151
|
Nucleus-specific and cell cycle-regulated degradation of mitogen-activated protein kinase scaffold protein Ste5 contributes to the control of signaling competence. Mol Cell Biol 2008; 29:582-601. [PMID: 19001089 DOI: 10.1128/mcb.01019-08] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae cells are capable of responding to mating pheromone only prior to their exit from the G(1) phase of the cell cycle. Ste5 scaffold protein is essential for pheromone response because it couples pheromone receptor stimulation to activation of the appropriate mitogen-activated protein kinase (MAPK) cascade. In naïve cells, Ste5 resides primarily in the nucleus. Upon pheromone treatment, Ste5 is rapidly exported from the nucleus and accumulates at the tip of the mating projection via its association with multiple plasma membrane-localized molecules. We found that concomitant with its nuclear export, the rate of Ste5 turnover is markedly reduced. Preventing nuclear export destabilized Ste5, whereas preventing nuclear entry stabilized Ste5, indicating that Ste5 degradation occurs mainly in the nucleus. This degradation is dependent on ubiquitin and the proteasome. We show that Ste5 ubiquitinylation is mediated by the SCF(Cdc4) ubiquitin ligase and requires phosphorylation by the G(1) cyclin-dependent protein kinase (cdk1). The inability to efficiently degrade Ste5 resulted in pathway activation and cell cycle arrest in the absence of pheromone. These findings reveal that maintenance of this MAPK scaffold at an appropriately low level depends on its compartment-specific and cell cycle-dependent degradation. Overall, this mechanism provides a novel means for helping to prevent inadvertent stimulus-independent activation of a response and for restricting and maximizing the signaling competence of the cell to a specific cell cycle stage, which likely works hand in hand with the demonstrated role that G(1) Cdk1-dependent phosphorylation of Ste5 has in preventing its association with the plasma membrane.
Collapse
|
152
|
Yang F, Zhang S, Tang W, Zhao ZK. Identification of the orotidinE-5′-monophosphate decarboxylase gene of the oleaginous yeast Rhodosporidium toruloides. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.1937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
153
|
de Jongh WA, Bro C, Ostergaard S, Regenberg B, Olsson L, Nielsen J. The roles of galactitol, galactose-1-phosphate, and phosphoglucomutase in galactose-induced toxicity in Saccharomyces cerevisiae. Biotechnol Bioeng 2008; 101:317-26. [PMID: 18421797 DOI: 10.1002/bit.21890] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The uptake and catabolism of galactose by the yeast Saccharomyces cerevisiae is much lower than for glucose and fructose, and in applications of this yeast for utilization of complex substrates that contain galactose, for example, lignocellulose and raffinose, this causes prolonged fermentations. Galactose is metabolized via the Leloir pathway, and besides the industrial interest in improving the flux through this pathway it is also of medical relevance to study the Leloir pathway. Thus, genetic disorders in the genes encoding galactose-1-phosphate uridylyltransferase or galactokinase result in galactose toxicity both in patients with galactosemia and in yeast. In order to elucidate galactose related toxicity, which may explain the low uptake and catabolic rates of S. cerevisiae, we have studied the physiological characteristics and intracellular metabolite profiles of recombinant S. cerevisiae strains with improved or impaired growth on galactose. Aerobic batch cultivations on galactose of strains with different combinations of overexpression of the genes GAL1, GAL2, GAL7, and GAL10, which encode proteins that together convert extracellular galactose into glucose-1-phosphate, revealed a decrease in the maximum specific growth rate when compared to the reference strain. The hypothesized toxic intermediate galactose-1-phosphate cannot be the sole cause of galactose related toxicity, but indications were found that galactose-1-phosphate might cause a negative effect through inhibition of phosphoglucomutase. Furthermore, we show that galactitol is formed in S. cerevisiae, and that the combination of elevated intracellular galactitol concentration, and the ratio between galactose-1-phosphate concentration and phosphoglucomutase activity seems to be important for galactose related toxicity causing decreased growth rates.
Collapse
Affiliation(s)
- Willem A de Jongh
- Center for Microbial Biotechnology, BioCentrum-DTU, Technical University of Denmark, Building 223, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| | | | | | | | | | | |
Collapse
|
154
|
Disrupting vesicular trafficking at the endosome attenuates transcriptional activation by Gcn4. Mol Cell Biol 2008; 28:6796-818. [PMID: 18794364 DOI: 10.1128/mcb.00800-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The late endosome (MVB) plays a key role in coordinating vesicular transport of proteins between the Golgi complex, vacuole/lysosome, and plasma membrane. We found that deleting multiple genes involved in vesicle fusion at the MVB (class C/D vps mutations) impairs transcriptional activation by Gcn4, a global regulator of amino acid biosynthetic genes, by decreasing the ability of chromatin-bound Gcn4 to stimulate preinitiation complex assembly at the promoter. The functions of hybrid activators with Gal4 or VP16 activation domains are diminished in class D mutants as well, suggesting a broader defect in activation. Class E vps mutations, which impair protein sorting at the MVB, also decrease activation by Gcn4, provided they elicit rapid proteolysis of MVB cargo proteins in the aberrant late endosome. By contrast, specifically impairing endocytic trafficking from the plasma membrane, or vesicular transport to the vacuole, has a smaller effect on Gcn4 function. Thus, it appears that decreasing cargo proteins in the MVB through impaired delivery or enhanced degradation, and not merely the failure to transport cargo properly to the vacuole or downregulate plasma membrane proteins by endocytosis, is required to attenuate substantially transcriptional activation by Gcn4.
Collapse
|
155
|
Yang F, Zhang S, Tang W, Zhao ZK. Identification of the orotidine-5′-monophosphate decarboxylase gene of the oleaginous yeastRhodosporidium toruloides. Yeast 2008; 25:623-30. [DOI: 10.1002/yea.1607] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
156
|
The SpoMBe pathway drives membrane bending necessary for cytokinesis and spore formation in yeast meiosis. EMBO J 2008; 27:2363-74. [PMID: 18756268 DOI: 10.1038/emboj.2008.168] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 07/31/2008] [Indexed: 01/22/2023] Open
Abstract
Precise control over organelle shapes is essential for cellular organization and morphogenesis. During yeast meiosis, prospore membranes (PSMs) constitute bell-shaped organelles that enwrap the postmeiotic nuclei leading to the cellularization of the mother cell's cytoplasm and to spore formation. Here, we analysed how the PSMs acquire their curved bell-shaped structure. We discovered that two antagonizing forces ensure PSM shaping and proper closure during cytokinesis. The Ssp1p-containing coat at the leading edge of the PSM generates a pushing force, which is counteracted by a novel pathway, the spore membrane-bending pathway (SpoMBe). Using genetics, we found that Sma2p and Spo1p, a phospholipase, as well as several GPI-anchored proteins belong to the SpoMBe pathway. They exert a force all along the membrane, responsible for membrane bending during PSM biogenesis and for PSM closure during cytokinesis. We showed that the SpoMBe pathway involves asymmetric distribution of Sma2p and does not involve a GPI-protein-containing matrix. Rather, repulsive forces generated by asymmetrically distributed and dynamically moving GPI-proteins are suggested as the membrane-bending principle.
Collapse
|
157
|
Functional conservation of beta-hairpin DNA binding domains in the Mcm protein of Methanobacterium thermoautotrophicum and the Mcm5 protein of Saccharomyces cerevisiae. Genetics 2008; 179:1757-68. [PMID: 18660534 DOI: 10.1534/genetics.108.088690] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mcm proteins are an important family of evolutionarily conserved helicases required for DNA replication in eukaryotes. The eukaryotic Mcm complex consists of six paralogs that form a heterohexameric ring. Because the intact Mcm2-7 hexamer is inactive in vitro, it has been difficult to determine the precise function of the different subunits. The solved atomic structure of an archaeal minichromosome maintenance (MCM) homolog provides insight into the function of eukaryotic Mcm proteins. The N-terminal positively charged central channel in the archaeal molecule consists of beta-hairpin domains essential for DNA binding in vitro. Eukaryotic Mcm proteins also have beta-hairpin domains, but their function is unknown. With the archaeal atomic structure as a guide, yeast molecular genetics was used to query the function of the beta-hairpin domains in vivo. A yeast mcm5 mutant with beta-hairpin mutations displays defects in the G1/S transition of the cell cycle, the initiation phase of DNA replication, and in the binding of the entire Mcm2-7 complex to replication origins. A similar mcm4 mutation is synthetically lethal with the mcm5 mutation. Therefore, in addition to its known regulatory role, Mcm5 protein has a positive role in origin binding, which requires coordination by all six Mcm2-7 subunits in the hexamer.
Collapse
|
158
|
The molecular basis for relative physiological functionality of the ADP/ATP carrier isoforms in Saccharomyces cerevisiae. Genetics 2008; 179:1285-99. [PMID: 18562646 DOI: 10.1534/genetics.108.087700] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
AAC2 is one of three paralogs encoding mitochondrial ADP/ATP carriers in the yeast Saccharomyces cerevisiae, and because it is required for respiratory growth it has been the most extensively studied. To comparatively examine the relative functionality of Aac1, Aac2, and Aac3 in vivo, the gene encoding each isoform was expressed from the native AAC2 locus in aac1Delta aac3Delta yeast. Compared to Aac2, Aac1 exhibited reduced capacity to support growth of yeast lacking mitochondrial DNA or of yeast lacking the ATP/Mg-P(i) carrier, both conditions requiring ATP import into the mitochondrial matrix through the ADP/ATP carrier. Sixteen AAC1/AAC2 chimeric genes were constructed and analyzed to determine the key differences between residues or sections of Aac1 and Aac2. On the basis of the growth rate differences of yeast expressing different chimeras, the C1 and M2 loops of the ADP/ATP carriers contain divergent residues that are responsible for the difference(s) between Aac1 and Aac2. One chimeric gene construct supported growth on nonfermentable carbon sources but failed to support growth of yeast lacking mitochondrial DNA. We identified nine independent intragenic mutations in this chimeric gene that suppressed the growth phenotype of yeast lacking mitochondrial DNA, identifying regions of the carrier important for nucleotide exchange activities.
Collapse
|
159
|
Functionally redundant isoforms of a yeast Hsp70 chaperone subfamily have different antiprion effects. Genetics 2008; 179:1301-11. [PMID: 18562668 DOI: 10.1534/genetics.108.089458] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Why eukaryotes encode multiple Hsp70 isoforms is unclear. Saccharomyces cerevisiae Ssa1p and Ssa2p are constitutive 98% identical Hsp70's. Stress-inducible Ssa3p and Ssa4p are 80% identical to Ssa1/2p. We show Ssa1p-4p have distinct functions affecting [PSI(+)] and [URE3] prions. When expressed as the only Ssa, Ssa1p antagonized [URE3] and Ssa2p antagonized [PSI(+)]. Ssa3p and Ssa4p influenced [URE3] and [PSI(+)] somewhat differently but overall their effects paralleled those of Ssa1p and Ssa2p, respectively. Additionally, Ssa3p suppressed a prion-inhibitory effect of elevated temperature. Our previously described Ssa1-21p mutant weakens [PSI(+)] in SSA1-21 SSA2 cells and abolishes it in SSA1-21 ssa2Delta cells. To test if the same mutation affected other prions or altered Ssa2p similarly, we compared effects of a constructed Ssa2-21p mutant and Ssa1-21p on both prions. Surprisingly, [URE3] was unaffected in SSA1-21 SSA2 cells and could propagate in SSA1-21 ssa2Delta cells. Ssa2-21p impaired [URE3] considerably and weakened [PSI(+)] strongly but in a manner distinct from Ssa1-21p, highlighting functional differences between these nearly identical Hsp70's. Our data uncover exquisite functional differences among isoforms of a highly homologous cytosolic Hsp70 subfamily and point to a possibility that variations in Hsp70 function that might improve fitness under optimal conditions are also important during stress.
Collapse
|
160
|
Moqtaderi Z, Struhl K. Expanding the repertoire of plasmids for PCR-mediated epitope tagging in yeast. Yeast 2008; 25:287-92. [PMID: 18338317 DOI: 10.1002/yea.1581] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Epitope tagging of yeast proteins provides a convenient means of tracking proteins of interest in Western blots and immunoprecipitation experiments without the need to raise and test specific antibodies. We have constructed four plasmids for use as templates in PCR-based epitope tagging in the yeast Saccharomyces cerevisiae. These plasmids expand the range of epitopes available in a tag-URA3-tag context to include the FLAG, HSV, V5 and VSV-G epitopes. The cloning strategy used would be easily applicable to the construction of a similar tag-URA3-tag molecule for essentially any desired epitope. Oligonucleotides designed for PCR from one plasmid may be used interchangeably with any of the other template molecules to allow tagging with different epitopes without the need for new primer synthesis. We have tagged Tfc6 with each of the triple epitope tags and assessed the efficiency of these epitopes for chromatin immunoprecipitation (ChIP). For all the tagged alleles, ChIP occupancy signals are easily detectable at known Tfc6 target genes. These new tags provide additional options in experimental schemes requiring multiple tagged proteins.
Collapse
Affiliation(s)
- Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
161
|
Zinc regulates the stability of repetitive minisatellite DNA tracts during stationary phase. Genetics 2008; 177:2469-79. [PMID: 18073441 DOI: 10.1534/genetics.107.077636] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Repetitive minisatellite DNA tracts are stable in mitotic cells but unstable in meiosis, altering in repeat number and repeat composition. As relatively little is known about the factors that influence minisatellite stability, we isolated mutations that destabilize a minisatellite repeat tract in the ADE2 gene of Saccharomyces cerevisiae. One mutant class exhibited a novel color segregation phenotype, "blebbing," characterized by minisatellite instability during stationary phase. Minisatellite tract alterations in blebbing strains consist exclusively of the loss of one 20-bp repeat. Timing experiments suggest that these tract alterations occur only after cells have entered stationary phase. Two complementation groups identified in this screen have mutations in either the high-affinity zinc transporter ZRT1 or its zinc-dependent transcriptional regulator ZAP1. The Deltazrt1 mutant specifically affects the stability of minisatellite tracts; microsatellites or simple insertions in the ADE2 reading frame are not destabilized by loss of ZRT1. The Deltazrt1 blebbing phenotype is partially dependent on a functional RAD50. Zinc is known for its role as an essential cofactor in many DNA-binding proteins. We describe possible models by which zinc can influence minisatellite stability. Our findings directly implicate zinc homeostasis in the maintenance of genomic stability during stationary phase.
Collapse
|
162
|
Mumma JO, Chhay JS, Ross KL, Eaton JS, Newell-Litwa KA, Fridovich-Keil JL. Distinct roles of galactose-1P in galactose-mediated growth arrest of yeast deficient in galactose-1P uridylyltransferase (GALT) and UDP-galactose 4'-epimerase (GALE). Mol Genet Metab 2008; 93:160-71. [PMID: 17981065 PMCID: PMC2253667 DOI: 10.1016/j.ymgme.2007.09.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 09/24/2007] [Accepted: 09/24/2007] [Indexed: 10/22/2022]
Abstract
Galactose is metabolized in humans and other species by the three-enzyme Leloir pathway comprised of galactokinase (GALK), galactose 1-P uridylyltransferase (GALT), and UDP-galactose 4'-epimerase (GALE). Impairment of GALT or GALE in humans results in the potentially lethal disorder galactosemia, and loss of either enzyme in yeast results in galactose-dependent growth arrest of cultures despite the availability of an alternate carbon source. In contrast, loss of GALK in humans is not life-threatening, and in yeast has no impact on the growth of cultures challenged with galactose. Further, the growth of both GALT-null and GALE-null yeast challenged with galactose is rescued by loss of GALK, thereby implicating the GALK reaction product, gal-1P, for a role in the galactose-sensitivity of both strains. However, the nature of that relationship has remained unclear. Here we have developed and applied a doxycycline-repressible allele of galactokinase to define the quantitative relationship between galactokinase activity, gal-1P accumulation, and growth arrest of galactose-challenged GALT or GALE-deficient yeast. Our results demonstrate a clear threshold relationship between gal-1P accumulation and galactose-mediated growth arrest in both GALT-null and GALE-null yeast, however, the threshold for the two strains is distinct. Further, we tested the galactose-sensitivity of yeast double-null for GALT and GALE, and found that although loss of GALT barely changed accumulation of gal-1P, it significantly lowered the accumulation of UDP-gal, and also dramatically rescued growth of the GALE-null cells. Together, these data suggest that while gal-1P alone may account for the galactose-sensitivity of GALT-null cells, other factors, likely to include UDP-gal accumulation, must contribute to the galactose-sensitivity of GALE-null cells.
Collapse
Affiliation(s)
- Jane Odhiambo Mumma
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Juliet S. Chhay
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Kerry L. Ross
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Jana S. Eaton
- Graduate Program in Genetics and Molecular Biology, Emory University, Atlanta, GA
| | - Karen A. Newell-Litwa
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University, Atlanta, GA
| | - Judith L. Fridovich-Keil
- Department of Human Genetics, Emory University School of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
163
|
Van Bogaert INA, De Maeseneire SL, Develter D, Soetaert W, Vandamme EJ. Development of a transformation and selection system for the glycolipid-producing yeastCandida bombicola. Yeast 2008; 25:273-8. [DOI: 10.1002/yea.1586] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
164
|
Abstract
Candida albicans is a species of fungus that typically resides in the gastrointestinal tracts of humans and other warm-blooded animals. It is also the most common human fungal pathogen, causing a variety of skin and soft tissue infections in healthy people and more virulent invasive and disseminated diseases in patients with compromised immune systems. How this microorganism manages to persist in healthy hosts but also to cause a spectrum of disease states in the immunocompromised host are questions of significant biological interest as well as major clinical and economic importance. In this review, we describe recent developments in population genetics, the mating process, and gene disruption technology that are providing much needed experimental insights into the biology of C. albicans.
Collapse
Affiliation(s)
- Suzanne M Noble
- Department of Microbiology and Immunology, University of California-San Francisco, CA 94143-2200, USA.
| | | |
Collapse
|
165
|
Hanna M, Ball LG, Tong AH, Boone C, Xiao W. Pol32 is required for Pol zeta-dependent translesion synthesis and prevents double-strand breaks at the replication fork. Mutat Res 2007; 625:164-76. [PMID: 17681555 DOI: 10.1016/j.mrfmmm.2007.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Revised: 06/16/2007] [Accepted: 06/20/2007] [Indexed: 05/16/2023]
Abstract
POL32 encodes a non-essential subunit of Poldelta and plays a role in Poldelta processivity and DNA repair. In order to understand how Pol32 is involved in these processes, we performed extensive genetic analysis and demonstrated that POL32 is required for Polzeta-mediated translesion synthesis, but not for Poleta-mediated activity. Unlike Polzeta, inactivation of Pol32 does not result in decreased spontaneous mutagenesis, nor does it limit genome instability in the absence of the error-free postreplication repair pathway. In contrast, inactivation of Pol32 results in an increased rate of replication slippage and recombination. A genome-wide synthetic lethal screen revealed that in the absence of Pol32, homologous recombination repair and cell cycle checkpoints play crucial roles in maintaining cell survival and growth. These results are consistent with a model in which Pol32 functions as a coupling factor to facilitate a switch from replication to translesion synthesis when Poldelta encounters replication-blocking lesions. When Pol32 is absent, the S-phase checkpoint complex Mrc1-Tof1 becomes crucial to stabilize the stalled replication fork and recruit Top3 and Sgs1. Lack of any of the above activities will cause double strand breaks at or near the replication fork that require recombination as well as Rad9 for cell survival.
Collapse
Affiliation(s)
- Michelle Hanna
- Department of Microbiology and Immunology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Sask., Canada
| | | | | | | | | |
Collapse
|
166
|
Lim MK, Tang V, Le Saux A, Schüller J, Bongards C, Lehming N. Gal11p dosage-compensates transcriptional activator deletions via Taf14p. J Mol Biol 2007; 374:9-23. [PMID: 17919657 DOI: 10.1016/j.jmb.2007.09.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 08/04/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
Abstract
Transcriptional activators work by recruiting transcription factors that are required for the process of transcription to their target genes. We have used the Split-Ubiquitin system to identify eight transcription factors that interacted with both the transcriptional activators Gal4p and Gcn4p in living cells. The over-expression of one of the activator-interacting proteins, Gal11p, partially suppressed GAL4 and GCN4 deletions. We have isolated two point mutants in Gal11p, F848L and F869S that were defective for the dosage compensation. We have identified 35 transcription factors that interacted with Gal11p in living cells, and the only protein-protein interaction affected by the Gal11p mutations was the one between Gal11p and Taf14p. We have further shown that the suppression of a GAL4 deletion by high levels of Gal11p required Taf14p, and that over-expression of Gal11p recruited Taf14p to the GAL1 promoter together with Tbp1p, Swi2p and Srb7p. Gal11p interacted with Mig1p, indicating that Mig1/2p could have recruited Gal11p to the GAL1 promoter in the absence of Gal4p. Our results suggest that transcriptional activators work by raising the local concentration of the limiting factor Gal11p, and that Gal11p works by recruiting Mediator and Taf14p-containing transcription factors like TFIID and SWI/SNF and by competing general repressors like Ssn6p-Tup1p off the target promoters.
Collapse
Affiliation(s)
- Mei Kee Lim
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | | | | | | | | | | |
Collapse
|
167
|
Mitra N, Roeder GS. A novel nonnull ZIP1 allele triggers meiotic arrest with synapsed chromosomes in Saccharomyces cerevisiae. Genetics 2007; 176:773-87. [PMID: 17435220 PMCID: PMC1894607 DOI: 10.1534/genetics.107.071100] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During meiotic prophase, assembly of the synaptonemal complex (SC) brings homologous chromosomes into close apposition along their lengths. The Zip1 protein is a major building block of the SC in Saccharomyces cerevisiae. In the absence of Zip1, SC fails to form, cells arrest or delay in meiotic prophase (depending on strain background), and crossing over is reduced. We created a novel allele of ZIP1, zip1-4LA, in which four leucine residues in the central coiled-coil domain have been replaced by alanines. In the zip1-4LA mutant, apparently normal SC assembles with wild-type kinetics; however, crossing over is delayed and decreased compared to wild type. The zip1-4LA mutant undergoes strong checkpoint-induced arrest in meiotic prophase; the defect in cell cycle progression is even more severe than that of the zip1 null mutant. When the zip1-4LA mutation is combined with the pch2 checkpoint mutation, cells sporulate with wild-type efficiency and crossing over occurs at wild-type levels. This result suggests that the zip1-4LA defect in recombination is an indirect consequence of cell cycle arrest. Previous studies have suggested that the Pch2 protein acts in a checkpoint pathway that monitors chromosome synapsis. We hypothesize that the zip1-4LA mutant assembles aberrant SC that triggers the synapsis checkpoint.
Collapse
Affiliation(s)
- Neal Mitra
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute and Department of Genetics, Yale University, New Haven, Connecticut 06520-8103
| | - G. Shirleen Roeder
- Department of Molecular, Cellular and Developmental Biology, Howard Hughes Medical Institute and Department of Genetics, Yale University, New Haven, Connecticut 06520-8103
- Corresponding author: Department of Molecular, Cellular and Developmental Biology, Yale University, P.O. Box 208103, New Haven, CT 06520-8103. E-mail:
| |
Collapse
|
168
|
Friel D, Pessoa NMG, Vandenbol M, Jijakli MH. Separate and combined disruptions of two exo-beta-1,3-glucanase genes decrease the efficiency of Pichia anomala (strain K) biocontrol against Botrytis cinerea on apple. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2007; 20:371-9. [PMID: 17427807 DOI: 10.1094/mpmi-20-4-0371] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The modes of action of the antagonistic yeast Pichia anomala (strain K) have been studied; however, thus far, there has been no clear demonstration of the involvement of exo-beta-1,3-glucanase in determining the level of protection against Botrytis cinerea afforded by this biocontrol agent on apple. In the present study, the exo-beta-1,3-glucanase-encoding genes PAEXG1 and PAEXG2, previously sequenced from the strain K genome, were separately and sequentially disrupted. Transfer of the URA3-Blaster technique to strain K, allowing multiple use of URA3 marker gene, first was validated by efficient inactivation of the PaTRP1 gene and recovery of a double auxotrophic strain (uracil and tryptophan). The PAEXG1 and PAEXG2 genes then were inactivated separately and sequentially with the unique URA3 marker gene. The resulting mutant strains showed a significantly reduced efficiency of biocontrol of B. cinerea when applied to wounded apple fruit, the calculated protection level dropping from 71% (parental strain) to 8% (mutated strain) under some experimental conditions. This suggests that exo-beta-1,3-glucanases play a role in the biological control of B. cinerea on apple. Furthermore, biological control experiments carried out in this study underline the complexity of the host-antagonist-pathogen interaction. Two experimental parameters (yeast inoculum concentration and physiological stage of the fruit) were found to influence dramatically the protection level. Results also suggest that, under some conditions, the contribution of exo-beta-1,3-glucanase to biological control may be masked by other modes of action, such as competition.
Collapse
Affiliation(s)
- Damien Friel
- Plant Pathology Unit, University of Agricultural Sciences, 5030 Gembloux, Belgium
| | | | | | | |
Collapse
|
169
|
Sertil O, Vemula A, Salmon SL, Morse RH, Lowry CV. Direct role for the Rpd3 complex in transcriptional induction of the anaerobic DAN/TIR genes in yeast. Mol Cell Biol 2007; 27:2037-47. [PMID: 17210643 PMCID: PMC1820486 DOI: 10.1128/mcb.02297-06] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae adapts to hypoxia by expressing a large group of "anaerobic" genes. Among these, the eight DAN/TIR genes are regulated by the repressors Rox1 and Mot3 and the activator Upc2/Mox4. In attempting to identify factors recruited by the DNA binding repressor Mot3 to enhance repression of the DAN/TIR genes, we found that the histone deacetylase and global repressor complex, Rpd3-Sin3-Sap30, was not required for repression. Strikingly, the complex was instead required for activation. In addition, the histone H3 and H4 amino termini, which are targets of Rpd3, were also required for DAN1 expression. Epistasis tests demonstrated that the Rpd3 complex is not required in the absence of the repressor Mot3. Furthermore, the Rpd3 complex was required for normal function and stable binding of the activator Upc2 at the DAN1 promoter. Moreover, the Swi/Snf chromatin remodeling complex was strongly required for activation of DAN1, and chromatin immunoprecipitation analysis showed an Rpd3-dependent reduction in DAN1 promoter-associated nucleosomes upon induction. Taken together, these data provide evidence that during anaerobiosis, the Rpd3 complex acts at the DAN1 promoter to antagonize the chromatin-mediated repression caused by Mot3 and Rox1 and that chromatin remodeling by Swi/Snf is necessary for normal expression.
Collapse
Affiliation(s)
- Odeniel Sertil
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA.
| | | | | | | | | |
Collapse
|
170
|
Ramírez MA, Lorenz MC. Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes. EUKARYOTIC CELL 2006; 6:280-90. [PMID: 17158734 PMCID: PMC1797957 DOI: 10.1128/ec.00372-06] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interaction between Candida albicans and cells of the innate immune system is a key determinant of disease progression. Transcriptional profiling has revealed that C. albicans has a complex response to phagocytosis, much of which is similar to carbon starvation. This suggests that nutrient limitation is a significant stress in vivo, and we have shown that glyoxylate cycle mutants are less virulent in mice. To examine whether other aspects of carbon metabolism are important in vivo during an infection, we have constructed strains lacking FOX2 and FBP1, which encode key components of fatty acid beta-oxidation and gluconeogenesis, respectively. As expected, fox2Delta mutants failed to utilize several fatty acids as carbon sources. Surprisingly, however, these mutants also failed to grow in the presence of several other carbon sources, whose assimilation is independent of beta-oxidation, including ethanol and citric acid. Mutants lacking the glyoxylate enzyme ICL1 also had more severe carbon utilization phenotypes than were expected. These results suggest that the regulation of alternative carbon metabolism in C. albicans is significantly different from that in other fungi. In vivo, fox2Delta mutants show a moderate but significant reduction in virulence in a mouse model of disseminated candidiasis, while disruption of the glyoxylate cycle or gluconeogenesis confers a severe attenuation in this model. These data indicate that C. albicans often encounters carbon-poor conditions during growth in the host and that the ability to efficiently utilize multiple nonfermentable carbon sources is a virulence determinant. Consistent with this in vivo requirement, C. albicans uniquely regulates carbon metabolism in a more integrated manner than in Saccharomyces cerevisiae, such that defects in one part of the machinery have wider impacts than expected. These aspects of alternative carbon metabolism may then be useful as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Melissa A Ramírez
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | | |
Collapse
|
171
|
Papon N, Noël T, Florent M, Gibot-Leclerc S, Jean D, Chastin C, Villard J, Chapeland-Leclerc F. Molecular mechanism of flucytosine resistance in Candida lusitaniae: contribution of the FCY2, FCY1, and FUR1 genes to 5-fluorouracil and fluconazole cross-resistance. Antimicrob Agents Chemother 2006; 51:369-71. [PMID: 17060521 PMCID: PMC1797687 DOI: 10.1128/aac.00824-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inactivation of the FCY2 (cytosine permease), FCY1 (cytosine deaminase), and FUR1 (uracil phosphoribosyltransferase) genes in Candida lusitaniae produced two patterns of resistance to flucytosine. Mutant fur1 demonstrated resistance to 5-fluorouracil, whereas mutants fcy1 and fcy2 demonstrated fluconazole resistance in the presence of subinhibitory flucytosine concentrations.
Collapse
Affiliation(s)
- Nicolas Papon
- Laboratoire des Sciences Végétales, EA209, UFR des Sciences Pharmaceutiques et Biologiques, Université Paris 5, 4 avenue de l'Observatoire, 75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Garrenton LS, Young SL, Thorner J. Function of the MAPK scaffold protein, Ste5, requires a cryptic PH domain. Genes Dev 2006; 20:1946-58. [PMID: 16847350 PMCID: PMC1522084 DOI: 10.1101/gad.1413706] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Ste5, the prototypic mitogen-activated protein kinase (MAPK) scaffold protein, associates with plasma membrane-tethered Gbetagamma freed upon pheromone receptor occupancy, thereby initiating downstream signaling. We demonstrate that this interaction and membrane binding of an N-terminal amphipathic alpha-helix (PM motif) are not sufficient for Ste5 action. Rather, Ste5 contains a pleckstrin-homology (PH) domain (residues 388-518) that is essential for its membrane recruitment and function. Altering residues (R407S K411S) equivalent to those that mediate phosphoinositide binding in other PH domains abolishes Ste5 function. The isolated PH domain, but not a R407S K411S derivative, binds phosphoinositides in vitro. Ste5(R407S K411S) is expressed normally, retains Gbetagamma and Ste11 binding, and oligomerizes, yet is not recruited to the membrane in response to pheromone. Artificial membrane tethering of Ste5(R407S K411S) restores signaling. R407S K411S loss-of-function mutations abrogate the constitutive activity of gain-of-function Ste5 alleles, including one (P44L) that increases membrane affinity of the PM motif. Thus, the PH domain is essential for stable membrane recruitment of Ste5, and this association is critical for initiation of downstream signaling because it allows Ste5-bound Ste11 (MAPKKK) to be activated by membrane-bound Ste20 (MAPKKKK).
Collapse
Affiliation(s)
- Lindsay S Garrenton
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, 94720, USA
| | | | | |
Collapse
|
173
|
Gordon O, Taxis C, Keller PJ, Benjak A, Stelzer EHK, Simchen G, Knop M. Nud1p, the yeast homolog of Centriolin, regulates spindle pole body inheritance in meiosis. EMBO J 2006; 25:3856-68. [PMID: 16888627 PMCID: PMC1553201 DOI: 10.1038/sj.emboj.7601254] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 07/03/2006] [Indexed: 12/30/2022] Open
Abstract
Nud1p, a protein homologous to the mammalian centrosome and midbody component Centriolin, is a component of the budding yeast spindle pole body (SPB), with roles in anchorage of microtubules and regulation of the mitotic exit network during vegetative growth. Here we analyze the function of Nud1p during yeast meiosis. We find that a nud1-2 temperature-sensitive mutant has two meiosis-related defects that reflect genetically distinct functions of Nud1p. First, the mutation affects spore formation due to its late function during spore maturation. Second, and most important, the mutant loses its ability to distinguish between the ages of the four spindle pole bodies, which normally determine which SPB would be preferentially included in the mature spores. This affects the regulation of genome inheritance in starved meiotic cells and leads to the formation of random dyads instead of non-sister dyads under these conditions. Both functions of Nud1p are connected to the ability of Spc72p to bind to the outer plaque and half-bridge (via Kar1p) of the SPB.
Collapse
Affiliation(s)
- Oren Gordon
- Department of Genetics, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|
174
|
Pecota DC, Rajgarhia V, Da Silva NA. Sequential gene integration for the engineering of Kluyveromyces marxianus. J Biotechnol 2006; 127:408-16. [PMID: 16982106 DOI: 10.1016/j.jbiotec.2006.07.031] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Revised: 07/18/2006] [Accepted: 07/27/2006] [Indexed: 11/19/2022]
Abstract
The attributes of the yeast Kluyveromyces marxianus (rapid growth rate at high temperature, utilization of a wide range of inexpensive carbon sources) make it a promising industrial host for the synthesis of protein and non-protein products. However, no stable multicopy plasmids are currently available for long-term culture of K. marxianus. To allow the stable genetic/metabolic engineering of K. marxianus, a method for integrating precise numbers of the same or different genes was developed for this yeast. A K. marxianus URA3 deletion mutant was constructed and the URA3 blaster (UB) reusable selection cassette from Saccharomyces cerevisiae was used to select sequential, untargeted chromosomal insertions of the Bacillus megaterium lactate dehydrogenase (LDH) gene. Following excision of the UB cassette from the chromosomes, the integrating vector was retransformed into the strain and a second copy of LDH was inserted, demonstrating the success of this method for sequential gene integrations in K. marxianus. LDH activity and lactic acid concentration increased with each gene insertion, further illustrating the success of this method.
Collapse
Affiliation(s)
- Douglas C Pecota
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697-2575, USA
| | | | | |
Collapse
|
175
|
Fish RN, Ammerman ML, Davie JK, Lu BF, Pham C, Howe L, Ponticelli AS, Kane CM. Genetic interactions between TFIIF and TFIIS. Genetics 2006; 173:1871-84. [PMID: 16648643 PMCID: PMC1569716 DOI: 10.1534/genetics.106.058834] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2006] [Accepted: 04/28/2006] [Indexed: 11/18/2022] Open
Abstract
The eukaryotic transcript elongation factor TFIIS is encoded by a nonessential gene, PPR2, in Saccharomyces cerevisiae. Disruptions of PPR2 are lethal in conjunction with a disruption in the nonessential gene TAF14/TFG3. While investigating which of the Taf14p-containing complexes may be responsible for the synthetic lethality between ppr2Delta and taf14Delta, we discovered genetic interactions between PPR2 and both TFG1 and TFG2 encoding the two larger subunits of the TFIIF complex that also contains Taf14p. Mutant alleles of tfg1 or tfg2 that render cells cold sensitive have improved growth at low temperature in the absence of TFIIS. Remarkably, the amino-terminal 130 amino acids of TFIIS, which are dispensable for the known in vitro and in vivo activities of TFIIS, are required to complement the lethality in taf14Delta ppr2Delta cells. Analyses of deletion and chimeric gene constructs of PPR2 implicate contributions by different regions of this N-terminal domain. No strong common phenotypes were identified for the ppr2Delta and taf14Delta strains, implying that the proteins are not functionally redundant. Instead, the absence of Taf14p in the cell appears to create a dependence on an undefined function of TFIIS mediated by its N-terminal region. This region of TFIIS is also at least in part responsible for the deleterious effect of TFIIS on tfg1 or tfg2 cold-sensitive cells. Together, these results suggest a physiologically relevant functional connection between TFIIS and TFIIF.
Collapse
Affiliation(s)
- Rachel N Fish
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3202, USA
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Zhang H, Gibbs PEM, Lawrence CW. The Saccharomyces cerevisiae rev6-1 mutation, which inhibits both the lesion bypass and the recombination mode of DNA damage tolerance, is an allele of POL30, encoding proliferating cell nuclear antigen. Genetics 2006; 173:1983-9. [PMID: 16783012 PMCID: PMC1569733 DOI: 10.1534/genetics.106.058545] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2006] [Accepted: 06/09/2006] [Indexed: 11/18/2022] Open
Abstract
The rev6-1 allele was isolated in a screen for mutants deficient for UV-induced reversion of the frameshift mutation his4-38. Preliminary testing showed that the rev6-1 mutant was substantially deficient for UV-induced reversion of arg4-17 and ilv1-92 and markedly UV sensitive. Unlike other REV genes, which encode DNA polymerases and an associated subunit, REV6 has been found to be identical to POL30, which encodes proliferating cell nuclear antigen (PCNA), the subunit of the homotrimeric sliding clamp, in which the rev6-1 mutation produces a G178S substitution. This substitution appears to abolish all DNA damage-tolerance activities normally carried out by the RAD6/RAD18 pathway, including translesion replication by DNA polymerase zeta/Rev1 and DNA polymerase eta, and the error-free, recombination-dependent component of this pathway, but has little effect on the growth rate, suggesting that G178S may prevent ubiquitination of lysine 164 in PCNA. We also find that rev6-1 mutation can be fully complemented by a centromere-containing, low copy-number plasmid carrying POL30, despite the presumed occurrence in the mutant of sliding clamp assemblies that contain between one and three G178S PCNA monomers as well as the fully wild-type species.
Collapse
Affiliation(s)
- Hengshan Zhang
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | | | | |
Collapse
|
177
|
Ribar B, Prakash L, Prakash S. Requirement of ELC1 for RNA polymerase II polyubiquitylation and degradation in response to DNA damage in Saccharomyces cerevisiae. Mol Cell Biol 2006; 26:3999-4005. [PMID: 16705154 PMCID: PMC1489084 DOI: 10.1128/mcb.00293-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of Saccharomyces cerevisiae and human cells with DNA-damaging agents such as UV light or 4-nitroquinoline-1-oxide induces polyubiquitylation of the largest RNA polymerase II (Pol II) subunit, Rpb1, which results in rapid Pol II degradation by the proteasome. Here we identify a novel role for the yeast Elc1 protein in mediating Pol II polyubiquitylation and degradation in DNA-damaged yeast cells and propose the involvement of a ubiquitin ligase, of which Elc1 is a component, in this process. In addition, we present genetic evidence for a possible involvement of Elc1 in Rad7-Rad16-dependent nucleotide excision repair (NER) of lesions from the nontranscribed regions of the genome and suggest a role for Elc1 in increasing the proficiency of repair of nontranscribed DNA, where as a component of the Rad7-Rad16-Elc1 ubiquitin ligase, it would promote the efficient turnover of the NER ensemble from the lesion site in a Rad23-19S proteasomal complex-dependent reaction.
Collapse
Affiliation(s)
- Balazs Ribar
- Sealy Center for Molecular Science, University of Texas Medical Branch at Galveston, Galveston, TX 77555-1061, USA
| | | | | |
Collapse
|
178
|
Lo YC, Paffett KS, Amit O, Clikeman JA, Sterk R, Brenneman MA, Nickoloff JA. Sgs1 regulates gene conversion tract lengths and crossovers independently of its helicase activity. Mol Cell Biol 2006; 26:4086-94. [PMID: 16705162 PMCID: PMC1489077 DOI: 10.1128/mcb.00136-06] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
RecQ helicases maintain genome stability and suppress tumors in higher eukaryotes through roles in replication and DNA repair. The yeast RecQ homolog Sgs1 interacts with Top3 topoisomerase and Rmi1. In vitro, Sgs1 binds to and branch migrates Holliday junctions (HJs) and the human RecQ homolog BLM, with Top3alpha, resolves synthetic double HJs in a noncrossover sense. Sgs1 suppresses crossovers during the homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Crossovers are associated with long gene conversion tracts, suggesting a model in which Sgs1 helicase catalyzes reverse branch migration and convergence of double HJs for noncrossover resolution by Top3. Consistent with this model, we show that allelic crossovers and gene conversion tract lengths are increased in sgs1Delta. However, crossover and tract length suppression was independent of Sgs1 helicase activity, which argues against helicase-dependent HJ convergence. HJs may converge passively by a "random walk," and Sgs1 may play a structural role in stimulating Top3-dependent resolution. In addition to the new helicase-independent functions for Sgs1 in crossover and tract length control, we define three new helicase-dependent functions, including the suppression of chromosome loss, chromosome missegregation, and synthetic lethality in srs2Delta. We propose that Sgs1 has helicase-dependent functions in replication and helicase-independent functions in DSB repair by HR.
Collapse
Affiliation(s)
- Yi-Chen Lo
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | |
Collapse
|
179
|
Forment JV, Ramón D, MacCabe AP. Consecutive gene deletions in Aspergillus nidulans: application of the Cre/loxP system. Curr Genet 2006; 50:217-24. [PMID: 16783565 DOI: 10.1007/s00294-006-0081-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 05/10/2006] [Accepted: 05/11/2006] [Indexed: 10/24/2022]
Abstract
The ability to perform multiple gene deletions is an important tool for conducting functional genomics. We report the development of a sequential gene deletion protocol for the filamentous fungus Aspergillus nidulans using the Cre/loxP recombinase system of bacteriophage P1. A recyclable genetic marker has been constructed by incorporating loxP direct repeats either side of the Neurospora crassa pyr-4 gene (encodes orotidine 5'-monophosphate decarboxylase) which is able to complement the A. nidulans pyrG89 mutation. This construct can be directed to delete specific genomic regions by attaching flanking sequences corresponding to the desired target. The pyr-4 marker can subsequently be eliminated by Cre-catalysed recombination between the loxP sites. The recombinase gene (cre), which has been placed under the control of the A. nidulans xlnA (xylanase A) gene promoter thus providing a means to switch on (xylose induction) or off (glucose repression) recombinase expression, has been integrated into the genome of an A. nidulans mutant strain defective in orotidine 5'-monophosphate decarboxylase activity (pyrG89). We demonstrate the effectiveness of our deletion system by sequentially deleting two genes, yellow (yA) and white (wA), involved in the synthesis of conidial pigment.
Collapse
Affiliation(s)
- Josep V Forment
- Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Apartado de Correos 73, Burjassot, Valencia, Spain
| | | | | |
Collapse
|
180
|
Chasse SA, Flanary P, Parnell SC, Hao N, Cha JY, Siderovski DP, Dohlman HG. Genome-scale analysis reveals Sst2 as the principal regulator of mating pheromone signaling in the yeast Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:330-46. [PMID: 16467474 PMCID: PMC1405904 DOI: 10.1128/ec.5.2.330-346.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A common property of G protein-coupled receptors is that they become less responsive with prolonged stimulation. Regulators of G protein signaling (RGS proteins) are well known to accelerate G protein GTPase activity and do so by stabilizing the transition state conformation of the G protein alpha subunit. In the yeast Saccharomyces cerevisiae there are four RGS-homologous proteins (Sst2, Rgs2, Rax1, and Mdm1) and two Galpha proteins (Gpa1 and Gpa2). We show that Sst2 is the only RGS protein that binds selectively to the transition state conformation of Gpa1. The other RGS proteins also bind Gpa1 and modulate pheromone signaling, but to a lesser extent and in a manner clearly distinct from Sst2. To identify other candidate pathway regulators, we compared pheromone responses in 4,349 gene deletion mutants representing nearly all nonessential genes in yeast. A number of mutants produced an increase (sst2, bar1, asc1, and ygl024w) or decrease (cla4) in pheromone sensitivity or resulted in pheromone-independent signaling (sst2, pbs2, gas1, and ygl024w). These findings suggest that Sst2 is the principal regulator of Gpa1-mediated signaling in vivo but that other proteins also contribute in distinct ways to pathway regulation.
Collapse
Affiliation(s)
- Scott A Chasse
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599-7260, USA
| | | | | | | | | | | | | |
Collapse
|
181
|
van Ooyen AJJ, Dekker P, Huang M, Olsthoorn MMA, Jacobs DI, Colussi PA, Taron CH. Heterologous protein production in the yeastKluyveromyces lactis. FEMS Yeast Res 2006; 6:381-92. [PMID: 16630278 DOI: 10.1111/j.1567-1364.2006.00049.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Kluyveromyces lactis is both scientifically and biotechnologically one of the most important non-Saccharomyces yeasts. Its biotechnological significance builds on its history of safe use in the food industry and its well-known ability to produce enzymes like lactase and bovine chymosin on an industrial scale. In this article, we review the various strains, genetic techniques and molecular tools currently available for the use of K. lactis as a host for protein expression. Additionally, we present data illustrating the recent use of proteomics studies to identify cellular bottlenecks that impede heterologous protein expression.
Collapse
|
182
|
Mou Z, Kenny AE, Curcio MJ. Hos2 and Set3 promote integration of Ty1 retrotransposons at tRNA genes in Saccharomyces cerevisiae. Genetics 2006; 172:2157-67. [PMID: 16415356 PMCID: PMC1456361 DOI: 10.1534/genetics.105.054072] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2005] [Accepted: 01/11/2006] [Indexed: 11/18/2022] Open
Abstract
The yeast LTR retrotransposon Ty1 integrates preferentially into regions upstream of tRNA genes. The chromatin structure of transcriptionally active tRNA genes is known to be important for Ty1 integration, but specific chromatin factors that enhance integration at tRNA genes have not been identified. Here we report that the histone deacetylase, Hos2, and the Trithorax-group protein, Set3, both components of the Set3 complex (Set3C), enhance transposition of chromosomal Ty1 elements by promoting integration into the upstream region of tRNA genes. Deletion of HOS2 or SET3 reduced the mobility of a chromosomal Ty1his3AI element about sevenfold. Despite the fact that Ty1his3AI RNA, total Ty1 RNA, and total Ty1 cDNA levels were not reduced in hos2delta or set3delta mutants, transposition of endogenous Ty1 elements into the upstream regions of tRNA(Gly) genes was substantially decreased. Furthermore, when equivalent numbers of Ty1HIS3 mobility events launched from a pGAL1:Ty1his3AI plasmid were analyzed, only one-quarter to one-half as many were found upstream of tRNA(Gly) genes in a hos2delta or set3delta mutant than in a wild-type strain. Chromatin immunoprecipitation analysis revealed that Hos2 is physically associated with tRNA genes. Taken together, our results support the hypothesis that Hos2 and Set3 function at tRNA genes to promote Ty1 integration.
Collapse
Affiliation(s)
- Zhongming Mou
- Laboratory of Developmental Genetics, Wadsworth Center, Albany, New York 12201-2002, USA
| | | | | |
Collapse
|
183
|
Vottero E, Mitchell DA, Page MJ, MacGillivray RTA, Sadowski IJ, Roberge M, Mauk AG. Cytochromeb5is a major reductant in vivo of human indoleamine 2,3-dioxygenase expressed in yeast. FEBS Lett 2006; 580:2265-8. [PMID: 16574111 DOI: 10.1016/j.febslet.2006.03.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 03/08/2006] [Accepted: 03/08/2006] [Indexed: 11/19/2022]
Abstract
The evolutionary relationship of indoleamine 2,3-dioxygenase (IDO) to some gastropod myoglobins suggests that IDO may undergo autoxidation in vivo such that one or more currently unidentified electron donors are required to maintain IDO heme iron in the active, ferrous state. To evaluate this hypothesis we have used yeast knockout mutants in combination with a recently developed yeast growth assay for IDO activity in vivo to demonstrate a role for cytochrome b(5) and cytochrome b(5) reductase in maintaining IDO activity in vivo.
Collapse
Affiliation(s)
- Eduardo Vottero
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | | | | | | | | | | | |
Collapse
|
184
|
Fu J, Hettler E, Wickes BL. Split marker transformation increases homologous integration frequency in Cryptococcus neoformans. Fungal Genet Biol 2006; 43:200-12. [PMID: 16497523 DOI: 10.1016/j.fgb.2005.09.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2005] [Revised: 09/01/2005] [Accepted: 09/02/2005] [Indexed: 11/22/2022]
Abstract
Gene disruption in Cryptococcus neoformans can be problematic due to high frequencies of ectopic integration and telomerization. To improve the frequency of homologous integration, a transformation strategy was employed called split marker, which utilizes a mixture of DNAs comprised of overlapping truncations of the selectable marker. Five genes were compared for homologous integration frequencies using various constructs. Homologous integration was highest when the split marker approach was used, with rates as high as 60% depending on target gene. A second factor that contributed to an increased homologous integration frequency was strain background, which was highest when a double auxotroph was used as a host. The split marker strategy was combined with an ura-blaster construct, which has been used in other fungi to recycle ura5 or ura3 mutations. When a hisG-URA5-hisG cassette was successfully integrated at the target locus, the URA5 gene could be easily evicted by plating onto 5-FOA agar. The cassette was then successfully used for a second cycle of transformation-eviction. The effectiveness of the split marker disruption strategy suggests that continued investigation and modification of traditional molecular techniques could increase the efficiency of C. neoformans molecular manipulation.
Collapse
Affiliation(s)
- J Fu
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, 78229-3900, USA
| | | | | |
Collapse
|
185
|
Kim JH, Brachet V, Moriya H, Johnston M. Integration of transcriptional and posttranslational regulation in a glucose signal transduction pathway in Saccharomyces cerevisiae. EUKARYOTIC CELL 2006; 5:167-73. [PMID: 16400179 PMCID: PMC1360249 DOI: 10.1128/ec.5.1.167-173.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the HXT genes encoding glucose transporters in the budding yeast Saccharomyces cerevisiae is regulated by two interconnected glucose-signaling pathways: the Snf3/Rgt2-Rgt1 glucose induction pathway and the Snf1-Mig1 glucose repression pathway. The Snf3 and Rgt2 glucose sensors in the membrane generate a signal in the presence of glucose that inhibits the functions of Std1 and Mth1, paralogous proteins that regulate the function of the Rgt1 transcription factor, which binds to the HXT promoters. It is well established that glucose induces degradation of Mth1, but the fate of its paralogue Std1 has been less clear. We present evidence that glucose-induced degradation of Std1 via the SCF(Grr1) ubiquitin-protein ligase and the 26S proteasome is obscured by feedback regulation of STD1 expression. Disappearance of Std1 in response to glucose is accelerated when glucose induction of STD1 expression due to feedback regulation by Rgt1 is prevented. The consequence of relieving feedback regulation of STD1 expression is that reestablishment of repression of HXT1 expression upon removal of glucose is delayed. In contrast, degradation of Mth1 is reinforced by glucose repression of MTH1 expression: disappearance of Mth1 is slowed when glucose repression of MTH1 expression is prevented, and this results in a delay in induction of HXT3 expression in response to glucose. Thus, the cellular levels of Std1 and Mth1, and, as a consequence, the kinetics of induction and repression of HXT gene expression, are closely regulated by interwoven transcriptional and posttranslational controls mediated by two different glucose-sensing pathways.
Collapse
Affiliation(s)
- Jeong-Ho Kim
- Department of Genetics, Campus Box 8232, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
186
|
Doyle TC, Nawotka KA, Purchio AF, Akin AR, Francis KP, Contag PR. Expression of firefly luciferase in Candida albicans and its use in the selection of stable transformants. Microb Pathog 2006; 40:69-81. [PMID: 16427765 DOI: 10.1016/j.micpath.2005.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 11/03/2005] [Accepted: 11/07/2005] [Indexed: 11/18/2022]
Abstract
The infectious yeast Candida albicans is a model organism for understanding the mechanisms of fungal pathogenicity. We describe the functional expression of the firefly luciferase gene, a reporter commonly used to tag genes in many other cellular systems. Due to a non-standard codon usage by this yeast, the CUG codons were first mutated to UUG to allow functional expression. When integrated into the chromosome of C. albicans with a strong constitutive promoter, cells bioluminesce when provided with luciferin substrate in their media. When fused to the inducible promoter from the HWP1 gene, expression and bioluminescence was only detected in cultures conditioning hyphal growth. We further used the luciferase gene as a selection to isolate transformed cell lines from clinical isolates of C. albicans, using a high-density screening strategy that purifies transformed colonies by virtue of light emission. This strategy requires no drug or auxotrophic selectable marker, and we were thus able to generate stable transformants of clinical isolates that are identical to the parental strain in all aspects tested, other than their bioluminescence. The firefly luciferase gene can, therefore, be used as a sensitive reporter to analyze gene function both in laboratory and clinical isolates of this medically important yeast.
Collapse
Affiliation(s)
- Timothy C Doyle
- Xenogen Corporation, 860 Atlantic Avenue, Alameda, CA 94501, USA.
| | | | | | | | | | | |
Collapse
|
187
|
Akada R, Kitagawa T, Kaneko S, Toyonaga D, Ito S, Kakihara Y, Hoshida H, Morimura S, Kondo A, Kida K. PCR-mediated seamless gene deletion and marker recycling inSaccharomyces cerevisiae. Yeast 2006; 23:399-405. [PMID: 16598691 DOI: 10.1002/yea.1365] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Repeated gene manipulations can be performed in yeast by excision of an introduced marker. Cassette modules containing a marker flanked by two direct repeat sequences of hisG or loxP have often been used for marker recycling, but these leave one copy of the repeats in the chromosome after excision. Genomic copies of a repeat can cause increased mistargeting of constructs containing the same repeats or unexpected chromosomal rearrangements via intra- or interchromosomal recombinations. Here, we describe a novel marker recycling procedure that leaves no scar in the genome, which we have designated seamless gene deletion. A 40 base sequence derived from an adjacent region to the targeted locus was placed in an integrating construct to generate direct repeats after integration. Seamless HIS3 deletion was achieved via a PCR fragment that consisted of a URA3 marker attached to a 40 base repeat-generating sequence flanked by HIS3 targeting sequences at both ends. Transformation of the designed construct resulted in his3 disruption and the generation of 40 base direct repeats on both sides of URA3 in the targeted locus. The resulting his3::URA3 disruptants were plated on 5-fluoroorotic acid medium to select for URA3 loss. All the selected colonies had lost URA3 precisely by recombination between the repeats, resulting in his3 deletion without any extraneous sequences left behind in the chromosome.
Collapse
Affiliation(s)
- Rinji Akada
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Lee W, Dasilva NA. Application of sequential integration for metabolic engineering of 1,2-propanediol production in yeast. Metab Eng 2006; 8:58-65. [PMID: 16242982 DOI: 10.1016/j.ymben.2005.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 08/24/2005] [Accepted: 09/06/2005] [Indexed: 11/30/2022]
Abstract
The yeast species Saccharomyces cerevisiae was engineered to produce 1,2-propanediol (1,2-PD) using the delta/UB sequential gene integration method. To study the effects of increased copy number, 2 genes (mgs and gldA from Escherichia coli) were sequentially integrated into the chromosomes of S. cerevisiae strains of opposite mating type. The resulting strains (containing 0-3 copies of either mgs or gldA) were mated to create all possible combinations of the 2 genes introduced for 1,2-PD production. Enzyme activities were generally correlated with copy number, although there was greater variation in GldA activity in the diploid cells. The integrated genes were confirmed by Southern blot and 1,2-PD production was analyzed by HPLC. The strain containing 3 copies of mgs and gldA showed the highest level of 1,2-PD; however, 1,2-PD concentration was not clearly related to gene copy number. 1,2-PD production did correlate with Mgs specific activity, and high GldA specific activity was found to be inhibitory.
Collapse
Affiliation(s)
- Wonkyu Lee
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | | |
Collapse
|
189
|
Som I, Mitsch RN, Urbanowski JL, Rolfes RJ. DNA-bound Bas1 recruits Pho2 to activate ADE genes in Saccharomyces cerevisiae. EUKARYOTIC CELL 2005; 4:1725-35. [PMID: 16215179 PMCID: PMC1265903 DOI: 10.1128/ec.4.10.1725-1735.2005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression of the genes in the ADE regulon of Saccharomyces cerevisiae is repressed by the presence of purine bases in the extracellular medium and derepressed when cells are grown in the absence of purines. Derepression requires the transcriptional activators Bas1 and Pho2, as well as the biosynthetic intermediates 5'-phosphoribosyl-4-succinocarboxamide-5-aminoimidazole (SAICAR) and 5'-phosphoribosyl-4-carboxamide- 5-aminoimidazole (AICAR). In this study, we investigated if nuclear localization and binding to promoter DNA by the activators are regulated by purines. Using indirect immunofluorescence, we found that Bas1 is localized to the nucleus under both repressing and derepressing conditions. Importantly, we detected Bas1 bound to promoter DNA under both conditions using chromatin immunoprecipitation assays at several ADE promoters (ADE1, ADE2, ADE4, and ADE5,7) and HIS4. We analyzed the binding of Bas1 to wild-type and mutant sequences of the ADE5,7 promoters in vivo, and found that Bas1 binds independently to each of its two binding sites. Pho2 was not required for the association of Bas1 with chromosomal DNA, but it was required for an increase in Bas1-immunoprecipitated DNA. The presence of Pho2 at promoters was dependent on Bas1 and occurred only under derepressing conditions when the ADE genes are transcribed at elevated levels. We propose a model for regulation of the ADE genes in which DNA-bound Bas1 is inactive due to masking of its activation domain and Pho2 binds poorly to promoters when cells have sufficient purine nucleotides. Upon limitation for purines, the SAICAR/AICAR regulatory signal is transmitted to the nucleus to increase Bas1 and Pho2 interaction, recruiting Pho2 to promoters and freeing the activation domains for transactivation.
Collapse
Affiliation(s)
- Indrani Som
- Department of Biology, Reiss Science Building 406, Georgetown University, Washington, DC 20057-1229, USA
| | | | | | | |
Collapse
|
190
|
Auerbach P, Bennett RAO, Bailey EA, Krokan HE, Demple B. Mutagenic specificity of endogenously generated abasic sites in Saccharomyces cerevisiae chromosomal DNA. Proc Natl Acad Sci U S A 2005; 102:17711-6. [PMID: 16314579 PMCID: PMC1308887 DOI: 10.1073/pnas.0504643102] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Indexed: 01/06/2023] Open
Abstract
Abasic [apurinic/apyrimidinic (AP)] sites are common, noncoding DNA lesions. Despite extensive investigation, the mutational pattern they provoke in eukaryotic cells remains unresolved. We constructed Saccharomyces cerevisiae strains in which chromosomal AP sites were generated during normal cell growth by altered human uracil-DNA glycosylases that remove undamaged cytosines or thymines. The mutation target was the URA3 gene inserted near the ARS309 origin to allow defined replication polarity. Expression of the altered glycosylases caused a 7- to 18-fold mutator effect in AP endonuclease-deficient (deltaapn1) yeast, which depended highly on the known translesion synthesis enzymes Rev1 and DNA polymerase zeta. For the C-glycosylase, GC>CG transversions were the predominant mutations, followed by GC>AT transitions. AT>CG transversions predominated for the T-glycosylase. These results support a major role for Rev1-dependent dCMP insertion across from AP sites and a lesser role for dAMP insertion. Unexpectedly, there was also a significant proportion of dTMP insertions that suggest another mutational pathway at AP sites. Although replication polarity did not strongly influence mutagenesis at AP sites, for certain mutation types, there was a surprisingly strong difference between the transcribed and non-transcribed strands of URA3. The basis for this strand discrimination requires further exploration.
Collapse
Affiliation(s)
- Paul Auerbach
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
191
|
Takahashi S, Matsunaga R, Kera Y, Yamada RH. Isolation of the Cryptococcus humicolus URA3 gene encoding orotidine-5'-phosphate decarboxylase and its use as a selective marker for transformation. J Biosci Bioeng 2005; 96:23-31. [PMID: 16233478 DOI: 10.1016/s1389-1723(03)90092-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2002] [Accepted: 03/11/2003] [Indexed: 10/26/2022]
Abstract
A transformation system for a yeast, Cryptococcus humicolus, was constructed. As a selectable marker, the URA3 gene encoding orotidine-5'-phosphate decarboxylase (OMPdecase) was isolated from a C. humicolus genomic DNA library, and the equivalent cDNA was cloned. The coding region encompasses a polypeptide of 269 amino acids interrupted by two introns, which were located at the same positions as observed in the equivalent genes of some filamentous fungi. The deduced amino acid sequence showed significant homology to those of OMPdecases from other fungal species. Although no canonical TATA and CHAT sequences and polyadenylation sequence are in the flanking regions, two C + T-rich sequences are observed in the 5'-flanking region. The cDNA of the URA3 gene of C. humicolus was able to complement functionally the ura3 mutation of Saccharomyces cerevisiae. As a host, five uracil auxotrophic mutants were isolated by the selection of ethyl methanesulfonate mutagenized cells on 5-fluoroorotic acid. Three of them could be transformed to Ura+ phenotype with a linearized URA3-harboring vector using electroporation, and the best transformation frequency was 14 transformants per microg of DNA. Southern blot analysis of five independent transformants showed the integration of the vector into the host chromosomal DNA at the URA3 locus in one transformant, and also the integration at ectopic sites and the modified extrachromosomal forms in others.
Collapse
Affiliation(s)
- Shouji Takahashi
- Department of Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | | | | | | |
Collapse
|
192
|
Sassi HE, Renihan S, Spence AM, Cooperstock RL. Gene CATCHR--gene cloning and tagging for Caenorhabditis elegans using yeast homologous recombination: a novel approach for the analysis of gene expression. Nucleic Acids Res 2005; 33:e163. [PMID: 16254074 PMCID: PMC1270953 DOI: 10.1093/nar/gni164] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Expression patterns of gene products provide important insights into gene function. Reporter constructs are frequently used to analyze gene expression in Caenorhabditis elegans, but the sequence context of a given gene is inevitably altered in such constructs. As a result, these transgenes may lack regulatory elements required for proper gene expression. We developed Gene Catchr, a novel method of generating reporter constructs that exploits yeast homologous recombination (YHR) to subclone and tag worm genes while preserving their local sequence context. YHR facilitates the cloning of large genomic regions, allowing the isolation of regulatory sequences in promoters, introns, untranslated regions and flanking DNA. The endogenous regulatory context of a given gene is thus preserved, producing expression patterns that are as accurate as possible. Gene Catchr is flexible: any tag can be inserted at any position without introducing extra sequence. Each step is simple and can be adapted to process multiple genes in parallel. We show that expression patterns derived from Gene Catchr transgenes are consistent with previous reports and also describe novel expression data. Mutant rescue assays demonstrate that Gene Catchr-generated transgenes are functional. Our results validate the use of Gene Catchr as a valuable tool to study spatiotemporal gene expression.
Collapse
Affiliation(s)
- Holly E. Sassi
- Department of Medical Genetics and Microbiology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
- Collaborative Program in Developmental Biology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
| | - Stephanie Renihan
- Department of Medical Genetics and Microbiology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
| | - Andrew M. Spence
- Department of Medical Genetics and Microbiology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
- Collaborative Program in Developmental Biology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
| | - Ramona L. Cooperstock
- Department of Medical Genetics and Microbiology, University of Toronto1 King's College Circle, Toronto, Canada, M5S 1A8
- To whom correspondence should be addressed. Tel: +1 416 946 7917; Fax: +1 416 978 6885;
| |
Collapse
|
193
|
Akada R, Matsuo K, Aritomi K, Nishizawa Y. Construction of recombinant sake yeast containing a dominant FAS2 mutation without extraneous sequences by a two-step gene replacement protocol. J Biosci Bioeng 2005; 87:43-8. [PMID: 16232423 DOI: 10.1016/s1389-1723(99)80006-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/1998] [Accepted: 10/06/1998] [Indexed: 11/24/2022]
Abstract
A novel two-step gene replacement protocol was developed to construct a recombinant industrial yeast free of bacterial and drug-resistant marker sequences. A yeast strain exhibiting cerulenin resistance conferred by a dominant mutation of FAS2 was previously shown to produce high levels of a flavor component of Japanese sake. A N- and C-terminally truncated portion of the mutant FAS2 gene was subcloned to an integrating plasmid containing an aureobasidin A-resistant transformation marker and a galactose-inducible growth inhibitory sequence (GAL10p::GIN11). The plasmid was targeted into the chromosomal FAS2 locus of sake yeast Kyokai no. 7, resulting in a tandem repeat of inactive FAS2 sequences surrounding the integrated plasmid sequences. Cells containing the integrated plasmid were unable to grow on galactose medium due to the inhibitory effect of GAL10p::GIN11. This growth inhibition allowed efficient counter-selection for cells that had undergone homologous recombination between the FAS2 repeats by their growth on galactose medium. This recombination event resulted in loss of the integrated plasmid sequences and the resulting strains should contain a single copy of either wild-type or cerulenin-resistant FAS2. The selected cerulenin-resistant strains produced approximately 3.7-fold more ethyl caproate, a flavor component, than the Kyokai no. 7 strain. Southern blot and sequence analyses confirmed the presence of the FAS2 mutation and the absence of integrated plasmid sequences in the genome of the selected strain. This gene replacement method provides a straightforward approach for the construction of recombinant industrial yeasts free of undesirable DNA sequences.
Collapse
Affiliation(s)
- R Akada
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering, Yamaguchi University, Tokiwadai, Ube 755-8611 Japan
| | | | | | | |
Collapse
|
194
|
Abstract
By exploiting the biosynthetic pathways of raft lipid constituents, in this study we demonstrate that fluctuations in either sphingolipid or ergosterol levels result in increased drug sensitivity and morphological defects in Candida albicans cells. We show that any change in either ergosterol composition by conditionally disrupting ERG1 or in sphingolipid composition by homozygously disrupting its biosynthetic gene IPT1 leads to improper surface localization of a major ABC (ATP-binding cassette) drug efflux protein, Cdr1p. Results suggest that sterol/sphingolipid-rich membrane microdomains play an important role in positioning and functional maintenance of the integral efflux protein. The impaired ability of erg1/ipt1 mutant cells to efflux drugs mediated through Cdr1p appears to be the main cause of increased drug sensitivity of Candida cells.
Collapse
|
195
|
Gray M, Piccirillo S, Honigberg SM. Two-step method for constructing unmarked insertions, deletions and allele substitutions in the yeast genome. FEMS Microbiol Lett 2005; 248:31-6. [PMID: 15953696 DOI: 10.1016/j.femsle.2005.05.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Revised: 04/05/2005] [Accepted: 05/12/2005] [Indexed: 10/25/2022] Open
Abstract
We describe three extensions of the method of site-specific genomic (SSG) mutagenesis. These three extensions of SSG mutagenesis were used to generate precise insertion, deletion, and allele substitution mutations in the genome of the budding yeast, Saccharomyces cerevisiae. These mutations are termed precise because no attached sequences (e.g., marker genes or recombination sites) are retained once the method is complete. Because the method is PCR-based, neither DNA cloning nor synthesis of long oligonucleotides is required. We demonstrated the efficacy of these methods by deleting an ORF, inserting the tandem affinity purification (TAP) tag, and replacing a wild-type allele with a mutant allele.
Collapse
Affiliation(s)
- Misa Gray
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, 5100 Rockhill Road, Kansas City, MO 64110, United States
| | | | | |
Collapse
|
196
|
Cheng Q, Sanglard D, Vanhanen S, Liu HT, Bombelli P, Smith A, Slabas AR. Candida yeast long chain fatty alcohol oxidase is a c-type haemoprotein and plays an important role in long chain fatty acid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1735:192-203. [PMID: 16046182 DOI: 10.1016/j.bbalip.2005.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 06/17/2005] [Accepted: 06/20/2005] [Indexed: 11/18/2022]
Abstract
The industrial yeasts Candida tropicalis or Candida cloacae are able to grow on a variety of long chain alkanes and fatty acids as the sole carbon source. The complete oxidation of these substrates involves two sequential oxidative pathways: omega-oxidation, comprising the P450 alkane oxidase, a flavin-dependent membrane-bound long chain fatty alcohol oxidase [FAO] and a possible separate aldehyde oxidase [F.M. Dickinson, C. Wadforth, Purification and some properties of alcohol oxidase from alkane-grown Candida tropicalis, Biochem. J. 282 (1992) 325-331], and the beta-oxidation pathway, which utilises acylCoA substrates. We recently purified the membrane-bound long chain fatty alcohol oxidase FAO1 and confirmed it is also a c-type haemoprotein. Multiple isoforms may exist for many of these long chain fatty alcohol oxidases and the in vivo requirements for individual genes with respect to specific substrates are still being elucidated. In vitro reconstitution experiments have demonstrated that in Candida maltosa, the cytochrome P450 52A3 gene product can completely oxidise alkanes to dicarboxylic acids [U. Scheller, T. Zimmer, D. Becher, F. Schauer, W. Schunck, Oxygenation Cascade in Conversion of n-Alkanes to, -Dioic Acids Catalyzed by Cytochrome P450 52A3, J. Biol. Chem. 273 (1998) 32528-32534], potentially obviating requirements for a long chain alcohol oxidase. Here, we directly determine in vivo the role of the long chain alcohol oxidase (FAOT) in C. tropicalis, grown on a variety of substrates, followed by gene deletion. The faot double knockout has no detectable faot activity and is incapable of growth on octadecane, but it grows well on oleic acid, palmitic acid and shorter chain alkanes/fatty acids. A spontaneous mutation[s] may have occurred in the faot double gene knockout of C. tropicalis resulting in its inability to grow on oleic acid and hexadecane. The mutations demonstrate that different pathways of octadecane, hexadecane, oleic acid and palmitic acid utilisation exist in C. tropicalis.
Collapse
Affiliation(s)
- Qi Cheng
- Department of Biological and Biomedical Sciences, University of Durham, South Road, Durham DH1 3LE, UK
| | | | | | | | | | | | | |
Collapse
|
197
|
Hartzog PE, Nicholson BP, McCusker JH. Cytosine deaminase MX cassettes as positive/negative selectable markers in Saccharomyces cerevisiae. Yeast 2005; 22:789-98. [PMID: 16088873 DOI: 10.1002/yea.1245] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We describe positive/negative selectable cytosine deaminase MX cassettes for use in Saccharomyces cerevisiae. The basis of positive selection for cytosine deaminase (Fcy1) activity is that (a) fcy1 strains are unable to grow on medium containing cytosine as a sole nitrogen source and (b) fcy1 ura3 strains are unable to grow on medium containing cytosine as the sole pyrimidine source. Conversely, as 5-fluorocytosine (5FC) is toxic to cytosine deaminase-producing cells, fcy1 strains are resistant to 5FC. FCY1MX and FCA1MX cassettes, containing open reading frames (ORFs) of S. cerevisiae FCY1 and Candida albicans FCA1, respectively, were constructed and used to disrupt targeted genes in S. cerevisiae fcy1 strains. In addition, new direct repeat cassettes, kanPR, FCA1PR, FCY1PR and CaURA3PR, were developed to allow efficient deletion of target genes in cells containing MX3 repeats. Finally, the FCY1- and FCA1MX3 or PR direct repeat cassettes can be readily recycled after 5FC counter-selection on both synthetic and rich media.
Collapse
Affiliation(s)
- Phillip E Hartzog
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
198
|
Rattray AJ, Shafer BK, Neelam B, Strathern JN. A mechanism of palindromic gene amplification in Saccharomyces cerevisiae. Genes Dev 2005; 19:1390-9. [PMID: 15937224 PMCID: PMC1142561 DOI: 10.1101/gad.1315805] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Selective gene amplification is associated with normal development, neoplasia, and drug resistance. One class of amplification events results in large arrays of inverted repeats that are often complex in structure, thus providing little information about their genesis. We made a recombination substrate in Saccharomyces cerevisiae that frequently generates palindromic duplications to repair a site-specific double-strand break in strains deleted for the SAE2 gene. The resulting palindromes are stable in sae2Delta cells, but unstable in wild-type cells. We previously proposed that the palindromes are formed by invasion and break-induced replication, followed by an unknown end joining mechanism. Here we demonstrate that palindrome formation can occur in the absence of RAD50, YKU70, and LIG4, indicating that palindrome formation defines a new class of nonhomologous end joining events. Sequence data from 24 independent palindromic duplication junctions suggest that the duplication mechanism utilizes extremely short (4-6 bp), closely spaced (2-9 bp), inverted repeats to prime DNA synthesis via an intramolecular foldback of a 3' end. In view of our data, we present a foldback priming model for how a single copy sequence is duplicated to generate a palindrome.
Collapse
Affiliation(s)
- Alison J Rattray
- Gene Regulation and Chromosome Biology Laboratory, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702, USA
| | | | | | | |
Collapse
|
199
|
Noble SM, Johnson AD. Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans. EUKARYOTIC CELL 2005; 4:298-309. [PMID: 15701792 PMCID: PMC549318 DOI: 10.1128/ec.4.2.298-309.2005] [Citation(s) in RCA: 485] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Candida albicans is the most common human fungal pathogen and causes significant morbidity and mortality worldwide. Nevertheless, the basic principles of C. albicans pathogenesis remain poorly understood. Of central importance to the study of this organism is the ability to generate homozygous knockout mutants and to analyze them in a mammalian model of pathogenesis. C. albicans is diploid, and current strategies for gene deletion typically involve repeated use of the URA3 selectable marker. These procedures are often time-consuming and inefficient. Moreover, URA3 expression levels-which are susceptible to chromosome position effects-can themselves affect virulence, thereby complicating analysis of strains constructed with URA3 as a selectable marker. Here, we describe a set of newly developed reference strains (leu2Delta/leu2Delta, his1Delta/his1Delta; arg4Delta/arg4Delta, his1Delta/his1Delta; and arg4Delta/arg4Delta, leu2Delta/leu2Delta, his1Delta/his1Delta) that exhibit wild-type or nearly wild-type virulence in a mouse model. We also describe new disruption marker cassettes and a fusion PCR protocol that permit rapid and highly efficient generation of homozygous knockout mutations in the new C. albicans strains. We demonstrate these procedures for two well-studied genes, TUP1 and EFG1, as well as a novel gene, RBD1. These tools should permit large-scale genetic analysis of this important human pathogen.
Collapse
Affiliation(s)
- Suzanne M Noble
- Department of Microbiology and Immunology, University of California-San Francisco, San Francisco, CA 94143-2200, USA.
| | | |
Collapse
|
200
|
Sato T, Fukui T, Atomi H, Imanaka T. Improved and versatile transformation system allowing multiple genetic manipulations of the hyperthermophilic archaeon Thermococcus kodakaraensis. Appl Environ Microbiol 2005; 71:3889-99. [PMID: 16000802 PMCID: PMC1169065 DOI: 10.1128/aem.71.7.3889-3899.2005] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently developed a gene disruption system for the hyperthermophilic archaeon Thermococcus kodakaraensis by utilizing a pyrF-deficient mutant, KU25, as a host strain and the pyrF gene as a selectable marker. To achieve multiple genetic manipulations for more advanced functional analyses of genes in vivo, it is necessary to establish multiple host-marker systems or to develop a system in which repeated utilization of one marker gene is possible. In this study, we first constructed a new host strain, KU216 (DeltapyrF), by specific and almost complete deletion of endogenous pyrF through homologous recombination. In this refined host, there is no need to consider unknown mutations caused by random mutagenesis, and unlike in the previous host, KU25, there is little, if any, possibility that unintended recombination between the marker gene and the chromosomal allele occurs. Furthermore, a new host-marker combination of a trpE deletant, KW128 (DeltapyrF DeltatrpE::pyrF), and the trpE gene was developed. This system made it possible to isolate transformants through a more simple selection procedure as well as to deduce the transformation efficiency, overcoming practical disadvantages of the first system. The effects of the transformation conditions were also investigated using this system. Finally, we have also established a system in which repeated utilization of the counterselectable pyrF marker is possible through its excision by pop-out recombination. Both endogenous and exogenous sequences could be applied as tandem repeats flanking the marker pyrF for pop-out recombination. A double deletion mutant, KUW1 (DeltapyrF DeltatrpE), constructed with the pop-out strategy, was demonstrated to be a useful host for the dual markers pyrF and trpE. Likewise, a triple deletion mutant, KUWH1 (DeltapyrF DeltatrpE DeltahisD), could also be constructed. The transformation systems developed here now provide the means for extensive genetic studies in this hyperthermophilic archaeon.
Collapse
Affiliation(s)
- Takaaki Sato
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | | | | | | |
Collapse
|