151
|
Wu M, Cai X, Lin J, Zhang X, Scott EM, Li X. Association between fibre intake and indoxyl sulphate/P-cresyl sulphate in patients with chronic kidney disease: Meta-analysis and systematic review of experimental studies. Clin Nutr 2018; 38:2016-2022. [PMID: 30274900 DOI: 10.1016/j.clnu.2018.09.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 08/26/2018] [Accepted: 09/11/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND OBJECTIVE Indoxyl sulphate (IS) and p-cresyl sulphate (PCS), which are difficult to excrete adequately out of the body, are closely related to the progression of chronic kidney disease (CKD) and various deuteropathy. Better than peritoneal dialysis (PD) and haemodialysis (HD), dietary fibre has been considered to reduce IS and PCS levels. In view of the absence of formal recommendations on fibre intake in CKD nutritional guidelines, we conducted this meta-analysis to assess the effects of dietary fibre on IS and PCS for CKD patients. METHODS The effects were pooled and expressed in terms of weighted mean difference (WMD) with 95% confidence interval (95% CI). Q test and I2 statistics were used to assess the heterogeneity. RESULTS A total of 12 relevant estimates from 7 reports, including 203 CKD patients, showed that dietary fibre significantly reduced their PCS level (WMD = -16.160, 95% CI: -23.824, -8.495). CONCLUSIONS The meta-analysis produced a strong corroboration that dietary fibre intake does have a good therapeutic effect on patients with CKD. The conclusions need to be validated by randomised controlled experiments (RCT) with better design, larger samples, longer course of treatment and higher quality.
Collapse
Affiliation(s)
- Mengyin Wu
- Department of Epidemiology & Biostatistics, Zhejiang University, Hangzhou, China
| | - Xianlei Cai
- Department of Gastrointestinal Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Jingjing Lin
- Department of Epidemiology & Biostatistics, Zhejiang University, Hangzhou, China
| | - Xinhan Zhang
- Department of Epidemiology & Biostatistics, Zhejiang University, Hangzhou, China
| | - E Marian Scott
- Department of Mathematics and Statistics, University of Glasgow, Glasgow, UK.
| | - Xiuyang Li
- Department of Epidemiology & Biostatistics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
152
|
Inflammation-Related Mechanisms in Chronic Kidney Disease Prediction, Progression, and Outcome. J Immunol Res 2018; 2018:2180373. [PMID: 30271792 PMCID: PMC6146775 DOI: 10.1155/2018/2180373] [Citation(s) in RCA: 339] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Persistent, low-grade inflammation is now considered a hallmark feature of chronic kidney disease (CKD), being involved in the development of all-cause mortality of these patients. Although substantial improvements have been made in clinical care, CKD remains a major public health burden, affecting 10–15% of the population, and its prevalence is constantly growing. Due to its insidious nature, CKD is rarely diagnosed in early stages, and once developed, its progression is unfortunately irreversible. There are many factors that contribute to the setting of the inflammatory status in CKD, including increased production of proinflammatory cytokines, oxidative stress and acidosis, chronic and recurrent infections, altered metabolism of adipose tissue, and last but not least, gut microbiota dysbiosis, an underestimated source of microinflammation. In this scenario, a huge step forward was made by the increasing progression of omics approaches, specially designed for identification of biomarkers useful for early diagnostic and follow-up. Recent omics advances could provide novel insights in deciphering the disease pathophysiology; thus, identification of circulating biomarker panels using state-of-the-art proteomic technologies could improve CKD early diagnosis, monitoring, and prognostics. This review aims to summarize the recent knowledge regarding the relationship between inflammation and CKD, highlighting the current proteomic approaches, as well as the inflammasomes and gut microbiota dysbiosis involvement in the setting of CKD, culminating with the troubling bidirectional connection between CKD and renal malignancy, raised on the background of an inflammatory condition.
Collapse
|
153
|
Biotic Supplements for Renal Patients: A Systematic Review and Meta-Analysis. Nutrients 2018; 10:nu10091224. [PMID: 30181461 PMCID: PMC6165363 DOI: 10.3390/nu10091224] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
Intestinal dysbiosis is highly pervasive among chronic kidney disease (CKD) patients and may play a key role in disease progression and complications. We performed a systematic review and meta-analysis to evaluate effects of biotic supplements on a large series of outcomes in renal patients. Ovid-MEDLINE, PubMed and CENTRAL databases were searched for randomized controlled trials (RCTs) comparing any biotic (pre-, pro- or synbiotics) to standard therapy or placebo. Primary endpoints were change in renal function and cardiovascular events; secondary endpoints were change in proteinuria/albuminuria, inflammation, uremic toxins, quality of life and nutritional status. Seventeen eligible studies (701 participants) were reviewed. Biotics treatment did not modify estimated glomerular filtration rate (eGFR) (mean difference (MD) 0.34 mL/min/1.73 m2; 95% CI −0.19, 0.86), serum creatinine (MD −0.13 mg/dL; 95% confidence interval (CI) −0.32, 0.07), C-reactive protein (MD 0.75 mg/dL; 95% CI −1.54, 3.03) and urea (standardized MD (SMD) −0.02; 95% CI −0.25, 0.20) as compared to control. Outcome data on the other endpoints of interest were lacking, sparse or in an unsuitable format to be analyzed collectively. According to the currently available evidence, there is no conclusive rationale for recommending biotic supplements for improving outcomes in renal patients. Large-scale, well-designed and adequately powered studies focusing on hard rather than surrogate outcomes are still awaited.
Collapse
|
154
|
St-Jules DE, Goldfarb DS, Popp CJ, Pompeii ML, Liebman SE. Managing protein-energy wasting in hemodialysis patients: A comparison of animal- and plant-based protein foods. Semin Dial 2018; 32:41-46. [DOI: 10.1111/sdi.12737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- David E. St-Jules
- Division of Health and Behavior, Department of Population Health; New York University School of Medicine; New York NY USA
| | - David S. Goldfarb
- Division of Nephrology, Department of Medicine; New York University School of Medicine; New York NY USA
| | - Collin J. Popp
- Division of Health and Behavior, Department of Population Health; New York University School of Medicine; New York NY USA
| | - Mary Lou Pompeii
- Division of Health and Behavior, Department of Population Health; New York University School of Medicine; New York NY USA
| | - Scott E. Liebman
- Division of Nephrology, Department of Medicine; University of Rochester School of Medicine; Rochester NY USA
| |
Collapse
|
155
|
Velasquez MT, Centron P, Barrows I, Dwivedi R, Raj DS. Gut Microbiota and Cardiovascular Uremic Toxicities. Toxins (Basel) 2018; 10:E287. [PMID: 29997362 PMCID: PMC6071268 DOI: 10.3390/toxins10070287] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease (CVD) remains a major cause of high morbidity and mortality in patients with chronic kidney disease (CKD). Numerous CVD risk factors in CKD patients have been described, but these do not fully explain the high pervasiveness of CVD or increased mortality rates in CKD patients. In CKD the loss of urinary excretory function results in the retention of various substances referred to as "uremic retention solutes". Many of these molecules have been found to exert toxicity on virtually all organ systems of the human body, leading to the clinical syndrome of uremia. In recent years, an increasing body of evidence has been accumulated that suggests that uremic toxins may contribute to an increased cardiovascular disease (CVD) burden associated with CKD. This review examined the evidence from several clinical and experimental studies showing an association between uremic toxins and CVD. Special emphasis is addressed on emerging data linking gut microbiota with the production of uremic toxins and the development of CKD and CVD. The biological toxicity of some uremic toxins on the myocardium and the vasculature and their possible contribution to cardiovascular injury in uremia are also discussed. Finally, various therapeutic interventions that have been applied to effectively reduce uremic toxins in patients with CKD, including dietary modifications, use of prebiotics and/or probiotics, an oral intestinal sorbent that adsorbs uremic toxins and precursors, and innovative dialysis therapies targeting the protein-bound uremic toxins are also highlighted. Future studies are needed to determine whether these novel therapies to reduce or remove uremic toxins will reduce CVD and related cardiovascular events in the long-term in patients with chronic renal failure.
Collapse
Affiliation(s)
- Manuel T Velasquez
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC 20037, USA.
| | - Patricia Centron
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC 20037, USA.
| | - Ian Barrows
- Department of Medicine, Georgetown University, Washington, DC 20007, USA.
| | - Rama Dwivedi
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC 20037, USA.
- United States Food and Drug Administration, Silver Spring, MD 20993, USA.
| | - Dominic S Raj
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC 20037, USA.
| |
Collapse
|
156
|
Lee SA, Cozzi M, Bush EL, Rabb H. Distant Organ Dysfunction in Acute Kidney Injury: A Review. Am J Kidney Dis 2018; 72:846-856. [PMID: 29866457 DOI: 10.1053/j.ajkd.2018.03.028] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 03/25/2018] [Indexed: 01/09/2023]
Abstract
Acute kidney injury (AKI) is common in critically ill patients and is associated with increased morbidity and mortality. Dysfunction of other organs is an important cause of poor outcomes from AKI. Ample clinical and epidemiologic data show that AKI is associated with distant organ dysfunction in lung, heart, brain, and liver. Recent advancements in basic and clinical research have demonstrated physiologic and molecular mechanisms of distant organ interactions in AKI, including leukocyte activation and infiltration, generation of soluble factors such as inflammatory cytokines/chemokines, and endothelial injury. Oxidative stress and production of reactive oxygen species, as well as dysregulation of cell death in distant organs, are also important mechanism of AKI-induced distant organ dysfunction. This review updates recent clinical and experimental findings on organ crosstalk in AKI and highlights potential molecular mechanisms and therapeutic targets to improve clinical outcomes during AKI.
Collapse
Affiliation(s)
- Sul A Lee
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD; Yonsei University College of Medicine, Seoul, South Korea
| | - Martina Cozzi
- Department of Nephrology and Dialysis, Azienda Sanitaria Universitaria Integrata di Trieste, Trieste, Italy
| | - Errol L Bush
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hamid Rabb
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
157
|
Vanholder R, Van Laecke S, Glorieux G, Verbeke F, Castillo-Rodriguez E, Ortiz A. Deleting Death and Dialysis: Conservative Care of Cardio-Vascular Risk and Kidney Function Loss in Chronic Kidney Disease (CKD). Toxins (Basel) 2018; 10:E237. [PMID: 29895722 PMCID: PMC6024824 DOI: 10.3390/toxins10060237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
The uremic syndrome, which is the clinical expression of chronic kidney disease (CKD), is a complex amalgam of accelerated aging and organ dysfunctions, whereby cardio-vascular disease plays a capital role. In this narrative review, we offer a summary of the current conservative (medical) treatment options for cardio-vascular and overall morbidity and mortality risk in CKD. Since the progression of CKD is also associated with a higher cardio-vascular risk, we summarize the interventions that may prevent the progression of CKD as well. We pay attention to established therapies, as well as to novel promising options. Approaches that have been considered are not limited to pharmacological approaches but take into account lifestyle measures and diet as well. We took as many randomized controlled hard endpoint outcome trials as possible into account, although observational studies and post hoc analyses were included where appropriate. We also considered health economic aspects. Based on this information, we constructed comprehensive tables summarizing the available therapeutic options and the number and kind of studies (controlled or not, contradictory outcomes or not) with regard to each approach. Our review underscores the scarcity of well-designed large controlled trials in CKD. Nevertheless, based on the controlled and observational data, a therapeutic algorithm can be developed for this complex and multifactorial condition. It is likely that interventions should be aimed at targeting several modifiable factors simultaneously.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Steven Van Laecke
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Francis Verbeke
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, 9000 Ghent, Belgium.
| | | | - Alberto Ortiz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain.
| |
Collapse
|
158
|
Koppe L, Fouque D, Soulage CO. The Role of Gut Microbiota and Diet on Uremic Retention Solutes Production in the Context of Chronic Kidney Disease. Toxins (Basel) 2018; 10:toxins10040155. [PMID: 29652797 PMCID: PMC5923321 DOI: 10.3390/toxins10040155] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023] Open
Abstract
Uremic retention solutes (URS) are associated with cardiovascular complications and poor survival in chronic kidney disease. The better understanding of the origin of a certain number of these toxins enabled the development of new strategies to reduce their production. URS can be classified according to their origins (i.e., host, microbial, or exogenous). The discovery of the fundamental role that the intestinal microbiota plays in the production of many URS has reinstated nutrition at the heart of therapeutics to prevent the accumulation of URS and their deleterious effects. The intestinal microbiota is personalized and is strongly influenced by dietary habits, such as the quantity and the quality of dietary protein and fibers. Herein, this review out lines the role of intestinal microbiota on URS production and the recent discoveries on the effect of diet composition on the microbial balance in the host with a focus on the effect on URS production.
Collapse
Affiliation(s)
- Laetitia Koppe
- Department Nephrology, Centre Hospitalier Lyon Sud, F-69495 Pierre-Benite, France.
- CarMeN Lab, INSA-Lyon, INSERM U1060, INRA, University Lyon 1, F-69621 Villeurbanne, France.
| | - Denis Fouque
- Department Nephrology, Centre Hospitalier Lyon Sud, F-69495 Pierre-Benite, France.
- CarMeN Lab, INSA-Lyon, INSERM U1060, INRA, University Lyon 1, F-69621 Villeurbanne, France.
| | - Christophe O Soulage
- CarMeN Lab, INSA-Lyon, INSERM U1060, INRA, University Lyon 1, F-69621 Villeurbanne, France.
| |
Collapse
|
159
|
Khor BH, Narayanan SS, Sahathevan S, Gafor AHA, Daud ZAM, Khosla P, Sabatino A, Fiaccadori E, Chinna K, Karupaiah T. Efficacy of Nutritional Interventions on Inflammatory Markers in Haemodialysis Patients: A Systematic Review and Limited Meta-Analysis. Nutrients 2018; 10:nu10040397. [PMID: 29570616 PMCID: PMC5946182 DOI: 10.3390/nu10040397] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/20/2018] [Accepted: 03/21/2018] [Indexed: 12/31/2022] Open
Abstract
Low-grade chronic inflammation is prevalent in patients undergoing haemodialysis (HD) treatment and is linked to the development of premature atherosclerosis and mortality. The non-pharmacological approach to treat inflammation in HD patients through nutritional intervention is well cited. We aimed to assess the efficacy of different nutritional interventions at improving inflammatory outcomes in HD patients, based on markers such as C-reactive protein (CRP), interleukin-6 (IL-6), and tumour necrosis factor-α (TNF-α). We searched PubMed, Cochrane Library, and Embase for randomized controlled trials (RCT) published before June 2017. Inclusion criteria included RCTs on adult patients on maintenance HD treatment with duration of nutritional interventions for a minimum 4 weeks. Risk of bias was assessed using the Jadad score. In total, 46 RCTs experimenting different nutritional interventions were included in the review and categorized into polyphenols rich foods, omega-3 fatty acids, antioxidants, vitamin D, fibres, and probiotics. Meta-analyses indicated significant reduction in CRP levels by omega-3 fatty acids (Random model effect: -0.667 mg/L, p < 0.001) and vitamin E (fixed model effect: -0.257 mg/L, p = 0.005). Evidence for other groups of nutritional interventions was inconclusive. In conclusion, our meta-analysis provided evidence that omega-3 fatty acids and vitamin E could improve inflammatory outcomes in HD patients.
Collapse
Affiliation(s)
- Ban-Hock Khor
- Dietetics Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia.
| | | | - Sharmela Sahathevan
- Dietetics Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia.
| | - Abdul Halim Abdul Gafor
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.
| | - Zulfitri Azuan Mat Daud
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor 43400, Malaysia.
| | - Pramod Khosla
- Department of Nutrition & Food Sciences, College of Liberal Arts & Sciences, Wayne State University, Detroit, MI 48202, USA.
| | - Alice Sabatino
- Acute and Chronic Renal Failure Unit, Department of Clinical and Experimental Medicine, University of Parma, 43126 Parma, Italy.
| | - Enrico Fiaccadori
- Acute and Chronic Renal Failure Unit, Department of Clinical and Experimental Medicine, University of Parma, 43126 Parma, Italy.
| | - Karuthan Chinna
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Tilakavati Karupaiah
- Dietetics Program, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia.
- School of BioSciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
160
|
Abstract
In chronic kidney disease (CKD), influx of urea and other retained toxins exerts a change in the gut microbiome. There is decreased number of beneficial bacteria that produce short-chain fatty acids, an essential nutrient for the colonic epithelium, concurrent with an increase in bacteria that produce uremic toxins such as indoxyl sulphate, p-cresyl sulphate, and trimethylamine-N-oxide (TMAO). Due to intestinal wall inflammation and degradation of intercellular tight junctions, gut-derived uremic toxins translocate into the bloodstream and exert systemic effects. In this review, we discuss the evidence supporting a role for gut-derived uremic toxins in promoting multiorgan dysfunction via inflammatory, oxidative stress, and apoptosis pathways. End-organ effects include vascular calcification, kidney fibrosis, anemia, impaired immune system, adipocyte dysfunction with insulin resistance, and low turnover bone disease. Higher blood levels of gut-derived uremic toxins are associated with increased cardiovascular events and mortality in the CKD population. Clinical trials that have examined interventions to trap toxic products or reverse gut microbial dysbiosis via oral activated charcoal AST-120, prebiotics and probiotics have not shown impact on cardiovascular or survival outcomes but were limited by sample size and short trials. In summary, the gut microbiome is a major contributor to adverse cardiovascular outcomes and progression of CKD.
Collapse
|
161
|
Firouzi S, Haghighatdoost F. The effects of prebiotic, probiotic, and synbiotic supplementation on blood parameters of renal function: A systematic review and meta-analysis of clinical trials. Nutrition 2018; 51-52:104-113. [PMID: 29626749 DOI: 10.1016/j.nut.2018.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 12/16/2017] [Accepted: 01/09/2018] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Recent studies have demonstrated promising results regarding possible improvements in renal function after prebiotic, probiotic, and synbiotic supplementation. The aim of this review was to demonstrate whether such supplementation will improve renal profile indexes including glomerular filtration rate (GFR), creatinine, blood urea nitrogen (BUN), uric acid (UA), and urea. METHOD The meta-analysis included all studies that examined the effect of prebiotic, probiotic, and synbiotic supplements on one or more renal function parameters and had a control group. We searched July 1967 through to March 2016 MEDLINE, Scopus, and Google Scholar databases. RESULTS Of 437 studies, 13 were eligible for inclusion in the meta-analysis. GFR levels tended to be reduced; whereas creatinine levels increased in the intervention group compared with the placebo group, both in a non-significant manner. The pooled effect on BUN demonstrated a significant decline compared with the placebo group (MD, -1.72 mmol/L; 95% confidence interval [CI], -2.93 to -0.51; P = 0.005). Urea significantly decreased after intervention (-0.46 mmol/L; 95% CI, -0.60 to -0.32; P <0.0001). The UA levels significantly increased in the intervention group compared with the placebo group (12.28 µmol/L; 95% CI, 0.85-23.71; P = 0.035). CONCLUSION This study showed a significant increase in UA and a decrease in urea and BUN. The use of prebiotic, probiotic, and synbiotic supplements among those with compromised renal function or those at risk for renal failure should be limited until large-scale, well-designed randomized controlled trials prove the safety and efficacy of these supplements in improving renal function.
Collapse
Affiliation(s)
- Somayyeh Firouzi
- Department of Nutrition and Dietetics, University Putra Malaysia, Kuala Lumpur, Malaysia
| | - Fahimeh Haghighatdoost
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
162
|
Pan W, Kang Y. Gut microbiota and chronic kidney disease: implications for novel mechanistic insights and therapeutic strategies. Int Urol Nephrol 2018; 50:289-299. [PMID: 28849345 DOI: 10.1007/s11255-017-1689-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/23/2017] [Indexed: 02/05/2023]
Abstract
The complicated communities of microbiota colonizing the human gastrointestinal tract exert a strong function in health maintenance and disease prevention. Indeed, accumulating evidence has indicated that the intestinal microbiota plays a key role in the pathogenesis and development of chronic kidney disease (CKD). Modulation of the gut microbiome composition in CKD may contribute to the accumulation of gut-derived uremic toxins, high circulating level of lipopolysaccharides and immune deregulation, all of which play a critical role in the pathogenesis of CKD and CKD-associated complications. In this review, we discuss the recent findings on the potential impact of gut microbiota in CKD and the underlying mechanisms by which microbiota can influence kidney diseases and vice versa. Additionally, the potential efficacy of pre-, pro- and synbiotics in the restoration of healthy gut microbia is described in detail to provide future directions for research.
Collapse
Affiliation(s)
- Wei Pan
- Faculty of Foreign Languages and Cultures, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yongbo Kang
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
163
|
Sircana A, De Michieli F, Parente R, Framarin L, Leone N, Berrutti M, Paschetta E, Bongiovanni D, Musso G. Gut microbiota, hypertension and chronic kidney disease: Recent advances. Pharmacol Res 2018; 144:390-408. [PMID: 29378252 DOI: 10.1016/j.phrs.2018.01.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/29/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023]
Abstract
A large number of different microbial species populates intestine. Extensive research has studied the entire microbial population and their genes (microbiome) by using metagenomics, metatranscriptomics and metabolomic analysis. Studies suggest that the imbalances of the microbial community causes alterations in the intestinal homeostasis, leading to repercussions on other systems: metabolic, nervous, cardiovascular, immune. These studies have also shown that alterations in the structure and function of the gut microbiota play a key role in the pathogenesis and complications of Hypertension (HTN) and Chronic Kidney Disease (CKD). Increased blood pressure (BP) and CKD are two leading risk factors for cardiovascular disease and their treatment represents a challenge for the clinicians. In this Review, we discuss mechanisms whereby gut microbiota (GM) and its metabolites act on downstream cellular targets to contribute to the pathogenesis of HTN and CKD, and potential therapeutic implications.
Collapse
Affiliation(s)
- Antonio Sircana
- Unità Operativa di Cardiologia, Azienda Ospedaliero Universitaria, Sassari, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Franco De Michieli
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Renato Parente
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Luciana Framarin
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Nicola Leone
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Mara Berrutti
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Elena Paschetta
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Daria Bongiovanni
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy
| | - Giovanni Musso
- HUMANITAS Gradenigo, University of Turin, Turin, Italy; Department of Medical Sciences, San Giovanni Battista Hospital, Turin, Italy.
| |
Collapse
|
164
|
|
165
|
Lehto M, Groop PH. The Gut-Kidney Axis: Putative Interconnections Between Gastrointestinal and Renal Disorders. Front Endocrinol (Lausanne) 2018; 9:553. [PMID: 30283404 PMCID: PMC6157406 DOI: 10.3389/fendo.2018.00553] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Diabetic kidney disease (DKD) is a devastating condition associated with increased morbidity and premature mortality. The etiology of DKD is still largely unknown. However, the risk of DKD development and progression is most likely modulated by a combination of genetic and environmental factors. Patients with autoimmune diseases, like type 1 diabetes, inflammatory bowel disease, and celiac disease, share some genetic background. Furthermore, gastrointestinal disorders are associated with an increased risk of kidney disease, although the true mechanisms have still to be elucidated. Therefore, the principal aim of this review is to evaluate the impact of disturbances in the gastrointestinal tract on the development of renal disorders.
Collapse
Affiliation(s)
- Markku Lehto
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- *Correspondence: Markku Lehto
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland
- Abdominal Center of Nephrology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Diabetes and Obesity, University of Helsinki, Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
166
|
Abstract
Gut microbiota and its metabolites play pivotal roles in host physiology and pathology. Short-chain fatty acids (SCFAs), as a group of metabolites, exert positive regulatory effects on energy metabolism, hormone secretion, immune inflammation, hypertension, and cancer. The functions of SCFAs are related to their activation of transmembrane G protein-coupled receptors and their inhibition of histone acetylation. Though controversial, growing evidence suggests that SCFAs, which regulate inflammation, oxidative stress, and fibrosis, have been involved in kidney disease through the activation of the gut–kidney axis; however, the molecular relationship among gut microbiota–derived metabolites, signaling pathways, and kidney disease remains to be elucidated. This review will provide an overview of the physiology and functions of SCFAs in kidney disease.
Collapse
Affiliation(s)
- Lingzhi Li
- Kidney Research Institute, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Liang Ma
- Kidney Research Institute, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ping Fu
- Kidney Research Institute, Department of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
167
|
de Andrade LS, Ramos CI, Cuppari L. The cross-talk between the kidney and the gut: implications for chronic kidney disease. ACTA ACUST UNITED AC 2017. [DOI: 10.1186/s41110-017-0054-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
168
|
Zhang ZH, Mao JR, Chen H, Su W, Zhang Y, Zhang L, Chen DQ, Zhao YY, Vaziri ND. Removal of uremic retention products by hemodialysis is coupled with indiscriminate loss of vital metabolites. Clin Biochem 2017; 50:1078-1086. [DOI: 10.1016/j.clinbiochem.2017.09.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/15/2017] [Accepted: 09/15/2017] [Indexed: 12/11/2022]
|
169
|
Evenepoel P, Poesen R, Meijers B. The gut-kidney axis. Pediatr Nephrol 2017; 32:2005-2014. [PMID: 27848096 DOI: 10.1007/s00467-016-3527-x] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
Abstract
The host-gut microbiota interaction has been the focus of increasing interest in recent years. It has been determined that this complex interaction is not only essential to many aspects of normal "mammalian" physiology but that it may also contribute to a multitude of ailments, from the obvious case of inflammatory bowel disease to (complex) diseases residing in organs outside the gut. An increasing body of evidence indicates that crosstalk between host and microbiota is pathophysiologically relevant in patients with chronic kidney disease (CKD). Interactions are bidirectional; on the one hand, uremia affects both the composition and metabolism of the gut microbiota and, on the other hand, important uremic toxins originate from microbial metabolism. In addition, gut dysbiosis may induce a disruption of the epithelial barrier, ultimately resulting in increased exposure of the host to endotoxins. Due to dietary restrictions and gastrointestinal dysfunctions, microbial metabolism shifts to a predominantly proteolytic fermentation pattern in CKD. Indoxyl sulfate and p-cresyl sulfate, both end-products of protein fermentation, and trimethylamine-N-oxide, an end-product of microbial choline and carnitine metabolism, are prototypes of uremic toxins originating from microbial metabolism. The vascular and renal toxicity of these co-metabolites has been demonstrated extensively in experimental and clinical studies. These co-metabolites are an appealing target for adjuvant therapy in CKD. Treatment options include dietary therapy, prebiotics, probiotics and host and bacterial enzyme inhibitors. Final proof of the concept should come from randomized controlled and adequately powered intervention studies.
Collapse
Affiliation(s)
- Pieter Evenepoel
- Laboratory of Nephrology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium. .,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium. .,Dienst Nefrologie, University Hospitals Leuven-Gasthuisberg campus, Herestraat 49, 3000, Leuven, Belgium.
| | - Ruben Poesen
- Laboratory of Nephrology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Björn Meijers
- Laboratory of Nephrology, Department of Immunology and Microbiology, KU Leuven, Leuven, Belgium.,Department of Nephrology and Renal Transplantation, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
170
|
Esgalhado M, Kemp JA, Damasceno NR, Fouque D, Mafra D. Short-chain fatty acids: a link between prebiotics and microbiota in chronic kidney disease. Future Microbiol 2017; 12:1413-1425. [PMID: 29027814 DOI: 10.2217/fmb-2017-0059] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Under physiologic conditions, the human gut microbiota performs several activities essential to the body health. In contrast, their imbalances exacerbate some actions which can promote a cascade of metabolic abnormalities, and vice versa. Numerous diseases, including chronic kidney disease, are associated with gut microbiota imbalance, and among several strategies to re-establish gut symbiosis, prebiotics seem to represent an effective nonpharmacological approach. Prebiotics fermentation by gut microbiota produce short-chain fatty acids, which improve the gut barrier integrity and function, and modulate the glucose and lipid metabolism as well as the inflammatory response and immune system. Therefore, this literature review intends to discuss the beneficial effects of prebiotics in human health through short-chain fatty acids production, with a particular interest on chronic kidney disease.
Collapse
Affiliation(s)
- Marta Esgalhado
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Julie A Kemp
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| | - Nagila Rt Damasceno
- Department of Nutrition, Faculty of Public Health Nutrition, São Paulo University, São Paulo, Brazil
| | - Denis Fouque
- Department of Nephrology, Centre Hospitalier Lyon Sud, University Lyon, UCBL, Inserm Carmen, CENS, F-69622 Lyon, France
| | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil.,Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, Rio de Janeiro, Brazil
| |
Collapse
|
171
|
Florens N, Yi D, Juillard L, Soulage CO. Using binding competitors of albumin to promote the removal of protein-bound uremic toxins in hemodialysis: Hope or pipe dream? Biochimie 2017; 144:1-8. [PMID: 28987629 DOI: 10.1016/j.biochi.2017.09.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/28/2017] [Indexed: 02/08/2023]
Abstract
Chronic kidney disease is associated with the accumulation of a large range of uremic retention solutes as referred to as uremic toxins. Some of these compounds belong to the group of Protein Bound Uremic Toxins (PBUT) due to their tight interactions with plasma proteins and especially serum albumin. These PBUT therefore exist in the bloodstream into two forms: a major bound (and non-diffusible) fraction and a minor free fraction. As a result, these compounds are poorly removed by most of the renal replacement therapies (such as hemodialysis) and their concentration can hardly be decreased in end-stage renal disease patients. An increase of the free fraction of PBUT could be achieved using chemical displacers that could compete with PBUT for binding to serum albumin. This review summarizes and discusses the interest of chemicals displacers as a valuable option to enhance PBUT removal in CKD patients.
Collapse
Affiliation(s)
- Nans Florens
- Univ. Lyon, CarMeN, INSERM U1060, INSA de Lyon, INRA U1397, F-69621, Villeurbanne, France; Hospices Civils de Lyon, Department of Nephrology, Hôpital E. Herriot, Lyon, F-69003, France.
| | - Dan Yi
- Univ. Lyon, CarMeN, INSERM U1060, INSA de Lyon, INRA U1397, F-69621, Villeurbanne, France
| | - Laurent Juillard
- Univ. Lyon, CarMeN, INSERM U1060, INSA de Lyon, INRA U1397, F-69621, Villeurbanne, France; Hospices Civils de Lyon, Department of Nephrology, Hôpital E. Herriot, Lyon, F-69003, France
| | - Christophe O Soulage
- Univ. Lyon, CarMeN, INSERM U1060, INSA de Lyon, INRA U1397, F-69621, Villeurbanne, France
| |
Collapse
|
172
|
Barouei J, Bendiks Z, Martinic A, Mishchuk D, Heeney D, Hsieh YH, Kieffer D, Zaragoza J, Martin R, Slupsky C, Marco ML. Microbiota, metabolome, and immune alterations in obese mice fed a high-fat diet containing type 2 resistant starch. Mol Nutr Food Res 2017; 61. [PMID: 28736992 DOI: 10.1002/mnfr.201700184] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/22/2017] [Accepted: 07/10/2017] [Indexed: 01/03/2023]
Abstract
SCOPE We examined the intestinal and systemic responses to incorporating a type 2 resistant starch (RS) into a high fat diet fed to obese mice. METHODS AND RESULTS Diet-induced obese, C57BL/6J male mice were fed an HF diet without or with 20% (by weight) high-amylose maize resistant starch (HF-RS) for 6 weeks. Serum adiponectin levels were higher with RS consumption, but there were no differences in weight gain and adiposity. With HF-RS, the expression levels of ileal TLR2 and Reg3g and cecal occludin, TLR2, TLR4, NOD1 and NOD2 were induced; whereas colonic concentrations of the inflammatory cytokine IL-17A declined. The intestinal, serum, liver, and urinary metabolomes were also altered. HF-RS resulted in lower amino acid concentrations, including lower serum branched chain amino acids, and increased quantities of urinary di/trimethylamine, 3-indoxylsulfate, and phenylacetylglycine. Corresponding to these changes were enrichments in Bacteroidetes (S24-7 family) and certain Firmicutes taxa (Lactobacillales and Erysipelotrichaceae) with the HF-RS diet. Parabacteroides and S24-7 positively associated with cecal maltose concentrations. These taxa and Erysipelotrichaceae, Allobaculum, and Bifidobacterium were directly correlated with uremic metabolites. CONCLUSION Consumption of RS modified the intestinal microbiota, stimulated intestinal immunity and endocrine-responses, and modified systemic metabolomes in obese mice consuming an otherwise obesogenic diet.
Collapse
Affiliation(s)
- Javad Barouei
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Zach Bendiks
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Alice Martinic
- Department of Nutrition, University of California, Davis, CA, USA
| | - Darya Mishchuk
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Dustin Heeney
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Yu-Hsin Hsieh
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Dorothy Kieffer
- Department of Nutrition, University of California, Davis, CA, USA
| | - Jose Zaragoza
- Department of Food Science & Technology, University of California, Davis, CA, USA
| | - Roy Martin
- Department of Nutrition, University of California, Davis, CA, USA.,Western Human Nutrition Research Center, USDA, Davis, CA, USA
| | - Carolyn Slupsky
- Department of Food Science & Technology, University of California, Davis, CA, USA.,Department of Nutrition, University of California, Davis, CA, USA
| | - Maria L Marco
- Department of Food Science & Technology, University of California, Davis, CA, USA
| |
Collapse
|
173
|
Saggi SJ, Mercier K, Gooding JR, Friedman E, Vyas U, Ranganathan N, Ranganathan P, McRitchie S, Sumner S. Metabolic profiling of a chronic kidney disease cohort reveals metabolic phenotype more likely to benefit from a probiotic. INTERNATIONAL JOURNAL OF PROBIOTICS & PREBIOTICS 2017; 12:43-54. [PMID: 30774576 PMCID: PMC6377160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
SCOPE Persistent reduction in Glomerular Filtration Rate (GFR) is a hallmark of Chronic Kidney Disease (CKD) and is associated with an elevation of Blood Urea Nitrogen (BUN). This metabolomics pilot study sought to identify metabolites that differentiated patients with CKD whose BUN decreased on a probiotic and possible mechanisms. METHODS AND RESULTS Metabolomics was used to analyze baseline plasma samples previously diagnosed with CKD Stage III-IV. Patients had participated in a dose escalation study of the probiotic Renadyl™. A total of 24 samples were categorized depending on whether BUN increased or decreased from baseline after 4 months of probiotic use. Multivariate analysis was used to analyze the data and determine the metabolites that best differentiated the phenotypic groups. The sixteen patients who had a decrease in BUN were not significantly different based on demographic and clinical measures from those whose BUN increased or did not change with the exception of age. Eleven of the fourteen metabolites that differentiated the groups were known to be modulated by gut microflora, which may eventually provide a mechanistic link between probiotic and outcomes. CONCLUSIONS Metabolomics revealed metabolites at baseline that may predict individuals with CKD that would most benefit from a probiotics.
Collapse
Affiliation(s)
- Subodh J. Saggi
- Divisions of Nephrology and Transplantation, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | - Kelly Mercier
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, 3040 E Cornwallis Rd., Durham, NC 27709, USA
| | - Jessica R. Gooding
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, 3040 E Cornwallis Rd., Durham, NC 27709, USA
| | - Eli Friedman
- Divisions of Nephrology and Transplantation, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | - Usha Vyas
- Kibow Biotech Inc., 4781 West Chester Pike, Newtown Square, PA 19073, USA
| | | | - Pari Ranganathan
- Kibow Biotech Inc., 4781 West Chester Pike, Newtown Square, PA 19073, USA
| | - Susan McRitchie
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, 3040 E Cornwallis Rd., Durham, NC 27709, USA
| | - Susan Sumner
- NIH Eastern Regional Comprehensive Metabolomics Resource Core, RTI International, 3040 E Cornwallis Rd., Durham, NC 27709, USA
| |
Collapse
|
174
|
Gao H, Liu S. Role of uremic toxin indoxyl sulfate in the progression of cardiovascular disease. Life Sci 2017; 185:23-29. [PMID: 28754616 DOI: 10.1016/j.lfs.2017.07.027] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/07/2017] [Accepted: 07/24/2017] [Indexed: 12/19/2022]
Abstract
The prevalence of cardiovascular disease (CVD) among patients with chronic kidney disease (CKD) is relatively high. Deterioration of renal function in CKD leads to accumulation of indoxyl sulfate, a tryptophan metabolite produced by gut microbiota. It is acknowledged that indoxyl sulfate is capable to stimulate oxidative stress, which in turn contributes to the progression of vascular disorders and its resultant coronary artery disease. Recent research have demonstrated the adverse effects of indoxyl sulfate on the heart, together with the acceleration of vascular dysfunction, suggesting that indoxyl sulfate might contribute to high prevalence of CVD in CKD. The present mini review has focused on the potential mechanisms by which indoxyl sulfate exerts this pro-oxidant effects on the cardiovascular system. The action of indoxyl sulfate are related to multiple NADPH oxidase-mediated redox signaling pathways, which have been implicated in the pathophysiology of different forms of CVD, including chronic heart failure, arrhythmia, atherosclerotic vascular disease and coronary calcification. Future therapeutic options are discussed, including modulating gut microbial flora and blocking responsible pathophysiologic pathways.
Collapse
Affiliation(s)
- Huichang Gao
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Shan Liu
- School of Medicine, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
175
|
Gum Arabic Reduces C-Reactive Protein in Chronic Kidney Disease Patients without Affecting Urea or Indoxyl Sulfate Levels. Int J Nephrol 2017; 2017:9501470. [PMID: 28589039 PMCID: PMC5446885 DOI: 10.1155/2017/9501470] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/05/2017] [Accepted: 04/19/2017] [Indexed: 11/21/2022] Open
Abstract
Introduction Gum Arabic (GA) is a complex polysaccharide with proven prebiotic properties and potentially beneficial systemic effects. Methods We randomly allocated 36 chronic kidney disease (CKD) patients to receive 10, 20, or 40 grams daily of GA for four weeks and studied the systemic effects of this intervention. Results Thirty participants completed the study with baseline glomerular filtration rate 29.1 ± 9.9 mL/min/1.7 m2. In contrast to previous observations, we found no effect on serum urea or creatinine levels. GA supplementation was associated with a small but statistically significant drop in serum sodium level (138 ± 2 to 136 ± 3 mmol/L, p = 0.002) without affecting other electrolytes, urine volume, or indoxyl sulfate (IS) levels. GA supplementation was also associated with a significant drop in C-reactive protein (CRP) level (3.5 ± 1.5 to 2.8 ± 1.6 ng/mL, p = 0.02) even in patients who received only 10 g/day (4.4 ± 1.2 to 3.2 ± 1.5 ng/mL, p = 0.03). Conclusions Supplementing the diet of CKD patients with 10–40 g/day of GA significantly reduced CRP level which could have a positive impact on these patients' morbidity and mortality. This trial is registered with Saudi Clinical Trial Registry number 15011402.
Collapse
|
176
|
Armani RG, Ramezani A, Yasir A, Sharama S, Canziani MEF, Raj DS. Gut Microbiome in Chronic Kidney Disease. Curr Hypertens Rep 2017; 19:29. [DOI: 10.1007/s11906-017-0727-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
177
|
Snelson M, Clarke RE, Coughlan MT. Stirring the Pot: Can Dietary Modification Alleviate the Burden of CKD? Nutrients 2017; 9:nu9030265. [PMID: 28287463 PMCID: PMC5372928 DOI: 10.3390/nu9030265] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 02/27/2017] [Accepted: 03/06/2017] [Indexed: 02/06/2023] Open
Abstract
Diet is one of the largest modifiable risk factors for chronic kidney disease (CKD)-related death and disability. CKD is largely a progressive disease; however, it is increasingly appreciated that hallmarks of chronic kidney disease such as albuminuria can regress over time. The factors driving albuminuria resolution remain elusive. Since albuminuria is a strong risk factor for GFR loss, modifiable lifestyle factors that lead to an improvement in albuminuria would likely reduce the burden of CKD in high-risk individuals, such as patients with diabetes. Dietary therapy such as protein and sodium restriction has historically been used in the management of CKD. Evidence is emerging to indicate that other nutrients may influence kidney health, either through metabolic or haemodynamic pathways or via the modification of gut homeostasis. This review focuses on the role of diet in the pathogenesis and progression of CKD and discusses the latest findings related to the mechanisms of diet-induced kidney disease. It is possible that optimizing diet quality or restricting dietary intake could be harnessed as an adjunct therapy for CKD prevention or progression in susceptible individuals, thereby reducing the burden of CKD.
Collapse
Affiliation(s)
- Matthew Snelson
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne 3004, Australia.
| | - Rachel E Clarke
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne 3004, Australia.
- Department of Physiology, Monash University, Clayton 3800, Australia.
| | - Melinda T Coughlan
- Glycation, Nutrition and Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne 3004, Australia.
- Department of Diabetes, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, Melbourne 3004, Australia.
| |
Collapse
|
178
|
Hung SC, Kuo KL, Wu CC, Tarng DC. Indoxyl Sulfate: A Novel Cardiovascular Risk Factor in Chronic Kidney Disease. J Am Heart Assoc 2017; 6:JAHA.116.005022. [PMID: 28174171 PMCID: PMC5523780 DOI: 10.1161/jaha.116.005022] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Szu-Chun Hung
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ko-Lin Kuo
- Division of Nephrology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chih-Cheng Wu
- Cardiovascular Center, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan.,Institute of Biomedical Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Der-Cherng Tarng
- Institutes of Physiology and Clinical Medicine, National Yang-Ming University, Taipei, Taiwan .,Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
179
|
Gryp T, Vanholder R, Vaneechoutte M, Glorieux G. p-Cresyl Sulfate. Toxins (Basel) 2017; 9:toxins9020052. [PMID: 28146081 PMCID: PMC5331431 DOI: 10.3390/toxins9020052] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/12/2017] [Accepted: 01/23/2017] [Indexed: 12/16/2022] Open
Abstract
If chronic kidney disease (CKD) is associated with an impairment of kidney function, several uremic solutes are retained. Some of these exert toxic effects, which are called uremic toxins. p-Cresyl sulfate (pCS) is a prototype protein-bound uremic toxin to which many biological and biochemical (toxic) effects have been attributed. In addition, increased levels of pCS have been associated with worsening outcomes in CKD patients. pCS finds its origin in the intestine where gut bacteria metabolize aromatic amino acids, such as tyrosine and phenylalanine, leading to phenolic end products, of which pCS is one of the components. In this review we summarize the biological effects of pCS and its metabolic origin in the intestine. It appears that, according to in vitro studies, the intestinal bacteria generating phenolic compounds mainly belong to the families Bacteroidaceae, Bifidobacteriaceae, Clostridiaceae, Enterobacteriaceae, Enterococcaceae, Eubacteriaceae, Fusobacteriaceae, Lachnospiraceae, Lactobacillaceae, Porphyromonadaceae, Staphylococcaceae, Ruminococcaceae, and Veillonellaceae. Since pCS remains difficult to remove by dialysis, the gut microbiota could be a future target to decrease pCS levels and its toxicity, even at earlier stages of CKD, aiming at slowing down the progression of the disease and decreasing the cardiovascular burden.
Collapse
Affiliation(s)
- Tessa Gryp
- Department of Internal Medicine, Nephrology Division, Ghent University Hospital, 9000 Ghent, Belgium.
- Laboratory for Bacteriology Research, Department of Clinical Chemistry, Microbiology & Immunology, Ghent University, 9000 Ghent, Belgium.
| | - Raymond Vanholder
- Department of Internal Medicine, Nephrology Division, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Mario Vaneechoutte
- Laboratory for Bacteriology Research, Department of Clinical Chemistry, Microbiology & Immunology, Ghent University, 9000 Ghent, Belgium.
| | - Griet Glorieux
- Department of Internal Medicine, Nephrology Division, Ghent University Hospital, 9000 Ghent, Belgium.
| |
Collapse
|
180
|
Intestinal Barrier Disturbances in Haemodialysis Patients: Mechanisms, Consequences, and Therapeutic Options. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5765417. [PMID: 28194419 PMCID: PMC5282437 DOI: 10.1155/2017/5765417] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 12/20/2016] [Indexed: 01/01/2023]
Abstract
There is accumulating evidence that the intestinal barrier and the microbiota may play a role in the systemic inflammation present in HD patients. HD patients are subject to a number of unique factors, some related to the HD process and others simply to the uraemic milieu but with common characteristic that they can both alter the intestinal barrier and the microbiota. This review is intended to provide an overview of the current methods for measuring such changes in HD patients, the mechanisms behind these changes, and potential strategies that may mitigate these modifications. Lastly, intradialytic exercise is an increasingly employed intervention in HD patients; however the potential implications that this may have for the intestinal barrier are not known; therefore future research directions are also covered.
Collapse
|
181
|
Dahl WJ, Agro NC, Eliasson ÅM, Mialki KL, Olivera JD, Rusch CT, Young CN. Health Benefits of Fiber Fermentation. J Am Coll Nutr 2017; 36:127-136. [PMID: 28067588 DOI: 10.1080/07315724.2016.1188737] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Although fiber is well recognized for its effect on laxation, increasing evidence supports the role of fiber in the prevention and treatment of chronic disease. The aim of this review is to provide an overview of the health benefits of fiber and its fermentation, and describe how the products of fermentation may influence disease risk and treatment. Higher fiber intakes are associated with decreased risk of cardiovascular disease, type 2 diabetes, and some forms of cancer. Fiber may also have a role in lowering blood pressure and in preventing obesity by limiting weight gain. Fiber is effective in managing blood glucose in type 2 diabetes, useful for weight loss, and may provide therapeutic adjunctive roles in kidney and liver disease. In addition, higher fiber diets are not contraindicated in inflammatory bowel disease or irritable bowel syndrome and may provide some benefit. Common to the associations with disease reduction is fermentation of fiber and its potential to modulate microbiota and its activities and inflammation, specifically the production of anti-inflammatory short chain fatty acids, primarily from saccharolytic fermentation, versus the deleterious products of proteolytic activity. Because fiber intake is inversely associated with all-cause mortality, mechanisms by which fiber may reduce chronic disease risk and provide therapeutic benefit to those with chronic disease need further elucidation and large, randomized controlled trials are needed to confirm causality.Teaching Points• Strong evidence supports the association between higher fiber diets and reduced risk of cardiovascular disease, type 2 diabetes, and some forms of cancer.• Higher fiber intakes are associated with lower body weight and body mass index, and some types of fiber may facilitate weight loss.• Fiber is recommended as an adjunctive medical nutritional therapy for type 2 diabetes, chronic kidney disease, and certain liver diseases.• Fermentation and the resulting shifts in microbiota composition and its activity may be a common means by which fiber impacts disease risk and management.
Collapse
Affiliation(s)
- Wendy J Dahl
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Nicole C Agro
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Åsa M Eliasson
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Kaley L Mialki
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Joseph D Olivera
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Carley T Rusch
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| | - Carly N Young
- a Food Science and Human Nutrition Department , University of Florida/IFAS , Gainesville , Florida
| |
Collapse
|
182
|
|
183
|
Al Khodor S, Shatat IF. Gut microbiome and kidney disease: a bidirectional relationship. Pediatr Nephrol 2017; 32:921-931. [PMID: 27129691 PMCID: PMC5399049 DOI: 10.1007/s00467-016-3392-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 04/07/2016] [Accepted: 04/08/2016] [Indexed: 02/07/2023]
Abstract
Recent technological advances and efforts, including powerful metagenomic and metatranscriptomic analyses, have led to a tremendous growth in our understanding of microbial communities. Changes in microbial abundance or composition of human microbial communities impact human health or disease state. However, explorations into the mechanisms underlying host-microbe interactions in health and disease are still in their infancy. Although changes in the gut microbiota have been described in patients with kidney disease, the relationships between pathogenesis, mechanisms of disease progression, and the gut microbiome are still evolving. Here, we review changes in the host-microbiome symbiotic relationship in an attempt to explore the bidirectional relationship in which alterations in the microbiome affect kidney disease progression and how kidney disease may disrupt a balanced microbiome. We also discuss potential targeted interventions that may help re-establish this symbiosis and propose more effective ways to deploy traditional treatments in patients with kidney disease.
Collapse
Affiliation(s)
- Souhaila Al Khodor
- Infectious Disease Unit, Division of Translational Medicine, Sidra Medical and Research Center, PO Box 26999, Doha, Qatar.
| | - Ibrahim F. Shatat
- 0000 0004 0397 4222grid.467063.0Pediatric Nephrology and Hypertension, SIDRA Medical and Research Center, Doha, Qatar ,0000 0001 2189 3475grid.259828.cMedical University of South Carolina, Charleston, SC USA ,000000041936877Xgrid.5386.8Weill Cornell Medical College, New York, NY USA
| |
Collapse
|
184
|
Kieffer DA, Piccolo BD, Marco ML, Kim EB, Goodson ML, Keenan MJ, Dunn TN, Knudsen KEB, Martin RJ, Adams SH. Mice Fed a High-Fat Diet Supplemented with Resistant Starch Display Marked Shifts in the Liver Metabolome Concurrent with Altered Gut Bacteria. J Nutr 2016; 146:2476-2490. [PMID: 27807042 PMCID: PMC5118768 DOI: 10.3945/jn.116.238931] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND High-amylose-maize resistant starch type 2 (HAMRS2) is a fermentable dietary fiber known to alter the gut milieu, including the gut microbiota, which may explain the reported effects of resistant starch to ameliorate obesity-associated metabolic dysfunction. OBJECTIVE Our working hypothesis was that HAMRS2-induced microbiome changes alter gut-derived signals (i.e., xenometabolites) reaching the liver via the portal circulation, in turn altering liver metabolism by regulating gene expression and other pathways. METHODS We used a multi-omics systems biology approach to characterize HAMRS2-driven shifts to the cecal microbiome, liver metabolome, and transcriptome, identifying correlates between microbial changes and liver metabolites under obesogenic conditions that, to our knowledge, have not previously been recognized. Five-week-old male C57BL/6J mice were fed an energy-dense 45% lard-based-fat diet for 10 wk supplemented with either 20% HAMRS2 by weight (n = 14) or rapidly digestible starch (control diet; n = 15). RESULTS Despite no differences in food intake, body weight, glucose tolerance, fasting plasma insulin, or liver triglycerides, the HAMRS2 mice showed a 15-58% reduction in all measured liver amino acids, except for Gln, compared with control mice. These metabolites were equivalent in the plasma of HAMRS2 mice compared with controls, and transcripts encoding key amino acid transporters were not different in the small intestine or liver, suggesting that HAMRS2 effects were not simply due to lower hepatocyte exposure to systemic amino acids. Instead, alterations in gut microbial metabolism could have affected host nitrogen and amino acid homeostasis: HAMRS2 mice showed a 62% increase (P < 0.0001) in 48-h fecal output and a 41% increase (P < 0.0001) in fecal nitrogen compared with control mice. Beyond amino acid metabolism, liver transcriptomics revealed pathways related to lipid and xenobiotic metabolism; and pathways related to cell proliferation, differentiation, and growth were affected by HAMRS2 feeding. CONCLUSION Together, these differences indicate that HAMRS2 dramatically alters hepatic metabolism and gene expression concurrent with shifts in specific gut bacteria in C57BL/6J mice.
Collapse
Affiliation(s)
- Dorothy A Kieffer
- Graduate Group in Nutritional Biology and
- Department of Nutrition
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center and
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| | | | - Eun Bae Kim
- Food Science and Technology Department, and
- Department of Animal Life Science, College of Animal Life Sciences, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | | | | | - Tamara N Dunn
- Graduate Group in Nutritional Biology and
- Department of Nutrition
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA
| | | | - Roy J Martin
- Graduate Group in Nutritional Biology and
- Department of Nutrition
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA
| | - Sean H Adams
- Graduate Group in Nutritional Biology and
- Department of Nutrition
- Arkansas Children's Nutrition Center and
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
185
|
Leong SC, Sirich TL. Indoxyl Sulfate-Review of Toxicity and Therapeutic Strategies. Toxins (Basel) 2016; 8:toxins8120358. [PMID: 27916890 PMCID: PMC5198552 DOI: 10.3390/toxins8120358] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 01/12/2023] Open
Abstract
Indoxyl sulfate is an extensively studied uremic solute. It is a small molecule that is more than 90% bound to plasma proteins. Indoxyl sulfate is derived from the breakdown of tryptophan by colon microbes. The kidneys achieve high clearances of indoxyl sulfate by tubular secretion, a function not replicated by hemodialysis. Clearance by hemodialysis is limited by protein binding since only the free, unbound solute can diffuse across the membrane. Since the dialytic clearance is much lower than the kidney clearance, indoxyl sulfate accumulates to relatively high plasma levels in hemodialysis patients. Indoxyl sulfate has been most frequently implicated as a contributor to renal disease progression and vascular disease. Studies have suggested that indoxyl sulfate also has adverse effects on bones and the central nervous system. The majority of studies have assessed toxicity in cultured cells and animal models. The toxicity in humans has not yet been proven, as most data have been from association studies. Such toxicity data, albeit inconclusive, have prompted efforts to lower the plasma levels of indoxyl sulfate through dialytic and non-dialytic means. The largest randomized trial showed no benefit in renal disease progression with AST-120. No trials have yet tested cardiovascular or mortality benefit. Without such trials, the toxicity of indoxyl sulfate cannot be firmly established.
Collapse
Affiliation(s)
- Sheldon C Leong
- The Departments of Medicine, VA Palo Alto HCS and Stanford University, Nephrology 111R, Palo Alto VAHCS, 3801 Miranda Ave., Palo Alto, CA 94304, USA.
| | - Tammy L Sirich
- The Departments of Medicine, VA Palo Alto HCS and Stanford University, Nephrology 111R, Palo Alto VAHCS, 3801 Miranda Ave., Palo Alto, CA 94304, USA.
| |
Collapse
|
186
|
Karu N, McKercher C, Nichols DS, Davies N, Shellie RA, Hilder EF, Jose MD. Tryptophan metabolism, its relation to inflammation and stress markers and association with psychological and cognitive functioning: Tasmanian Chronic Kidney Disease pilot study. BMC Nephrol 2016; 17:171. [PMID: 27832762 PMCID: PMC5103367 DOI: 10.1186/s12882-016-0387-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/03/2016] [Indexed: 12/25/2022] Open
Abstract
Background Adults with chronic kidney disease (CKD) exhibit alterations in tryptophan metabolism, mainly via the kynurenine pathway, due to higher enzymatic activity induced mainly by inflammation. Indoles produced by gut-microflora are another group of tryptophan metabolites related to inflammation and conditions accompanying CKD. Disruptions in tryptophan metabolism have been associated with various neurological and psychological disorders. A high proportion of CKD patients self-report symptoms of depression and/or anxiety and decline in cognitive functioning. This pilot study examines tryptophan metabolism in CKD and explores associations with psychological and cognitive functioning. Methods Twenty-seven adults with CKD were part of 49 patients recruited to participate in a prospective pilot study, initially with an eGFR of 15–29 mL/min/1.73 m2. Only participants with viable blood samples and complete psychological/cognitive data at a 2-year follow-up were included in the reported cross-sectional study. Serum samples were analysed by Liquid Chromatography coupled to Mass Spectrometry, for tryptophan, ten of its metabolites, the inflammation marker neopterin and the hypothalamic–pituitary–adrenal (HPA) axis marker cortisol. Results The tryptophan breakdown index (kynurenine / tryptophan) correlated with neopterin (Pearson R = 0.51 P = 0.006) but not with cortisol. Neopterin levels also correlated with indoxyl sulfate (R = 0.68, P < 0.0001) and 5 metabolites of tryptophan (R range 0.5–0.7, all P ≤ 0.01), which were all negatively related to eGFR (P < 0.05). Higher levels of kynurenic acid were associated with lower cognitive functioning (Spearman R = −0.39, P < 0.05), while indole-3 acetic acid (IAA) was correlated with anxiety and depression (R = 0.52 and P = 0.005, R = 0.39 and P < 0.05, respectively). Conclusions The results of this preliminary study suggest the involvement of inflammation in tryptophan breakdown via the kynurenine pathway, yet without sparing tryptophan metabolism through the 5-HT (serotonin) pathway in CKD patients. The multiple moderate associations between indole-3 acetic acid and psychological measures were a novel finding. The presented pilot data necessitate further exploration of these associations within a large prospective cohort to assess the broader significance of these findings. Electronic supplementary material The online version of this article (doi:10.1186/s12882-016-0387-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naama Karu
- ACROSS, School of Physical Sciences, University of Tasmania, Hobart, Tasmania, Australia. .,Present address: The Metabolomics Innovation Centre (TMIC), Department of Biological Sciences, University of Alberta, Edmonton, Alberta, T6G 2E9, Canada.
| | - Charlotte McKercher
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - David S Nichols
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Noel Davies
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Robert A Shellie
- ACROSS, School of Physical Sciences, University of Tasmania, Hobart, Tasmania, Australia.,Present address: Trajan Scientific and Medical, 7 Argent Place, Ringwood, Victoria, 3134, Australia
| | - Emily F Hilder
- ACROSS, School of Physical Sciences, University of Tasmania, Hobart, Tasmania, Australia.,Present address: Future Industries Institute, University of South Australia, Mawson Lakes Campus, GPO Box 2471, Adelaide, South Australia, 5001, Australia
| | - Matthew D Jose
- School of Medicine, University of Tasmania, Hobart, Tasmania, Australia.,Renal unit, Royal Hobart Hospital, Hobart, Tasmania, Australia
| |
Collapse
|
187
|
Kieffer DA, Martin RJ, Adams SH. Impact of Dietary Fibers on Nutrient Management and Detoxification Organs: Gut, Liver, and Kidneys. Adv Nutr 2016; 7:1111-1121. [PMID: 28140328 PMCID: PMC5105045 DOI: 10.3945/an.116.013219] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Increased dietary fiber (DF) intake elicits a wide range of physiologic effects, not just locally in the gut, but systemically. DFs can greatly alter the gut milieu by affecting the gut microbiome, which in turn influences the gut barrier, gastrointestinal immune and endocrine responses, and nitrogen cycling and microbial metabolism. These gut-associated changes can then alter the physiology and biochemistry of the body's other main nutrient management and detoxification organs, the liver and kidneys. The molecular mechanisms by which DF alters the physiology of the gut, liver, and kidneys is likely through gut-localized events (i.e., bacterial nitrogen metabolism, microbe-microbe, and microbe-host cell interactions) coupled with specific factors that emanate from the gut in response to DF, which signal to or affect the physiology of the liver and kidneys. The latter may include microbe-derived xenometabolites, peptides, or bioactive food components made available by gut microbes, inflammation signals, and gut hormones. The intent of this review is to summarize how DF alters the gut milieu to specifically affect intestinal, liver, and kidney functions and to discuss the potential local and systemic signaling networks that are involved.
Collapse
Affiliation(s)
- Dorothy A Kieffer
- Graduate Group in Nutritional Biology and
- Department of Nutrition, University of California, Davis, Davis, CA
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA
| | - Roy J Martin
- Graduate Group in Nutritional Biology and
- Department of Nutrition, University of California, Davis, Davis, CA
- Obesity and Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA
| | - Sean H Adams
- Graduate Group in Nutritional Biology and
- Department of Nutrition, University of California, Davis, Davis, CA
- Arkansas Children's Nutrition Center, Little Rock, AR; and
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR
| |
Collapse
|
188
|
Abad S, Vega A, Quiroga B, Arroyo D, Panizo N, Reque JE, López-Gómez JM. Toxinas unidas a proteínas: valor añadido en su eliminación con altos volúmenes convectivos. Nefrologia 2016; 36:637-642. [DOI: 10.1016/j.nefro.2016.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 04/06/2016] [Accepted: 05/04/2016] [Indexed: 12/19/2022] Open
|
189
|
Ellis RJ, Small DM, Vesey DA, Johnson DW, Francis R, Vitetta L, Gobe GC, Morais C. Indoxyl sulphate and kidney disease: Causes, consequences and interventions. Nephrology (Carlton) 2016; 21:170-7. [PMID: 26239363 DOI: 10.1111/nep.12580] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2015] [Indexed: 12/28/2022]
Abstract
In the last decade, chronic kidney disease (CKD), defined as reduced renal function (glomerular filtration rate (GFR) < 60 mL/min per 1.73 m(2) ) and/or evidence of kidney damage (typically manifested as albuminuria) for at least 3 months, has become one of the fastest-growing public health concerns worldwide. CKD is characterized by reduced clearance and increased serum accumulation of metabolic waste products (uremic retention solutes). At least 152 uremic retention solutes have been reported. This review focuses on indoxyl sulphate (IS), a protein-bound, tryptophan-derived metabolite that is generated by intestinal micro-organisms (microbiota). Animal studies have demonstrated an association between IS accumulation and increased fibrosis, and oxidative stress. This has been mirrored by in vitro studies, many of which report cytotoxic effects in kidney proximal tubular cells following IS exposure. Clinical studies have associated IS accumulation with deleterious effects, such as kidney functional decline and adverse cardiovascular events, although causality has not been conclusively established. The aims of this review are to: (i) establish factors associated with increased serum accumulation of IS; (ii) report effects of IS accumulation in clinical studies; (iii) critique the reported effects of IS in the kidney, when administered both in vivo and in vitro; and (iv) summarize both established and hypothetical therapeutic options for reducing serum IS or antagonizing its reported downstream effects in the kidney.
Collapse
Affiliation(s)
- Robert J Ellis
- Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - David M Small
- Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - David A Vesey
- Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Department of Renal Medicine, University of Queensland at Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - David W Johnson
- Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, University of Queensland, Brisbane, Queensland, Australia.,Department of Renal Medicine, University of Queensland at Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Ross Francis
- Department of Renal Medicine, University of Queensland at Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Luis Vitetta
- Sydney Medical School - Medical Sciences, Medlab, Sydney, New South Wales, Australia.,Medlab Clinical Ltd., Medlab, Sydney, New South Wales, Australia
| | - Glenda C Gobe
- Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Christudas Morais
- Centre for Kidney Disease Research, Translational Research Institute, School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
190
|
Wong J, Kaja Kamal RM, Vilar E, Farrington K. Measuring Residual Renal Function in Hemodialysis Patients without Urine Collection. Semin Dial 2016; 30:39-49. [DOI: 10.1111/sdi.12557] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jonathan Wong
- Lister Renal Unit; Hertfordshire United Kingdom
- University of Hertfordshire; United Kingdom
| | | | - Enric Vilar
- Lister Renal Unit; Hertfordshire United Kingdom
- University of Hertfordshire; United Kingdom
| | - Ken Farrington
- Lister Renal Unit; Hertfordshire United Kingdom
- University of Hertfordshire; United Kingdom
| |
Collapse
|
191
|
Tan X, Cao X, Zou J, Shen B, Zhang X, Liu Z, Lv W, Teng J, Ding X. Indoxyl sulfate, a valuable biomarker in chronic kidney disease and dialysis. Hemodial Int 2016; 21:161-167. [PMID: 27616754 DOI: 10.1111/hdi.12483] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 08/10/2016] [Indexed: 02/04/2023]
Abstract
Chronic kidney disease (CKD) is an increasingly recognized disease with high global incidence and mortality. Yet, the existing diagnostic tools are not sufficient enough to predict prognosis of CKD and CKD comorbidities. Indoxyl sulfate, a typical uremic toxin, is of great importance in the development of CKD with its nephrotoxicity, cardiovascular toxicity, and bone toxicity. Some reports suggest that indoxyl sulfate directly associate with renal function loss and mortality in CKD patients. This review discusses the diagnostic value of indoxyl sulfate from its biological characteristics, pathophysiological effects, related therapies, and its diagnostic value in clinical studies.
Collapse
Affiliation(s)
- Xiao Tan
- Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China
| | - Xuesen Cao
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Jianzhou Zou
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Xiaoyan Zhang
- Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Zhonghua Liu
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Wenlv Lv
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Jie Teng
- Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| | - Xiaoqiang Ding
- Shanghai Institute of Kidney and Dialysis, Shanghai Key Laboratory of Kidney and Blood Purification, Shanghai, China.,Department of Nephrology, Zhongshan Hospital Fudan University, Shanghai, China.,Shanghai Quality Control Center for Hemodialysis, Shanghai, China
| |
Collapse
|
192
|
Cigarran Guldris S, González Parra E, Cases Amenós A. Gut microbiota in chronic kidney disease. Nefrologia 2016; 37:9-19. [PMID: 27553986 DOI: 10.1016/j.nefro.2016.05.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/25/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023] Open
Abstract
The intestinal microflora maintains a symbiotic relationship with the host under normal conditions, but its imbalance has recently been associated with several diseases. In chronic kidney disease (CKD), dysbiotic intestinal microflora has been reported with an increase in pathogenic flora compared to symbiotic flora. An enhanced permeability of the intestinal barrier, allowing the passage of endotoxins and other bacterial products to the blood, has also been shown in CKD. By fermenting undigested products that reach the colon, the intestinal microflora produce indoles, phenols and amines, among others, that are absorbed by the host, accumulate in CKD and have harmful effects on the body. These gut-derived uraemic toxins and the increased permeability of the intestinal barrier in CKD have been associated with increased inflammation and oxidative stress and have been involved in various CKD-related complications, including cardiovascular disease, anaemia, mineral metabolism disorders or the progression of CKD. The use of prebiotics, probiotics or synbiotics, among other approaches, could improve the dysbiosis and/or the increased permeability of the intestinal barrier in CKD. This article describes the situation of the intestinal microflora in CKD, the alteration of the intestinal barrier and its clinical consequences, the harmful effects of intestinal flora-derived uraemic toxins, and possible therapeutic options to improve this dysbiosis and reduce CKD-related complications.
Collapse
Affiliation(s)
| | - Emilio González Parra
- Servicio de Nefrología, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, España
| | - Aleix Cases Amenós
- Servicio de Nefrología, Hospital Clinic, Universitat de Barcelona, Barcelona, España
| |
Collapse
|
193
|
Camacho O, Rosales MC, Shafi T, Fullman J, Plummer NS, Meyer TW, Sirich TL. Effect of a sustained difference in hemodialytic clearance on the plasma levels of p-cresol sulfate and indoxyl sulfate. Nephrol Dial Transplant 2016; 31:1335-41. [PMID: 27190347 DOI: 10.1093/ndt/gfw100] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 04/06/2016] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The protein-bound solutes p-cresol sulfate (PCS) and indoxyl sulfate (IS) accumulate to high plasma levels in renal failure and have been associated with adverse events. The clearance of these bound solutes can be altered independently of the urea clearance by changing the dialysate flow and dialyzer size. This study tested whether a sustained difference in clearance would change the plasma levels of PCS and IS. METHODS Fourteen patients on thrice-weekly nocturnal hemodialysis completed a crossover study of two periods designed to achieve widely different bound solute clearances. We compared the changes in pre-dialysis plasma PCS and IS levels from baseline over the course of the two periods. RESULTS The high-clearance period provided much higher PCS and IS clearances than the low-clearance period (PCS: 23 ± 4 mL/min versus 12 ± 3 mL/min, P < 0.001; IS: 30 ± 5 mL/min versus 17 ± 4 mL/min, P < 0.001). Despite the large difference in clearance, the high-clearance period did not have a different effect on PCS levels than the low-clearance period [from baseline, high: +11% (-5, +37) versus low: -8% (-18, +32), (median, 25th, 75th percentile), P = 0.50]. In contrast, the high-clearance period significantly lowered IS levels compared with the low-clearance period [from baseline, high: -4% (-17, +1) versus low: +22% (+14, +31), P < 0.001). The amount of PCS removed in the dialysate was significantly greater at the end of the high-clearance period [269 (206, 312) versus 199 (111, 232) mg per treatment, P < 0.001], while the amount of IS removed was not different [140 (87, 196) versus 116 (89, 170) mg per treatment, P = 0.15]. CONCLUSIONS These findings suggest that an increase in PCS generation prevents plasma levels from falling when the dialytic clearance is increased. Suppression of solute generation may be required to reduce plasma PCS levels in dialysis patients.
Collapse
Affiliation(s)
- Orlando Camacho
- The Department of Medicine, VA Palo Alto HCS and Stanford University, Palo Alto, CA, USA
| | - Maria Carmela Rosales
- The Department of Medicine, VA Palo Alto HCS and Stanford University, Palo Alto, CA, USA
| | - Tariq Shafi
- Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jonathan Fullman
- The Department of Medicine, VA Palo Alto HCS and Stanford University, Palo Alto, CA, USA
| | - Natalie S Plummer
- The Department of Medicine, VA Palo Alto HCS and Stanford University, Palo Alto, CA, USA
| | - Timothy W Meyer
- The Department of Medicine, VA Palo Alto HCS and Stanford University, Palo Alto, CA, USA
| | - Tammy L Sirich
- The Department of Medicine, VA Palo Alto HCS and Stanford University, Palo Alto, CA, USA
| |
Collapse
|
194
|
Poesen R, Evenepoel P, de Loor H, Delcour JA, Courtin CM, Kuypers D, Augustijns P, Verbeke K, Meijers B. The Influence of Prebiotic Arabinoxylan Oligosaccharides on Microbiota Derived Uremic Retention Solutes in Patients with Chronic Kidney Disease: A Randomized Controlled Trial. PLoS One 2016; 11:e0153893. [PMID: 27100399 PMCID: PMC4839737 DOI: 10.1371/journal.pone.0153893] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/26/2016] [Indexed: 12/01/2022] Open
Abstract
The colonic microbial metabolism is a key contributor to uremic retention solutes accumulating in patients with CKD, relating to adverse outcomes and insulin resistance. Whether prebiotics can reduce intestinal generation of these microbial metabolites and improve insulin resistance in CKD patients not yet on dialysis remains unknown. We performed a randomized, placebo-controlled, double-blind, cross-over study in 40 patients with eGFR between 15 and 45 ml/min/1.73 m2. Patients were randomized to sequential treatment with prebiotic arabinoxylan oligosaccharides (AXOS) (10 g twice daily) and maltodextrin for 4 weeks, or vice versa, with a 4-week wash-out period between both intervention periods. Serum levels and 24h urinary excretion of p-cresyl sulfate, p-cresyl glucuronide, indoxyl sulfate, trimethylamine N-oxide and phenylacetylglutamine were determined at each time point using liquid chromatography—tandem mass spectrometry. In addition, insulin resistance was estimated by the homeostatic model assessment (HOMA-IR). A total of 39 patients completed the study. We observed no significant effect of AXOS on serum p-cresyl sulfate (P 0.42), p-cresyl glucuronide (P 0.59), indoxyl sulfate (P 0.70) and phenylacetylglutamine (P 0.41) and a small, albeit significant decreasing effect on serum trimethylamine N-oxide (P 0.04). There were neither effect of AXOS on 24h urinary excretion of p-cresyl sulfate (P 0.31), p-cresyl glucuronide (P 0.23), indoxyl sulfate (P 0.87) and phenylacetylglutamine (P 0.43), nor on 24h urinary excretion of trimethylamine N-oxide (P 0.97). In addition, we observed no significant change in HOMA-IR (P 0.93). In conclusion, we could not demonstrate an influence of prebiotic AXOS on microbiota derived uremic retention solutes and insulin resistance in patients with CKD not yet on dialysis. Further study is necessary to elucidate whether prebiotic therapy with other characteristics, higher cumulative exposure or in different patient populations may be of benefit. Trial Registration: Clinicaltrials.gov NCT02141815
Collapse
Affiliation(s)
- Ruben Poesen
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, B-3000, Leuven, Belgium
| | - Pieter Evenepoel
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, B-3000, Leuven, Belgium
| | - Henriette de Loor
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, B-3000, Leuven, Belgium
| | - Jan A. Delcour
- Department of Microbial and Molecular Systems, Centre for Food and Microbial Technology, University of Leuven, B-3000, Leuven, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), University of Leuven, B-3000, Leuven, Belgium
| | - Christophe M. Courtin
- Department of Microbial and Molecular Systems, Centre for Food and Microbial Technology, University of Leuven, B-3000, Leuven, Belgium
- Leuven Food Science and Nutrition Research Centre (LFoRCe), University of Leuven, B-3000, Leuven, Belgium
| | - Dirk Kuypers
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, B-3000, Leuven, Belgium
| | - Patrick Augustijns
- Department of Pharmaceutical and Pharmacological Sciences, Drug Delivery and Disposition, University of Leuven, B-3000, Leuven, Belgium
| | - Kristin Verbeke
- Leuven Food Science and Nutrition Research Centre (LFoRCe), University of Leuven, B-3000, Leuven, Belgium
- Translational Research for Gastrointestinal Disorders (Targid), University of Leuven, B-3000, Leuven, Belgium
| | - Björn Meijers
- Department of Microbiology and Immunology, Division of Nephrology, University Hospitals Leuven, B-3000, Leuven, Belgium
- * E-mail:
| |
Collapse
|
195
|
Vanholder R, Glorieux G, Massy ZA. Intestinal metabolites, chronic kidney disease and renal transplantation: Enigma Variations? Nephrol Dial Transplant 2016; 31:1547-51. [PMID: 27190337 DOI: 10.1093/ndt/gfw040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 11/14/2022] Open
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré University Hospital, APHP, University of Paris Saclay-Versailles-St-Quentin-en-Yvelines (UVSQ), Boulogne-Billancourt, Paris, France INSERM U1018, Research Centre in Epidemiology and Population Health (CESP) Team 5, Villejuif, France
| |
Collapse
|
196
|
Kandouz S, Mohamed AS, Zheng Y, Sandeman S, Davenport A. Reduced protein bound uraemic toxins in vegetarian kidney failure patients treated by haemodiafiltration. Hemodial Int 2016; 20:610-617. [DOI: 10.1111/hdi.12414] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sakina Kandouz
- UCL Centre for Nephrology, Royal Free Hospital, University College London Medical School; London UK
| | - Ali Shendi Mohamed
- ISN/UKRA fellow, UCL Centre for Nephrology, Royal Free Hospital, University College London Medical School; London UK
- Zagazig University, Markaz El-Zakazik; Ash Sharqia Governorate 44516 Egypt
| | - Yishan Zheng
- Department of Pharmacy & Biomolecular Sciences; Brighton University; Brighton UK
| | - Susan Sandeman
- Department of Pharmacy & Biomolecular Sciences; Brighton University; Brighton UK
| | - Andrew Davenport
- UCL Centre for Nephrology, Royal Free Hospital, University College London Medical School; London UK
| |
Collapse
|
197
|
Vanholder R, Fouque D, Glorieux G, Heine GH, Kanbay M, Mallamaci F, Massy ZA, Ortiz A, Rossignol P, Wiecek A, Zoccali C, London GM. Clinical management of the uraemic syndrome in chronic kidney disease. Lancet Diabetes Endocrinol 2016; 4:360-73. [PMID: 26948372 DOI: 10.1016/s2213-8587(16)00033-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/03/2015] [Accepted: 01/13/2016] [Indexed: 12/22/2022]
Abstract
The clinical picture of the uraemic syndrome is a complex amalgam of accelerated ageing and organ dysfunction, which progress in parallel to chronic kidney disease. The uraemic syndrome is associated with cardiovascular disease, metabolic bone disease, inflammation, protein energy wasting, intestinal dysbiosis, anaemia, and neurological and endocrine dysfunction. In this Review, we summarise specific, modern management options for the uraemic syndrome in chronic kidney disease. Although large randomised controlled trials are scarce, based on data from randomised controlled trials and observational studies, as well as pathophysiological reasoning, a therapeutic algorithm can be developed for this complex and multifactorial condition, with interventions targeting several modifiable factors simultaneously.
Collapse
Affiliation(s)
- Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium.
| | - Denis Fouque
- Department of Nephrology-Nutrition-Dialysis, Centre Hospitalier Lyon Sud, Carmen-CENS, Université Claude Bernard Lyon 1, Lyon, France; Investigation Network Initiative Cardiovascular and Renal Clinical Trialists (INI-CRCT), French Clinical Research Infrastructure Network (F-CRIN), Nancy, France
| | - Griet Glorieux
- Nephrology Section, Department of Internal Medicine, Ghent University Hospital, Ghent, Belgium
| | - Gunnar H Heine
- Department of Internal Medicine IV, Saarland University Medical Centre, Homburg, Germany
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| | - Francesca Mallamaci
- Nephrology, Dialysis and Transplantation Unit, and CNR-IFC Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension, Ospedali Riuniti, Reggio Calabria, Italy
| | - Ziad A Massy
- Investigation Network Initiative Cardiovascular and Renal Clinical Trialists (INI-CRCT), French Clinical Research Infrastructure Network (F-CRIN), Nancy, France; Division of Nephrology, Ambroise Paré University Hospital (APHP), University of Paris Ouest, Versailles-Saint-Quentin-en-Yvelines (UVSQ), Boulogne-Billancourt, Paris, France; INSERM U1018, Research Centre in Epidemiology and Population Health (CESP), UVSQ, Villejuif, France
| | - Alberto Ortiz
- Division of Nephrology, IIS-Fundacion Jimenez Diaz, Madrid, Spain
| | - Patrick Rossignol
- Investigation Network Initiative Cardiovascular and Renal Clinical Trialists (INI-CRCT), French Clinical Research Infrastructure Network (F-CRIN), Nancy, France; INSERM Centre d'Investigations Cliniques (CIC)-1433, and INSERM U1116, Nancy, France; Institut Lorrain du Cœur et des Vaisseaux, CHU Nancy, Vandoeuvre lès Nancy, France; Université de Lorraine, Nancy, France; Association Lorraine pour le Traitement de l'Insuffisance Rénale, Vandoeuvre lès Nancy, France
| | - Andrzej Wiecek
- Department of Nephrology, Transplantation and Internal Medicine, Medical University of Silesia, Katowice, Poland
| | - Carmine Zoccali
- Nephrology, Dialysis and Transplantation Unit, and CNR-IFC Clinical Epidemiology and Pathophysiology of Renal Diseases and Hypertension, Ospedali Riuniti, Reggio Calabria, Italy
| | - Gérard Michel London
- Investigation Network Initiative Cardiovascular and Renal Clinical Trialists (INI-CRCT), French Clinical Research Infrastructure Network (F-CRIN), Nancy, France; INSERM U970, Hôpital Européen Georges Pompidou, Paris
| | | | | | | |
Collapse
|
198
|
Abstract
PURPOSE OF REVIEW This review summarizes recent metabolomics studies of renal disease, outlining some of the limitations of the literature to date. RECENT FINDINGS The application of metabolomics in nephrology research has expanded from the initial analyses of uremia to include both cross-sectional and longitudinal studies of earlier stages of kidney disease. Although these studies have nominated several potential markers of incident chronic kidney disease (CKD) and CKD progression, a lack of overlap in metabolite coverage has limited the ability to synthesize results across groups. Furthermore, direct examination of renal metabolite handling has underscored the substantial impact kidney function has on these potential markers (and many other circulating metabolites). In experimental studies, metabolomics has been used to identify a signature of decreased mitochondrial function in diabetic nephropathy and a preference for aerobic glucose metabolism in polycystic kidney disease. In each case, these studies have outlined novel therapeutic opportunities. Finally, as a complement to the longstanding interest in renal metabolite clearance, the microbiome has been increasingly recognized as the source of many plasma metabolites, including some with potential functional relevance to CKD and its complications. SUMMARY The high-throughput, high-resolution phenotyping enabled by metabolomics technologies has begun to provide insight on renal disease in clinical, physiologic, and experimental contexts.
Collapse
|
199
|
Ramezani A, Massy ZA, Meijers B, Evenepoel P, Vanholder R, Raj DS. Role of the Gut Microbiome in Uremia: A Potential Therapeutic Target. Am J Kidney Dis 2016; 67:483-98. [PMID: 26590448 PMCID: PMC5408507 DOI: 10.1053/j.ajkd.2015.09.027] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/25/2015] [Indexed: 02/08/2023]
Abstract
Also known as the "second human genome," the gut microbiome plays important roles in both the maintenance of health and the pathogenesis of disease. The symbiotic relationship between host and microbiome is disturbed due to the proliferation of dysbiotic bacteria in patients with chronic kidney disease (CKD). Fermentation of protein and amino acids by gut bacteria generates excess amounts of potentially toxic compounds such as ammonia, amines, thiols, phenols, and indoles, but the generation of short-chain fatty acids is reduced. Impaired intestinal barrier function in patients with CKD permits translocation of gut-derived uremic toxins into the systemic circulation, contributing to the progression of CKD, cardiovascular disease, insulin resistance, and protein-energy wasting. The field of microbiome research is still nascent, but is evolving rapidly. Establishing symbiosis to treat uremic syndrome is a novel concept, but if proved effective, it will have a significant impact on the management of patients with CKD.
Collapse
Affiliation(s)
- Ali Ramezani
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC
| | - Ziad A Massy
- Division of Nephrology, Ambroise Paré University Hospital, Assistance Publique-Hôpitaux de Paris, University of Paris Ouest-ersailles-Saint-Quentin-en-Yvelines (UVSQ), Boulogne-Billancourt/Paris, France; INSERM U1018, Research Centre in Epidemiology and Population Health (CESP) Team 5, University of Paris Ouest-Versailles-Saint-Quentin-en-Yvelines (UVSQ), Villejuif, France
| | - Björn Meijers
- Division of Nephrology, Department of Microbiology and Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Pieter Evenepoel
- Division of Nephrology, Department of Microbiology and Immunology, University Hospitals Leuven, Leuven, Belgium
| | - Raymond Vanholder
- Nephrology Section, Department of Internal Medicine, University Hospital, Ghent, Belgium
| | - Dominic S Raj
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC.
| |
Collapse
|
200
|
Kieffer DA, Piccolo BD, Vaziri ND, Liu S, Lau WL, Khazaeli M, Nazertehrani S, Moore ME, Marco ML, Martin RJ, Adams SH. Resistant starch alters gut microbiome and metabolomic profiles concurrent with amelioration of chronic kidney disease in rats. Am J Physiol Renal Physiol 2016; 310:F857-71. [PMID: 26841824 DOI: 10.1152/ajprenal.00513.2015] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 01/28/2016] [Indexed: 02/06/2023] Open
Abstract
Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xenometabolites). The fermentable dietary fiber high amylose maize-resistant starch type 2 (HAMRS2) has been shown to alter the gut milieu and in CKD rat models leads to markedly improved kidney function. The aim of the present study was to identify specific cecal bacteria and cecal, blood, and urinary metabolites that associate with changes in kidney function to identify potential mechanisms involved with CKD amelioration in response to dietary resistant starch. Male Sprague-Dawley rats with adenine-induced CKD were fed a semipurified low-fiber diet or a high-fiber diet [59% (wt/wt) HAMRS2] for 3 wk (n = 9 rats/group). The cecal microbiome was characterized, and cecal contents, serum, and urine metabolites were analyzed. HAMRS2-fed rats displayed decreased cecal pH, decreased microbial diversity, and an increased Bacteroidetes-to-Firmicutes ratio. Several uremic retention solutes were altered in the cecal contents, serum, and urine, many of which had strong correlations with specific gut bacteria abundances, i.e., serum and urine indoxyl sulfate were reduced by 36% and 66%, respectively, in HAMRS2-fed rats and urine p-cresol was reduced by 47% in HAMRS2-fed rats. Outcomes from this study were coincident with improvements in kidney function indexes and amelioration of CKD outcomes previously reported for these rats, suggesting an important role for microbial-derived factors and gut microbe metabolism in regulating host kidney function.
Collapse
Affiliation(s)
- Dorothy A Kieffer
- Obesity and Metabolism Research Unit, United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California; Graduate Group in Nutritional Biology and Department of Nutrition, University of California, Davis, California
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | | | - Shuman Liu
- Division of Nephrology, University of California, Irvine, California
| | - Wei L Lau
- Division of Nephrology, University of California, Irvine, California
| | - Mahyar Khazaeli
- Division of Nephrology, University of California, Irvine, California
| | | | - Mary E Moore
- Department of Food Science and Technology, University of California, Davis, California; and
| | - Maria L Marco
- Department of Food Science and Technology, University of California, Davis, California; and
| | - Roy J Martin
- Obesity and Metabolism Research Unit, United States Department of Agriculture-Agricultural Research Service Western Human Nutrition Research Center, Davis, California
| | - Sean H Adams
- Graduate Group in Nutritional Biology and Department of Nutrition, University of California, Davis, California; Arkansas Children's Nutrition Center and Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|