the chronic 5-HT2B-receptor inhibition makes mice behave like animals already exposed to cocaine with higher cocaine-induced locomotion associated with changes in dopamine neuron reactivity.
Collapse
|
168
|
Campus P, Canterini S, Orsini C, Fiorenza MT, Puglisi-Allegra S, Cabib S. Stress-Induced Reduction of Dorsal Striatal D2 Dopamine Receptors Prevents Retention of a Newly Acquired Adaptive Coping Strategy. Front Pharmacol 2017; 8:621. [PMID: 28955227 PMCID: PMC5601053 DOI: 10.3389/fphar.2017.00621] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/24/2017] [Indexed: 11/14/2022] Open
Abstract
The inability to learn an adaptive coping strategy in a novel stressful condition leads to dysfunctional stress coping, a marker of mental disturbances. This study tested the involvement of dorsal striatal dopamine receptors in the dysfunctional coping with the Forced Swim test fostered by a previous experience of reduced food availability. Adult male mice were submitted to a temporary (12 days) reduction of food availability [food-restricted (FR)] or continuously free-fed (FF). Different groups of FF and FR mice were used to evaluate: (1) dorsal striatal mRNA levels of the two isoforms of the dopamine D2 receptor (D2S, D2L). (2) Forced Swim-induced c-fos expression in the dorsal striatum; (3) acquisition and 24 h retention of passive coping with Forced Swim. Additional groups of FF mice were tested for 24 h retention of passive coping acquired during a first experience with Forced Swim immediately followed by intra-striatal infusion of vehicle or two doses of the dopamine D2/D3 receptors antagonist sulpiride or the D1/D5 receptors antagonist SCH23390. Previous restricted feeding selectively reduced mRNA levels of both D2 isoforms and abolished Forced Swim-induced c-fos expression in the left Dorsolateral Striatum and selectively prevented 24 h retention of the coping strategy acquired in a first experience of Forced Swim. Finally, temporary blockade of left Dorsolateral Striatum D2/D3 receptors immediately following the first Forced Swim experience selectively reproduced the behavioral effect of restricted feeding in FF mice. In conclusion, the present results demonstrate that mice previously exposed to a temporary reduction of food availability show low striatal D2 receptors, a known marker of addiction-associated aberrant neuroplasticity, as well as liability to relapse into maladaptive stress coping strategies. Moreover, they offer strong support to a causal relationship between reduction of D2 receptors in the left Dorsolateral Striatum and impaired consolidation of newly acquired adaptive coping.
Collapse
Affiliation(s)
- Paolo Campus
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Department of Psychiatry, University of Michigan, Ann ArborMI, United States
| | - Sonia Canterini
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy
| | - Cristina Orsini
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Maria Teresa Fiorenza
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Stefano Puglisi-Allegra
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Fondazione Santa Lucia (IRCCS)Rome, Italy
| | - Simona Cabib
- Department of Psychology, Center 'Daniel Bovet', Sapienza Università di RomaRome, Italy.,Fondazione Santa Lucia (IRCCS)Rome, Italy
| |
Collapse
|
169
|
Escobar AP, González MP, Meza RC, Noches V, Henny P, Gysling K, España RA, Fuentealba JA, Andrés ME. Mechanisms of Kappa Opioid Receptor Potentiation of Dopamine D2 Receptor Function in Quinpirole-Induced Locomotor Sensitization in Rats. Int J Neuropsychopharmacol 2017; 20:660-669. [PMID: 28531297 PMCID: PMC5569963 DOI: 10.1093/ijnp/pyx042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/15/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
Background Increased locomotor activity in response to the same stimulus is an index of behavioral sensitization observed in preclinical models of drug addiction and compulsive behaviors. Repeated administration of quinpirole, a D2/D3 dopamine agonist, induces locomotor sensitization. This effect is potentiated and accelerated by co-administration of U69593, a kappa opioid receptor agonist. The mechanism underlying kappa opioid receptor potentiation of quinpirole-induced locomotor sensitization remains to be elucidated. Methods Immunofluorescence anatomical studies were undertaken in mice brain slices and rat presynaptic synaptosomes to reveal kappa opioid receptor and D2R pre- and postsynaptic colocalization in the nucleus accumbens. Tonic and phasic dopamine release in the nucleus accumbens of rats repeatedly treated with U69593 and quinpirole was assessed by microdialysis and fast scan cyclic voltammetry. Results Anatomical data show that kappa opioid receptor and D2R colocalize postsynaptically in medium spiny neurons of the nucleus accumbens and the highest presynaptic colocalization occurs on the same dopamine terminals. Significantly reduced dopamine levels were observed in quinpirole, and U69593-quinpirole treated rats, explaining sensitization of D2R. Presynaptic inhibition induced by kappa opioid receptor and D2R of electrically evoked dopamine release was faster in U69593-quinpirole compared with quinpirole-repeatedly treated rats. Conclusions Pre- and postsynaptic colocalization of kappa opioid receptor and D2R supports a role for kappa opioid receptor potentiating both the D2R inhibitory autoreceptor function and the inhibitory action of D2R on efferent medium spiny neurons. Kappa opioid receptor co-activation accelerates D2R sensitization by contributing to decrease dopamine release in the nucleus accumbens.
Collapse
Affiliation(s)
- Angélica P Escobar
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| | - Marcela P González
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| | - Rodrigo C Meza
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| | - Verónica Noches
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| | - Pablo Henny
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| | - Rodrigo A España
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| | - José A Fuentealba
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| | - María E Andrés
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Escobar, Ms González, and Drs Noches, Gysling, and Andrés); Laboratory of Neuroanatomy, Department of Anatomy and Interdisciplinary Center of Neuroscience, NeuroUC, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile (Mr Meza and Dr Henny); Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania (Dr España); Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Santiago, Chile (Dr Fuentealba)
| |
Collapse
|
170
|
Xu H, Das S, Sturgill M, Hodgkinson C, Yuan Q, Goldman D, Grasing K. Extracellular dopamine, acetylcholine, and activation of dopamine D1 and D2 receptors after selective breeding for cocaine self-administration in rats. Psychopharmacology (Berl) 2017; 234:2475-2487. [PMID: 28547130 PMCID: PMC5538921 DOI: 10.1007/s00213-017-4640-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/30/2017] [Indexed: 12/21/2022]
Abstract
RATIONALE The low self-administration (LS)/Kgras (LS) and high self-administration (HS)/Kgras (HS) rat lines were generated by selective breeding for low- and high-intravenous cocaine self-administration, respectively, from a common outbred Wistar stock (Crl:WI). This trait has remained stable after 13 generations of breeding. OBJECTIVE The objective of the present study is to compare cocaine preference, neurotransmitter release, and dopamine receptor activation in LS and HS rats. METHODS Levels of dopamine, acetylcholine, and cocaine were measured in the nucleus accumbens (NA) shell of HS and LS rats by tandem mass spectrometry of microdialysates. Cocaine-induced locomotor activity and conditioned-place preference were compared between LS and HS rats. RESULTS HS rats displayed greater conditioned-place preference scores compared to LS and reduced basal extracellular concentrations of dopamine and acetylcholine. However, patterns of neurotransmitter release did not differ between strains. Low-dose cocaine increased locomotor activity in LS rats, but not in HS animals, while high-dose cocaine augmented activity only in HS rats. Either dose of cocaine increased immunoreactivity for c-Fos in the NA shell of both strains, with greater elevations observed in HS rats. Activation identified by cells expressing both c-Fos and dopamine receptors was generally greater in the HS strain, with a similar pattern for both D1 and D2 dopamine receptors. CONCLUSIONS Diminished levels of dopamine and acetylcholine in the NA shell, with enhanced cocaine-induced expression of D1 and D2 receptors, are associated with greater rewarding effects of cocaine in HS rats and an altered dose-effect relationship for cocaine-induced locomotor activity.
Collapse
Affiliation(s)
- Haiyang Xu
- Substance Abuse Research Laboratory, Kansas City Veterans Affairs Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128
| | - Sasmita Das
- Molecular Bio-Nanotechnology, Imaging and Therapeutic Research Unit, Kansas City Veterans Affairs Medical Center, 4801 Linwood Boulevard, Kansas City, MO 64128,Division of Hematology and Oncology, Department of Medicine, University of Kansas School of Medicine, Kansas City, KS 66160
| | - Marc Sturgill
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854
| | | | - Qiaoping Yuan
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20852
| | - David Goldman
- Laboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20852
| | - Kenneth Grasing
- Substance Abuse Research Laboratory, 151, Kansas City Veterans Affairs Medical Center, 4801 Linwood Boulevard, Kansas City, MO, 64128, USA. .,Division of Clinical Pharmacology, Department of Medicine, University of Kansas School of Medicine, Kansas City, KS, 66160, USA.
| |
Collapse
|
171
|
Loss of Plasticity in the D2-Accumbens Pallidal Pathway Promotes Cocaine Seeking. J Neurosci 2017; 37:757-767. [PMID: 28123013 DOI: 10.1523/jneurosci.2659-16.2016] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/15/2016] [Accepted: 11/28/2016] [Indexed: 12/27/2022] Open
Abstract
Distinct populations of D1- and D2-dopamine receptor-expressing medium spiny neurons (D1-/D2-MSNs) comprise the nucleus accumbens, and activity in D1-MSNs promotes, whereas activity in D2-MSNs inhibits, motivated behaviors. We used chemogenetics to extend D1-/D2-MSN cell specific regulation to cue-reinstated cocaine seeking in a mouse model of self-administration and relapse, and found that either increasing activity in D1-MSNs or decreasing activity in D2-MSNs augmented cue-induced reinstatement. Both D1- and D2-MSNs provide substantial GABAergic innervation to the ventral pallidum, and chemogenetic inhibition of ventral pallidal neurons blocked the augmented reinstatement elicited by chemogenetic regulation of either D1- or D2-MSNs. Because D1- and D2-MSNs innervate overlapping populations of ventral pallidal neurons, we next used optogenetics to examine whether changes in synaptic plasticity in D1- versus D2-MSN GABAergic synapses in the ventral pallidum could explain the differential regulation of VP activity. In mice trained to self-administer cocaine, GABAergic LTD was abolished in D2-, but not in D1-MSN synapses. A μ opioid receptor antagonist restored GABA currents in D2-, but not D1-MSN synapses of cocaine-trained mice, indicating that increased enkephalin tone on presynaptic μ opioid receptors was responsible for occluding the LTD. These results identify a behavioral function for D1-MSN innervation of the ventral pallidum, and suggest that losing LTDGABA in D2-MSN, but not D1-MSN input to ventral pallidum may promote cue-induced reinstatement of cocaine-seeking. SIGNIFICANCE STATEMENT More than 90% of ventral striatum is composed of two cell types, those expressing dopamine D1 or D2 receptors, which exert opposing roles on motivated behavior. Both cell types send GABAergic projections to the ventral pallidum and were found to differentially promote cue-induced reinstatement of cocaine seeking via the ventral pallidum. Furthermore, after cocaine self-administration, synaptic plasticity was selectively lost in D2, but not D1 inputs to the ventral pallidum. The selective impairment in D2 afferents may promote the influence of D1 inputs to drive relapse to cocaine seeking.
Collapse
|
172
|
Shioda N, Yabuki Y, Wang Y, Uchigashima M, Hikida T, Sasaoka T, Mori H, Watanabe M, Sasahara M, Fukunaga K. Endocytosis following dopamine D 2 receptor activation is critical for neuronal activity and dendritic spine formation via Rabex-5/PDGFRβ signaling in striatopallidal medium spiny neurons. Mol Psychiatry 2017; 22:1205-1222. [PMID: 27922607 DOI: 10.1038/mp.2016.200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 09/28/2016] [Accepted: 10/04/2016] [Indexed: 02/06/2023]
Abstract
Aberrant dopamine D2 receptor (D2R) activity is associated with neuropsychiatric disorders, making those receptors targets for antipsychotic drugs. Here, we report that novel signaling through the intracellularly localized D2R long isoform (D2LR) elicits extracellular signal-regulated kinase (ERK) activation and dendritic spine formation through Rabex-5/platelet-derived growth factor receptor-β (PDGFRβ)-mediated endocytosis in mouse striatum. We found that D2LR directly binds to and activates Rabex-5, promoting early-endosome formation. Endosomes containing D2LR and PDGFRβ are then transported to the Golgi apparatus, where those complexes trigger Gαi3-mediated ERK signaling. Loss of intracellular D2LR-mediated ERK activation decreased neuronal activity and dendritic spine density in striatopallidal medium spiny neurons (MSNs). In addition, dendritic spine density in striatopallidal MSNs significantly increased following treatment of striatal slices from wild-type mice with quinpirole, a D2R agonist, but those changes were lacking in D2LR knockout mice. Moreover, intracellular D2LR signaling mediated effects of a typical antipsychotic drug, haloperidol, in inducing catalepsy behavior. Taken together, intracellular D2LR signaling through Rabex-5/PDGFRβ is critical for ERK activation, dendritic spine formation and neuronal activity in striatopallidal MSNs of mice.
Collapse
Affiliation(s)
- N Shioda
- Department of Biofunctional Analysis Laboratory of Molecular Biology, Gifu Pharmaceutical University, Gifu, Japan
| | - Y Yabuki
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Y Wang
- Department of Pharmacology, Beckman Institute, University of Illinois, Urbana, IL, USA
| | - M Uchigashima
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - T Hikida
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - T Sasaoka
- Department of Comparative and Experimental Medicine, Brain Research Institute, Niigata University, Niigata, Japan
| | - H Mori
- Department of Molecular Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - M Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - M Sasahara
- Department of Pathology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, Toyama, Japan
| | - K Fukunaga
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
173
|
Zhang Z, Zhang H, Wen P, Zhu X, Wang L, Liu Q, Wang J, He X, Wang H, Xu F. Whole-Brain Mapping of the Inputs and Outputs of the Medial Part of the Olfactory Tubercle. Front Neural Circuits 2017; 11:52. [PMID: 28804450 PMCID: PMC5532451 DOI: 10.3389/fncir.2017.00052] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/18/2017] [Indexed: 11/13/2022] Open
Abstract
The medial part of the olfactory tubercle (OT) is a brain structure located at the interface of the reward and olfactory system. It is closely related to pheromone-rewards, natural reinforcement, addiction and many other behaviors. However, the structure of the anatomic circuitry of the medial part of the OT is still unclear. In the present study, the medial part of the OT was found to be highly connected with a wide range of brain areas with the help of the pseudorabies virus tracing tool. In order to further investigate the detailed connections for specific neurons, another tracing tool – rabies virus was utilized for D1R-cre and D2R-cre mice. The D1R and D2R neurons in the medial part of the OT were both preferentially innervated by the olfactory areas, especially the piriform cortex, and both had similar direct input patterns. With the help of the adeno-associated virus labeling, it was found that the two subpopulations of neurons primarily innervate with the reward related brain regions, with slightly less axons projecting to the olfactory areas. Thus, the whole-brain input and output circuitry structures for specific types of neurons in the medial part of the OT were systematically investigated, and the results revealed many unique connecting features. This work could provide new insights for further study into the physiological functions of the medial part of the OT.
Collapse
Affiliation(s)
- Zhijian Zhang
- College of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China.,Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China.,Wuhan National Laboratory for OptoelectronicsWuhan, China
| | - Hongruo Zhang
- College of Life Sciences, Wuhan UniversityWuhan, China
| | - Pengjie Wen
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China
| | - Xutao Zhu
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China
| | - Li Wang
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China.,Wuhan National Laboratory for OptoelectronicsWuhan, China
| | - Qing Liu
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China
| | - Jie Wang
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China
| | - Xiaobin He
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China
| | - Huadong Wang
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China
| | - Fuqiang Xu
- Center for Brain Science, Key Laboratory of Magnetic Resonance in Biological Systems and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesWuhan, China.,Wuhan National Laboratory for OptoelectronicsWuhan, China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghai, China
| |
Collapse
|
174
|
Dorofeeva NA, Grigorieva YS, Nikitina LS, Lavrova EA, Nasluzova EV, Glazova MV, Chernigovskaya EV. Effects of ERK1/2 kinases inactivation on the nigrostriatal system of Krushinsky-Molodkina rats genetically prone to audiogenic seizures. Neurol Res 2017; 39:918-925. [PMID: 28738742 DOI: 10.1080/01616412.2017.1356156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recently, we demonstrated that inhibition of ERK1/2 activity by SL-327 treatment blocks seizure behavior in Krushinsky-Molodkina (KM) rats, which was mediated by altering of GABA and glutamate release mechanism in the hippocampus. Basal ganglia representing various subcortical cell groups play a significant role in the regulation of motor activity, including epileptiform seizures. OBJECTIVES To verify if nigrostriatal system could be also affected by SL-327 treatment we analyzed the expression of tyrosine hydroxylase, D1 and D2 dopamine receptors, NR2B subunit of NMDA receptor as well as vesicular glutamate transporter VGLUT2 and glutamic acid decarboxylases GAD65/67 in the striatum and substantia nigra of KM rats. METHODS Animals were injected i.p. with SL-327 (50 mg/kg) 60 min before audio stimulation. After audiogenic stimulation the brains of control and SL 327 treated rats were removed for further immunohistochemical and biochemical analysis. RESULTS Obtained results demonstrated a decrease activity in synapsin I, and accumulation of VGLUT2 in the striatum after blockade of audiogenic seizure (AGS) by SL 327 that could lead to inhibition of glutamate release. While in the striatum GAD65/67 level was diminished, in the substantia nigra GAD65/67 was increased showing enhanced inhibitory output to the compact part of the substantia nigra. Analysis of dopaminergic system showed a significant reduction of tyrosine hydroxylase activity and expression in the substantia nigra, and decreased D1 and D2 receptor expression in the striatum. In summary, we propose that changes in the nigrostriatal system could be mediated by inhibitory effect of SL 327 on AGS expression.
Collapse
Affiliation(s)
- Nadezhda A Dorofeeva
- a Lab of Comparative Neurochemistry of Cellular Functions, Sechenov Institute of Evolutionary Physiology and Biochemistry , Russian Academy of Sciences , Saint-Petersburg , Russia
| | - Yuliya S Grigorieva
- a Lab of Comparative Neurochemistry of Cellular Functions, Sechenov Institute of Evolutionary Physiology and Biochemistry , Russian Academy of Sciences , Saint-Petersburg , Russia
| | - Liubov S Nikitina
- a Lab of Comparative Neurochemistry of Cellular Functions, Sechenov Institute of Evolutionary Physiology and Biochemistry , Russian Academy of Sciences , Saint-Petersburg , Russia.,b Department of Biophysics , Saint-Petersburg State University , Saint-Petersburg , Russia
| | - Elena A Lavrova
- a Lab of Comparative Neurochemistry of Cellular Functions, Sechenov Institute of Evolutionary Physiology and Biochemistry , Russian Academy of Sciences , Saint-Petersburg , Russia
| | - Elizaveta V Nasluzova
- a Lab of Comparative Neurochemistry of Cellular Functions, Sechenov Institute of Evolutionary Physiology and Biochemistry , Russian Academy of Sciences , Saint-Petersburg , Russia
| | - Margarita V Glazova
- a Lab of Comparative Neurochemistry of Cellular Functions, Sechenov Institute of Evolutionary Physiology and Biochemistry , Russian Academy of Sciences , Saint-Petersburg , Russia
| | - Elena V Chernigovskaya
- a Lab of Comparative Neurochemistry of Cellular Functions, Sechenov Institute of Evolutionary Physiology and Biochemistry , Russian Academy of Sciences , Saint-Petersburg , Russia
| |
Collapse
|
175
|
ERK/MAPK Signaling Is Required for Pathway-Specific Striatal Motor Functions. J Neurosci 2017; 37:8102-8115. [PMID: 28733355 DOI: 10.1523/jneurosci.0473-17.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/29/2017] [Accepted: 07/01/2017] [Indexed: 12/15/2022] Open
Abstract
The ERK/MAPK intracellular signaling pathway is hypothesized to be a key regulator of striatal activity via modulation of synaptic plasticity and gene transcription. However, prior investigations into striatal ERK/MAPK functions have yielded conflicting results. Further, these studies have not delineated the cell-type-specific roles of ERK/MAPK signaling due to the reliance on globally administered pharmacological ERK/MAPK inhibitors and the use of genetic models that only partially reduce total ERK/MAPK activity. Here, we generated mouse models in which ERK/MAPK signaling was completely abolished in each of the two distinct classes of medium spiny neurons (MSNs). ERK/MAPK deletion in D1R-MSNs (direct pathway) resulted in decreased locomotor behavior, reduced weight gain, and early postnatal lethality. In contrast, loss of ERK/MAPK signaling in D2R-MSNs (indirect pathway) resulted in a profound hyperlocomotor phenotype. ERK/MAPK-deficient D2R-MSNs exhibited a significant reduction in dendritic spine density, markedly suppressed electrical excitability, and suppression of activity-associated gene expression even after pharmacological stimulation. Our results demonstrate the importance of ERK/MAPK signaling in governing the motor functions of the striatal direct and indirect pathways. Our data further show a critical role for ERK in maintaining the excitability and plasticity of D2R-MSNs.SIGNIFICANCE STATEMENT Alterations in ERK/MAPK activity are associated with drug abuse, as well as neuropsychiatric and movement disorders. However, genetic evidence defining the functions of ERK/MAPK signaling in striatum-related neurophysiology and behavior is lacking. We show that loss of ERK/MAPK signaling leads to pathway-specific alterations in motor function, reduced neuronal excitability, and the inability of medium spiny neurons to regulate activity-induced gene expression. Our results underscore the potential importance of the ERK/MAPK pathway in human movement disorders.
Collapse
|
176
|
Chronic Nicotine Mitigates Aberrant Inhibitory Motor Learning Induced by Motor Experience under Dopamine Deficiency. J Neurosci 2017; 36:5228-40. [PMID: 27170121 DOI: 10.1523/jneurosci.2754-15.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 03/26/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Although dopamine receptor antagonism has long been associated with impairments in motor performance, more recent studies have shown that dopamine D2 receptor (D2R) antagonism, paired with a motor task, not only impairs motor performance concomitant with the pharmacodynamics of the drug, but also impairs future motor performance once antagonism has been relieved. We have termed this phenomenon "aberrant motor learning" and have suggested that it may contribute to motor symptoms in movement disorders such as Parkinson's disease (PD). Here, we show that chronic nicotine (cNIC), but not acute nicotine, treatment mitigates the acquisition of D2R-antagonist-induced aberrant motor learning in mice. Although cNIC mitigates D2R-mediated aberrant motor learning, cNIC has no effect on D1R-mediated motor learning. β2-containing nicotinic receptors in dopamine neurons likely mediate the protective effect of cNIC against aberrant motor learning, because selective deletion of β2 nicotinic subunits in dopamine neurons reduced D2R-mediated aberrant motor learning. Finally, both cNIC treatment and β2 subunit deletion blunted postsynaptic responses to D2R antagonism. These results suggest that a chronic decrease in function or a downregulation of β2-containing nicotinic receptors protects the striatal network against aberrant plasticity and aberrant motor learning induced by motor experience under dopamine deficiency. SIGNIFICANCE STATEMENT Increasingly, aberrant plasticity and aberrant learning are recognized as contributing to the development and progression of movement disorders. Here, we show that chronic nicotine (cNIC) treatment or specific deletion of β2 nicotinic receptor subunits in dopamine neurons mitigates aberrant motor learning induced by dopamine D2 receptor (D2R) blockade in mice. Moreover, both manipulations also reduced striatal dopamine release and blunt postsynaptic responses to D2R antagonists. These results suggest that chronic downregulation of function and/or receptor expression of β2-containing nicotinic receptors alters presynaptic and postsynaptic striatal signaling to protect against aberrant motor learning. Moreover, these results suggest that cNIC treatment may alleviate motor symptoms and/or delay the deterioration of motor function in movement disorders by blocking aberrant motor learning.
Collapse
|
177
|
Matamales M, Skrbis Z, Hatch RJ, Balleine BW, Götz J, Bertran-Gonzalez J. Aging-Related Dysfunction of Striatal Cholinergic Interneurons Produces Conflict in Action Selection. Neuron 2017; 90:362-73. [PMID: 27100198 DOI: 10.1016/j.neuron.2016.03.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 01/31/2016] [Accepted: 02/25/2016] [Indexed: 10/21/2022]
Abstract
For goal-directed action to remain adaptive, new strategies are required to accommodate environmental changes, a process for which parafascicular thalamic modulation of cholinergic interneurons in the striatum (PF-to-CIN) appears critical. In the elderly, however, previously acquired experience frequently interferes with new learning, yet the source of this effect has remained unexplored. Here, combining sophisticated behavioral designs, cell-specific manipulation, and extensive neuronal imaging, we investigated the involvement of the PF-to-CIN pathway in this process. We found functional alterations of this circuit in aged mice that were consistent with their incapacity to update initial goal-directed learning, resulting in faulty activation of projection neurons in the striatum. Toxicogenetic ablation of CINs in young mice reproduced these behavioral and neuronal defects, suggesting that age-related deficits in PF-to-CIN function reduce the ability of older individuals to resolve conflict between actions, likely contributing to impairments in adaptive goal-directed action and executive control in aging. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Miriam Matamales
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4000, Australia
| | - Zala Skrbis
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4000, Australia
| | - Robert J Hatch
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4000, Australia
| | - Bernard W Balleine
- Brain and Mind Centre, University of Sydney, Camperdown, NSW 2050, Australia; School of Psychology, University of NSW, Kensington, NSW 2033, Australia
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4000, Australia
| | - Jesus Bertran-Gonzalez
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4000, Australia.
| |
Collapse
|
178
|
Chandra R, Lobo MK. Beyond Neuronal Activity Markers: Select Immediate Early Genes in Striatal Neuron Subtypes Functionally Mediate Psychostimulant Addiction. Front Behav Neurosci 2017. [PMID: 28642692 PMCID: PMC5462953 DOI: 10.3389/fnbeh.2017.00112] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Immediate early genes (IEGs) were traditionally used as markers of neuronal activity in striatum in response to stimuli including drugs of abuse such as psychostimulants. Early studies using these neuronal activity markers led to important insights in striatal neuron subtype responsiveness to psychostimulants. Such studies have helped identify striatum as a critical brain center for motivational, reinforcement and habitual behaviors in psychostimulant addiction. While the use of IEGs as neuronal activity markers in response to psychostimulants and other stimuli persists today, the functional role and implications of these IEGs has often been neglected. Nonetheless, there is a subset of research that investigates the functional role of IEGs in molecular, cellular and behavioral alterations by psychostimulants through striatal medium spiny neuron (MSN) subtypes, the two projection neuron subtypes in striatum. This review article will address and highlight the studies that provide a functional mechanism by which IEGs mediate psychostimulant molecular, cellular and behavioral plasticity through MSN subtypes. Insight into the functional role of IEGs in striatal MSN subtypes could provide improved understanding into addiction and neuropsychiatric diseases affecting striatum, such as affective disorders and compulsive disorders characterized by dysfunctional motivation and habitual behavior.
Collapse
Affiliation(s)
- Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of MedicineBaltimore, MD, United States
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of MedicineBaltimore, MD, United States
| |
Collapse
|
179
|
Cheng Y, Huang CCY, Ma T, Wei X, Wang X, Lu J, Wang J. Distinct Synaptic Strengthening of the Striatal Direct and Indirect Pathways Drives Alcohol Consumption. Biol Psychiatry 2017; 81:918-929. [PMID: 27470168 PMCID: PMC5124556 DOI: 10.1016/j.biopsych.2016.05.016] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/14/2022]
Abstract
BACKGROUND Repeated exposure to addictive drugs or alcohol triggers glutamatergic and gamma-aminobutyric acidergic (GABAergic) plasticity in many neuronal populations. The dorsomedial striatum (DMS), a brain region critically involved in addiction, contains medium spiny neurons (MSNs) expressing dopamine D1 or D2 receptors, which form direct and indirect pathways, respectively. It is unclear how alcohol-evoked plasticity in the DMS contributes to alcohol consumption in a cell type-specific manner. METHODS Mice were trained to consume alcohol using an intermittent-access two-bottle-choice drinking procedure. Slice electrophysiology was used to measure glutamatergic and GABAergic strength in DMS D1- and D2-MSNs of alcohol-drinking mice and control mice. In vivo chemogenetic and pharmacologic approaches were employed to manipulate MSN activity, and their consequences on alcohol consumption were measured. RESULTS Repeated cycles of alcohol consumption and withdrawal in mice strengthened glutamatergic transmission in D1-MSNs and GABAergic transmission in D2-MSNs. In vivo chemogenetic excitation of D1-MSNs, mimicking glutamatergic strengthening, promoted alcohol consumption; the same effect was induced by D2-MSN inhibition, mimicking GABAergic strengthening. Importantly, suppression of GABAergic transmission via D2 receptor-glycogen synthase kinase-3β signaling dramatically reduced excessive alcohol consumption, as did selective inhibition of D1-MSNs or excitation of D2-MSNs. CONCLUSIONS Our results suggest that repeated cycles of excessive alcohol intake and withdrawal potentiate glutamatergic strength exclusively in D1-MSNs and GABAergic strength specifically in D2-MSNs of the DMS, which concurrently contribute to alcohol consumption. These results provide insight into the synaptic and cell type-specific mechanisms underlying alcohol addiction and identify targets for the development of new therapeutic approaches to alcohol abuse.
Collapse
Affiliation(s)
- Yifeng Cheng
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Cathy C Y Huang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Tengfei Ma
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Xiaoyan Wei
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Xuehua Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Jiayi Lu
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas
| | - Jun Wang
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, Texas.
| |
Collapse
|
180
|
D3 Receptors Regulate Excitability in a Unique Class of Prefrontal Pyramidal Cells. J Neurosci 2017; 37:5846-5860. [PMID: 28522735 DOI: 10.1523/jneurosci.0310-17.2017] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 11/21/2022] Open
Abstract
The D3 dopamine receptor, a member of the Gi-coupled D2 family of dopamine receptors, is expressed throughout limbic circuits affected in neuropsychiatric disorders, including prefrontal cortex (PFC). These receptors are important for prefrontal executive function because pharmacological and genetic manipulations that affect prefrontal D3 receptors alter anxiety, social interaction, and reversal learning. However, the mechanisms by which D3 receptors regulate prefrontal circuits and whether D3 receptors regulate specific prefrontal subnetworks remains unknown. Here, we combine dopamine receptor reporter lines, anatomical tracing techniques, and electrophysiology to show that D3 receptor expression defines a novel subclass of layer 5 glutamatergic pyramidal cell in mouse PFC (either sex). D3-receptor-expressing pyramidal neurons are electrophysiologically and anatomically separable from neighboring neurons expressing D1 or D2 receptors based on their dendritic morphology and subthreshold and suprathreshold intrinsic excitability. D3-receptor-expressing neurons send axonal projections to intratelencephalic (IT) targets, including contralateral cortex, nucleus accumbens, and basolateral amygdala. Within these neurons, D3 receptor activation was found to regulate low-voltage-activated CaV3.2 calcium channels localized to the axon initial segment, which suppressed action potential (AP) excitability, particularly when APs occurred at high frequency. Therefore, these data indicate that D3 receptors regulate the excitability of a unique, IT prefrontal cell population, thereby defining novel circuitry and cellular actions for D3 receptors in PFC.SIGNIFICANCE STATEMENT The D3 dopamine receptor, a member of the Gi-coupled D2 family of dopamine receptors, are expressed throughout limbic circuits, including prefrontal cortex (PFC). They are of broad interest as a site for therapeutic intervention in serious mental illness, yet we know very little about their distribution or function within PFC. Here, we show that D3 receptors define a unique population of glutamatergic principal cells in mouse PFC that largely lack expression of D1 or D2 receptors. Within these cells, we find that D3 receptors regulate the ability to generate high-frequency action potential bursts through mechanisms not supported by other dopamine receptors. These results define unique circuitry and cellular actions for D3 receptors in regulating PFC networks.
Collapse
|
181
|
Selective Vulnerability of Striatal D2 versus D1 Dopamine Receptor-Expressing Medium Spiny Neurons in HIV-1 Tat Transgenic Male Mice. J Neurosci 2017; 37:5758-5769. [PMID: 28473642 DOI: 10.1523/jneurosci.0622-17.2017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 04/20/2017] [Accepted: 04/27/2017] [Indexed: 02/04/2023] Open
Abstract
Despite marked regional differences in HIV susceptibility within the CNS, there has been surprisingly little exploration into the differential vulnerability among neuron types and the circuits they underlie. The dorsal striatum is especially susceptible, harboring high viral loads and displaying marked neuropathology, with motor impairment a frequent manifestation of chronic infection. However, little is known about the response of individual striatal neuron types to HIV or how this disrupts function. Therefore, we investigated the morphological and electrophysiological effects of HIV-1 trans-activator of transcription (Tat) in dopamine subtype 1 (D1) and dopamine subtype 2 (D2) receptor-expressing striatal medium spiny neurons (MSNs) by breeding transgenic Tat-expressing mice to Drd1a-tdTomato- or Drd2-eGFP-reporter mice. An additional goal was to examine neuronal vulnerability early during the degenerative process to gain insight into key events underlying the neuropathogenesis. In D2 MSNs, exposure to HIV-1 Tat reduced dendritic spine density significantly, increased dendritic damage (characterized by swellings/varicosities), and dysregulated neuronal excitability (decreased firing at 200-300 pA and increased firing rates at 450 pA), whereas insignificant morphologic and electrophysiological consequences were observed in Tat-exposed D1 MSNs. These changes were concomitant with an increased anxiety-like behavioral profile (lower latencies to enter a dark chamber in a light-dark transition task, a greater frequency of light-dark transitions, and reduced rearing time in an open field), whereas locomotor behavior was unaffected by 2 weeks of Tat induction. Our findings suggest that D2 MSNs and a specific subset of neural circuits within the dorsal striatum are preferentially vulnerable to HIV-1.SIGNIFICANCE STATEMENT Despite combination antiretroviral therapy (cART), neurocognitive disorders afflict 30-50% of HIV-infected individuals and synaptodendritic injury remains evident in specific brain regions such as the dorsal striatum. A possible explanation for the sustained neuronal injury is that the neurotoxic HIV-1 regulatory protein trans-activator of transcription (Tat) continues to be expressed in virally suppressed patients on cART. Using inducible Tat-expressing transgenic mice, we found that dopamine subtype 2 (D2) receptor-expressing medium spiny neurons (MSNs) are selectively vulnerable to Tat exposure compared with D1 receptor-expressing MSNs. This includes Tat-induced reductions in D2 MSN dendritic spine density, increased dendritic damage, and disruptions in neuronal excitability, which coincide with elevated anxiety-like behavior. These data suggest that D2 MSNs and specific circuits within the basal ganglia are preferentially vulnerable to HIV-1.
Collapse
|
182
|
Dorofeeva NA, Nikitina LS, Zosen DV, Glazova MV, Chernigovskaya EV. Functional state of the nigrostriatal system of Krushinsky–Molodkina rats during audiogenic seizure expression. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079059717030029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
183
|
Scofield MD, Heinsbroek JA, Gipson CD, Kupchik YM, Spencer S, Smith ACW, Roberts-Wolfe D, Kalivas PW. The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol Rev 2017; 68:816-71. [PMID: 27363441 DOI: 10.1124/pr.116.012484] [Citation(s) in RCA: 379] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The nucleus accumbens is a major input structure of the basal ganglia and integrates information from cortical and limbic structures to mediate goal-directed behaviors. Chronic exposure to several classes of drugs of abuse disrupts plasticity in this region, allowing drug-associated cues to engender a pathologic motivation for drug seeking. A number of alterations in glutamatergic transmission occur within the nucleus accumbens after withdrawal from chronic drug exposure. These drug-induced neuroadaptations serve as the molecular basis for relapse vulnerability. In this review, we focus on the role that glutamate signal transduction in the nucleus accumbens plays in addiction-related behaviors. First, we explore the nucleus accumbens, including the cell types and neuronal populations present as well as afferent and efferent connections. Next we discuss rodent models of addiction and assess the viability of these models for testing candidate pharmacotherapies for the prevention of relapse. Then we provide a review of the literature describing how synaptic plasticity in the accumbens is altered after exposure to drugs of abuse and withdrawal and also how pharmacological manipulation of glutamate systems in the accumbens can inhibit drug seeking in the laboratory setting. Finally, we examine results from clinical trials in which pharmacotherapies designed to manipulate glutamate systems have been effective in treating relapse in human patients. Further elucidation of how drugs of abuse alter glutamatergic plasticity within the accumbens will be necessary for the development of new therapeutics for the treatment of addiction across all classes of addictive substances.
Collapse
Affiliation(s)
- M D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - J A Heinsbroek
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - C D Gipson
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - Y M Kupchik
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - S Spencer
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - A C W Smith
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - D Roberts-Wolfe
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| | - P W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina (M.D.S., J.A.H., S.S., D.R.-W., P.W.K.); Department of Psychology, Arizona State University, Tempe, Arizona (C.D.G.); Department of Neuroscience, Hebrew University, Jerusalem, Israel (Y.M.K.); and Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine at Mount Sinai, New York, New York (A.C.W.S.)
| |
Collapse
|
184
|
Brady ST, Morfini GA. Regulation of motor proteins, axonal transport deficits and adult-onset neurodegenerative diseases. Neurobiol Dis 2017; 105:273-282. [PMID: 28411118 DOI: 10.1016/j.nbd.2017.04.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/17/2017] [Accepted: 04/10/2017] [Indexed: 01/07/2023] Open
Abstract
Neurons affected in a wide variety of unrelated adult-onset neurodegenerative diseases (AONDs) typically exhibit a "dying back" pattern of degeneration, which is characterized by early deficits in synaptic function and neuritic pathology long before neuronal cell death. Consistent with this observation, multiple unrelated AONDs including Alzheimer's disease, Parkinson's disease, Huntington's disease, and several motor neuron diseases feature early alterations in kinase-based signaling pathways associated with deficits in axonal transport (AT), a complex cellular process involving multiple intracellular trafficking events powered by microtubule-based motor proteins. These pathogenic events have important therapeutic implications, suggesting that a focus on preservation of neuronal connections may be more effective to treat AONDs than addressing neuronal cell death. While the molecular mechanisms underlying AT abnormalities in AONDs are still being analyzed, evidence has accumulated linking those to a well-established pathological hallmark of multiple AONDs: altered patterns of neuronal protein phosphorylation. Here, we present a short overview on the biochemical heterogeneity of major motor proteins for AT, their regulation by protein kinases, and evidence revealing cell type-specific AT specializations. When considered together, these findings may help explain how independent pathogenic pathways can affect AT differentially in the context of each AOND.
Collapse
Affiliation(s)
- Scott T Brady
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Gerardo A Morfini
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| |
Collapse
|
185
|
Lobo MK. Nuclear Arc Puts a Brake on Cocaine-Induced Chromatin Remodeling and Behaviors. Biol Psychiatry 2017; 81:550-551. [PMID: 28283053 PMCID: PMC6662570 DOI: 10.1016/j.biopsych.2017.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 10/20/2022]
Affiliation(s)
- Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
186
|
Castro L, Yapo C, Vincent P. [Physiopathology of cAMP/PKA signaling in neurons]. Biol Aujourdhui 2017; 210:191-203. [PMID: 28327278 DOI: 10.1051/jbio/2017005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Indexed: 11/15/2022]
Abstract
Cyclic adenosine monophosphate (cAMP) and the cyclic-AMP dependent protein kinase (PKA) regulate a plethora of cellular functions in virtually all eukaryotic cells. In neurons, the cAMP/PKA signaling cascade controls a number of biological properties such as axonal growth, synaptic transmission, regulation of excitability or long term changes in the nucleus. Genetically-encoded optical biosensors for cAMP or PKA considerably improved our understanding of these processes by providing a real-time measurement in living neurons. In this review, we describe the recent progresses made in the creation of biosensors for cAMP or PKA activity. These biosensors revealed profound differences in the amplitude of the cAMP signal evoked by neuromodulators between various neuronal preparations. These responses can be resolved at the level of individual neurons, also revealing differences related to the neuronal type. At the subcellular level, biosensors reported different signal dynamics in domains like dendrites, cell body, nucleus and axon. Combining this imaging approach with pharmacology or genetical models points at phosphodiesterases and phosphatases as critical regulatory proteins. Biosensor imaging will certainly help understand the mechanism of action of current drugs as well as help in devising novel therapeutic strategies for neuropsychiatric diseases.
Collapse
|
187
|
Anhydroecgonine methyl ester, a cocaine pyrolysis product, may contribute to cocaine behavioral sensitization. Toxicology 2017; 376:44-50. [DOI: 10.1016/j.tox.2016.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/09/2016] [Accepted: 04/25/2016] [Indexed: 11/22/2022]
|
188
|
Gagnon D, Petryszyn S, Sanchez MG, Bories C, Beaulieu JM, De Koninck Y, Parent A, Parent M. Striatal Neurons Expressing D 1 and D 2 Receptors are Morphologically Distinct and Differently Affected by Dopamine Denervation in Mice. Sci Rep 2017; 7:41432. [PMID: 28128287 PMCID: PMC5269744 DOI: 10.1038/srep41432] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/19/2016] [Indexed: 12/11/2022] Open
Abstract
The loss of nigrostriatal dopamine neurons in Parkinson’s disease induces a reduction in the number of dendritic spines on medium spiny neurons (MSNs) of the striatum expressing D1 or D2 dopamine receptor. Consequences on MSNs expressing both receptors (D1/D2 MSNs) are currently unknown. We looked for changes induced by dopamine denervation in the density, regional distribution and morphological features of D1/D2 MSNs, by comparing 6-OHDA-lesioned double BAC transgenic mice (Drd1a-tdTomato/Drd2-EGFP) to sham-lesioned animals. D1/D2 MSNs are uniformly distributed throughout the dorsal striatum (1.9% of MSNs). In contrast, they are heterogeneously distributed and more numerous in the ventral striatum (14.6% in the shell and 7.3% in the core). Compared to D1 and D2 MSNs, D1/D2 MSNs are endowed with a smaller cell body and a less profusely arborized dendritic tree with less dendritic spines. The dendritic spine density of D1/D2 MSNs, but also of D1 and D2 MSNs, is significantly reduced in 6-OHDA-lesioned mice. In contrast to D1 and D2 MSNs, the extent of dendritic arborization of D1/D2 MSNs appears unaltered in 6-OHDA-lesioned mice. Our data indicate that D1/D2 MSNs in the mouse striatum form a distinct neuronal population that is affected differently by dopamine deafferentation that characterizes Parkinson’s disease.
Collapse
Affiliation(s)
- D Gagnon
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC, Canada
| | - S Petryszyn
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC, Canada
| | - M G Sanchez
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC, Canada
| | - C Bories
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC, Canada
| | - J M Beaulieu
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC, Canada
| | - Y De Koninck
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC, Canada
| | - A Parent
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC, Canada
| | - M Parent
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
189
|
Nishi A, Shuto T. Potential for targeting dopamine/DARPP-32 signaling in neuropsychiatric and neurodegenerative disorders. Expert Opin Ther Targets 2017; 21:259-272. [PMID: 28052701 DOI: 10.1080/14728222.2017.1279149] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Alterations in dopamine neurotransmission has been implicated in pathophysiology of neuropsychiatric and neurodegenerative disorders, and DARPP-32 plays a pivotal role in dopamine neurotransmission. DARPP-32 likely influences dopamine-mediated behaviors in animal models of neuropsychiatric and neurodegenerative disorders and therapeutic effects of pharmacological treatment. Areas covered: We will review animal studies on the biochemical and behavioral roles of DARPP-32 in drug addiction, schizophrenia and Parkinson's disease. In general, under physiological and pathophysiological conditions, DARPP-32 in D1 receptor expressing (D1R) -medium spiny neurons (MSNs) promotes dopamine/D1 receptor/PKA signaling, whereas DARPP-32 in D2 receptor expressing (D2R)-MSNs counteracts dopamine/D2 receptor signaling. However, the function of DARPP-32 is differentially regulated in acute and chronic phases of drug addiction; DARPP-32 enhances D1 receptor/PKA signaling in the acute phase, whereas DARPP-32 suppresses D1 receptor/PKA signaling in the chronic phase through homeostatic mechanisms. Therefore, DARPP-32 plays a bidirectional role in dopamine neurotransmission, depending on the cell type and experimental conditions, and is involved in dopamine-related behavioral abnormalities. Expert opinion: DARPP-32 differentially regulates dopamine signaling in D1R- and D2R-MSNs, and a shift of balance between D1R- and D2R-MSN function is associated with behavioral abnormalities. An adjustment of this imbalance is achieved by therapeutic approaches targeting DARPP-32-related signaling molecules.
Collapse
Affiliation(s)
- Akinori Nishi
- a Department of Pharmacology , Kurume University School of Medicine , Kurume, Fukuoka , Japan
| | - Takahide Shuto
- a Department of Pharmacology , Kurume University School of Medicine , Kurume, Fukuoka , Japan
| |
Collapse
|
190
|
Biever A, Boubaker-Vitre J, Cutando L, Gracia-Rubio I, Costa-Mattioli M, Puighermanal E, Valjent E. Repeated Exposure to D-Amphetamine Decreases Global Protein Synthesis and Regulates the Translation of a Subset of mRNAs in the Striatum. Front Mol Neurosci 2017; 9:165. [PMID: 28119566 PMCID: PMC5223439 DOI: 10.3389/fnmol.2016.00165] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/20/2016] [Indexed: 01/21/2023] Open
Abstract
Repeated psychostimulant exposure induces persistent gene expression modifications that contribute to enduring changes in striatal GABAergic spiny projecting neurons (SPNs). However, it remains unclear whether changes in the control of mRNA translation are required for the establishment of these durable modifications. Here we report that repeated exposure to D-amphetamine decreases global striatal mRNA translation. This effect is paralleled by an enhanced phosphorylation of the translation factors, eIF2α and eEF2, and by the concomitant increased translation of a subset of mRNAs, among which the mRNA encoding for the activity regulated cytoskeleton-associated protein, also known as activity regulated gene 3.1 (Arc/Arg3.1). The enrichment of Arc/Arg3.1 mRNA in the polysomal fraction is accompanied by a robust increase of Arc/Arg3.1 protein levels within the striatum. Immunofluorescence analysis revealed that this increase occurred preferentially in D1R-expressing SPNs localized in striosome compartments. Our results suggest that the decreased global protein synthesis following repeated exposure to D-amphetamine favors the translation of a specific subset of mRNAs in the striatum.
Collapse
Affiliation(s)
- Anne Biever
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique FonctionnelleMontpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1191Montpellier, France; Université de Montpellier, UMR-5203Montpellier, France
| | - Jihane Boubaker-Vitre
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique FonctionnelleMontpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1191Montpellier, France; Université de Montpellier, UMR-5203Montpellier, France
| | - Laura Cutando
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique FonctionnelleMontpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1191Montpellier, France; Université de Montpellier, UMR-5203Montpellier, France
| | - Irene Gracia-Rubio
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique FonctionnelleMontpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1191Montpellier, France; Université de Montpellier, UMR-5203Montpellier, France
| | - Mauro Costa-Mattioli
- Department of Neuroscience, Memory and Brain Research Center, Baylor College of Medicine, Houston TX, USA
| | - Emma Puighermanal
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique FonctionnelleMontpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1191Montpellier, France; Université de Montpellier, UMR-5203Montpellier, France
| | - Emmanuel Valjent
- Centre National de la Recherche Scientifique (CNRS), UMR-5203, Institut de Génomique FonctionnelleMontpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM), U1191Montpellier, France; Université de Montpellier, UMR-5203Montpellier, France
| |
Collapse
|
191
|
Harricharan R, Abboussi O, Daniels WM. Addiction: A dysregulation of satiety and inflammatory processes. PROGRESS IN BRAIN RESEARCH 2017; 235:65-91. [DOI: 10.1016/bs.pbr.2017.07.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
192
|
Mao LM, Wang HH, Wang JQ. Antagonism of Muscarinic Acetylcholine Receptors Alters Synaptic ERK Phosphorylation in the Rat Forebrain. Neurochem Res 2016; 42:1202-1210. [PMID: 28032295 DOI: 10.1007/s11064-016-2157-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/08/2016] [Accepted: 12/19/2016] [Indexed: 11/25/2022]
Abstract
Acetylcholine (ACh) is a key transmitter in the mesocorticolimbic circuit. By interacting with muscarinic ACh receptors (mAChR) enriched in the circuit, ACh actively regulates various neuronal and synaptic activities. The extracellular signal-regulated kinase (ERK) is one of members of the mitogen-activated protein kinase family and is subject to the regulation by dopamine receptors, although the regulation of ERKs by limbic mAChRs is poorly understood. In this study, we investigated the role of mAChRs in the regulation of ERK phosphorylation (activation) in the mesocorticolimbic system of adult rat brains in vivo. We targeted a sub-pool of ERKs at synaptic sites. We found that a systemic injection of the mAChR antagonist scopolamine increased phosphorylation of synaptic ERKs in the striatum (caudate putamen and nucleus accumbens) and medial prefrontal cortex (mPFC). Increases in ERK phosphorylation in both forebrain regions were rapid and transient. Notably, pretreatment with a dopamine D1 receptor (D1R) antagonist SCH23390 blocked the scopolamine-stimulated ERK phosphorylation in these brain regions, while a dopamine D2 receptor antagonist eticlopride did not. Scopolamine and SCH23390 did not change the amount of total ERK proteins. These results demonstrate that mAChRs inhibit synaptic ERK phosphorylation in striatal and mPFC neurons under normal conditions. Blockade of this inhibitory mAChR tone leads to the upregulation of ERK phosphorylation likely through a mechanism involving the level of D1R activity.
Collapse
Affiliation(s)
- Li-Min Mao
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - Henry H Wang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA
| | - John Q Wang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO, 64108, USA. .,Department of Anesthesiology, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA.
| |
Collapse
|
193
|
Nishi A, Matamales M, Musante V, Valjent E, Kuroiwa M, Kitahara Y, Rebholz H, Greengard P, Girault JA, Nairn AC. Glutamate Counteracts Dopamine/PKA Signaling via Dephosphorylation of DARPP-32 Ser-97 and Alteration of Its Cytonuclear Distribution. J Biol Chem 2016; 292:1462-1476. [PMID: 27998980 DOI: 10.1074/jbc.m116.752402] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 12/06/2016] [Indexed: 01/17/2023] Open
Abstract
The interaction of glutamate and dopamine in the striatum is heavily dependent on signaling pathways that converge on the regulatory protein DARPP-32. The efficacy of dopamine/D1 receptor/PKA signaling is regulated by DARPP-32 phosphorylated at Thr-34 (the PKA site), a process that inhibits protein phosphatase 1 (PP1) and potentiates PKA action. Activation of dopamine/D1 receptor/PKA signaling also leads to dephosphorylation of DARPP-32 at Ser-97 (the CK2 site), leading to localization of phospho-Thr-34 DARPP-32 in the nucleus where it also inhibits PP1. In this study the role of glutamate in the regulation of DARPP-32 phosphorylation at four major sites was further investigated. Experiments using striatal slices revealed that glutamate decreased the phosphorylation states of DARPP-32 at Ser-97 as well as Thr-34, Thr-75, and Ser-130 by activating NMDA or AMPA receptors in both direct and indirect pathway striatal neurons. The effect of glutamate in decreasing Ser-97 phosphorylation was mediated by activation of PP2A. In vitro phosphatase assays indicated that the PP2A/PR72 heterotrimer complex was likely responsible for glutamate/Ca2+-regulated dephosphorylation of DARPP-32 at Ser-97. As a consequence of Ser-97 dephosphorylation, glutamate induced the nuclear localization in cultured striatal neurons of dephospho-Thr-34/dephospho-Ser-97 DARPP-32. It also reduced PKA-dependent DARPP-32 signaling in slices and in vivo Taken together, the results suggest that by inducing dephosphorylation of DARPP-32 at Ser-97 and altering its cytonuclear distribution, glutamate may counteract dopamine/D1 receptor/PKA signaling at multiple cellular levels.
Collapse
Affiliation(s)
- Akinori Nishi
- From the Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan,
| | - Miriam Matamales
- Institut du Fer à Moulin, INSERM, UPMC UMR-S839, 75005 Paris, France
| | - Veronica Musante
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508
| | - Emmanuel Valjent
- Institut de Génomique Fonctionnelle, Inserm U1191, UMR 5203 CNRS, Montpellier University, 34094 Montpellier, France, and
| | - Mahomi Kuroiwa
- From the Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yosuke Kitahara
- From the Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Heike Rebholz
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065
| | - Paul Greengard
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10065
| | | | - Angus C Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508
| |
Collapse
|
194
|
Lafragette A, Bardo MT, Lardeux V, Solinas M, Thiriet N. Reduction of Cocaine-Induced Locomotor Effects by Enriched Environment Is Associated with Cell-Specific Accumulation of ΔFosB in Striatal and Cortical Subregions. Int J Neuropsychopharmacol 2016; 20:237-246. [PMID: 27815415 PMCID: PMC5408985 DOI: 10.1093/ijnp/pyw097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/02/2016] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Early exposure to enriched environments has been shown to decrease the locomotor effects induced by repeated injections of cocaine and modify basal and cocaine-induced total protein levels of the transcription factor ΔFosB in the whole striatum of mice. In this study, we aimed at characterizing whether the profile of ΔFosB accumulation induced by enriched environments and cocaine would be similar or different in terms of brain areas and cell type. METHODS We used mice expressing the eGFP protein in D1 receptor positive (D1R(+)) neurons to determine whether Δ FosB induced by enriched environment or cocaine injections (5×15 mg/kg) would occur in selective subpopulations of neurons in several subregions of the striatum and prefrontal cortex. RESULTS We found that: (1) exposure to enriched environment reduces cocaine-induced locomotor activation, confirming our previous findings; (2) exposure to enriched environment by itself increases the accumulation of Δ FosB mostly in D1R(-) cells in the shell part of the nucleus accumbens and dorsal striatum, whereas in the nucleus accumbens core, Δ FosB accumulates in both D1R(+) and D1R(-) neurons; (3) in standard environment mice, cocaine induces accumulation of Δ FosB selectively in D1R(+) cells in the nucleus accumbens, dorsal striatum, and infralimbic cortex; and (4) the effects of enriched environments and cocaine on accumulation of Δ FosB were reciprocally blocked by their combination. CONCLUSIONS Altogether, these results suggest that the enriched environment-induced reduction in behavioral effects of cocaine might result from 2 distinct effects on ΔFosB in striatal medium-sized spiny neurons belonging to the direct and indirect pathways.
Collapse
Affiliation(s)
- Audrey Lafragette
- INSERM, U-1084, Laboratory of Experimental and Clinical Neurosciences, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); University of Poitiers, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); Department of Psychology and Center for Drug Abuse Research Translation, University of Kentucky, Lexington, Kentucky (Dr Bardo).
| | - Michael T. Bardo
- INSERM, U-1084, Laboratory of Experimental and Clinical Neurosciences, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); University of Poitiers, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); Department of Psychology and Center for Drug Abuse Research Translation, University of Kentucky, Lexington, Kentucky (Dr Bardo).
| | - Virginie Lardeux
- INSERM, U-1084, Laboratory of Experimental and Clinical Neurosciences, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); University of Poitiers, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); Department of Psychology and Center for Drug Abuse Research Translation, University of Kentucky, Lexington, Kentucky (Dr Bardo).
| | - Marcello Solinas
- INSERM, U-1084, Laboratory of Experimental and Clinical Neurosciences, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); University of Poitiers, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); Department of Psychology and Center for Drug Abuse Research Translation, University of Kentucky, Lexington, Kentucky (Dr Bardo).
| | - Nathalie Thiriet
- INSERM, U-1084, Laboratory of Experimental and Clinical Neurosciences, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); University of Poitiers, Poitiers, France (Ms Lafragette, Ms Lardeux, Dr Solinas, and Dr Thiriet); Department of Psychology and Center for Drug Abuse Research Translation, University of Kentucky, Lexington, Kentucky (Dr Bardo).
| |
Collapse
|
195
|
Błasiak E, Łukasiewicz S, Szafran-Pilch K, Dziedzicka-Wasylewska M. Genetic variants of dopamine D2 receptor impact heterodimerization with dopamine D1 receptor. Pharmacol Rep 2016; 69:235-241. [PMID: 28119185 DOI: 10.1016/j.pharep.2016.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND The human dopamine D2 receptor gene has three polymorphic variants that alter its amino acid sequence: alanine substitution by valine in position 96 (V96A), proline substitution by serine in position 310 (P310S) and serine substitution by cysteine in position 311 (S311C). Their functional role has never been the object of extensive studies, even though there is some evidence that their occurrence correlates with schizophrenia. METHODS The HEK293 cell line was transfected with dopamine D1 and D2 receptors (or genetic variants of the D2 receptor), coupled to fluorescent proteins which allowed us to measure the extent of dimerization of these receptors, using a highly advanced biophysical approach (FLIM-FRET). Additionally, Fluoro-4 AM was used to examine changes in the level of calcium release after ligand stimulation of cells expressing different combinations of dopamine receptors. RESULTS Using FLIM-FRET experiments we have shown that in HEK 293 expressing dopamine receptors, polymorphic mutations in the D2 receptor play a role in dimmer formation with the dopamine D1 receptor. The association level of dopamine receptors is affected by ligand administration, with variable effects depending on polymorphic variant of the D2 dopamine receptor. We have found that the level of heteromer formation is reflected by calcium ion release after ligand stimulation and have observed variations of this effect dependent on the polymorphic variant and the ligand. CONCLUSION The data presented in this paper support the hypothesis on the role of calcium signaling regulated by the D1-D2 heteromer which may be of relevance for schizophrenia etiology.
Collapse
Affiliation(s)
- Ewa Błasiak
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | - Sylwia Łukasiewicz
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| | | | - Marta Dziedzicka-Wasylewska
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland; Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland.
| |
Collapse
|
196
|
Creed M, Ntamati N, Chandra R, Lobo M, Lüscher C. Convergence of Reinforcing and Anhedonic Cocaine Effects in the Ventral Pallidum. Neuron 2016; 92:214-226. [DOI: 10.1016/j.neuron.2016.09.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/26/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022]
|
197
|
Insight from animal models of environmentally driven epigenetic changes in the developing and adult brain. Dev Psychopathol 2016; 28:1229-1243. [PMID: 27687803 DOI: 10.1017/s095457941600081x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The efforts of many neuroscientists are directed toward understanding the appreciable plasticity of the brain and behavior. In recent years, epigenetics has become a core of this focus as a prime mechanistic candidate for behavioral modifications. Animal models have been instrumental in advancing our understanding of environmentally driven changes to the epigenome in the developing and adult brain. This review focuses mainly on such discoveries driven by adverse environments along with their associated behavioral outcomes. While much of the evidence discussed focuses on epigenetics within the central nervous system, several peripheral studies in humans who have experienced significant adversity are also highlighted. As we continue to unravel the link between epigenetics and phenotype, discerning the complexity and specificity of epigenetic changes induced by environments is an important step toward understanding optimal development and how to prevent or ameliorate behavioral deficits bred by disruptive environments.
Collapse
|
198
|
Puighermanal E, Cutando L, Boubaker-Vitre J, Honoré E, Longueville S, Hervé D, Valjent E. Anatomical and molecular characterization of dopamine D1 receptor-expressing neurons of the mouse CA1 dorsal hippocampus. Brain Struct Funct 2016; 222:1897-1911. [PMID: 27678395 PMCID: PMC5406422 DOI: 10.1007/s00429-016-1314-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/15/2016] [Indexed: 12/21/2022]
Abstract
In the hippocampus, a functional role of dopamine D1 receptors (D1R) in synaptic plasticity and memory processes has been suggested by electrophysiological and pharmacological studies. However, comprehension of their function remains elusive due to the lack of knowledge on the precise localization of D1R expression among the diversity of interneuron populations. Using BAC transgenic mice expressing enhanced green fluorescent protein under the control of D1R promoter, we examined the molecular identity of D1R-containing neurons within the CA1 subfield of the dorsal hippocampus. In agreement with previous findings, our analysis revealed that these neurons are essentially GABAergic interneurons, which express several neurochemical markers, including calcium-binding proteins, neuropeptides, and receptors among others. Finally, by using different tools comprising cell type-specific isolation of mRNAs bound to tagged-ribosomes, we provide solid data indicating that D1R is present in a large proportion of interneurons expressing dopamine D2 receptors. Altogether, our study indicates that D1Rs are expressed by different classes of interneurons in all layers examined and not by pyramidal cells, suggesting that CA1 D1R mostly acts via modulation of GABAergic interneurons.
Collapse
Affiliation(s)
- Emma Puighermanal
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France.,INSERM, U1191, Montpellier, 34094, France.,Université de Montpellier, UMR 5203, Montpellier, 34094, France
| | - Laura Cutando
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France.,INSERM, U1191, Montpellier, 34094, France.,Université de Montpellier, UMR 5203, Montpellier, 34094, France
| | - Jihane Boubaker-Vitre
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France.,INSERM, U1191, Montpellier, 34094, France.,Université de Montpellier, UMR 5203, Montpellier, 34094, France
| | - Eve Honoré
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France.,INSERM, U1191, Montpellier, 34094, France.,Université de Montpellier, UMR 5203, Montpellier, 34094, France
| | - Sophie Longueville
- Inserm, UMR-S 839, 75005, Paris, France.,Université Pierre et Marie Curie-Paris 6, 75005, Paris, France.,Institut du Fer à Moulin, 75005, Paris, France
| | - Denis Hervé
- Inserm, UMR-S 839, 75005, Paris, France.,Université Pierre et Marie Curie-Paris 6, 75005, Paris, France.,Institut du Fer à Moulin, 75005, Paris, France
| | - Emmanuel Valjent
- CNRS UMR 5203, Institut de Génomique Fonctionnelle, 141 rue de la Cardonille, 34094, Montpellier Cedex 05, France. .,INSERM, U1191, Montpellier, 34094, France. .,Université de Montpellier, UMR 5203, Montpellier, 34094, France.
| |
Collapse
|
199
|
Dopamine D2 receptors in striatal output neurons enable the psychomotor effects of cocaine. Proc Natl Acad Sci U S A 2016; 113:11609-11614. [PMID: 27671625 DOI: 10.1073/pnas.1608362113] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The psychomotor effects of cocaine are mediated by dopamine (DA) through stimulation of striatal circuits. Gabaergic striatal medium spiny neurons (MSNs) are the only output of this pivotal structure in the control of movements. The majority of MSNs express either the DA D1 or D2 receptors (D1R, D2R). Studies have shown that the motor effect of cocaine depends on the DA-mediated stimulation of D1R-expressing MSNs (dMSNs), which is mirrored at the cellular level by stimulation of signaling pathways leading to phosphorylation of ERKs and induction of c-fos Nevertheless, activation of dMSNs by cocaine is necessary but not sufficient, and D2R signaling is required for the behavioral and cellular effects of cocaine. Indeed, cocaine motor effects and activation of signaling in dMSNs are blunted in mice with the constitutive knockout of D2R (D2RKO). Using mouse lines with a cell-specific knockout of D2R either in MSNs (MSN-D2RKO) or in dopaminergic neurons (DA-D2RKO), we show that D2R signaling in MSNs is required and permissive for the motor stimulant effects of cocaine and the activation of signaling in dMSNs. MSN-D2RKO mice show the same phenotype as constitutive D2RKO mice both at the behavioral and cellular levels. Importantly, activation of signaling in dMSNs by cocaine is rescued by intrastriatal injection of the GABA antagonist, bicuculline. These results are in support of intrastriatal connections of D2R+-MSNs (iMSNs) with dMSNs and indicate that D2R signaling in MSNs is critical for the function of intrastriatal circuits.
Collapse
|
200
|
Zou Z, Song H, Zhang Y, Zhang X. Romantic Love vs. Drug Addiction May Inspire a New Treatment for Addiction. Front Psychol 2016; 7:1436. [PMID: 27713720 PMCID: PMC5031705 DOI: 10.3389/fpsyg.2016.01436] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 09/07/2016] [Indexed: 01/06/2023] Open
Abstract
Drug addiction is a complex neurological dysfunction induced by recurring drug intoxication. Strategies to prevent and treat drug addiction constitute a topic of research interest. Early-stage romantic love is characterized by some characteristics of addiction, which gradually disappear as the love relationship progresses. Therefore, comparison of the concordance and discordance between romantic love and drug addiction may elucidate potential treatments for addiction. This focused review uses the evidences from our recent studies to compare the neural alterations between romantic love and drug addiction, moreover we also compare the behavioral and neurochemical alterations between romantic love and drug addiction. From the behavioral comparisons we find that there are many similarities between the early stage of romantic love and drug addiction, and this stage romantic love is considered as a behavioral addiction, while significant differences exist between the later stage of romantic love and drug addiction, and this stage of romantic love eventually developed into a prosocial behavior. The neuroimaging comparisons suggest that romantic love and drug addiction both display the functional enhancement in reward and emotion regulation network. Except the similar neural changes, romantic love display special function enhancement in social cognition network, while drug addiction display special dysfunction in cognitive control network. The neurochemical comparisons show that there are many similarities in the dopamine (DA) system, while significant differences in oxytocin (OT) system for romantic love and drug addiction. These findings indicate that the functional alterations in reward and emotion regulation network and the DA system may be the neurophysiological basis of romantic love as a behavioral addiction, and the functional alterations in social cognition network and the OT system may be the neurophysiological basis of romantic love as a prosocial behavior. It seems that the OT system is a critical factor for the development of addiction. So we then discuss strategies to treat drug addiction with OT, and suggest that future research should further investigate OT system interventions aiming to improve cognitive control and/or social cognition functions, in order to develop strategies designed to more effectively treat drug addiction.
Collapse
Affiliation(s)
- Zhiling Zou
- Faculty of Psychology, Southwest University Chongqing, China
| | - Hongwen Song
- Faculty of Psychology, Southwest UniversityChongqing, China; Center of Medical Physics and Technology, Hefei Institutes of Physical Science, CASHefei, China
| | - Yuting Zhang
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of China Hefei, China
| | - Xiaochu Zhang
- Center of Medical Physics and Technology, Hefei Institutes of Physical Science, CASHefei, China; Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, School of Life Sciences, University of Science and Technology of ChinaHefei, China; School of Humanities and Social Science, University of Science and Technology of ChinaHefei, China; Centers for Biomedical Engineering, University of Science and Technology of ChinaHefei, China
| |
Collapse
|