151
|
Zhan S, Liang J, Lin H, Cai J, Yang X, Wu H, Wei J, Wang S, Xian M. SATB1/SLC7A11/HO-1 Axis Ameliorates Ferroptosis in Neuron Cells After Ischemic Stroke by Danhong Injection. Mol Neurobiol 2023; 60:413-427. [PMID: 36274077 DOI: 10.1007/s12035-022-03075-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 10/08/2022] [Indexed: 12/30/2022]
Abstract
Neuronal damage after ischemic stroke (IS) is frequently due to ferroptosis, contributing significantly to ischemic injury. However, the mechanism against ferroptosis in IS remained unclear. The aim of this study was to investigate the potential mechanism of Danhong injection (DHI) and the critical transcription factor SATB1 in preventing neuronal ferroptosis after ischemic stroke in vivo and in vitro. The results showed that DHI treatment significantly reduced the infarct area and associated damage in the brains of the pMCAO mice, and enhanced the viability of OGD-injured neurons. And several characteristic indicators of ferroptosis, such as mitochondrial necrosis and iron accumulation, were regulated by DHI after IS. Importantly, we found that the expression and activity of SATB1 were decreased in the pMCAO mice, especially in neuron cells. Meanwhile, the SATB1/SLC7A11/HO-1 signaling pathway was activated after DHI treatment in ischemic stroke and was found to improve neuronal ferroptosis. Inhibition of SATB1 significantly reduced SLC7A11-HO-1 and significantly attenuated the anti-ferroptosis effects of DHI in the OGD model. These findings indicate that neuronal ferroptosis after IS can be alleviated by DHI through SATB1/SLC7A11/HO-1 pathway, and SATB1 may be an attractive therapeutic target for treating ischemic stroke.
Collapse
Affiliation(s)
- Sikai Zhan
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiayin Liang
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Huiting Lin
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Jiale Cai
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xinxin Yang
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China.,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hongwei Wu
- China Academy of Chinese Medical Sciences, Dongzhimen 16 Nanxiao Road, Dongcheng District, Beijing, 100700, China
| | - Junying Wei
- China Academy of Chinese Medical Sciences, Dongzhimen 16 Nanxiao Road, Dongcheng District, Beijing, 100700, China.
| | - Shumei Wang
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China. .,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Minghua Xian
- Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Higher Education Mega Center, Panyu District, Guangzhou, 510006, China. .,Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China. .,Engineering & Technology Research Center for Chinese Materia Medica Quality of the Universities of Guangdong Province, School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
152
|
Li Q, Meng X, Hua Q. Circ ASAP2 decreased inflammation and ferroptosis in diabetic nephropathy through SOX2/SLC7A11 by miR-770-5p. Acta Diabetol 2023; 60:29-42. [PMID: 36153434 DOI: 10.1007/s00592-022-01961-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/16/2022] [Indexed: 01/07/2023]
Abstract
AIMS Diabetes nephropathy (DN) is one of the major complications in diabetes. With the improvement of people's living standards in China in recent years, the incidence of diabetes has become the main cause of end-stage renal disease. However, how and whether circ ASAP2 could mediate DN remain poorly understood. This study aimed to determine the function and its biological mechanism of circ ASAP2 on inflammation and ferroptosis of DN. METHODS C57BL/6 mice were fed with a high-fat diet and injected with streptozotocin. Human renal glomerular endothelial cells stimulated with 20 mmol/L D-glucose. RESULTS In mice model DN, circular ASAP2 expression level was down-regulated, and miR-770-5p expression level was up-regulated. Moreover, the inhibition of ASAP2 aggravated diabetic nephropathy in mice model. The inhibition of ASAP2 promoted inflammation and oxidative stress to aggravate renal injury in mice model. Circular ASAP2 was reducing inflammation and oxidative stress in vitro model. The inhibition of ASAP2 promoted ferroptosis in model of DN. CASAP2 suppressed miR-770-5p in DN. Additionally, miR-770-5p aggravated diabetic nephropathy in mice model. MiR-770-5p promoted inflammation and oxidative stress to aggravate renal injury in mice model. MiR-770-5p was increasing inflammation and oxidative stress in vitro model. Circular ASAP2 induced SLC7A11 expression in model of DN through SOX2 by miR-770-5p. CONCLUSIONS These results suggest that circ ASAP2 decreased inflammation and ferroptosis in DN through SOX2/SLC7A11 by miR-770-5p, which might serve as a target for improving the role of ferroptosis in DN.
Collapse
Affiliation(s)
- Qin Li
- Department of Endocrinology, Yijishan Hospital of Wannan Medical College, No.2 Zheshanxi Road, Wuhu, 241001, Anhui, China
| | - Xiangjian Meng
- Department of Endocrinology, Yijishan Hospital of Wannan Medical College, No.2 Zheshanxi Road, Wuhu, 241001, Anhui, China.
| | - Qiang Hua
- Department of Endocrinology, Yijishan Hospital of Wannan Medical College, No.2 Zheshanxi Road, Wuhu, 241001, Anhui, China.
| |
Collapse
|
153
|
Deng L, He S, Guo N, Tian W, Zhang W, Luo L. Molecular mechanisms of ferroptosis and relevance to inflammation. Inflamm Res 2022; 72:281-299. [PMID: 36536250 PMCID: PMC9762665 DOI: 10.1007/s00011-022-01672-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Inflammation is a defensive response of the organism to irritation which is manifested by redness, swelling, heat, pain and dysfunction. The inflammatory response underlies the role of various diseases. Ferroptosis, a unique modality of cell death, driven by iron-dependent lipid peroxidation, is regulated by multifarious cellular metabolic pathways, including redox homeostasis, iron processing and metabolism of lipids, as well as various signaling pathways associated with diseases. A growing body of evidence suggests that ferroptosis is involved in inflammatory response, and targeting ferroptosis has great prospects in preventing and treating inflammatory diseases. MATERIALS AND METHODS Relevant literatures on ferroptosis, inflammation, inflammatory factors and inflammatory diseases published from January 1, 2010 to now were searched in PubMed database. CONCLUSION In this review, we summarize the regulatory mechanisms associated with ferroptosis, discuss the interaction between ferroptosis and inflammation, the role of mitochondria in inflammatory ferroptosis, and the role of targeting ferroptosis in inflammatory diseases. As more and more studies have confirmed the relationship between ferroptosis and inflammation in a wide range of organ damage and degeneration, drug induction and inhibition of ferroptosis has great potential in the treatment of immune and inflammatory diseases.
Collapse
Affiliation(s)
- Liyan Deng
- grid.410560.60000 0004 1760 3078The First Clinical College, Guangdong Medical University, Zhanjiang, 524023 Guangdong China
| | - Shasha He
- grid.24696.3f0000 0004 0369 153XBeijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Chinese Medicine, Beijing, 100000 China
| | - Nuoqing Guo
- grid.410560.60000 0004 1760 3078The First Clinical College, Guangdong Medical University, Zhanjiang, 524023 Guangdong China
| | - Wen Tian
- grid.410560.60000 0004 1760 3078The First Clinical College, Guangdong Medical University, Zhanjiang, 524023 Guangdong China
| | - Weizhen Zhang
- Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, 524023, Guangdong, China. .,The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, 524023, Guangdong, China.
| |
Collapse
|
154
|
Luo L, Huang F, Zhong S, Ding R, Su J, Li X. Astaxanthin attenuates ferroptosis via Keap1-Nrf2/HO-1 signaling pathways in LPS-induced acute lung injury. Life Sci 2022; 311:121091. [DOI: 10.1016/j.lfs.2022.121091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
155
|
Tang X, Liu J, Yao S, Zheng J, Gong X, Xiao B. Ferulic acid alleviates alveolar epithelial barrier dysfunction in sepsis-induced acute lung injury by activating the Nrf2/HO-1 pathway and inhibiting ferroptosis. PHARMACEUTICAL BIOLOGY 2022; 60:2286-2294. [PMID: 36433644 PMCID: PMC9707381 DOI: 10.1080/13880209.2022.2147549] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/20/2022] [Accepted: 11/08/2022] [Indexed: 05/27/2023]
Abstract
CONTEXT Ferulic acid (FA) has antioxidative and anti-inflammatory effects, and is a promising drug to treat sepsis. OBJECTIVE To study the therapeutic effect of FA in sepsis-induced acute lung injury (ALI) and its underlying mechanisms. MATERIALS AND METHODS The caecal ligation and puncture (CLP) manoeuvre was applied to establish a murine model of sepsis-induced ALI, and female BALB/c mice (6 mice per group) were subjected to 100 mg/kg FA or 0.8 mg/kg ferrostatin-1 (Fer-1, ferroptosis inhibitor) treatment to clarify the role of FA in preserving alveolar epithelial barrier function and inhibiting ferroptosis. Lipopolysaccharide (LPS; 500 ng/mL)-induced cell models were prepared and subjected to FA (0.1 μM), sh-Nrf2, and Fe (Fe-citrate, ferroptosis inducer; 5 M) treatment to study the in vitro effect of FA on LPS-induced alveolar epithelial cell injury and the role of the Nrf2/HO-1 pathway. RESULTS We found that FA decreased the lung injury score (48% reduction), lung wet/dry weight ratio (33% reduction), and myeloperoxidase activity (58% reduction) in sepsis-induced ALI. Moreover, FA inhibited ferroptosis of alveolar epithelial cells and improved alveolar epithelial barrier dysfunction. The protective role of FA against alveolar epithelial barrier dysfunction could be reversed by the ferroptosis inducer Fe-citrate, suggesting that FA alleviates alveolar epithelial barrier dysfunction by inhibiting ferroptosis. Mechanistically, we found that FA inhibited ferroptosis of alveolar epithelial cells by activating the Nrf2/HO-1 pathway. CONCLUSION Collectively, our data highlighted the alleviatory role of ferulic acid in sepsis-induced ALI by activating the Nrf2/HO-1 pathway and inhibiting ferroptosis, offering a new basis for sepsis treatment.
Collapse
Affiliation(s)
- Xianming Tang
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, P. R. China
| | - Jiqiang Liu
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, P. R. China
| | - Shuo Yao
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, P. R. China
| | - Jianfei Zheng
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, P. R. China
| | - Xun Gong
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, P. R. China
| | - Bing Xiao
- Department of Emergency Medicine, The Second Xiangya Hospital of Central South University, Emergency and Difficult Diseases Institute of Central South University, Changsha, P. R. China
| |
Collapse
|
156
|
Eleutheroside B ameliorated high altitude pulmonary edema by attenuating ferroptosis and necroptosis through Nrf2-antioxidant response signaling. Biomed Pharmacother 2022; 156:113982. [DOI: 10.1016/j.biopha.2022.113982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
157
|
Chen H, Han Z, Luo Q, Wang Y, Li Q, Zhou L, Zuo H. Radiotherapy modulates tumor cell fate decisions: a review. Radiat Oncol 2022; 17:196. [PMID: 36457125 PMCID: PMC9714175 DOI: 10.1186/s13014-022-02171-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer has always been a worldwide problem, and the application of radiotherapy has greatly improved the survival rate of cancer patients. Radiotherapy can modulate multiple cell fate decisions to kill tumor cells and achieve its therapeutic effect. With the development of radiotherapy technology, how to increase the killing effect of tumor cells and reduce the side effects on normal cells has become a new problem. In this review, we summarize the mechanisms by which radiotherapy induces tumor cell apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis, autophagy, senescence, mitotic catastrophe, and cuproptosis. An in-depth understanding of these radiotherapy-related cell fate decisions can greatly improve the efficiency of radiotherapy for cancer.
Collapse
Affiliation(s)
| | - Zhongyu Han
- Chengdu Xinhua Hospital, Chengdu, China ,grid.411304.30000 0001 0376 205XSchool of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Luo
- Chengdu Xinhua Hospital, Chengdu, China
| | - Yi Wang
- Chengdu Xinhua Hospital, Chengdu, China
| | - Qiju Li
- Chengdu Xinhua Hospital, Chengdu, China
| | | | | |
Collapse
|
158
|
Lu H, Xiao H, Dai M, Xue Y, Zhao R. Britanin relieves ferroptosis-mediated myocardial ischaemia/reperfusion damage by upregulating GPX4 through activation of AMPK/GSK3β/Nrf2 signalling. PHARMACEUTICAL BIOLOGY 2022; 60:38-45. [PMID: 34860639 PMCID: PMC8648013 DOI: 10.1080/13880209.2021.2007269] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 05/28/2023]
Abstract
CONTEXT Ferroptosis was described as an important contributor to the myocardial ischaemia/reperfusion (MIR) injury, and britanin (Bri) was reported to exert antitumor and anti-inflammatory activities. OBJECTIVE Our study explores the effect and mechanism of Bri on MIR damage. MATERIALS AND METHODS The rat model of MIR was established by ligation of the left anterior descending coronary artery. Male Sprague-Dawley (SD) rats were divided into three groups: sham group (n = 6), MIR group (n = 6) and MIR + Bri group (n = 6; 50 mg/kg). Rats were intragastrically pre-treated with Bri or normal saline once daily for 3 days. To further verify the role and mechanism of Bri, H9C2 cells were subjected to hypoxia plus reoxygenation (H/R) to induce the in vitro model of MIR. RESULTS Compared with MIR rats, Bri significantly decreased infarct area (22.50% vs. 38.67%), myocardial apoptosis (23.00% vs. 41.5%), creatine phosphokinase (0.57 U/mL vs. 0.76 U/mL), and lactate dehydrogenase levels (3.18 U/mL vs. 5.17 U/mL), concomitant with alleviation of ferroptosis. Mechanistically, Bri treatment induced the activation of the adenosine monophosphate activated protein kinase (AMPK)/glycogen synthase kinase 3β (GSK3β)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in vivo. In addition, the AMPK/GSK3β/Nrf2 pathway participated in the regulation of glutathione peroxidase 4 (GPX4) expression, and silencing of Nrf2 attenuated the effect of Bri on H/R-induced cell injury. DISCUSSION AND CONCLUSIONS Bri protected against ferroptosis-mediated MIR damage by upregulating GPX4 through activation of the AMPK/GSK3β/Nrf2 signalling, suggesting that Bri might become a novel therapeutic agent for MIR.
Collapse
Affiliation(s)
- Haoyang Lu
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Xiao
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Manyu Dai
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yangcheng Xue
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ren Zhao
- Department of Cardiovascular Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
159
|
Li Y, Yin R, Liang M, Chen C. Nrf2 suppresses erastin-induced ferroptosis through activating system Xc(-) in ovarian cancer. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00322-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
160
|
Zhang F, Li Z, Gao P, Zou J, Cui Y, Qian Y, Gu R, Xu W, Hu J. HJ11 decoction restrains development of myocardial ischemia-reperfusion injury in rats by suppressing ACSL4-mediated ferroptosis. Front Pharmacol 2022; 13:1024292. [PMID: 36483736 PMCID: PMC9723372 DOI: 10.3389/fphar.2022.1024292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/07/2022] [Indexed: 08/12/2023] Open
Abstract
HJ11 is a novel traditional Chinese medicine developed from the appropriate addition and reduction of Si-Miao-Yong-An decoction, which has been commonly used to treat ischemia-reperfusion (I/R) injury in the clinical setting. However, the mechanism of action of HJ11 components remains unclear. Ferroptosis is a critical factor that promotes myocardial I/R injury, and the pathophysiological ferroptosis-mediated lipid peroxidation causes I/R injury. Therefore, this study explored whether HJ11 decoction ameliorates myocardial I/R injury by attenuating ACSL4-mediated ferroptosis. This study also explored the effect of ACSL4 expression on iron-dependent programmed cell death by preparing a rat model of myocardial I/R injury and oxygen glucose deprivation/reperfusion (OGD/R)-induced H9c2 cells. The results showed that HJ11 decoction improved cardiac function; attenuated I/R injury, apoptosis, oxidative stress, mitochondrial damage, and iron accumulation; and reduced infarct size in the myocardial I/R injury rat model. Additionally, HJ11 decoction suppressed the expression of ferroptosis-promoting proteins [Acyl-CoA synthetase long-chain family member 4 (ACSL4) and cyclooxygenase-2 (COX2)] but promoted the expression of ferroptosis-inhibiting proteins [ferritin heavy chain 1 (FTH1) and glutathione-dependent lipid hydroperoxidase glutathione peroxidase 4 (GPX4)] in the myocardial tissues of the I/R injury rat model. Similar results were found with the OGD/R-induced H9c2 cells. Interestingly, ACSL4 knockdown attenuated iron accumulation, oxidative stress, and ferroptosis in the OGD/R-treated H9c2 cells. However, ACSL4 overexpression counteracted the inhibitory effect of the HJ11 decoction on OGD/R-triggered oxidative stress and ferroptosis in H9c2 cells. These findings suggest that HJ11 decoction restrained the development of myocardial I/R injury by regulating ACSL4-mediated ferroptosis. Thus, HJ11 decoction may be an effective medication to treat myocardial I/R injury.
Collapse
Affiliation(s)
- Fangyuan Zhang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyun Li
- School of Acupuncture and Tuina, School of Regimen and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ping Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaxi Zou
- School·of·Basic·Medical·Sciences Chengdu·University·of Traditional·Chinese Medicine, Chengdu, China
| | - Yuting Cui
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yi Qian
- The Third School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Renjun Gu
- School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiming Xu
- China Science and Technology Development Center for Chinese Medicine, Beijing, China
- The First Affilliated Hospital of Henan University of CM, Zhengzhou, China
| | - Jingqing Hu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- China Science and Technology Development Center for Chinese Medicine, Beijing, China
| |
Collapse
|
161
|
Zhou L, Han S, Guo J, Qiu T, Zhou J, Shen L. Ferroptosis-A New Dawn in the Treatment of Organ Ischemia-Reperfusion Injury. Cells 2022; 11:cells11223653. [PMID: 36429080 PMCID: PMC9688314 DOI: 10.3390/cells11223653] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
Ischemia-reperfusion (I/R) is a common pathological phenomenon that occurs in numerous organs and diseases. It generally results from secondary damage caused by the recovery of blood flow and reoxygenation, followed by ischemia of organ tissues, which is often accompanied by severe cellular damage and death. Currently, effective treatments for I/R injury (IRI) are limited. Ferroptosis, a new type of regulated cell death (RCD), is characterized by iron overload and iron-dependent lipid peroxidation. Mounting evidence has indicated a close relationship between ferroptosis and IRI. Ferroptosis plays a significantly detrimental role in the progression of IRI, and targeting ferroptosis may be a promising approach for treatment of IRI. Considering the substantial progress made in the study of ferroptosis in IRI, in this review, we summarize the pathological mechanisms and therapeutic targets of ferroptosis in IRI.
Collapse
Affiliation(s)
- Linxiang Zhou
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Shangting Han
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Correspondence: (J.Z.); (L.S.)
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- Correspondence: (J.Z.); (L.S.)
| |
Collapse
|
162
|
Luan R, Ding D, Yang J. The protective effect of natural medicines against excessive inflammation and oxidative stress in acute lung injury by regulating the Nrf2 signaling pathway. Front Pharmacol 2022; 13:1039022. [PMID: 36467050 PMCID: PMC9709415 DOI: 10.3389/fphar.2022.1039022] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/02/2022] [Indexed: 09/29/2023] Open
Abstract
Acute lung injury (ALI) is a common critical disease of the respiratory system that progresses into acute respiratory distress syndrome (ARDS), with high mortality, mainly related to pulmonary oxidative stress imbalance and severe inflammation. However, there are no clear and effective treatment strategies at present. Nuclear factor erythroid 2-related factor 2(Nrf2) is a transcription factor that interacts with multiple signaling pathways and regulates the activity of multiple oxidases (NOX, NOS, XO, CYP) related to inflammation and apoptosis, and exhibits antioxidant and anti-inflammatory roles in ALI. Recently, several studies have reported that the active ingredients of natural medicines show protective effects on ALI via the Nrf2 signaling pathway. In addition, they are cheap, naturally available, and possess minimal toxicity, thereby having good clinical research and application value. Herein, we summarized various studies on the protective effects of natural pharmaceutical components such as polyphenols, flavonoids, terpenoids, alkaloids, and polysaccharides on ALI through the Nrf2 signaling pathway and demonstrated existing gaps as well as future perspectives.
Collapse
|
163
|
Zhang F, Zhen H, Cheng H, Hu F, Jia Y, Huang B, Jiang M. Di-(2-ethylhexyl) phthalate exposure induces liver injury by promoting ferroptosis via downregulation of GPX4 in pregnant mice. Front Cell Dev Biol 2022; 10:1014243. [PMID: 36438553 PMCID: PMC9686828 DOI: 10.3389/fcell.2022.1014243] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/25/2022] [Indexed: 10/07/2023] Open
Abstract
As one kind of endocrine disrupting chemical, di-(2-ethylhexyl) phthalate (DEHP) has been reported to cause liver dysfunction in epidemiological and experimental studies. Abnormal liver function in pregnancy is associated with adverse maternal and perinatal outcomes. Few studies have investigated the potential effect of gestational DEHP exposure on the liver in pregnant mice, and the underlying mechanisms remain unclear. In the present study, pregnant ICR mice were exposed to doses (0, 500, 1,000 mg/kg/day) of DEHP in the presence or absence of 5 mg/kg/day ferrostatin-1 (Fer-1, ferroptosis inhibitor) by oral gavage from gestation day 4 to day 18. HepG2 cells were exposed to different doses of monoethylhexyl phthalate (MEHP, a major metabolite of DEHP) in vitro. Hepatic function and pathologic changes were observed. Oxidative stress, iron metabolism, and ferroptosis-related indicators and genes were evaluated both in vivo and in vitro. The results showed that gestational DEHP exposure induced disordered liver function and hepatocyte morphology changes in pregnant mice, along with increased malondialdehyde (MDA) and Fe2+ content and decreased glutathione (GSH) levels. The expression levels of the selected ferroptosis-related genes Slc7a11, Gpx4, and Nfr2 were significantly decreased, and Ptgs2 and Lpcat3 were significantly increased. Notably, Fer-1 attenuated DEHP-induced liver injury and ferroptosis. Furthermore, MEHP exhibited a synergistic effect with RSL3 (a GPX4 inhibitor) in promoting ferroptosis in vitro. Taken together, the results demonstrated that DEHP induced liver injury and ferroptosis in pregnant mice, probably by inhibiting the GPX4 pathway through lipid peroxidation and iron accumulation.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Hualong Zhen
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Hengshun Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Fengying Hu
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Yunfei Jia
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Binbin Huang
- MOE Key Laboratory of Population Health Across Life Cycle, Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Minmin Jiang
- Department of Occupational Health and Environmental Health, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
164
|
Pan Y, Wang X, Liu X, Shen L, Chen Q, Shu Q. Targeting Ferroptosis as a Promising Therapeutic Strategy for Ischemia-Reperfusion Injury. Antioxidants (Basel) 2022; 11:2196. [PMID: 36358568 PMCID: PMC9686892 DOI: 10.3390/antiox11112196] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 07/29/2023] Open
Abstract
Ischemia-reperfusion (I/R) injury is a major challenge in perioperative medicine that contributes to pathological damage in various conditions, including ischemic stroke, myocardial infarction, acute lung injury, liver transplantation, acute kidney injury and hemorrhagic shock. I/R damage is often irreversible, and current treatments for I/R injury are limited. Ferroptosis, a type of regulated cell death characterized by the iron-dependent accumulation of lipid hydroperoxides, has been implicated in multiple diseases, including I/R injury. Emerging evidence suggests that ferroptosis can serve as a therapeutic target to alleviate I/R injury, and pharmacological strategies targeting ferroptosis have been developed in I/R models. Here, we systematically summarize recent advances in research on ferroptosis in I/R injury and provide a comprehensive analysis of ferroptosis-regulated genes investigated in the context of I/R, as well as the therapeutic applications of ferroptosis regulators, to provide insights into developing therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Yihang Pan
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xueke Wang
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Xiwang Liu
- Department of Thoracic & Cardiovascular Surgery, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lihua Shen
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Qixing Chen
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou 310052, China
| | - Qiang Shu
- Department of Clinical Research Center, The Children’s Hospital, School of Medicine, Zhejiang University, National Clinical Research Center for Child Health, Hangzhou 310052, China
- Department of Thoracic & Cardiovascular Surgery, The Children’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
- Key Laboratory of Diagnosis and Treatment of Neonatal Diseases of Zhejiang Province, Hangzhou 310052, China
| |
Collapse
|
165
|
Wang Y, Zhang Z, Jiao W, Wang Y, Wang X, Zhao Y, Fan X, Tian L, Li X, Mi J. Ferroptosis and its role in skeletal muscle diseases. Front Mol Biosci 2022; 9:1051866. [PMID: 36406272 PMCID: PMC9669482 DOI: 10.3389/fmolb.2022.1051866] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Ferroptosis is characterized by the accumulation of iron and lipid peroxidation products, which regulates physiological and pathological processes in numerous organs and tissues. A growing body of research suggests that ferroptosis is a key causative factor in a variety of skeletal muscle diseases, including sarcopenia, rhabdomyolysis, rhabdomyosarcoma, and exhaustive exercise-induced fatigue. However, the relationship between ferroptosis and various skeletal muscle diseases has not been investigated systematically. This review’s objective is to provide a comprehensive summary of the mechanisms and signaling factors that regulate ferroptosis, including lipid peroxidation, iron/heme, amino acid metabolism, and autophagy. In addition, we tease out the role of ferroptosis in the progression of different skeletal muscle diseases and ferroptosis as a potential target for the treatment of multiple skeletal muscle diseases. This review can provide valuable reference for the research on the pathogenesis of skeletal muscle diseases, as well as for clinical prevention and treatment.
Collapse
Affiliation(s)
- Ying Wang
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Weikai Jiao
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Yanyan Wang
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xiuge Wang
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yunyun Zhao
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Xuechun Fan
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lulu Tian
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyan Li, ; Jia Mi,
| | - Jia Mi
- Department of Endocrinology, The First Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
- *Correspondence: Xiangyan Li, ; Jia Mi,
| |
Collapse
|
166
|
Zeng F, Lan Y, Wang N, Huang X, Zhou Q, Wang Y. Ferroptosis: A new therapeutic target for bladder cancer. Front Pharmacol 2022; 13:1043283. [PMID: 36408230 PMCID: PMC9669411 DOI: 10.3389/fphar.2022.1043283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 12/13/2023] Open
Abstract
Bladder cancer (BC) is the most frequent type of urinary system cancer. The prognosis of BC is poor due to high metastasis rates and multidrug resistance. Hence, development of novel therapies targeting BC cell death is urgently needed. As a novel cell death type with strong antitumor potential, ferroptosis has been investigated by many groups for its potential in BC treatment. As an iron-dependent cell death process, ferroptosis is characterized by excessive oxidative phospholipids. The molecular mechanisms of ferroptosis include iron overload and the system Xc-GSH-GPX4 signaling pathway. A recent study revealed that ferroptosis is involved in the metastasis, treatment, and prognosis of BC. Herein, in this review, we comprehensively summarize the mechanism of ferroptosis, address newly identified targets involved in ferroptosis, and discuss the potential of new clinical therapies targeting ferroptosis in BC.
Collapse
Affiliation(s)
- Fan Zeng
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Yunping Lan
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Ning Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Xiaobo Huang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science, Chengdu, China
| |
Collapse
|
167
|
Zheng XJ, Chen WL, Yi J, Li W, Liu JY, Fu WQ, Ren LW, Li S, Ge BB, Yang YH, Zhang YZ, Yang H, Du GH, Wang Y, Wang JH. Apolipoprotein C1 promotes glioblastoma tumorigenesis by reducing KEAP1/NRF2 and CBS-regulated ferroptosis. Acta Pharmacol Sin 2022; 43:2977-2992. [PMID: 35581292 PMCID: PMC9622891 DOI: 10.1038/s41401-022-00917-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/25/2022] [Indexed: 01/27/2023] Open
Abstract
Glioblastoma (GBM), a malignant brain tumor, is a world-wide health problem because of its poor prognosis and high rates of recurrence and mortality. Apolipoprotein C1 (APOC1) is the smallest of apolipoproteins, implicated in many diseases. Recent studies have shown that APOC1 promotes tumorigenesis and development of several types of cancer. In this study we investigated the role of APOC1 in GBM tumorigenesis. Using in silico assays we showed that APOC1 was highly expressed in GBM tissues and its expression was closely related to GBM progression. We showed that APOC1 protein expression was markedly increased in four GBM cell lines (U251, U138, A172 and U87) compared to the normal brain glia cell lines (HEB, HA1800). In U251 cells, overexpression of APOC1 promoted cell proliferation, migration, invasion and colony information, which was reversed by APOC1 knockdown. APOC1 knockdown also markedly inhibited the growth of GBM xenografts in the ventricle of nude mice. We further demonstrated that APOC1 reduced ferroptosis by inhibiting KEAP1, promoting nuclear translocation of NRF2 and increasing expression of HO-1 and NQO1 in GBM cells. APOC1 also induced ferroptosis resistance by increasing cystathionine beta-synthase (CBS) expression, which promoted trans-sulfuration and increased GSH synthesis, ultimately leading to an increase in glutathione peroxidase-4 (GPX4). Thus, APOC1 plays a key role in GBM tumorigenesis, conferring resistance to ferroptosis, and may be a promising therapeutic target for GBM.
Collapse
Affiliation(s)
- Xiang-Jin Zheng
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Lin Chen
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jie Yi
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Beijing, 100730, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jin-Yi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wei-Qi Fu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Li-Wen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Sha Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Bin-Bin Ge
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yi-Hui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yi-Zhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Guan-Hua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Jin-Hua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China.
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
168
|
Wang B, Lin Y, Zhou M, Fu S, Zhu B, Chen Y, Ding Z, Zhou F. Polysaccharides from Tetrastigma Hemsleyanum Diels et Gilg attenuate LPS-induced acute lung injury by modulating TLR4/COX-2/NF-κB signaling pathway. Biomed Pharmacother 2022; 155:113755. [DOI: 10.1016/j.biopha.2022.113755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022] Open
|
169
|
Wang X, Wang Y, Huang D, Shi S, Pei C, Wu Y, Shen Z, Wang F, Wang Z. Astragaloside IV regulates the ferroptosis signaling pathway via the Nrf2/SLC7A11/GPX4 axis to inhibit PM2.5-mediated lung injury in mice. Int Immunopharmacol 2022; 112:109186. [PMID: 36115280 DOI: 10.1016/j.intimp.2022.109186] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/31/2022] [Accepted: 08/18/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Exposure to PM2.5 will increase the risk of respiratory disease and increase the burden of social health care. Astragaloside Ⅳ (Ast-IV) is one of the main biologically active substances form Chinese herb Astragalus membranaceus, which owns various pharmacological effects. Ferroptosis is a novel form of cell death characterized by accumulation of iron-dependent lipid reactive oxygen species (ROS). It is not clear whether there are typical features of ferroptosis in PM2.5-induced lung injury. This study investigates whether PM2.5-induced lung injury in mice has a special form of ferroptosis and the specific protective mechanism of Ast-IV. SUBJECTS AND METHODS Forty-two male C57BL/6J mice were randomly divided into six groups (n = 7 per group): NS group (normal saline), Ast group (Ast-IV 100 mg/kg), PM2.5 group, Ast-L group (Ast-IV 50 mg/kg + PM2.5), Ast-H group (Ast-IV 100 mg/kg + PM2.5) and Era group (Ast-IV 100 mg/kg + erastin 20 mg/kg + PM2.5). Mice were pre-treated with Ast-IV intraperitoneally for three days. Then, PM2.5 (7.5 mg/kg) was given by non-invasive tracheal instillation to induce lung injury. The ferroptosis' agonist erastin was used to verify the mechanism of Ast-IV anti-ferroptosis. 12 h after PM2.5 stimulation, the mice were euthanized. Bronchoalveolar lavage fluid (BALF) and serum were collected for oxidative stress and cytokine determination. Lung tissues were collected for glutathione (GSH), tissue iron content, histology, immunofluorescence, transmission electron microscopy, and western blot analysis. RESULTS Ast-IV reduced the lung wet-dry ratio and the levels of interleukin 6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin 1β (IL-1β) in serum. Ast-IV could also improve the oxidative stress level in BALF, restore the GSH level in the lung tissue, and reduce the iron content in the lung tissue. Western blot outcomes revealed that Ast-IV regulated the ferroptosis signaling pathway via the Nrf2/SLC7A11/GPX4 axis to protect PM2.5-mediated lung injury. CONCLUSION The protective effect of Ast-IV on PM2.5-induced lung injury in mice might be related to the inhibition of ferroptosis in lung tissue. Anti-ferroptosis might be a new mechanism of Ast-IV on PM2.5-induced lung injury.
Collapse
Affiliation(s)
- Xiaoming Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China.
| | - Yilan Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China.
| | - Demei Huang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China.
| | - Shihua Shi
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China.
| | - Caixia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China.
| | - Yongcan Wu
- College of Traditional Chinese Medicine, CQMU, No. 1, Medical School Road, Yuzhong District, Chongqing 400016, People's Republic of China.
| | - Zherui Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China.
| | - Fei Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China.
| | - Zhenxing Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan Province, People's Republic of China.
| |
Collapse
|
170
|
Zeng X, Li J, Yang F, Xia R. The effect of narcotics on ferroptosis-related molecular mechanisms and signalling pathways. Front Pharmacol 2022; 13:1020447. [PMID: 36313359 PMCID: PMC9606818 DOI: 10.3389/fphar.2022.1020447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
Ferroptosis is a novel programmed cell death form characterized by iron-mediated reactive oxygen species-induced lipid peroxidation and subsequent cell damage that is distinct from apoptosis, necroptosis, pyroptosis, and autophagy. Most studies on ferroptosis are based on its function and mechanism, but there have been relatively few studies on the effects of drugs, especially anaesthetics, on ferroptosis. Therefore, we summarized the recent literature on the effects of anaesthetics on ferroptosis to understand the underlying mechanism. In particular, we focused on the targets of various anaesthetics in different mechanisms of ferroptosis and the effects of ferroptosis induction or inhibition by narcotics on various diseases. The aims of this review are to provide a relatively reasonable drug regimen for clinicians, to explore potential ferroptosis protection drugs and targets, to reduce perioperative complications and to improve the postoperative performance of patients, especially those who are critically ill.
Collapse
Affiliation(s)
- Xiaoqin Zeng
- Department of Anaesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Jingda Li
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Fuyuan Yang
- School of Basic Medicine, Yangtze University Health Science Center, Jingzhou, Hubei, China
- *Correspondence: Fuyuan Yang, ; Rui Xia,
| | - Rui Xia
- Department of Anaesthesiology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
- *Correspondence: Fuyuan Yang, ; Rui Xia,
| |
Collapse
|
171
|
Wang Z, Yao M, Jiang L, Wang L, Yang Y, Wang Q, Qian X, Zhao Y, Qian J. Dexmedetomidine attenuates myocardial ischemia/reperfusion-induced ferroptosis via AMPK/GSK-3β/Nrf2 axis. Biomed Pharmacother 2022; 154:113572. [PMID: 35988428 DOI: 10.1016/j.biopha.2022.113572] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate whether dexmedetomidine (Dex) exerts cardioprotection effect through inhibiting ferroptosis. Myocardial ischemia/reperfusion injury (MIRI) was induced in Sprague-Dawley rats in Langendorff preparation. The hemodynamic parameters were recorded. Triphenyltetrazolium chloride (TTC) staining was used to determine infarct size. In the in vitro study, the model of hypoxia/reoxygenation (HR) was established in H9c2 cells. Cell viability and apoptosis were detected using cell counting kit 8 (CCK-8), and AV/PI dual staining respectively. Lipid peroxidation as measured by the fluorescence of the fatty acid analog C11-BODIPY581/591 probe and intracellular ferrous iron levels were measured by fluorescence of Phen Green SK (PGSK) probe, whereas immunofluorescence and transmission electron microscopy were also used to examine ferroptosis. Protein levels were investigated by Western blot. The interactions of AMPK/GSK-3β signaling with Nrf2 were also assessed through AMPK inhibition and GSK-3β overexpression. Our findings indicated that Dex significantly alleviated myocardial infarction, improved heart function, and decreased HR-induced accumulation of Fe2+ and lipid peroxidation in cardiomyocytes. Dex significantly increased the expression levels of Nrf2, SLC7A11, and GPX4. However, inhibition of Nrf2 by ML385 blunted the protective effect of Dex in HR-treated H9c2 cells. Inhibition of AMPK with a specific inhibitor or siRNA decreased the expression levels of phosphorylation of GSK-3β and Nrf2 induced by Dex. Overexpression of GSK-3β resulted in lower levels of nuclear Nrf2, whereas depression of GSK-3β enhanced expressions of nuclear Nrf2. In conclusion, Dex protects hearts against MIRI-induced ferroptosis via activation of Nrf2 through AMPK/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Mengran Yao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Leyu Jiang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lingyan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yuqiao Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Quan Wang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xi Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu Zhao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jinqiao Qian
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
172
|
Maimaitizunong R, Wang K, Li H. Ferroptosis and its emerging role in esophageal cancer. Front Mol Biosci 2022; 9:1027912. [PMID: 36237575 PMCID: PMC9551460 DOI: 10.3389/fmolb.2022.1027912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
The occurrence and development of tumors involve a series of life activities of cells, among which cell death has always been a crucial part in the research of tumor mechanisms and treatment methods. Ferroptosis is a non-apoptotic form of cell death, which is characterized by lipid peroxidation accumulation and further cell membrane rupture caused by excessive production of intracellular oxygen free radicals dependent on iron ions. Esophageal cancer is one of the common digestive tract tumors. Patients in the early stage are mainly treated with surgery, and the curative effect is awe-inspiring. However, surgery is far from enough for terminal patients, and it is the best choice to combine radiotherapy and chemotherapy before the operation or during the perioperative period. Although the treatment plan for patients with advanced esophageal cancer is constantly being optimized, we are disappointed at the still meager 5-year survival rate of patients and the poor quality of life. A series of complex problems, such as increased chemotherapy drug resistance and decreased radiotherapy sensitivity of esophageal cancer cells, are waiting for us to tackle. Perhaps ferroptosis can provide practical and feasible solutions and bring new hope to patients with advanced esophageal cancer. The occurrence of ferroptosis is related to the dysregulation of iron metabolism, lipid metabolism, and glutamate metabolism. Therefore, these dysregulated metabolic participant proteins and signaling pathways are essential entry points for using cellular ferroptosis to resist the occurrence and development of cancer cells. This review first introduced the main regulatory mechanisms of ferroptosis. It then summarized the current research status of ferroptosis in esophageal cancer, expecting to provide ideas for the research related to ferroptosis in esophageal cancer.
Collapse
Affiliation(s)
- Rezeye Maimaitizunong
- Department of Biochemistry and Molecular Biology, Basic Medicine School, Xinjiang Medical University, Urumqi, China
| | - Kai Wang
- Department of Medical Engineering and Technology, Xinjiang Medical University, Urumqi, China
| | - Hui Li
- Central Laboratory of Xinjiang Medical University, Urumqi, China
- *Correspondence: Hui Li,
| |
Collapse
|
173
|
Liu MZ, Kong N, Zhang GY, Xu Q, Xu Y, Ke P, Liu C. The critical role of ferritinophagy in human disease. Front Pharmacol 2022; 13:933732. [PMID: 36160450 PMCID: PMC9493325 DOI: 10.3389/fphar.2022.933732] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Ferritinophagy is a type of autophagy mediated by nuclear receptor activator 4 (NCOA4), which plays a role in inducing ferroptosis by regulating iron homeostasis and producing reactive oxygen species in cells. Under physiological conditions, ferritinophagy maintains the stability of intracellular iron by regulating the release of free iron. Studies have demonstrated that ferritinophagy is necessary to induce ferroptosis; however, under pathological conditions, excessive ferritinophagy results in the release of free iron in large quantities, which leads to lipid peroxidation and iron-dependent cell death, known as ferroptosis. Ferritinophagy has become an area of interest in recent years. We here in review the mechanism of ferritinophagy and its association with ferroptosis and various diseases to provide a reference for future clinical and scientific studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Ping Ke
- *Correspondence: Ping Ke, ; Chong Liu,
| | - Chong Liu
- *Correspondence: Ping Ke, ; Chong Liu,
| |
Collapse
|
174
|
Li W, Huang G, Wei J, Cao H, Jiang G. ALKBH5 inhibits thyroid cancer progression by promoting ferroptosis through TIAM1-Nrf2/HO-1 axis. Mol Cell Biochem 2022; 478:729-741. [PMID: 36070054 DOI: 10.1007/s11010-022-04541-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/08/2022] [Indexed: 11/29/2022]
Abstract
As a critical catalytic subunit of N6-methyladenosine (m6A) modification in messenger RNA, ALKBH5 has been reported to affect the progression of numerous tumors. However, the functions and mechanisms of ALKBH5 in thyroid cancer remain largely unknown. Relative mRNA and protein levels in thyroid cancer tissues and cells were detected by qRT-PCR and western blot, respectively. The proliferation and viability were evaluated using colony formation and CCK-8 assays. Intracellular iron level was measured by an iron colorimetric assay kit. ROS level was determined using CellRox Green reagent. TIAM1 mRNA m6A level was detected by MeRIP. Xenograft tumor growth was performed to examine the role of ALKBH5 in thyroid tumor growth in vivo. ALKBH5 was decreased in thyroid cancer tissues and cells. ALKBH5 overexpression inhibited thyroid cancer cell proliferation and increased the levels of Fe2+ and ROS and reduced the proteins expression of GPX4 and SLC7A11. Furthermore, overexpression of ALKBH5 inhibited TIAM1 expression by m6A modification, and overexpression of TIAM1 reversed the regulatory of oe-ALKBH5 on cell proliferation and ferroptosis in thyroid cancer. In addition, TIAM1 was elevated in thyroid cancer, and TIAM1 knockdown repressed thyroid cancer cell proliferation and promoted ferroptosis through regulating Nrf2/HO-1 axis. In addition, in vivo evidences also showed that ALKBH5 suppressed thyroid cancer progression by decreasing the m6A level of TIAM1. Our findings suggested that ALKBH5 inhibited thyroid cancer progression by inducing ferroptosis through m6A-TIAM1-Nrf2/HO-1 axis, suggesting ALKBH5 might be a potential target molecule for the treatment and diagnosis of thyroid cancer.
Collapse
Affiliation(s)
- Wei Li
- Department of Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, San-Xiang Road, Suzhou, 215004, Jiangsu, People's Republic of China.,Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Guo Huang
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Jinrong Wei
- Department of Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, San-Xiang Road, Suzhou, 215004, Jiangsu, People's Republic of China
| | - Hong Cao
- Department of Breast and Thyroid Surgery, The Second Affiliated Hospital, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, People's Republic of China
| | - Guoqin Jiang
- Department of Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, San-Xiang Road, Suzhou, 215004, Jiangsu, People's Republic of China.
| |
Collapse
|
175
|
Ferroptosis is involved in regulating perioperative neurocognitive disorders: emerging perspectives. J Neuroinflammation 2022; 19:219. [PMID: 36068571 PMCID: PMC9450301 DOI: 10.1186/s12974-022-02570-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
Since the twenty-first century, the development of technological advances in anesthesia and surgery has brought benefits to human health. However, the adverse neurological effects of perioperative-related factors (e.g., surgical trauma, anesthesia, etc.) as stressors cannot be ignored as well. The nervous system appears to be more "fragile" and vulnerable to damage in developing and aging individuals. Ferroptosis is a novel form of programmed cell death proposed in 2012. In recent years, the regulation of ferroptosis to treat cancer, immune system disorders, and neurodegenerative diseases have seen an unprecedented surge of interest. The association of ferroptosis with perioperative neurocognitive disorders has also received much attention. Cognitive impairment can not only affect the individual's quality of life, but also impose a burden on the family and society. Therefore, the search for effective preventive and therapeutic methods to alleviate cognitive impairment caused by perioperative-related factors is a challenge that needs to be urgently addressed. In our review, we first briefly describe the connection between iron accumulation in neurons and impairment of brain function during development and aging. It is followed by a review of the pathways of ferroptosis, mainly including iron metabolism, amino acid metabolism, and lipid metabolism pathway. Furthermore, we analyze the connection between ferroptosis and perioperative-related factors. The surgery itself, general anesthetic drugs, and many other relevant factors in the perioperative period may affect neuronal iron homeostasis. Finally, we summarize the experimental evidence for ameliorating developmental and degenerative neurotoxicity by modulating ferroptosis. The suppression of ferroptosis seems to provide the possibility to prevent and improve perioperative neurocognitive impairment.
Collapse
|
176
|
Qiu W, An S, Wang T, Li J, Yu B, Zeng Z, Chen Z, Lin B, Lin X, Gao Y. Melatonin suppresses ferroptosis via activation of the Nrf2/HO-1 signaling pathway in the mouse model of sepsis-induced acute kidney injury. Int Immunopharmacol 2022; 112:109162. [PMID: 36067654 DOI: 10.1016/j.intimp.2022.109162] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ferroptosis is a regulated form of cell death. At present, the role of ferroptosis in sepsis-induced acute kidney injury (SAKI) has not been studied. Melatonin (MEL) has been reported to be an effective ferroptosis inhibitor, but it is unclear whether Melatonin can regulate ferroptosis in SAKI and whether its downstream mechanism correlates with the Nrf2/HO-1 pathway. METHODS The cecal ligation and puncture (CLP) method and LPS injection were used to induce SAKI in mouse model. Ferroptosis markers, including malondialdehyde (MDA) and glutathione peroxidase 4 (GPX4), were assessed. The ferroptosis inhibitor ferrostatin-1 (Fer-1) was used to explore the role of ferroptosis in SAKI. The GPX4 inhibitor RSL3, the HO-1 inhibitor zinc protoporphyrin(ZnPP), and the Nrf2 inhibitor ML385 were used to explore the specific mechanism of MEL in alleviation of SAKI. RESULTS The ferroptosis level was increased in the renal tissue of CLP- and LPS-induced septic mice. Both Fer-1 and MEL administration could suppress ferroptosis and attenuate kidney injury upon sepsis challenge. RSL3 partially blocked MEL's beneficial renal-protective effects. MEL up-regulated Nrf2 and HO-1 in CLP mice, and both ZnPP and ML385 blocked the MEL-mediated effects of ferroptosis inhibition and renal protection. CONCLUSIONS Ferroptosis aggravates SAKI. Melatonin treatment suppresses ferroptosis and alleviates kidney injury in the context of experimental sepsis by upregulating Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Weihuang Qiu
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Baiyun District, Guangzhou, Guangdong 510515, China.
| | - Sheng An
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Baiyun District, Guangzhou, Guangdong 510515, China.
| | - Tingjie Wang
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Baiyun District, Guangzhou, Guangdong 510515, China.
| | - Jiaxin Li
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Baiyun District, Guangzhou, Guangdong 510515, China.
| | - Binmei Yu
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Baiyun District, Guangzhou, Guangdong 510515, China.
| | - Zhenhua Zeng
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Baiyun District, Guangzhou, Guangdong 510515, China.
| | - Zhongqing Chen
- Department of Critical Care Medicine, Nanfang Hospital, Southern Medical University, Baiyun District, Guangzhou, Guangdong 510515, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, School of Basic Medical Sciences, Southern Medical University, Baiyun District, Guangzhou, Guangdong 510515, China.
| | - Bo Lin
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China.
| | - Xianzhong Lin
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China.
| | - Youguang Gao
- Department of Anesthesiology, Anesthesiology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian 350005, China.
| |
Collapse
|
177
|
Ye J, Peng J, Liu K, Zhang T, Huang W. MCTR1 inhibits ferroptosis by promoting NRF2 expression to attenuate hepatic ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 2022; 323:G283-G293. [PMID: 35916424 DOI: 10.1152/ajpgi.00354.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) can lead to poor prognosis in patients undergoing liver transplantation or extensive liver resection. Maresin conjugate in tissue regeneration 1 (MCTR1) exerts a protective effect in several inflammatory disease models, but its role in HIRI remains unknown. In this study, we examined the effect of MCTR1 on HIRI and its underlying mechanism. HIRI mice and oxygen-glucose deprivation/reperfusion (OGD/R) AML12 cell models were used to evaluate the effects of MCTR1 at different doses on HIRI. Histological changes, inflammatory mediators, and ferroptosis-associated markers including iron content, oxidative stress and antioxidant activity, cell death marker (LDH), and the expression of Nuclear factor erythroid-derived 2-like 2 (NRF2) were analyzed. The results showed that MCTR1 treatment significantly ameliorated liver tissue damage and AST/ALT levels in HIRI mice. It also ameliorated ferroptosis in both HIRI mice and OGD/R AML12 cells, including a decrease in iron content, serum LDH release levels, reactive oxygen species (ROS), MDA, IL-1β levels, and COX2 and transferrin receptor (TFRC) expression. In addition, it increased the levels of IL-10, the antioxidant stress markers SOD and GSH, and the expression of GPX4. With respect to the underlying mechanism, the expression of NRF2 in HIRI mice and OGD/R AML12 cells was significantly inhibited. MCTR1 treatment restored the inhibition of NRF2 expression caused by ischemia-reperfusion, and NRF2 inhibitors significantly inhibited nuclear aggregation of NRF2 promoted by MCTR1. In conclusion, the MCTR1 ameliorates ferroptosis-induced hepatic ischemia-reperfusion injury by promoting NRF2 expression and may represent a therapeutic strategy for treating HIRI.NEW & NOTEWORTHY MCTR1 exerts a protective effect in several inflammatory disease models, but its role in hepatic HIRI remains unknown. We confirm that the MCTR1 ameliorates ferroptosis-induced hepatic ischemia-reperfusion injury by promoting NRF2 expression. Our study illustrates the mechanism that MCTR1 protects from HIRI and identifies a therapeutic target for liver transplantation ischemia-reperfusion injury from the perspective of ferroptosis.
Collapse
Affiliation(s)
- Jianhong Ye
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jun Peng
- Department of Anesthesiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kuanzhi Liu
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
178
|
Xue M, Tian Y, Sui Y, Zhao H, Gao H, Liang H, Qiu X, Sun Z, Zhang Y, Qin Y. Protective effect of fucoidan against iron overload and ferroptosis-induced liver injury in rats exposed to alcohol. Biomed Pharmacother 2022; 153:113402. [DOI: 10.1016/j.biopha.2022.113402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 02/09/2023] Open
|
179
|
Hou L, Li X, Su C, Chen K, Qu M. Current Status and Prospects of Research on Ischemia-Reperfusion Injury and Ferroptosis. Front Oncol 2022; 12:920707. [PMID: 36091169 PMCID: PMC9453670 DOI: 10.3389/fonc.2022.920707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/22/2022] [Indexed: 12/03/2022] Open
Abstract
The pathogenesis of ischemia-reperfusion injury is not fully understood, most of the current clinical treatment methods mainly relieve symptoms, and cannot prevent fundamentally. The mechanism of Ferroptosis has been extensively studied in recent years, but primarily focused on its therapeutic effects on tumors. After careful comparison, it is easy to find that the symptoms of ischemia-reperfusion injury often accompany by increased lipid peroxidation and increased intracellular iron level are the same as the manifestations of iron-dependent non-apoptotic Ferroptosis. Based on this “coincidence”, we launched this survey. After reading a lot of literature, we found that Ferroptosis is the first step of ischemia-reperfusion injury, and cell necrosis and inflammation are the subsequent steps secondary to Ferroptosis. In this review, we have collected and sorted out the current knowledge about the role and targets of Ferroptosis in the process of ischemia-reperfusion injury. And future studies may be biased towards exploring the use of ferroptosis inhibitors in combination with other treatment options.
Collapse
Affiliation(s)
- Lin Hou
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaodong Li
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chang Su
- First Clinical College, The First Afiliated Hospital of Dalian Medical University, Dalian, China
| | - Kailin Chen
- Second Clinical College, The Second Afiliated Hospital of Dalian Medical University, Dalian, China
| | - Maoxing Qu
- Department of Critical Care Medicine, The Second Afiliated Hospital of Dalian Medical University, Dalian, China
- *Correspondence: Maoxing Qu,
| |
Collapse
|
180
|
Zhu X, Chen X, Qiu L, Zhu J, Wang J. Norcantharidin induces ferroptosis via the suppression of NRF2/HO‑1 signaling in ovarian cancer cells. Oncol Lett 2022; 24:359. [PMID: 36168316 PMCID: PMC9478624 DOI: 10.3892/ol.2022.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/19/2022] [Indexed: 11/05/2022] Open
Abstract
Increasing evidence has indicated a crucial role of ferroptosis in ovarian cancer (OC). Norcantharidin (NCTD), a normethyl compound of cantharidin, is extensively used in clinical practice as an optional anticancer drug. However, whether NCTD leads to ferroptosis in OC has not been previously explored, at least to the best of our knowledge. In the present study, the effect of NCTD on SKOV3 and OVCAR-3 cells was evaluated. The experimental data of the present study revealed that NCTD significantly suppressed SKOV3 and OVCAR-3 cell viability in a concentration- and time-dependent manner. The results of Cell Counting Kit-8 assay revealed that NCTD treatment decreased SKOV3 and OVCAR-3 cell viability. In comparison, pre-incubation with ferrostatin-1 (Fer-1) significantly reversed the NCTD-induced reduction in SKOV3 and OVCAR-3 cell viability; however, no changes in cell viability were observed when the SKOV3 and OVCAR-3 cells were treated with NCTD, in combination with the apoptosis inhibitor, Z-VAD-FMK, the ferroptosis inhibitor, necrostatin-1, and the autophagy inhibitor, 3-methyladenine. Additionally, it was observed that NCTD markedly enhanced reactive oxygen species production and malondialdehyde and ferrous ion levels in the SKOV3 and OVCAR-3 cells; however, pre-incubation with Fer-1 abolished these effects. Flow cytometry also demonstrated a significant increase in cell death following treatment of the SKOV3 and OVCAR-3 cells with NCTD; however, pre-incubation with Fer-1 also reversed these effects. In vivo experiments demonstrated that NCTD significantly reduced tumor volume and weight. More importantly, it was revealed that nuclear factor erythroid 2-related factor 2 (NRF2), heme oxygenase 1 (HO-1), glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (xCT) expression levels were significantly decreased following NCTD treatment. Collectively, NCTD may represent a potent anticancer agent in OC cells, and NCTD-induced ferroptotic cell death may be achieved by inhibiting the NRF2/HO-1/GPX4/xCT axis.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Department of Obstetrics and Gynecology, Jianhu Hospital Affiliated to Nantong University, Yancheng, Jiangsu 224700, P.R. China
| | - Xiaohong Chen
- Department of Gynecology, People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Longshan Qiu
- Department of Obstetrics and Gynecology, Jianhu Hospital Affiliated to Nantong University, Yancheng, Jiangsu 224700, P.R. China
| | - Jianhua Zhu
- Department of Obstetrics and Gynecology, Jianhu Hospital Affiliated to Nantong University, Yancheng, Jiangsu 224700, P.R. China
| | - Jiancai Wang
- Department of Obstetrics and Gynecology, Jianhu Hospital Affiliated to Nantong University, Yancheng, Jiangsu 224700, P.R. China
| |
Collapse
|
181
|
Lin Z, Yang X, Guan L, Qin L, Ding J, Zhou L. The link between ferroptosis and airway inflammatory diseases: A novel target for treatment. Front Mol Biosci 2022; 9:985571. [PMID: 36060261 PMCID: PMC9428508 DOI: 10.3389/fmolb.2022.985571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is an iron-dependent mode of cell death characterized by intracellular lipid peroxide accumulation and a redox reaction imbalance. Compared with other modes of cell death, ferroptosis has specific biological and morphological features. The iron-dependent lipid peroxidation accumulation is manifested explicitly in the abnormal metabolism of intracellular lipid oxides catalyzed by excessive iron ions with the production of many reactive oxygen species and over-oxidization of polyunsaturated fatty acids. Recent studies have shown that various diseases, which include intestinal diseases and cancer, are associated with ferroptosis, but few studies are related to airway inflammatory diseases. This review provides a comprehensive analysis of the primary damage mechanisms of ferroptosis and summarizes the relationship between ferroptosis and airway inflammatory diseases. In addition to common acute and chronic airway inflammatory diseases, we also focus on the progress of research on COVID-19 in relation to ferroptosis. New therapeutic approaches and current issues to be addressed in the treatment of inflammatory airway diseases using ferroptosis are further proposed.
Collapse
|
182
|
Phenolic Acids from Fructus Chebulae Immaturus Alleviate Intestinal Ischemia-Reperfusion Injury in Mice through the PPARα/NF-κB Pathway. Molecules 2022; 27:molecules27165227. [PMID: 36014464 PMCID: PMC9415796 DOI: 10.3390/molecules27165227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/05/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022] Open
Abstract
Intestinal ischemia/reperfusion (II/R) injury is a common life-threatening complication with high morbidity and mortality. Chebulae Fructus Immaturus, the unripe fruit of Terminalia chebula Retz., also known as “Xiqingguo” or “Tibet Olive” in China, has been widely used in traditional Tibetan medicine throughout history. The phenolic acids’ extract of Chebulae Fructus Immaturus (XQG for short) has exhibited strong antioxidative, anti-inflammation, anti-apoptosis, and antibacterial activities. However, whether XQG can effectively ameliorate II/R injuries remains to be clarified. Our results showed that XQG could effectively alleviate II/R-induced intestinal morphological damage and intestinal barrier injury by decreasing the oxidative stress, inflammatory response, and cell death. Transcriptomic analysis further revealed that the main action mechanism of XQG protecting against II/R injury was involved in activating PPARα and inhibiting the NF-κB-signaling pathway. Our study suggests the potential usage of XQG as a new candidate to alleviate II/R injury.
Collapse
|
183
|
Wan Y, Dong P, Zhu X, Lei Y, Shen J, Liu W, Liu K, Zhang X. Bibliometric and visual analysis of intestinal ischemia reperfusion from 2004 to 2022. Front Med (Lausanne) 2022; 9:963104. [PMID: 36052333 PMCID: PMC9426633 DOI: 10.3389/fmed.2022.963104] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Intestinal ischemia/reperfusion (I/R) injury is a common tissue-organ damage occurring in surgical practice. This study aims to comprehensively review the collaboration and impact of countries, institutions, authors, subject areas, journals, keywords, and critical literature on intestinal I/R injury from a bibliometric perspective, and to assess the evolution of clustering of knowledge structures and identify hot trends and emerging topics. Methods Articles and reviews related to intestinal I/R were retrieved through subject search from Web of Science Core Collection. Bibliometric analyses were conducted on Excel 365, CiteSpace, VOSviewer, and Bibliometrix (R-Tool of R-Studio). Results A total of 1069 articles and reviews were included from 2004 to 2022. The number of articles on intestinal I/R injury gradually plateaued, but the number of citations increased. These publications were mainly from 985 institutions in 46 countries, led by China and the United States. Liu Kx published the most papers, while Chiu Cj had the largest number of co-citations. Analysis of the journals with the most outputs showed that most journals focused on surgical sciences, cell biology, and immunology. Macroscopic sketch and microscopic characterization of the entire knowledge domain were achieved through co-citation analysis. The roles of cell death, exosomes, intestinal flora, and anesthetics in intestinal I/R injury are the current and developing research focuses. The keywords "dexmedetomidine", "proliferation", and "ferroptosis" may also become new trends and focus of future research. Conclusion This study comprehensively reviews the research on intestinal I/R injury using bibliometric and visualization methods, and will help scholars better understand the dynamic evolution of intestinal I/R injury and provide directions for future research.
Collapse
Affiliation(s)
- Yantong Wan
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Peng Dong
- College of Anesthesiology, Southern Medical University, Guangzhou, China
| | - Xiaobing Zhu
- Department of Anesthesiology, Hospital of Traditional Chinese Medicine of Zhongshan City, Zhongshan, China
| | - Yuqiong Lei
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Junyi Shen
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Weifeng Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Kexuan Liu
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - Xiyang Zhang
- Department of Anesthesiology, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
184
|
Schisandrin A from Schisandra chinensis Attenuates Ferroptosis and NLRP3 Inflammasome-Mediated Pyroptosis in Diabetic Nephropathy through Mitochondrial Damage by AdipoR1 Ubiquitination. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5411462. [PMID: 35996380 PMCID: PMC9391610 DOI: 10.1155/2022/5411462] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/16/2022] [Indexed: 11/18/2022]
Abstract
Schisandra chinensis, as a Chinese functional food, is rich in unsaturated fatty acids, minerals, vitamins, and proteins. Hence, this study was intended to elucidate the effects and biological mechanism of Schisandrin A from Schisandra chinensis in DN. C57BL/6 mice were fed with a high-fat diet and then injected with streptozotocin (STZ). Human renal glomerular endothelial cells were stimulated with 20 mmol/L d-glucose for DN model. Schisandrin A presented acute kidney injury in mice of DN. Schisandrin A reduced oxidative stress and inflammation in model of DN. Schisandrin A reduced high glucose-induced ferroptosis and reactive oxygen species (ROS-)-mediated pyroptosis by mitochondrial damage in model of DN. Schisandrin A directly targeted AdipoR1 protein and reduced LPS+ATP-induced AdipoR1 ubiquitination in vitro model. Schisandrin A activated AdipoR1/AMPK signaling pathway and suppressed TXNIP/NLRP3 signaling pathway in vivo and in vitro model of DN. Conclusively, our study revealed that Schisandrin A from Schisandra chinensis attenuates ferroptosis and NLRP3 inflammasome-mediated pyroptosis in DN by AdipoR1/AMPK-ROS/mitochondrial damage. Schisandrin A is a possible therapeutic option for DN or other diabetes.
Collapse
|
185
|
Wang Y, Xu Y, Zhang Y. A novel ferroptosis-related long noncoding RNA signature for relapse free survival prediction in patients with breast cancer. Medicine (Baltimore) 2022; 101:e29573. [PMID: 35945765 PMCID: PMC9351903 DOI: 10.1097/md.0000000000029573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ferroptosis is the process of cell death dependent on iron. Growing evidence suggests that ferroptosis plays vital roles in the biological process of many cancers. However, just a small number of ferroptosis-related lncRNAs have been explored in depth. Ferroptosis-related lncRNAs in breast cancer (BC) were identified by co-expression analysis based on The Cancer Genome Atlas database (TCGA). The whole set was divided into a training set and a test set with a 1:1 ratio. Univariate Cox regression and LASSO analyses were performed to establish a signature in the 3 sets. Kaplan-Meier analysis and receiver operating characteristic (ROC) for the 3 sets validated the effectiveness and robustness of the signature. Besides, we also explore the relationship between this and clinical characteristics, immune cell infiltration and tumor microenvironment. Meanwhile, the nomogram was drawn by screening indicators of independent recurrent prediction. Finally, we evaluated the relationships between the signature and tumor microenvironment. We identified 391 ferroptosis-related lncRNAs and constructed a 5 lncRNAs-based signature in the training, test, and whole sets, stratifying patients into high-risk and low-risk groups. According to survival analysis, patients in the high-risk groups had worse relapse free survival (RFS) compared to the low risk-groups. The ROC curves indicated that the recurrent signature had a promising predictive capability for BC patients. Moreover, an independent factors-based nomogram model could offer the quantitative prediction and net benefit for the recurrence of BC patients. Finally, the microenvironment, including tumor mutational burden (TMB), immune cell functions and immune checkpoints, showed big differences between the 2 groups. The 5 ferroptosis-related lncRNAs and their signature might be novel promising biomarkers and immunotherapy targets for patients with BC.
Collapse
Affiliation(s)
- Yuzhi Wang
- Department of Laboratory Medicine, People’s Hospital of Deyang City, Deyang, Sichuan, P. R. China
| | - Yunfei Xu
- Department of Laboratory Medicine, Chengdu Women’s and Children’s Central Hospital, Chengdu, Sichuan, P. R. China
| | - Yi Zhang
- Department of Blood Transfusion, People’s Hospital of Deyang City, Deyang, Sichuan, P. R. China
- *Correspondence: Yi Zhang, People’s Hospital of Deyang City, No. 173, Section 1, Taishan North Road, Deyang City, Sichuan 618000, China (e-mail: )
| |
Collapse
|
186
|
Emerging Potential Therapeutic Targets of Ferroptosis in Skeletal Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3112388. [PMID: 35941905 PMCID: PMC9356861 DOI: 10.1155/2022/3112388] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
Abstract
Ferroptosis is a new programmed cell death characterized by the accumulation of lipid peroxidation mediated by iron and inflammation. Since the transcentury realization of ferroptosis as an iron-dependent modality of nonapoptotic cell death in 2012, there has been growing interest in the function of ferroptosis and its relationship to clinical diseases. Recent studies have shown that ferroptosis is associated with multiple diseases, including degenerative diseases, ischemia reperfusion injury, cardiovascular disease, and cancer. Cell death induced by ferroptosis has also been related to several skeletal diseases, such as inflammatory arthritis, osteoporosis, and osteoarthritis. Research on ferroptosis can clarify the pathogenesis of skeletal diseases and provide a novel therapeutic target for its treatment. In this review, we summarize current information about the molecular mechanism of ferroptosis and describe its emerging role and therapeutic potential in skeletal diseases.
Collapse
|
187
|
Machado SE, Spangler D, Stacks DA, Darley-Usmar V, Benavides GA, Xie M, Balla J, Zarjou A. Counteraction of Myocardial Ferritin Heavy Chain Deficiency by Heme Oxygenase-1. Int J Mol Sci 2022; 23:8300. [PMID: 35955444 PMCID: PMC9368247 DOI: 10.3390/ijms23158300] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 12/13/2022] Open
Abstract
Given the abundance of heme proteins (cytochromes) in the mitochondrion, it is evident that a meticulously orchestrated iron metabolism is essential for cardiac health. Here, we examined the functional significance of myocardial ferritin heavy chain (FtH) in a model of acute myocardial infarction. We report that FtH deletion did not alter either the mitochondrial regulatory and surveillance pathways (fission and fusion) or mitochondrial bioenergetics in response to injury. Furthermore, deletion of myocardial FtH did not affect cardiac function, assessed by measurement of left ventricular ejection fraction, on days 1, 7, and 21 post injury. To identify the modulated pathways providing cardiomyocyte protection coincident with FtH deletion, we performed unbiased transcriptomic analysis. We found that following injury, FtH deletion was associated with upregulation of several genes with anti-ferroptotic properties, including heme oxygenase-1 (HO-1) and the cystine/glutamate anti-porter (Slc7a11). These results suggested that HO-1 overexpression mitigates ferroptosis via upregulation of Slc7a11. Indeed, using transgenic mice with HO-1 overexpression, we demonstrate that overexpressed HO-1 is coupled with increased Slc7a11 expression. In conclusion, we demonstrate that following injury, myocardial FtH deletion leads to a compensatory upregulation in a number of anti-ferroptotic genes, including HO-1. Such HO-1 induction leads to overexpression of Slc7a11 and protects the heart against ischemia-reperfusion-mediated ferroptosis, preserves mitochondrial function, and overall function of the myocardium.
Collapse
Affiliation(s)
- Sarah E. Machado
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.E.M.); (D.S.); (D.A.S.)
| | - Daryll Spangler
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.E.M.); (D.S.); (D.A.S.)
| | - Delores A. Stacks
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.E.M.); (D.S.); (D.A.S.)
| | - Victor Darley-Usmar
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (V.D.-U.); (G.A.B.)
| | - Gloria A. Benavides
- Mitochondrial Medicine Laboratory, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (V.D.-U.); (G.A.B.)
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - József Balla
- ELKH-UD Vascular Pathophysiology Research Group 11003, Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Abolfazl Zarjou
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (S.E.M.); (D.S.); (D.A.S.)
| |
Collapse
|
188
|
Targeting ferroptosis as a vulnerability in pulmonary diseases. Cell Death Dis 2022; 13:649. [PMID: 35882850 PMCID: PMC9315842 DOI: 10.1038/s41419-022-05070-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 01/21/2023]
Abstract
Ferroptosis is an iron-dependent regulated cell death marked by excessive oxidative phospholipids (PLs). The polyunsaturated fatty acids-containing phospholipids (PUFA-PLs) are highly susceptible to lipid peroxidation under oxidative stress. Numerous pulmonary diseases occurrences and degenerative pathologies are driven by ferroptosis. This review discusses the role of ferroptosis in the pathogenesis of pulmonary diseases including asthma, lung injury, lung cancer, fibrotic lung diseases, and pulmonary infection. Additionally, it is proposed that targeting ferroptosis is a potential treatment for pulmonary diseases, particularly drug-resistant lung cancer or antibiotic-resistant pulmonary infection, and reduces treatment-related adverse events.
Collapse
|
189
|
Mucin 1 Inhibits Ferroptosis and Sensitizes Vitamin E to Alleviate Sepsis-Induced Acute Lung Injury through GSK3 β/Keap1-Nrf2-GPX4 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2405943. [PMID: 35910848 PMCID: PMC9334047 DOI: 10.1155/2022/2405943] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 12/14/2022]
Abstract
Background Ferroptosis is a nonapoptotic form of programmed cell death, which may be related to the occurrence and development of sepsis-induced acute respiratory distress syndrome (ARDS)/acute lung injury (ALI). Mucin 1 (MUC1) is a kind of macromolecule transmembrane glycoprotein. Previous studies have shown that MUC1 could relieve ALI in sepsis and predict whether sepsis patients would develop into ARDS. However, the role of MUC1 in the ferroptosis of sepsis-induced ALI/ARDS remains unclear. Materials and Methods Sera samples from 50 patients with sepsis/septic shock were used to detect iron metabolism-related markers. Western blot and qRT-PCR were conducted to detect the expression levels of ferroptosis-related genes. Enzyme-linked immunosorbent assay (ELISA) was performed to evaluate inflammatory factors. Transmission electron microscopy (TEM) was used to assess morphological changes of cells. Results The results showed that the iron metabolism-related indicators in sepsis-induced ARDS patients changed significantly, suggesting the iron metabolism disorder. The expression levels of ferroptosis-related genes in lung tissues of sepsis had marked changes, and the lipid peroxidation levels increased, while Ferrostatin-1 (Fer-1) could reverse the above results, which confirmed the occurrence of ferroptosis. In terms of mechanism studies, inhibition of MUC1 dimerization could increase the expression level of Keap1, reduce the phosphorylation level of GSK3β, inhibit the entry of Nrf2 into the nucleus, further inhibit the expression level of GPX4, enhance the lipid peroxidation level of lung tissues, trigger ferroptosis, and aggravate lung injury. Besides, inhibiting MUC1 reversed the alleviating effect of vitamin E on ALI caused by sepsis, increased the aggregation of inflammatory cells in lung tissues, and aggravated alveolar injury and edema. Conclusions Our study was the first to explore the changes of iron metabolism indicators in ALI/ARDS of sepsis, clarify the important role of ferroptosis in ALI/ARDS induced by sepsis, and reveal the effects and specific mechanisms of MUC1 in regulating ferroptosis, as well as the sensitization on vitamin E.
Collapse
|
190
|
Hu Q, Zuo T, Deng L, Chen S, Yu W, Liu S, Liu J, Wang X, Fan X, Dong Z. β-Caryophyllene suppresses ferroptosis induced by cerebral ischemia reperfusion via activation of the NRF2/HO-1 signaling pathway in MCAO/R rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154112. [PMID: 35550220 DOI: 10.1016/j.phymed.2022.154112] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/29/2022] [Accepted: 04/14/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Ischemic stroke is a complex brain disease regulated by several cell death processes, including apoptosis, autophagy, and ferroptosis. β-Caryophyllene (BCP), a natural bicyclic sesquiterpene abundantly found in essential oils, has been demonstrated to have potential pharmacological benefits in many diseases, including ischemic stroke. PURPOSE This research was to determine the existence of ferroptosis in the pathogenesis of acute ischemic stroke and investigate whether BCP can inhibit ferroptosis to improve cerebral ischemia injury by activating the NRF2/HO-1 signaling pathway in rats. METHODS First, we verified ferroptosis by assessing proferroptotic changes after middle cerebral artery occlusion reperfusion (MCAO/R), along with protein and lipid peroxidation levels. Then male rats were divided randomly into Sham, MCAO/R, ML385 (NRF2-specific inhibitor) and BCP groups. The effects of BCP on cerebral injury were detected by the modified neurological severity score, TTC staining, and hematoxylin-eosin staining. We conducted western blotting analyzes of proteins, including those involved in ferroptosis and related signaling pathways. To demonstrate the neuroprotective effect of BCP in vitro, primary astrocytes were pretreated with different concentrations of BCP (10, 20, and 40 μM) for 24 h before oxygen-glucose deprivation/re-oxygenation (ODG/R). RESULTS We concluded that ferroptosis was engaged in the process of I/R-induced neurological damage, implying that this novel type of cell death might provide new therapeutic options for the clinical treatment of ischemic stroke. In vivo study proved that BCP improved neurological scores, infarct volume, and pathological features after MCAO/R. We demonstrated that BCP evidently enhanced NRF2 nuclear translocation, activated the NRF2/HO-1 pathway, which protected against ferroptosis. In vitro investigation revealed the same results. BCP decreased OGD/R-induced ROS generation and iron accumulation. Furthermore, the neuroprotective effects of BCP were reversed by the NRF2 inhibitor ML385. CONCLUSION Our results indicated the critical role of ferroptosis in cerebral I/R injury. For the first time, we showed that the significant neuroprotective effects of BCP in attenuating ischemic stroke injury are correlated with ferroptosis regulation, and its mechanism is associated with activation of the NRF2/HO-1 axis.
Collapse
Affiliation(s)
- Qingwen Hu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Tianrui Zuo
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Ling Deng
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Sha Chen
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Wu Yu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Shengwei Liu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - JingDong Liu
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xuan Wang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Xiaomei Fan
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhi Dong
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
191
|
Zhang L, Hobeika CS, Khabibullin D, Yu D, Filippakis H, Alchoueiry M, Tang Y, Lam HC, Tsvetkov P, Georgiou G, Lamb C, Stone E, Puigserver P, Priolo C, Henske EP. Hypersensitivity to ferroptosis in chromophobe RCC is mediated by a glutathione metabolic dependency and cystine import via solute carrier family 7 member 11. Proc Natl Acad Sci U S A 2022; 119:e2122840119. [PMID: 35867762 PMCID: PMC9651629 DOI: 10.1073/pnas.2122840119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/14/2022] [Indexed: 01/11/2023] Open
Abstract
Chromophobe (Ch) renal cell carcinoma (RCC) arises from the intercalated cell in the distal nephron. There are no proven treatments for metastatic ChRCC. A distinguishing characteristic of ChRCC is strikingly high levels of reduced (GSH) and oxidized (GSSG) glutathione. Here, we demonstrate that ChRCC-derived cells exhibit higher sensitivity to ferroptotic inducers compared with clear-cell RCC. ChRCC-derived cells are critically dependent on cystine via the cystine/glutamate antiporter xCT to maintain high levels of glutathione, making them sensitive to inhibitors of cystine uptake and cyst(e)inase. Gamma-glutamyl transferase 1 (GGT1), a key enzyme in glutathione homeostasis, is markedly suppressed in ChRCC relative to normal kidney. Importantly, GGT1 overexpression inhibits the proliferation of ChRCC cells in vitro and in vivo, suppresses cystine uptake, and decreases levels of GSH and GSSG. Collectively, these data identify ferroptosis as a metabolic vulnerability in ChRCC, providing a potential avenue for targeted therapy for these distinctive tumors.
Collapse
Affiliation(s)
- Long Zhang
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Charbel S. Hobeika
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Damir Khabibullin
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Deyang Yu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA 02139
| | - Harilaos Filippakis
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Michel Alchoueiry
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Yan Tang
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Hilaire C. Lam
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | | | - George Georgiou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Candice Lamb
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712
| | - Everett Stone
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115
- Broad Institute of MIT and Harvard, Cambridge, MA 02139
| | - Carmen Priolo
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| | - Elizabeth P. Henske
- Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
192
|
Wang S, Liu Z, Geng J, Li L, Feng X. An overview of ferroptosis in non-alcoholic fatty liver disease. Biomed Pharmacother 2022; 153:113374. [PMID: 35834990 DOI: 10.1016/j.biopha.2022.113374] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a public health problem associated with high mortality and high morbidity rates worldwide. Presently, its complex pathophysiology is still unclear, and there is no specific drug to reverse NAFLD. Ferroptosis is an iron-dependent and non-apoptotic form of cell death characterized by the iron-induced accumulation of lipid reactive oxygen species (ROS), which damage nucleic acids, proteins, and lipids; generate intracellular oxidative stress; and ultimately cause cell death. Emerging evidence indicates that ferroptosis is involved in the progression of NAFLD, although the mechanism of action of ferroptosis in NAFLD is still poorly understood. Herein, we summarize the mechanism of action of ferroptosis in certain diseases, especially in the pathogenesis of NAFLD, and discuss the potential therapeutic approaches currently used to treat NAFLD. This review also highlights further directions for the treatment and prevention of NAFLD and related diseases.
Collapse
Affiliation(s)
- Shendong Wang
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Zhaojun Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Jiafeng Geng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Liangge Li
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China
| | - Xiujing Feng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, Shandong, China.
| |
Collapse
|
193
|
Sadrkhanloo M, Entezari M, Orouei S, Zabolian A, Mirzaie A, Maghsoudloo A, Raesi R, Asadi N, Hashemi M, Zarrabi A, Khan H, Mirzaei S, Samarghandian S. Targeting Nrf2 in ischemia-reperfusion alleviation: From signaling networks to therapeutic targeting. Life Sci 2022; 300:120561. [PMID: 35460707 DOI: 10.1016/j.lfs.2022.120561] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/28/2022] [Accepted: 04/13/2022] [Indexed: 12/15/2022]
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of redox balance and it responds to various cell stresses that oxidative stress is the most well-known one. The Nrf2 should undergo nuclear translocation to exert its protective impacts and decrease ROS production. On the other hand, ischemic/reperfusion (I/R) injury is a pathological event resulting from low blood flow to an organ and followed by reperfusion. The I/R induces cell injury and organ dysfunction. The present review focuses on Nrf2 function in alleviation of I/R injury. Stimulating of Nrf2 signaling ameliorates I/R injury in various organs including lung, liver, brain, testis and heart. The Nrf2 enhances activity of antioxidant enzymes to reduce ROS production and prevent oxidative stress-mediated cell death. Besides, Nrf2 reduces inflammation via decreasing levels of pro-inflammatory factors including IL-6, IL-1β and TNF-α. Nrf2 signaling is beneficial in preventing apoptosis and increasing cell viability. Nrf2 induces autophagy to prevent apoptosis during I/R injury. Furthermore, it can interact with other molecular pathways including PI3K/Akt, NF-κB, miRNAs, lncRNAs and GSK-3β among others, to ameliorate I/R injury. The therapeutic agents, most of them are phytochemicals such as resveratrol, berberine and curcumin, induce Nrf2 signaling in I/R injury alleviation.
Collapse
Affiliation(s)
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Sima Orouei
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amirhossein Zabolian
- Resident of Orthopedics, Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran.
| | - Amirreza Mirzaie
- Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Amin Maghsoudloo
- Young Researchers and Elite Club, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Rasoul Raesi
- Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Asadi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul 34396, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
194
|
Shan Y, Li J, Zhu A, Kong W, Ying R, Zhu W. Ginsenoside Rg3 ameliorates acute pancreatitis by activating the NRF2/HO‑1‑mediated ferroptosis pathway. Int J Mol Med 2022; 50:89. [PMID: 35582998 PMCID: PMC9162051 DOI: 10.3892/ijmm.2022.5144] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/01/2022] [Indexed: 12/02/2022] Open
Abstract
Acute pancreatitis (AP) is an inflammatory disorder that has been associated with systemic inflammatory response syndrome. Ginsenoside Rg3 is a major active component of Panax ginseng, which has been demonstrated to exert potent protective effects on hyperglycemia and diabetes. However, it remains to be determined whether Rg3 ameliorates AP. Thus, an in vitro AP cell model was established in the present study by exposing AR42J cells to cerulein (Cn). AR42J cell viability was increased in the Rg3‑treated group as compared with the Cn‑exposed group. Simultaneously, the number of dead AR42J cells was decreased in the Rg3‑treated group compared with the group treated with Cn only. Furthermore, following treatment with Rg3, the production of malondialdehyde (MDA) and ferrous ion (Fe2+) in the AR42J cells was reduced, accompanied by increased glutathione (GSH) levels. Western blot analysis revealed that the decrease in glutathione peroxidase 4 (GPX4) and cystine/glutamate transporter (xCT) levels induced by Cn were reversed by Rg3 treatment in the AR42J cells. Mice treated with Cn exhibited increased serum amylase levels, as well as increased levels of TNFα, IL‑6, IL‑1β, pancreatic MDA, reactive oxygen species (ROS) and Fe2+ production. Following Rg3 treatment, ROS accumulation and cell death were decreased in the pancreatic tissues compared with the AP group. Furthermore, in the pancreatic tissues of the AP model, the expression of nuclear factor‑erythroid factor 2‑related factor 2 (NRF2)/heme oxygenase 1 (HO‑1)/xCT/GPX4 was suppressed. In comparison, the NRF2/HO‑1/xCT/GPX4 pathway was activated in pancreatic tissues following Rg3 administration. Taken together, the present study, to the best of our knowledge, is the first to reveal a protective role for Rg3 in mice with AP by suppressing oxidative stress‑related ferroptosis and the activation of the NRF2/HO‑1 pathway.
Collapse
Affiliation(s)
- Yuqiang Shan
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Jiaotao Li
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Akao Zhu
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Wencheng Kong
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Rongchao Ying
- Department of Gastroenterological Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Weiming Zhu
- Department of General Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
195
|
Wang B, Ma W, Di Y. Activation of the Nrf2/GPX4 Signaling by Pratensein From Trifolium pretense Mitigates Ferroptosis in OGD/R-Insulted H9c2 Cardiomyocytes. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221115313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Pratensein (PTS) is a type of flavonoid that has been identified in various plants, such as Trifolium pretense L., with a considerable cytoprotective effect against exogenous stimuli. However, the biological function of PTS in cardiomyocytes in response to ischemia-reperfusion (I/R) conditions is unclear. Purpose: In our study, we examined the function of PTS in the progression of myocardial infarction (MI). Methods: In this study, we established an oxygen-glucose deprivation/reoxygenation (OGD/R) model in H9c2 cells. The Cell Counting Kit-8 assay was used to assess the viability of H9c2 cells. The TdT-mediated dUTP-biotin nick end labeling and flow cytometry assays confirmed apoptosis of H9c2 cells. Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) content, and Fe2+ level were evaluated. Western blotting was used to detect relative protein expression. Results: We firstly found that PTS reduced apoptosis of H9c2 cells in response to OGD/R stimulation. PTS attenuates the increase in ROS and MDA production and the decrease in GSH content caused by OGD/R. The increased Fe2+ level in OGD/R-treated H9c2 cells was also restrained by PTS. For mechanism studies, we found that the decreased expression levels of Nrf2 and GPX4 in OGD/R-treated H9c2 cells were significantly elevated after PTS treatment. Knockdown of Nrf2 in H9c2 cells reversed the protective effect of PTS on ferroptosis in H9c2 cells induced by OGD/R, indicated by reduced cell viability, increased apoptotic cells and oxidation markers, and increased Fe2+ level. Conclusion: Based on these findings, we speculated that PTS may protect H9c2 cells from OGD/R-caused ferroptosis by modulating the Nrf2/GPX4 signaling.
Collapse
Affiliation(s)
- Bin Wang
- Department of Cardiology, Tangshan Gongren Hospital, Tangshan City, China
| | - Wei Ma
- Department of Cardiology, Tangshan Gongren Hospital, Tangshan City, China
| | - Yali Di
- Department of Cardiology, Tangshan Gongren Hospital, Tangshan City, China
| |
Collapse
|
196
|
Knockdown of CBX7 inhibits ferroptosis in rats with cerebral ischemia and improves cognitive dysfunction by activating the Nrf2/HO-1 pathway. J Biosci 2022. [DOI: 10.1007/s12038-022-00275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
197
|
Ferroptosis and Its Role in Chronic Diseases. Cells 2022; 11:cells11132040. [PMID: 35805124 PMCID: PMC9265893 DOI: 10.3390/cells11132040] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 02/04/2023] Open
Abstract
Ferroptosis, which has been widely associated with many diseases, is an iron-dependent regulated cell death characterized by intracellular lipid peroxide accumulation. It exhibits morphological, biochemical, and genetic characteristics that are unique in comparison to other types of cell death. The course of ferroptosis can be accurately regulated by the metabolism of iron, lipids, amino acids, and various signal pathways. In this review, we summarize the basic characteristics of ferroptosis, its regulation, as well as the relationship between ferroptosis and chronic diseases such as cancer, nervous system diseases, metabolic diseases, and inflammatory bowel diseases. Finally, we describe the regulatory effects of food-borne active ingredients on ferroptosis.
Collapse
|
198
|
Li Y, Yang Y, Yang Y. Multifaceted Roles of Ferroptosis in Lung Diseases. Front Mol Biosci 2022; 9:919187. [PMID: 35813823 PMCID: PMC9263225 DOI: 10.3389/fmolb.2022.919187] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/20/2022] [Indexed: 01/08/2023] Open
Abstract
Ferroptosis is a distinct type of programmed cell death (PCD) that depends on iron and is characterized by the accumulation of intracellular iron, exhaustion of glutathione, deactivation of glutathione peroxidase, and promotion of lipid peroxidation. Recently, accumulated investigations have demonstrated that ferroptosis is strongly correlated with the initiation and development of many lung diseases. In this review, we summarized the contribution of ferroptosis to the pathologic process of lung diseases, namely, obstructive lung diseases (chronic obstructive pulmonary disease, asthma, and cystic fibrosis), interstitial lung diseases (pulmonary fibrosis of different causes), pulmonary diseases of vascular origin (ischemia-reperfusion injury and pulmonary hypertension), pulmonary infections (bacteria, viruses, and fungi), acute lung injury, acute respiratory distress syndrome, obstructive sleep apnea, pulmonary alveolar proteinosis, and lung cancer. We also discussed the therapeutic potential of targeting ferroptosis for these lung diseases.
Collapse
Affiliation(s)
- Yi Li
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ying Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
| | - Yongfeng Yang
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, China
- Precision Medicine Key Laboratory, West China Hospital, Sichuan University, Chengdu, China
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yongfeng Yang,
| |
Collapse
|
199
|
Keskinidou C, Vassiliou AG, Dimopoulou I, Kotanidou A, Orfanos SE. Mechanistic Understanding of Lung Inflammation: Recent Advances and Emerging Techniques. J Inflamm Res 2022; 15:3501-3546. [PMID: 35734098 PMCID: PMC9207257 DOI: 10.2147/jir.s282695] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening lung injury characterized by an acute inflammatory response in the lung parenchyma. Hence, it is considered as the most appropriate clinical syndrome to study pathogenic mechanisms of lung inflammation. ARDS is associated with increased morbidity and mortality in the intensive care unit (ICU), while no effective pharmacological treatment exists. It is very important therefore to fully characterize the underlying pathobiology and the related mechanisms, in order to develop novel therapeutic approaches. In vivo and in vitro models are important pre-clinical tools in biological and medical research in the mechanistic and pathological understanding of the majority of diseases. In this review, we will present data from selected experimental models of lung injury/acute lung inflammation, which have been based on clinical disorders that can lead to the development of ARDS and related inflammatory lung processes in humans, including ventilation-induced lung injury (VILI), sepsis, ischemia/reperfusion, smoke, acid aspiration, radiation, transfusion-related acute lung injury (TRALI), influenza, Streptococcus (S.) pneumoniae and coronaviruses infection. Data from the corresponding clinical conditions will also be presented. The mechanisms related to lung inflammation that will be covered are oxidative stress, neutrophil extracellular traps, mitogen-activated protein kinase (MAPK) pathways, surfactant, and water and ion channels. Finally, we will present a brief overview of emerging techniques in the field of omics research that have been applied to ARDS research, encompassing genomics, transcriptomics, proteomics, and metabolomics, which may recognize factors to help stratify ICU patients at risk, predict their prognosis, and possibly, serve as more specific therapeutic targets.
Collapse
Affiliation(s)
- Chrysi Keskinidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Alice G Vassiliou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Ioanna Dimopoulou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Anastasia Kotanidou
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| | - Stylianos E Orfanos
- First Department of Critical Care Medicine and Pulmonary Services, School of Medicine, National and Kapodistrian University of Athens, "Evangelismos" Hospital, Athens, Greece
| |
Collapse
|
200
|
Xin Q, Ji Q, Zhang Y, Ma W, Tian B, Liu Y, Chen Y, Wang F, Zhang R, Wang X, Yuan J. Aberrant ROS Served as an Acquired Vulnerability of Cisplatin-Resistant Lung Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1112987. [PMID: 35770045 PMCID: PMC9236771 DOI: 10.1155/2022/1112987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 05/22/2022] [Accepted: 05/30/2022] [Indexed: 12/28/2022]
Abstract
Lung cancer has become a global health issue in recent decades. Approximately 80-85% of cases are non-small-cell lung cancer (NSCLC). Despite the high rate of resistance, cisplatin-base chemotherapy is still the main treatment for NSCLC patients. Thus, overcoming cisplatin resistance is urgently needed in NSCLC therapy. In this study, we identify NADPH metabolism and reactive oxygen species (ROS) levels as the main causes accounting for cisplatin resistance. Based on a small panel consisting of common chemotherapy drugs or compounds, APR-246 is proved to be an effective compound targeting cisplatin-resistant NSCLC cells. APR-246 specially inhibits proliferation and colony formation of cisplatin-resistant cells. In details, APR-246 can significantly cause G0/G1 accumulation and S phase arrest of cisplatin resistant cells and gives rise to severe mitochondria dysfunction as well as elevated apoptosis. Further study proves that it is the aberrant ROS levels as well as NRF2/SLC7A11/GSH axis dysfunction accounting for the specific antitumor effects of APR-246. Scavenging ROS with N-acetylcysteine (NAC) disrupts the inhibitory effect of APR-246 on cisplatin-resistant cells. Mechanistically, NRF2 is specifically degraded by the proteasome following its own ubiquitylation in APR-246-treated cisplatin-resistant cells, which in turn decreases NRF2/SLC7A11/GSH axis activity. Our study provides new insights into the biology driving cisplatin resistance of lung cancer and highlights APR-246 as a potential therapeutic reagent for overcoming cisplatin resistance.
Collapse
Affiliation(s)
- Qian Xin
- Central Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Qinghong Ji
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Ying Zhang
- Department of Respiratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Weihong Ma
- Department of Obstetrics, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250033, China
| | - Baoqing Tian
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yanli Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yunsong Chen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Fei Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ran Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xingwu Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jupeng Yuan
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- Key Laboratory for Experimental Teratology of the Ministry of Education, Shandong University, Jinan, Shandong 250033, China
| |
Collapse
|