151
|
Four-year long (2014-2017) clinical and laboratory surveillance of hepatitis E virus infections using combined antibody, molecular, antigen and avidity detection methods: Increasing incidence and chronic HEV case in Hungary. J Clin Virol 2020; 124:104284. [DOI: 10.1016/j.jcv.2020.104284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/15/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
|
152
|
Hepatitis A and E - Differences and commonalities. J Hepatol 2020; 72:578-580. [PMID: 31173809 DOI: 10.1016/j.jhep.2019.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/03/2019] [Accepted: 05/14/2019] [Indexed: 12/04/2022]
|
153
|
Wang B, Harms D, Yang XL, Bock CT. Orthohepevirus C: An Expanding Species of Emerging Hepatitis E Virus Variants. Pathogens 2020; 9:154. [PMID: 32106525 PMCID: PMC7157548 DOI: 10.3390/pathogens9030154] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/21/2020] [Accepted: 02/23/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen that has received an increasing amount of attention from virologists, clinicians, veterinarians, and epidemiologists over the past decade. The host range and animal reservoirs of HEV are rapidly expanding and a plethora of emerging HEV variants have been recently identified, some of which have the potential for interspecies infection. In this review, the detection of genetically diverse HEV variants, classified into and presumably associated with the species Orthohepevirus C, currently comprising HEV genotypes C1 and C2, by either serological or molecular approach is summarized. The distribution, genomic variability, and evolution of Orthohepevirus C are analyzed. Moreover, the potential risk of cross-species infection and zoonotic transmission of Orthohepevirus C are discussed.
Collapse
Affiliation(s)
- Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Dominik Harms
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany;
| | - Xing-Lou Yang
- CAS Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China;
| | - C.-Thomas Bock
- Department of Infectious Diseases, Division of Viral Gastroenteritis and Hepatitis Pathogens and Enteroviruses, Robert Koch Institute, 13353 Berlin, Germany;
- Institute of Tropical Medicine, University of Tübingen, 72074 Tübingen, Germany
| |
Collapse
|
154
|
Larrue H, Abravanel F, Péron JM. Hepatitis E, what's the real issue? Liver Int 2020; 40 Suppl 1:43-47. [PMID: 32077607 DOI: 10.1111/liv.14351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 12/25/2022]
Abstract
Hepatitis E Virus (HEV) infection is a worldwide disease and the primary cause of acute viral hepatitis in the world with an estimated 20 million cases every year and 70 000 deaths. Hepatitis E is a waterborne infection in the developing countries. In these countries, HEV genotypes 1 and 2 cause large outbreaks and affect young subjects, resulting in significant mortality in pregnant women and patients with cirrhosis. In the developed countries, HEV genotypes 3 and 4 are responsible for autochthonous, sporadic hepatitis and transmission is zoonotic. Parenteral transmission by the transfusion of blood products has been identified as a potential new mode of transmission. The prevalence of positive HEV viraemia in blood donors in Europe ranges from 1/600 to 1/2500 in highly endemic European countries. HEV can cause neurological disorders and chronic infections in immunocompromised patients. The progression of acute hepatitis E is usually asymptomatic and resolves spontaneously. Diagnostic tools include anti-HEV IgM antibodies in serum and/or viral RNA detection in the blood or the stools by PCR. Ribavirin is used to treat chronic infection. A vaccine has been developed in China.
Collapse
Affiliation(s)
- Hélène Larrue
- Service d'hépatologie Hôpital Rangueil CHU Toulouse, Université Paul Sabatier III, Toulouse, France
| | - Florence Abravanel
- Laboratoire de Virologie Hôpital Purpan CHU Toulouse, Université Paul Sabatier III, Toulouse, France
| | - Jean-Marie Péron
- Service d'hépatologie Hôpital Rangueil CHU Toulouse, Université Paul Sabatier III, Toulouse, France
| |
Collapse
|
155
|
Eiden M, Dähnert L, Spoerel S, Vina-Rodriguez A, Schröder R, Conraths FJ, Groschup MH. Spatial-Temporal Dynamics of Hepatitis E Virus Infection in Foxes ( Vulpes vulpes) in Federal State of Brandenburg, Germany, 1993-2012. Front Microbiol 2020; 11:115. [PMID: 32082295 PMCID: PMC7005575 DOI: 10.3389/fmicb.2020.00115] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 01/17/2020] [Indexed: 12/31/2022] Open
Abstract
Hepatitis E virus (HEV) is the main course for acute hepatitis in humans throughout the world. Human associated genotypes 1 and 2 as well as zoonotic genotypes 3 and 4 are grouped in the species Orthohepevirus A. In addition, a large variety of HEV-related viruses has been found in vertebrates including carnivores, rats, bats, and chickens, which were classified in species Orthohepevirus B-D. In 2015, partial genome sequences of a novel hepevirus were detected in feces of red foxes (Vulpes vulpes). However, no further information about virus circulation and the prevalence in foxes was available. We therefore assayed a unique panel of 880 transudates, which was collected from red foxes over 19 years (1993–2012) in Brandenburg, Germany, for HEV-related viral RNA and antibodies. Our results demonstrate a high antibody prevalence of HEV in red foxes, which oscillated annually between 40 and 100%. Molecular screening of the transudates revealed only a single RNA-positive sample, which was assigned to the carnivore species Orthohepevirus C based on the amplified partial sequence. These data indicate that the virus is circulating widely in the fox population and that foxes are carriers of this virus.
Collapse
Affiliation(s)
- Martin Eiden
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Lisa Dähnert
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Susanne Spoerel
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany.,Tierarztpraxis Dr. Kindler, Wiesbaden, Germany
| | - Ariel Vina-Rodriguez
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Ronald Schröder
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Franz J Conraths
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Martin H Groschup
- Institute for Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| |
Collapse
|
156
|
Lhomme S, Marion O, Abravanel F, Izopet J, Kamar N. Clinical Manifestations, Pathogenesis and Treatment of Hepatitis E Virus Infections. J Clin Med 2020; 9:E331. [PMID: 31991629 PMCID: PMC7073673 DOI: 10.3390/jcm9020331] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis throughout the world. Most infections are acute but they can become chronic in immunocompromised patients, such as solid organ transplant patients, patients with hematologic malignancy undergoing chemotherapy and those with a human immunodeficiency virus (HIV) infection. Extra-hepatic manifestations, especially neurological and renal diseases, have also been described. To date, four main genotypes of HEV (HEV1-4) were described. HEV1 and HEV2 only infect humans, while HEV3 and HEV4 can infect both humans and animals, like pigs, wild boar, deer and rabbits. The real epidemiology of HEV has been underestimated because most infections are asymptomatic. This review focuses on the recent advances in our understanding of the pathophysiology of acute HEV infections, including severe hepatitis in patients with pre-existing liver disease and pregnant women. It also examines the mechanisms leading to chronic infection in immunocompromised patients and extra-hepatic manifestations. Acute infections are usually self-limiting and do not require antiviral treatment. Conversely, a chronic HEV infection can be cleared by decreasing the dose of immunosuppressive drugs or by treating with ribavirin for 3 months. Nevertheless, new drugs are needed for those cases in which ribavirin treatment fails.
Collapse
Affiliation(s)
- Sébastien Lhomme
- Virology Laboratory, National Reference Center for Hepatitis E Virus, Toulouse Purpan University Hospital, 31300 Toulouse, France; (F.A.); (J.I.)
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France;
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
| | - Olivier Marion
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France;
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
- Department of Nephrology and Organs Transplantation, Toulouse Rangueil University Hospital, 31400 Toulouse, France
| | - Florence Abravanel
- Virology Laboratory, National Reference Center for Hepatitis E Virus, Toulouse Purpan University Hospital, 31300 Toulouse, France; (F.A.); (J.I.)
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France;
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
| | - Jacques Izopet
- Virology Laboratory, National Reference Center for Hepatitis E Virus, Toulouse Purpan University Hospital, 31300 Toulouse, France; (F.A.); (J.I.)
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France;
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
| | - Nassim Kamar
- INSERM UMR1043, Center for Pathophysiology of Toulouse Purpan, 31300 Toulouse, France;
- Université Toulouse III Paul Sabatier, 31330 Toulouse, France
- Department of Nephrology and Organs Transplantation, Toulouse Rangueil University Hospital, 31400 Toulouse, France
| |
Collapse
|
157
|
Multivesicular body sorting and the exosomal pathway are required for the release of rat hepatitis E virus from infected cells. Virus Res 2020; 278:197868. [PMID: 31962066 DOI: 10.1016/j.virusres.2020.197868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 01/14/2023]
Abstract
Recent reports have shown that rat hepatitis E virus (HEV) is capable of infecting humans. We also successfully propagated rat HEV into human PLC/PRF/5 cells, raising the possibility of a similar mechanism shared by human HEV and rat HEV. Rat HEV has the proline-rich sequence, PxYPMP, in the open reading frame 3 (ORF3) protein that is indispensable for its release. However, the release mechanism remains unclear. The overexpression of dominant-negative (DN) mutant of vacuolar protein sorting (Vps)4A or Vps4B decreased rat HEV release to 23.9 % and 18.0 %, respectively. The release of rat HEV was decreased to 8.3 % in tumor susceptibility gene 101 (Tsg101)-depleted cells and to 31.5 % in apoptosis-linked gene 2-interacting protein X (Alix)-depleted cells. Although rat HEV ORF3 protein did not bind to Tsg101, we found a 90-kDa protein capable of binding to wild-type rat HEV ORF3 protein but not to ORF3 mutant with proline to leucine mutations in the PxYPMP motif. Rat HEV release was also decreased in Ras-associated binding 27A (Rab27A)- or hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs)-depleted cells (to 20.1 % and 18.5 %, respectively). In addition, the extracellular rat HEV levels in the infected PLC/PRF/5 cells were increased after treatment with Bafilomycin A1 and decreased after treatment with GW4869. These results indicate that rat HEV utilizes multivesicular body (MVB) sorting for its release and that the exosomal pathway is required for rat HEV egress. A host protein alternative to Tsg101 that can bind to rat HEV ORF3 should be explored in further study.
Collapse
|
158
|
Sayed IM, Meuleman P. Updates in Hepatitis E virus (HEV) field; lessons learned from human liver chimeric mice. Rev Med Virol 2019; 30:e2086. [PMID: 31835277 DOI: 10.1002/rmv.2086] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/14/2022]
Abstract
Hepatitis E virus (HEV) is the most common cause of viral hepatitis globally, and it is an emerging pathogen in developed countries. In vivo studies of HEV have long been hindered due to the lack of an efficient small animal model. Recently, human liver chimeric mice were described as an elegant model to study chronic HEV infection. HEV infection was established in mice with humanized liver that were challenged with stool preparations containing HEV genotype (gt)1 and/or gt3. An increase in viral load and the level of HEV Ag in mouse samples were markers of active infection. Plasma-derived HEV preparations were less infectious. The kinetics of HEV ORF2 Ag during HEV infection and its impact on HEV diagnosis were described in this model. In addition, the nature of HEV particles and HEV ORF2 Ag were characterized. Moreover, humanized mice were used to study the impact of HEV infection on the hepatic innate transcriptome and evaluation of anti-HEV therapies. This review highlights recent advances in the HEV field gathered from well-established experimental mouse models, with an emphasis on this model as a tool for elucidating the course of HEV infection, the study of the HEV life cycle, the interaction of the virus with the host, and the evaluation of new anti-HEV therapies.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, School of Medicine, University of California, San Diego, San Diego, California, USA.,Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
159
|
Tsoi WC, Zhu X, To APC, Holmberg J. Hepatitis E virus infection in Hong Kong blood donors. Vox Sang 2019; 115:11-17. [PMID: 31709559 DOI: 10.1111/vox.12846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVES In Hong Kong, the dominant circulating hepatitis E virus (HEV) genotype is type 4, which can cause more severe clinical consequences than type 3. The aim of this study was to determine the HEV prevalence in Hong Kong blood donors. MATERIALS AND METHODS Unlinked donation samples (n = 10 000) collected in March to May 2015 were tested for HEV RNA using the Procleix HEV assay in an individual donation format (IDT). A subset of 2000 samples were tested for IgG and IgM anti-HEV using the Wantai enzyme-linked immunosorbent assay (ELISA). Nucleic acid testing (NAT) initial reactive results were retested once, and repeatedly reactive donations were subjected to alternative molecular procedures as confirmation tests. RESULTS One in 5000 Hong Kong blood donors was positive for HEV RNA (0·02%). The two RNA positive samples were also IgG and IgM anti-HEV positive. One of the two RNA positive donors could be sequenced revealing genotype type 4. Anti-HEV seroprevalence was estimated as 15·5% among all donors. IgG anti-HEV positive rate for age group 16-20 was 3·1%, and it increased with age to 43·1% for age group 51-60. Sero-positivity was higher in males (male donors 18·1% vs. female donors 13·2%), but it was mostly due to the difference in a specific age group (41-50). CONCLUSION Hepatitis E virus RNA positive rate of 0·02% was within the reported range of HEV RNA frequency in developed countries. One donor was confirmed to be genotype 4, which is the dominant genotype in circulation in Hong Kong.
Collapse
Affiliation(s)
- Wai-Chiu Tsoi
- Hong Kong Red Cross Blood Transfusion Service, Hong Kong, China
| | - Xiaomei Zhu
- Grifols Diagnostic Solutions Inc, Emeryville, CA, USA
| | - Amanda Pui-Chi To
- Public Health Laboratory Services Branch, Centre for Health Protection, Department of Health, Hong Kong, China
| | | |
Collapse
|
160
|
Hepatitis E virus infections in Europe. J Clin Virol 2019; 120:20-26. [PMID: 31536936 DOI: 10.1016/j.jcv.2019.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
|
161
|
De Sabato L, Ianiro G, Monini M, De Lucia A, Ostanello F, Di Bartolo I. Detection of hepatitis E virus RNA in rats caught in pig farms from Northern Italy. Zoonoses Public Health 2019; 67:62-69. [PMID: 31592576 DOI: 10.1111/zph.12655] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/09/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Hepatitis E virus (HEV) strains belonging to the Orthohepevirus genus are divided into four species (A-D). HEV strains included in the Orthohepevirus A species infect humans and several other mammals. Among them, the HEV-3 and HEV-4 genotypes are zoonotic and infect both humans and animals, of which, pigs and wild boar are the main reservoirs. Viruses belonging to the Orthohepevirus C species (HEV-C) have been considered to infect rats of different species and carnivores. Recently, two studies reported the detection of HEV-C1 (rat HEV) RNA in immunocompromised and immunocompetent patients, suggesting a possible transmission of rat HEV to humans. The role of rats and mice as reservoir of HEV and the potential zoonotic transmission is still poorly known and deserves further investigation. To this purpose, in this study, the presence of HEV RNA was investigated in the intestinal contents and liver samples from 47 Black rats (Rattus rattus) and 21 House mice (Mus musculus) captured in four pig farms in Northern Italy. The presence of both Orthohepevirus A and C was investigated by the real-rime RT-PCR specific for HEV-1 to HEV-4 genotypes of Orthohepevirus A species and by a broad spectrum hemi-nested RT-PCR capable of detecting different HEV species including rat HEV. The intestinal content from two Black rats resulted positive for HEV-C1 RNA and for HEV-3 RNA, respectively. None of the House mice was HEV RNA positive. Sequence analyses confirmed the detection of HEV-C1, genotype G1 and HEV-3 subtype e. The viral strain HEV-3e detected in the rat was identical to swine HEV strains detected in the same farm. Liver samples were negative for the detection of either rat HEV or HEV-3.
Collapse
Affiliation(s)
- Luca De Sabato
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Ianiro
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Marina Monini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alessia De Lucia
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Fabio Ostanello
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Italy
| | - Ilaria Di Bartolo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
162
|
Sayed IM, Elkhawaga AA, El-Mokhtar MA. In vivo models for studying Hepatitis E virus infection; Updates and applications. Virus Res 2019; 274:197765. [PMID: 31563457 DOI: 10.1016/j.virusres.2019.197765] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 02/08/2023]
Abstract
Hepatitis E virus (HEV) is the most common cause of acute viral hepatitis globally. HEV belongs to the Hepeviridae family and at least five genotypes (gt) infect humans. Several animal species are reservoirs for different HEV strains, and they are the source of infection for humans. Some HEV strains are species specific, but other strains could cross species and infect many hosts. The study of HEV infection and pathogenesis was hampered due to the lack of an in vitro and in vivo robust model system. The cell culture system has been established for certain HEV strains, especially gt3 and 4, but gt1 strains replicate poorly in vitro. To date, animal models are the best tool for studying HEV infection. Non-human primates (NHPs) and pigs are the main animal models used for studying HEV infection, but ethical and financial concerns restrict the use of NHPs in research. Therefore, new small animal models have been developed which help more progress in HEV research. In this review, we give updates on the animal models used for studying HEV infection, focusing on the applicability of each model in studying different HEV infections, cross-species infection, virus-host interaction, evaluation of anti-HEV therapies and testing potential HEV vaccines.
Collapse
Affiliation(s)
- Ibrahim M Sayed
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, California, USA; Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Amal A Elkhawaga
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Medical Microbiology and Immunology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
163
|
Hartard C, Gantzer C, Bronowicki JP, Schvoerer E. Emerging hepatitis E virus compared with hepatitis A virus: A new sanitary challenge. Rev Med Virol 2019; 29:e2078. [PMID: 31456241 DOI: 10.1002/rmv.2078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022]
Abstract
Hepatitis A (HAV) and E (HEV) viruses are able to cause liver disease in humans. Among the five classical hepatotropic viruses, they are mainly transmitted via the fecal-oral route. Historically, many similarities have thus been described between them according to their incidence and their pathogenicity, especially in countries with poor sanitary conditions. However, recent advances have provided new insights, and the gap is widening between them. Indeed, while HAV infection incidence tends to decrease in developed countries along with public health improvement, HEV is currently considered as an underdiagnosed emerging pathogen. HEV autochthonous infections are increasingly observed and are mainly associated with zoonotic transmissions. Extra hepatic signs resulting in neurological or renal impairments have also been reported for HEV, as well as a chronic carrier state in immunocompromised patients, arguing in favor of differential pathogenesis between those two viruses. Recent molecular tools have allowed studies of viral genome variability and investigation of links between viral plasticity and clinical evolution. The identification of key functional mutations in viral genomes may improve the knowledge of their clinical impact and is analyzed in depth in the present review.
Collapse
Affiliation(s)
- Cédric Hartard
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Vandoeuvre-lès-Nancy, France.,CNRS, LCPME UMR 7564, Nancy, France.,Faculté des Sciences et Technologies, Institut Jean Barriol, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Christophe Gantzer
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Vandoeuvre-lès-Nancy, France.,CNRS, LCPME UMR 7564, Nancy, France.,Faculté des Sciences et Technologies, Institut Jean Barriol, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | | | - Evelyne Schvoerer
- Laboratoire de Virologie, CHRU de Nancy Brabois, Vandœuvre-lès-Nancy, France.,Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), UMR 7564, Vandoeuvre-lès-Nancy, France.,CNRS, LCPME UMR 7564, Nancy, France.,Faculté des Sciences et Technologies, Institut Jean Barriol, Université de Lorraine, Vandœuvre-lès-Nancy, France
| |
Collapse
|
164
|
Ryll R, Heckel G, Corman VM, Drexler JF, Ulrich RG. Genomic and spatial variability of a European common vole hepevirus. Arch Virol 2019; 164:2671-2682. [PMID: 31399875 DOI: 10.1007/s00705-019-04347-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Rodents host different orthohepeviruses, namely orthohepevirus C genotype HEV-C1 (rat hepatitis E virus, HEV) and the additional putative genotypes HEV-C3 and HEV-C4. Here, we screened 2,961 rodents from Central Europe by reverse transcription polymerase chain reaction (RT-PCR) and identified HEV RNA in 13 common voles (Microtus arvalis) and one bank vole (Myodes glareolus) with detection rates of 2% (95% confidence interval [CI]: 1-3.4) and 0.08% (95% CI: 0.002-0.46), respectively. Sequencing of a 279-nucleotide RT-PCR amplicon corresponding to a region within open reading frame (ORF) 1 showed a high degree of similarity to recently described common vole-associated HEV (cvHEV) sequences from Hungary. Five novel complete cvHEV genome sequences from Central Europe showed the typical HEV genome organization with ORF1, ORF2 and ORF3 and RNA secondary structure. Uncommon features included a noncanonical start codon in ORF3, multiple insertions and deletions within ORF1 and ORF2/ORF3, and the absence of a putative ORF4. Phylogenetic analysis showed all of the novel cvHEV sequences to be monophyletic, clustering most closely with an unassigned bird-derived sequence and other sequences of the species Orthohepevirus C. The nucleotide and amino acid sequence divergence of the common vole-derived sequences was significantly correlated with the spatial distance between the trapping sites, indicating mostly local evolutionary processes. Detection of closely related HEV sequences in common voles in multiple localities over a distance of 800 kilometers suggested that common voles are infected by cvHEV across broad geographic distances. The common vole-associated HEV strain is clearly divergent from HEV sequences recently found in narrow-headed voles (Microtus gregalis) and other cricetid rodents.
Collapse
Affiliation(s)
- René Ryll
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald-Insel Riems, Germany
| | - Gerald Heckel
- University of Bern, Institute of Ecology and Evolution, Bern, Switzerland.,Swiss Institute of Bioinformatics, Quartier Sorge, Batiment Genopode, Lausanne, Switzerland
| | - Victor M Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Campus Charité Mitte, Charitéplatz 1, 10098, Berlin, Germany.,German Centre for Infection Research (DZIF), Associated Partner Site Berlin, Berlin, Germany
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Campus Charité Mitte, Charitéplatz 1, 10098, Berlin, Germany. .,German Centre for Infection Research (DZIF), Associated Partner Site Berlin, Berlin, Germany.
| | - Rainer G Ulrich
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, 17493, Greifswald-Insel Riems, Germany. .,German Centre for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Insel Riems, Greifswald-Insel Riems, Germany.
| |
Collapse
|
165
|
Ogawa H, Hirayama H, Tanaka S, Yata N, Namba H, Yamashita N, Yonemitsu K, Maeda K, Mominoki K, Yamada M. Risk assessment for hepatitis E virus infection from domestic pigs introduced into an experimental animal facility in a medical school. J Vet Med Sci 2019; 81:1191-1196. [PMID: 31281141 PMCID: PMC6715933 DOI: 10.1292/jvms.19-0086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Hepatitis E virus (HEV) is known to cause zoonotic infections from pigs, wild boars and
deer. Domestic pigs have been used as an experimental animal model in medical research and
training; however, the risks of HEV infection from pigs during animal experiments are
largely unknown. Here, we retrospectively investigated the seroprevalence and detection
rates of viral RNA in 73 domestic pigs (average 34.5 kg) introduced into an animal
experimental facility in a medical school during 2012–2016. We detected anti-HEV
immunoglobulin G antibodies in 24 of 73 plasma samples (32.9%), though none of the samples
were positive for viral RNA. Plasma samples of 18 pigs were sequentially monitored and
were classified into four patterns: sustained positive (5 pigs), sustained negative (5
pigs), conversion to positive (6 pigs) and conversion to negative (2 pigs). HEV genomes
were detected in 2 of 4 liver samples from pigs that were transported from the same farm
during 2016–2017. Two viral sequences of the overlapping open reading frame (ORF) 2/3
region (97 bp) were identical and phylogenetically fell into genotype 3. A 459-bp length
of the ORF2 region of an amplified fragment from a pig transported in 2017 was clustered
with the wbJYG1 isolate (subgenotype 3b) with 91.5% (420/459 bp) nucleotide identity.
Based on our results, we suggest that domestic pigs introduced into animal facilities
carry a potential risk of HEV infection to researchers, trainees and facility staff.
Continuous surveillance and precautions are important to prevent HEV infection in animal
facilities.
Collapse
Affiliation(s)
- Hirohito Ogawa
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Haruko Hirayama
- Department of Animal Resources, Advanced Science Research Center, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Satsuki Tanaka
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Norio Yata
- Department of Animal Resources, Advanced Science Research Center, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Hikaru Namba
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Nobuko Yamashita
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Kenzo Yonemitsu
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Katsumi Mominoki
- Department of Animal Resources, Advanced Science Research Center, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Masao Yamada
- Department of Virology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
166
|
Horvatits T, Schulze Zur Wiesch J, Lütgehetmann M, Lohse AW, Pischke S. The Clinical Perspective on Hepatitis E. Viruses 2019; 11:E617. [PMID: 31284447 PMCID: PMC6669652 DOI: 10.3390/v11070617] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/17/2022] Open
Abstract
Every year, there are an estimated 20 million hepatitis E virus (HEV) infections worldwide, leading to an estimated 3.3 million symptomatic cases of hepatitis E. HEV is largely circulating in the west and is associated with several hepatic and extrahepatic diseases. HEV Genotype 1 and 2 infections are waterborne and causative for epidemics in the tropics, while genotype 3 and 4 infections are zoonotic diseases and are mainly transmitted by ingestion of undercooked pork in industrialized nations. The clinical course of these infections differs: genotype 1 and 2 infection can cause acute illness and can lead to acute liver failure (ALF) or acute on chronic liver failure (ACLF) with a high mortality rate of 20% in pregnant women. In contrast, the majority of HEV GT-3 and -4 infections have a clinically asymptomatic course and only rarely lead to acute on chronic liver failure in elderly or patients with underlying liver disease. Immunosuppressed individuals infected with genotype 3 or 4 may develop chronic hepatitis E, which then can lead to life-threatening cirrhosis. Furthermore, several extra-hepatic manifestations affecting various organs have been associated with ongoing or previous HEV infections but the causal link for many of them still needs to be proven. There is no approved specific therapy for the treatment of acute or chronic HEV GT-3 or -4 infections but off-label use of ribavirin has been demonstrated to be safe and effective in the majority of patients. However, in approximately 15% of chronically HEV infected patients, cure is not possible.
Collapse
Affiliation(s)
- Thomas Horvatits
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany
| | - Julian Schulze Zur Wiesch
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany
| | - Marc Lütgehetmann
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany
- Institute of Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany
| | - Ansgar W Lohse
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany
| | - Sven Pischke
- Department of Medicine, University Medical Center Hamburg-Eppendorf, 22527 Hamburg, Germany.
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel and Heidelberg Partner sites, 22527 Hamburg, Germany.
| |
Collapse
|
167
|
Fu RM, Decker CC, Dao Thi VL. Cell Culture Models for Hepatitis E Virus. Viruses 2019; 11:E608. [PMID: 31277308 PMCID: PMC6669563 DOI: 10.3390/v11070608] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/24/2019] [Accepted: 06/29/2019] [Indexed: 12/14/2022] Open
Abstract
Despite a growing awareness, hepatitis E virus (HEV) remains understudied and investigations have been historically hampered by the absence of efficient cell culture systems. As a result, the pathogenesis of HEV infection and basic steps of the HEV life cycle are poorly understood. Major efforts have recently been made through the development of HEV infectious clones and cellular systems that significantly advanced HEV research. Here, we summarize these systems, discussing their advantages and disadvantages for HEV studies. We further capitalize on the need for HEV-permissive polarized cell models to better recapitulate the entire HEV life cycle and transmission.
Collapse
Affiliation(s)
- Rebecca Menhua Fu
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Charlotte Caroline Decker
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, 69120 Heidelberg, Germany
- Heidelberg Biosciences International Graduate School, Heidelberg University, 69120 Heidelberg, Germany
| | - Viet Loan Dao Thi
- Schaller Research Group at Department of Infectious Diseases and Virology, Heidelberg University Hospital, Cluster of Excellence CellNetworks, 69120 Heidelberg, Germany.
| |
Collapse
|
168
|
Animal Models for Hepatitis E virus. Viruses 2019; 11:v11060564. [PMID: 31216711 PMCID: PMC6630473 DOI: 10.3390/v11060564] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is an underdiagnosed pathogen with approximately 20 million infections each year and currently the most common cause of acute viral hepatitis. HEV was long considered to be confined to developing countries but there is increasing evidence that it is also a medical problem in the Western world. HEV that infects humans belongs to the Orthohepevirus A species of the Hepeviridae family. Novel HEV-like viruses have been observed in a variety of animals and some have been shown to be able to cross the species barrier, causing infection in humans. Several cell culture models for HEV have been established in the past years, but their efficiency is usually relatively low. With the circulation of this virus and related viruses in a variety of species, several different animal models have been developed. In this review, we give an overview of these animal models, indicate their main characteristics, and highlight how they may contribute to our understanding of the basic aspects of the viral life cycle and cross-species infection, the study of pathogenesis, and the evaluation of novel preventative and therapeutic strategies.
Collapse
|
169
|
Hepatitis E Virus Assembly and Release. Viruses 2019; 11:v11060539. [PMID: 31181848 PMCID: PMC6631228 DOI: 10.3390/v11060539] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis E is an underestimated threat to public health, caused by the hepatitis E virus (HEV). HEV is the most common cause of acute viral hepatitis in the world, with no available direct-acting antiviral treatment. According to a recent WHO report, 20 million people become infected with HEV annually, resulting in 44,000 deaths. However, due to the scarcity of efficient in vitro cell culture systems for HEV, our knowledge of the life cycle of HEV is incomplete. Recently, significant progress has been made towards gaining a more comprehensive view of the HEV life cycle, as several in vitro culturing systems have been developed in recent years. Here, we review current knowledge and recent advances with regard to the HEV life cycle, with a particular focus on the assembly and release of viral particles. We also discuss the knowledge gaps in HEV assembly and release. Meanwhile, we highlight experimental platforms that could potentially be utilized to fill these gaps. Lastly, we offer perspectives on the future of research into HEV virology and its interaction with host cells.
Collapse
|
170
|
Hepatitis E Virus Drug Development. Viruses 2019; 11:v11060485. [PMID: 31141919 PMCID: PMC6631701 DOI: 10.3390/v11060485] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 02/08/2023] Open
Abstract
Hepatitis E virus (HEV) is an underestimated disease, leading to estimated 20 million infections and up to 70,000 deaths annually. Infections are mostly asymptomatic but can reach mortality rates up to 25% in pregnant women or become chronic in immunocompromised patients. The current therapy options are limited to the unspecific antivirals Ribavirin (RBV) and pegylated Interferon-α (pegIFN-α). RBV leads to viral clearance in only 80% of patients treated, and is, similar to pegIFN-α, contraindicated in the major risk group of pregnant women, emphasizing the importance of new therapy options. In this review, we focus on the urgent need and current efforts in HEV drug development. We provide an overview of the current status of HEV antiviral research. Furthermore, we discuss strategies for drug development and the limitations of the approaches with respect to HEV.
Collapse
|
171
|
Isolation of Subtype 3c, 3e and 3f-Like Hepatitis E Virus Strains Stably Replicating to High Viral Loads in an Optimized Cell Culture System. Viruses 2019; 11:v11060483. [PMID: 31141895 PMCID: PMC6632007 DOI: 10.3390/v11060483] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/17/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022] Open
Abstract
The hepatitis E virus (HEV) is transmitted via the faecal-oral route in developing countries (genotypes 1 and 2) or through contaminated food and blood products worldwide (genotypes 3 and 4). In Europe, HEV subtypes 3c, 3e and 3f are predominant. HEV is the leading cause of acute hepatitis globally and immunocompromised patients are particularly at risk. Because of a lack of cell culture systems efficiently propagating wild-type viruses, research on HEV is mostly based on cell culture-adapted isolates carrying uncommon insertions in the hypervariable region (HVR). While optimizing the cell culture system using the cell culture-adapted HEV strain 47832c, we isolated three wild-type strains derived from clinical specimens representing the predominant spectrum of HEV in Europe. The novel isolates 14-16753 (3c), 14-22707 (3e) and 15-22016 (3f-like) replicate to high viral loads of 108, 109 and 106.5 HEV RNA copies/mL at 14 days post-inoculation, respectively. In addition, they could be kept as persistently infected cell cultures with constant high viral loads (~109 copies/mL) for more than a year. In contrast to the latest isolates 47832c, LBPR-0379 and Kernow-C1, the new isolates do not carry genome insertions in the HVR. Optimization of HEV cell culture identified amphotericin B, distinct salts and fetal calf serum (FCS) as important medium supplements. Overconfluent cell layers increased infectivity and virus production. PLC/PRF/5, HuH-7-Lunet BLR, A549 and HepG2/C3A supported replication with different efficiencies. The novel strains and optimized cell culture system may be useful for studies on the HEV life cycle, inactivation, specific drug and vaccine development.
Collapse
|
172
|
Primadharsini PP, Nagashima S, Okamoto H. Genetic Variability and Evolution of Hepatitis E Virus. Viruses 2019; 11:E456. [PMID: 31109076 PMCID: PMC6563261 DOI: 10.3390/v11050456] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatitis E virus (HEV) is a single-stranded positive-sense RNA virus. HEV can cause both acute and chronic hepatitis, with the latter usually occurring in immunocompromised patients. Modes of transmission range from the classic fecal-oral route or zoonotic route, to relatively recently recognized but increasingly common routes, such as via the transfusion of blood products or organ transplantation. Extrahepatic manifestations, such as neurological, kidney and hematological abnormalities, have been documented in some limited cases, typically in patients with immune suppression. HEV has demonstrated extensive genomic diversity and a variety of HEV strains have been identified worldwide from human populations as well as growing numbers of animal species. The genetic variability and constant evolution of HEV contribute to its physiopathogenesis and adaptation to new hosts. This review describes the recent classification of the Hepeviridae family, global genotype distribution, clinical significance of HEV genotype and genomic variability and evolution of HEV.
Collapse
Affiliation(s)
- Putu Prathiwi Primadharsini
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| | - Shigeo Nagashima
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| | - Hiroaki Okamoto
- Division of Virology, Department of Infection and Immunity, Jichi Medical University School of Medicine, Tochigi 329-0498, Japan.
| |
Collapse
|
173
|
The Current Host Range of Hepatitis E Viruses. Viruses 2019; 11:v11050452. [PMID: 31108942 PMCID: PMC6563279 DOI: 10.3390/v11050452] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 01/01/2023] Open
Abstract
Hepatitis E virus (HEV) is an emerging zoonotic pathogen transmitting both human to human via the fecal oral route and from animals to humans through feces, direct contact, and consumption of contaminated meat products. Understanding the host range of the virus is critical for determining where potential threats to human health may be emerging from and where potential reservoirs for viral persistence in the environment may be hiding. Initially thought to be a human specific disease endemic to developing countries, the identification of swine as a primary host for genotypes 3 and 4 HEV in industrialized countries has begun a long journey of discovering novel strains of HEV and their animal hosts. As we continue identifying new strains of HEV in disparate animal species, it is becoming abundantly clear that HEV has a broad host range and many of these HEV strains can cross between differing animal species. These cross-species transmitting strains pose many unique challenges to human health as they are often unrecognized as sources of viral transmission.
Collapse
|
174
|
Lhomme S, Legrand-Abravanel F, Kamar N, Izopet J. Screening, diagnosis and risks associated with Hepatitis E virus infection. Expert Rev Anti Infect Ther 2019; 17:403-418. [DOI: 10.1080/14787210.2019.1613889] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sébastien Lhomme
- Department of Virology, National reference center for Hepatitis E Virus, CHU Purpan, Toulouse, France
- Inserm UMR1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
- Université de Toulouse, Toulouse III, Toulouse, France
| | - Florence Legrand-Abravanel
- Department of Virology, National reference center for Hepatitis E Virus, CHU Purpan, Toulouse, France
- Inserm UMR1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
- Université de Toulouse, Toulouse III, Toulouse, France
| | - Nassim Kamar
- Inserm UMR1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
- Université de Toulouse, Toulouse III, Toulouse, France
- Department of Nephrology and Organs Transplantation, CHU Rangueil, Toulouse, France
| | - Jacques Izopet
- Department of Virology, National reference center for Hepatitis E Virus, CHU Purpan, Toulouse, France
- Inserm UMR1043, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
- Université de Toulouse, Toulouse III, Toulouse, France
| |
Collapse
|
175
|
Sahli R, Fraga M, Semela D, Moradpour D, Gouttenoire J. Rabbit HEV in immunosuppressed patients with hepatitis E acquired in Switzerland. J Hepatol 2019; 70:1023-1025. [PMID: 30803864 DOI: 10.1016/j.jhep.2019.01.025] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Roland Sahli
- Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland
| | - Montserrat Fraga
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland
| | - David Semela
- Division of Gastroenterology and Hepatology, Cantonal Hospital St. Gallen, Switzerland
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland
| | - Jérôme Gouttenoire
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Switzerland.
| |
Collapse
|
176
|
Murphy EG, Williams NJ, Jennings D, Chantrey J, Verin R, Grierson S, McElhinney LM, Bennett M. First detection of Hepatitis E virus (Orthohepevirus C) in wild brown rats (Rattus norvegicus) from Great Britain. Zoonoses Public Health 2019; 66:686-694. [PMID: 31033238 PMCID: PMC6767579 DOI: 10.1111/zph.12581] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/21/2019] [Accepted: 04/06/2019] [Indexed: 12/20/2022]
Abstract
In the United Kingdom, there has been an increase in the number of hepatitis E virus (HEV) infections in people annually since 2010. Most of these are thought to be indigenously acquired Orthohepevirus A genotype 3 (HEV G3), which has been linked to pork production and consumption. However, the dominant subgroup circulating in British pigs differs from that which is found in people; therefore, an alternative, potentially zoonotic, source is suspected as a possible cause of these infections. Rodents, brown rats (Rattus norvegicus) in particular, have been shown to carry HEV, both the swine HEV G3 genotype and Orthohepevirus C, genotype C1 (rat HEV). To investigate the prevalence of HEV in British rodents, liver tissue was taken from 307 rodents collected from pig farms (n = 12) and other locations (n = 10). The RNA from these samples was extracted and tested using a pan‐HEV nested RT‐PCR. Limited histopathology was also performed. In this study, 8/61 (13%, 95% CI, 5–21) of brown rat livers were positive for HEV RNA. Sequencing of amplicons demonstrated all infections to be rat HEV with 87%–92% nucleotide identity to other rat HEV sequences circulating within Europe and China (224 nt ORF‐1). Lesions and necrosis were observed histologically in 2/3 samples examined. No rat HEV RNA was detected in any other species, and no HEV G3 RNA was detected in any rodent in this study. This is the first reported detection of rat HEV in Great Britain. A human case of rat HEV infection has recently been reported in Asia, suggesting that rat HEV could pose a risk to public health.
Collapse
Affiliation(s)
- Ellen G Murphy
- NIHR Health Protection Research Unit in Emerging Zoonotic Infections, Institute of Infection and Global Health, NCZR, Neston, UK.,Epidemiology and Population Health, Institute of Global Health, NCZR, Neston, UK
| | - Nicola J Williams
- NIHR Health Protection Research Unit in Emerging Zoonotic Infections, Institute of Infection and Global Health, NCZR, Neston, UK.,Epidemiology and Population Health, Institute of Global Health, NCZR, Neston, UK
| | - Daisy Jennings
- Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Weybridge, UK
| | - Julian Chantrey
- Department of Veterinary Pathology & Public Health, School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Ranieri Verin
- Department of Veterinary Pathology & Public Health, School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Sylvia Grierson
- Department of Virology, Animal and Plant Health Agency, Addlestone, UK
| | - Lorraine M McElhinney
- NIHR Health Protection Research Unit in Emerging Zoonotic Infections, Institute of Infection and Global Health, NCZR, Neston, UK.,Wildlife Zoonoses and Vector Borne Disease Research Group, Animal and Plant Health Agency, Weybridge, UK
| | - Malcolm Bennett
- School of Veterinary Science, University of Nottingham, Leicestershire, UK
| |
Collapse
|
177
|
Denner J. Hepatitis E virus (HEV)-The Future. Viruses 2019; 11:E251. [PMID: 30871152 PMCID: PMC6466233 DOI: 10.3390/v11030251] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/05/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatitis (HEV) is widely distributed in pigs and is transmitted with increasing numbers to humans by contact with pigs, contaminated food and blood transfusion. The virus is mostly apathogenic in pigs but may enhance the pathogenicity of other pig viruses. In humans, infection can lead to acute and chronic hepatitis and extrahepatic manifestations. In order to stop the emerging infection, effective counter-measures are required. First of all, transmission by blood products can be prevented by screening all blood donations. Meat and sausages should be appropriately cooked. Elimination of the virus from the entire pork production can be achieved by sensitive testing and elimination programs including early weaning, colostrum deprivation, Caesarean delivery, embryo transfer, treatment with antivirals, protection from de novo infection, and possibly vaccination. In addition, contaminated water, shellfish, vegetables, and fruits by HEV-contaminated manure should be avoided. A special situation is given in xenotransplantation using pig cells, tissues or organs in order to alleviate the lack of human transplants. The elimination of HEV from pigs, other animals and humans is consistent with the One Health concept, preventing subclinical infections in the animals as well as preventing transmission to humans and disease.
Collapse
|
178
|
Rasche A, Sander AL, Corman VM, Drexler JF. Evolutionary biology of human hepatitis viruses. J Hepatol 2019; 70:501-520. [PMID: 30472320 PMCID: PMC7114834 DOI: 10.1016/j.jhep.2018.11.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/09/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis viruses are major threats to human health. During the last decade, highly diverse viruses related to human hepatitis viruses were found in animals other than primates. Herein, we describe both surprising conservation and striking differences of the unique biological properties and infection patterns of human hepatitis viruses and their animal homologues, including transmission routes, liver tropism, oncogenesis, chronicity, pathogenesis and envelopment. We discuss the potential for translation of newly discovered hepatitis viruses into preclinical animal models for drug testing, studies on pathogenesis and vaccine development. Finally, we re-evaluate the evolutionary origins of human hepatitis viruses and discuss the past and present zoonotic potential of their animal homologues.
Collapse
Affiliation(s)
- Andrea Rasche
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany
| | - Victor Max Corman
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany,German Center for Infection Research (DZIF), Germany
| | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, 10117 Berlin, Germany; German Center for Infection Research (DZIF), Germany.
| |
Collapse
|
179
|
Sridhar S, Cheng VCC, Wong SC, Yip CCY, Wu S, Lo AWI, Leung KH, Mak WWN, Cai J, Li X, Chan JFW, Lau SKP, Woo PCY, Lai WM, Kwan TH, Au TWK, Lo CM, Wong SCY, Yuen KY. Donor-Derived Genotype 4 Hepatitis E Virus Infection, Hong Kong, China, 2018. Emerg Infect Dis 2019; 25:425-433. [PMID: 30789146 PMCID: PMC6390757 DOI: 10.3201/eid2503.181563] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Hepatitis E virus (HEV) genotype 4 (HEV-4) is an emerging cause of acute hepatitis in China. Less is known about the clinical characteristics and natural history of HEV-4 than HEV genotype 3 infections in immunocompromised patients. We report transmission of HEV-4 from a deceased organ donor to 5 transplant recipients. The donor had been viremic but HEV IgM and IgG seronegative, and liver function test results were within reference ranges. After a mean of 52 days after transplantation, hepatitis developed in all 5 recipients; in the liver graft recipient, disease was severe and with progressive portal hypertension. Despite reduced immunosuppression, all HEV-4 infections progressed to persistent hepatitis. Four patients received ribavirin and showed evidence of response after 2 months. This study highlights the role of organ donation in HEV transmission, provides additional data on the natural history of HEV-4 infection, and points out differences between genotype 3 and 4 infections in immunocompromised patients.
Collapse
|
180
|
Meister TL, Bruening J, Todt D, Steinmann E. Cell culture systems for the study of hepatitis E virus. Antiviral Res 2019; 163:34-49. [PMID: 30653997 DOI: 10.1016/j.antiviral.2019.01.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/08/2019] [Accepted: 01/13/2019] [Indexed: 12/26/2022]
Abstract
Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and is the leading cause of enterically-transmitted viral hepatitis worldwide. Increasing numbers of HEV infections, together with no available specific anti-HEV treatment, contributes to the pathogen's major health burden. A robust cell culture system is required for virologic studies and the development of new antiviral drugs. Unfortunately, like other hepatitis viruses, HEV is difficult to propagate in conventional cell lines. Many different cell culture systems have been tested using various HEV strains, but viral replication usually progresses very slowly, and infection with low virion counts results in non-productive HEV replication. However, recent progress involving generation of cDNA clones and passaging primary patient isolates in distinct cell lines has improved in vitro HEV propagation. This review describes various approaches to cultivate HEV in cellular and animal models and how these systems are used to study HEV infections and evaluate anti-HEV drug candidates.
Collapse
Affiliation(s)
- Toni L Meister
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany
| | - Janina Bruening
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany
| | - Daniel Todt
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany.
| | - Eike Steinmann
- Ruhr-University Bochum, Faculty of Medicine, Department of Molecular and Medical Virology, Bochum, Germany.
| |
Collapse
|
181
|
|
182
|
Schlosser J, Dähnert L, Dremsek P, Tauscher K, Fast C, Ziegler U, Gröner A, Ulrich RG, Groschup MH, Eiden M. Different Outcomes of Experimental Hepatitis E Virus Infection in Diverse Mouse Strains, Wistar Rats, and Rabbits. Viruses 2018; 11:v11010001. [PMID: 30577433 PMCID: PMC6356764 DOI: 10.3390/v11010001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/11/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis E virus (HEV) is the causative agent of acute hepatitis E in humans in developing countries, but autochthonous cases of zoonotic genotype 3 (HEV-3) infection also occur in industrialized countries. In contrast to swine, rats, and rabbits, natural HEV infections in mice have not yet been demonstrated. The pig represents a well-established large animal model for HEV-3 infection, but a suitable small animal model mimicking natural HEV-3 infection is currently missing. Therefore, we experimentally inoculated C57BL/6 mice (wild-type, IFNAR−/−, CD4−/−, CD8−/−) and BALB/c nude (nu/nu) mice, Wistar rats, and European rabbits with a wild boar-derived HEV-3 strain and monitored virus replication and shedding, as well as humoral immune responses. HEV RNA and anti-HEV antibodies were detected in one and two out of eight of the rats and all rabbits inoculated, respectively, but not in any of the mouse strains tested. Remarkably, immunosuppressive dexamethasone treatment of rats did not enhance their susceptibility to HEV infection. In rabbits, immunization with recombinant HEV-3 and ratHEV capsid proteins induced protection against HEV-3 challenge. In conclusion, the rabbit model for HEV-3 infection may serve as a suitable alternative to the non-human primate and swine models, and as an appropriate basis for vaccine evaluation studies.
Collapse
Affiliation(s)
- Josephine Schlosser
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Lisa Dähnert
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Paul Dremsek
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Kerstin Tauscher
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Christine Fast
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | - Ute Ziegler
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| | | | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel, 17493 GreifswaldInsel Riems, Germany.
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
- German Center for Infection Research (DZIF), partner site Hamburg-Lübeck-Borstel, 17493 GreifswaldInsel Riems, Germany.
| | - Martin Eiden
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|