151
|
Xing J, Weng L, Yuan B, Wang Z, Jia L, Jin R, Lu H, Li XC, Liu YJ, Zhang Z. Identification of a role for TRIM29 in the control of innate immunity in the respiratory tract. Nat Immunol 2016; 17:1373-1380. [PMID: 27695001 PMCID: PMC5558830 DOI: 10.1038/ni.3580] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022]
Abstract
The respiratory tract is heavily populated with innate immune cells, but the mechanisms that control such cells are poorly defined. Here we found that the E3 ubiquitin ligase TRIM29 was a selective regulator of the activation of alveolar macrophages, the expression of type I interferons and the production of proinflammatory cytokines in the lungs. We found that deletion of TRIM29 enhanced macrophage production of type I interferons and protected mice from infection with influenza virus, while challenge of Trim29-/- mice with Haemophilus influenzae resulted in lethal lung inflammation due to massive production of proinflammatory cytokines by macrophages. Mechanistically, we demonstrated that TRIM29 inhibited interferon-regulatory factors and signaling via the transcription factor NF-κB by degrading the adaptor NEMO and that TRIM29 directly bound NEMO and subsequently induced its ubiquitination and proteolytic degradation. These data identify TRIM29 as a key negative regulator of alveolar macrophages and might have important clinical implications for local immunity and immunopathology.
Collapse
Affiliation(s)
- Junji Xing
- Immunobiology and Transplant Research Center, Houston Methodist Research Institute, Houston, Texas, USA
| | | | - Bin Yuan
- Immunobiology and Transplant Research Center, Houston Methodist Research Institute, Houston, Texas, USA
| | - Zhuo Wang
- Immunobiology and Transplant Research Center, Houston Methodist Research Institute, Houston, Texas, USA
| | - Li Jia
- Immunobiology and Transplant Research Center, Houston Methodist Research Institute, Houston, Texas, USA
| | - Rui Jin
- Immunobiology and Transplant Research Center, Houston Methodist Research Institute, Houston, Texas, USA
| | - Hongbo Lu
- Medimmune, Gaithersburg, Maryland, USA
| | - Xian Chang Li
- Immunobiology and Transplant Research Center, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, New York, USA
| | - Yong-Jun Liu
- Medimmune, Gaithersburg, Maryland, USA
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhiqiang Zhang
- Immunobiology and Transplant Research Center, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Surgery, Weill Cornell Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
152
|
Wang LT, Ting CH, Yen ML, Liu KJ, Sytwu HK, Wu KK, Yen BL. Human mesenchymal stem cells (MSCs) for treatment towards immune- and inflammation-mediated diseases: review of current clinical trials. J Biomed Sci 2016; 23:76. [PMID: 27809910 PMCID: PMC5095977 DOI: 10.1186/s12929-016-0289-5] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022] Open
Abstract
Human mesenchymal stem cells (MSCs) are multilineage somatic progenitor/stem cells that have been shown to possess immunomodulatory properties in recent years. Initially met with much skepticism, MSC immunomodulation has now been well reproduced across tissue sources and species to be clinically relevant. This has opened up the use of these versatile cells for application as 3rd party/allogeneic use in cell replacement/tissue regeneration, as well as for immune- and inflammation-mediated disease entities. Most surprisingly, use of MSCs for in immune-/inflammation-mediated diseases appears to yield more efficacy than for regenerative medicine, since engraftment of the exogenous cell does not appear necessary. In this review, we focus on this non-traditional clinical use of a tissue-specific stem cell, and highlight important findings and trends in this exciting area of stem cell therapy.
Collapse
Affiliation(s)
- Li-Tzu Wang
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, 35053, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan
| | - Chiao-Hsuan Ting
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, 35053, Taiwan
| | - Men-Luh Yen
- Department of Ob/Gyn, National Taiwan University Hospital & College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ko-Jiunn Liu
- National Institute of Cancer Research, NHRI, Tainan, Taiwan
| | - Huey-Kang Sytwu
- Graduate Institute of Life Sciences, National Defense Medical Center (NDMC), Taipei, Taiwan.,Graduate Institute of Microbiology and Immunology, NDMC, Taipei, Taiwan
| | - Kenneth K Wu
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, 35053, Taiwan.,Graduate Institute of Basic Medical Sciences, China Medical College, Taichung, Taiwan
| | - B Linju Yen
- Regenerative Medicine Research Group, Institute of Cellular & System Medicine, National Health Research Institutes (NHRI), 35 Keyan Road, Zhunan, 35053, Taiwan.
| |
Collapse
|
153
|
Duan M, Hibbs ML, Chen W. The contributions of lung macrophage and monocyte heterogeneity to influenza pathogenesis. Immunol Cell Biol 2016; 95:225-235. [DOI: 10.1038/icb.2016.97] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/15/2016] [Accepted: 09/20/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria Australia
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Monash University, Alfred Medical Research and Education Precinct, 89 Commercial Rd Melbourne Victoria Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University Melbourne Victoria Australia
| |
Collapse
|
154
|
Kang MJ, Shadel GS. A Mitochondrial Perspective of Chronic Obstructive Pulmonary Disease Pathogenesis. Tuberc Respir Dis (Seoul) 2016; 79:207-213. [PMID: 27790272 PMCID: PMC5077724 DOI: 10.4046/trd.2016.79.4.207] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 04/15/2016] [Accepted: 05/26/2016] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) encompasses several clinical syndromes, most notably emphysema and chronic bronchitis. Most of the current treatments fail to attenuate severity and progression of the disease, thereby requiring better mechanistic understandings of pathogenesis to develop disease-modifying therapeutics. A number of theories on COPD pathogenesis have been promulgated wherein an increase in protease burden from chronic inflammation, exaggerated production of reactive oxygen species and the resulting oxidant injury, or superfluous cell death responses caused by enhanced cellular injury/damage were proposed as the culprit. These hypotheses are not mutually exclusive and together likely represent the multifaceted biological processes involved in COPD pathogenesis. Recent studies demonstrate that mitochondria are involved in innate immune signaling that plays important roles in cigarette smoke-induced inflammasome activation, pulmonary inflammation and tissue remodeling responses. These responses are reviewed herein and synthesized into a view of COPD pathogenesis whereby mitochondria play a central role.
Collapse
Affiliation(s)
- Min-Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gerald S Shadel
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.; Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
155
|
Barreiro E, Bustamante V, Curull V, Gea J, López-Campos JL, Muñoz X. Relationships between chronic obstructive pulmonary disease and lung cancer: biological insights. J Thorac Dis 2016; 8:E1122-E1135. [PMID: 27867578 DOI: 10.21037/jtd.2016.09.54] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Lung cancer (LC) has become one of the leading causes of preventable death in the last few decades. Cigarette smoking (CS) stays as the main etiologic factor of LC despite that many other causes such as occupational exposures, air pollution, asbestos, or radiation have also been implicated. Patients with chronic obstructive pulmonary disease (COPD), which also represents a major cause of morbidity and mortality in developed countries, exhibit a significantly greater risk of LC. The study of the underlying biological mechanisms that may predispose patients with chronic respiratory diseases to a higher incidence of LC has also gained much attention in the last few years. The present review has been divided into three major sections in which different aspects have been addressed: (I) relevant etiologic agents of LC; (II) studies confirming the hypothesis that COPD patients are exposed to a greater risk of developing LC; and (III) evidence on the most relevant underlying biological mechanisms that support the links between COPD and LC. Several carcinogenic agents have been described in the last decades but CS remains to be the leading etiologic agent in most geographical regions in which the incidence of LC is very high. Growing evidence has put the line forward the implications of COPD and especially of emphysema in LC development. Hence, COPD represents a major risk factor of LC in patients. Different avenues of research have demonstrated the presence of relevant biological mechanisms that may predispose COPD patients to develop LC. Importantly, the so far identified biological mechanisms offer targets for the design of specific therapeutic strategies that will further the current treatment options for patients with LC. Prospective screening studies, in which patients with COPD should be followed up for several years will help identify biomarkers that may predict the risk of LC among these patients.
Collapse
Affiliation(s)
- Esther Barreiro
- Pulmonology Department-Lung Cancer and Muscle Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Pompeu Fabra University (UPF), Barcelona Autonomous University (UAB), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain; ; Network of Excellence in Lung Diseases (CIBERES), Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Víctor Bustamante
- Pneumology Department, Basurto University Hospital, Osakidetza, Department of Medicine, EHU-University of the Basque Country, Bilbao, Bizkaia, Spain
| | - Víctor Curull
- Pulmonology Department-Lung Cancer and Muscle Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Pompeu Fabra University (UPF), Barcelona Autonomous University (UAB), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain; ; Network of Excellence in Lung Diseases (CIBERES), Carlos III Health Institute (ISCIII), Madrid, Spain
| | - Joaquim Gea
- Pulmonology Department-Lung Cancer and Muscle Research Group, IMIM-Hospital del Mar, Parc de Salut Mar, Health and Experimental Sciences Department (CEXS), Pompeu Fabra University (UPF), Barcelona Autonomous University (UAB), Barcelona Biomedical Research Park (PRBB), Barcelona, Spain; ; Network of Excellence in Lung Diseases (CIBERES), Carlos III Health Institute (ISCIII), Madrid, Spain
| | - José Luis López-Campos
- Network of Excellence in Lung Diseases (CIBERES), Carlos III Health Institute (ISCIII), Madrid, Spain; ; Medical-Surgery Unit of Respiratory Disease, Sevilla Biomedicine Institute (IBIS), Virgen del Rocío University Hospital, University of Seville, Seville, Spain
| | - Xavier Muñoz
- Network of Excellence in Lung Diseases (CIBERES), Carlos III Health Institute (ISCIII), Madrid, Spain; ; Pulmonology Service, Medicine Department, Vall d'Hebron University Hospital, Barcelona Autonomous University (UAB), Barcelona, Spain
| |
Collapse
|
156
|
Kooij KW, Wit FWNM, Booiman T, van der Valk M, Schim van der Loeff MF, Kootstra NA, Reiss P. Cigarette Smoking and Inflammation, Monocyte Activation, and Coagulation in HIV-Infected Individuals Receiving Antiretroviral Therapy, Compared With Uninfected Individuals. J Infect Dis 2016; 214:1817-1821. [PMID: 27683822 DOI: 10.1093/infdis/jiw459] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/21/2016] [Indexed: 12/19/2022] Open
Abstract
Smoking may affect cardiovascular disease risk more strongly in human immunodeficiency virus (HIV)-infected individuals than HIV-uninfected individuals. We hypothesized that an interaction at the level of the immune system may contribute to this increased risk. We assessed soluble markers of inflammation (high-sensitivity C-reactive protein [hsCRP]), immune activation (soluble [s]CD14 and sCD163), and coagulation (D-dimer) in HIV-infected and uninfected never, former, and current smokers. Smoking was independently associated with higher hsCRP levels and lower sCD163 levels and was borderline significantly associated with higher sCD14 and D-dimer levels. We found no evidence of a differential effect of smoking in HIV-infected individuals as compared to uninfected individuals.
Collapse
Affiliation(s)
- Katherine W Kooij
- Department of Global Health.,Amsterdam Institute for Global Health and Development
| | - Ferdinand W N M Wit
- Department of Global Health.,Division of Infectious Diseases.,Center for Infection and Immunity Amsterdam.,Amsterdam Institute for Global Health and Development.,HIV Monitoring Foundation
| | - Thijs Booiman
- Department of Global Health.,Department of Experimental Immunology, Academic Medical Center.,Amsterdam Institute for Global Health and Development
| | - Marc van der Valk
- Division of Infectious Diseases.,Center for Infection and Immunity Amsterdam
| | - Maarten F Schim van der Loeff
- Division of Infectious Diseases.,Center for Infection and Immunity Amsterdam.,Infectious Diseases Research, Public Health Service Amsterdam, The Netherlands
| | | | - Peter Reiss
- Department of Global Health.,Division of Infectious Diseases.,Center for Infection and Immunity Amsterdam.,Amsterdam Institute for Global Health and Development.,HIV Monitoring Foundation
| | | |
Collapse
|
157
|
Li H, Yang T, Ning Q, Li F, Chen T, Yao Y, Sun Z. Cigarette smoke extract-treated mast cells promote alveolar macrophage infiltration and polarization in experimental chronic obstructive pulmonary disease. Inhal Toxicol 2016; 27:822-31. [PMID: 26671198 DOI: 10.3109/08958378.2015.1116644] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Cigarette smoking is the main cause of chronic obstructive pulmonary disease (COPD) and may modulate the immune response of exposed individuals. Mast cell function can be altered by cigarette smoking, but the role of smoking in COPD remains poorly understood. The current study aimed to explore the role of cigarette smoke extract (CSE)-treated mast cells in COPD pathogenesis. METHODS Cytokine and chemokine expression as well as degranulation of bone marrow-derived mast cells (BMMCs) were detected in cells exposed to immunoglobulin E (IgE) and various doses of CSE. Adoptive transfer of CSE-treated BMMCs into C57BL/6J mice was performed, and macrophage infiltration and polarization were evaluated by fluorescence-activated cell sorting (FACS). Furthermore, a coculture system of BMMCs and macrophages was established to examine macrophage phenotype transition. The role of protease serine member S31 (Prss31) was also investigated in the co-culture system and in COPD mice. RESULTS CSE exposure suppressed cytokine expression and degranulation in BMMCs, but promoted the expressions of chemokines and Prss31. Adoptive transfer of CSE-treated BMMCs induced macrophage infiltration and M2 polarization in the mouse lung. Moreover, CSE-treated BMMCs triggered macrophage M2 polarization via Prss31 secretion. Recombinant Prss31 was shown to activate interleukin (IL)-13/IL-13Rα/Signal transducers and activators of transcription (Stat) 6 signaling in macrophages. Additionally, a positive correlation was found between Prss31 expression and the number of M2 macrophages in COPD mice. CONCLUSION In conclusion, CSE-treated mast cells may induce macrophage infiltration and M2 polarization via Prss31 expression, and potentially contribute to COPD progression.
Collapse
Affiliation(s)
- Hong Li
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Tian Yang
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Qian Ning
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Feiyan Li
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Tianjun Chen
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Yan Yao
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| | - Zhongmin Sun
- a Department of Respiratory and Critical Care Medicine , The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an , China
| |
Collapse
|
158
|
Cao Q, Yao J, Li H, Tao B, Cai Y, Xiao P, Cheng H, Ke Y. Cellular Phenotypic Analysis of Macrophage Activation Unveils Kinetic Responses of Agents Targeting Phosphorylation. SLAS DISCOVERY 2016; 22:51-57. [PMID: 27554457 DOI: 10.1177/1087057116663166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Macrophages are highly plastic cells, which serve as sentinels of the host immune system due to their ability to recognize and respond to microbial products rapidly and dynamically. Appropriate regulation of macrophage activation is essential for pathogen clearance or preventing autoimmune diseases. However, regularly used endpoint assays for analyzing macrophage functions have the limitations of being static and non-high throughput. In this study, we introduced a real-time and convenient method based on changes in cellular impedance that are detected by microelectronic biosensors. This new method can record the time/dose-dependent cell response profiles (TCRPs) of macrophages in real time and generates physiologically relevant data. The TCRPs generated from classically interferon-γ/lipopolysaccharide-activated macrophages showed considerable consistency with the data generated from standard endpoint assays. We further explored this approach by using it for global screening of a library of protein tyrosine kinase/phosphatase (PTK/PTP) inhibitors to investigate their impact on macrophage activation. Collectively, our findings suggest that the cellular impedance-based assay provides a promising approach for dynamically monitoring macrophage functions in a convenient and high-throughput manner.
Collapse
Affiliation(s)
- Qian Cao
- 1 Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,2 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Junlin Yao
- 1 Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,3 Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Heyuan Li
- 3 Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Tao
- 3 Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yibo Cai
- 3 Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Peng Xiao
- 1 Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,3 Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqiang Cheng
- 3 Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuehai Ke
- 2 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.,3 Department of Pathology and Pathophysiology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
159
|
Avian Mycobacteriosis: Still Existing Threat to Humans. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4387461. [PMID: 27556033 PMCID: PMC4983314 DOI: 10.1155/2016/4387461] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 05/31/2016] [Accepted: 06/19/2016] [Indexed: 12/26/2022]
Abstract
The nontuberculous mycobacteria are typically environmental organisms residing in soil and water. These microorganisms can cause a wide range of clinical diseases; pulmonary disease is most frequent, followed by lymphadenitis in children, skin and soft tissue disease, and rare extra pulmonary or disseminated infections. Mycobacterium avium complex is the second most common cause of pulmonary mycobacterioses after M. tuberculosis. This review covers the clinical and laboratory diagnosis of infection caused by the members of this complex and particularities for the treatment of different disease types and patient populations.
Collapse
|
160
|
Rowlands DJ. Mitochondria dysfunction: A novel therapeutic target in pathological lung remodeling or bystander? Pharmacol Ther 2016; 166:96-105. [PMID: 27373853 DOI: 10.1016/j.pharmthera.2016.06.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022]
Abstract
The renascence in mitochondrial research has fueled breakthroughs in our understanding of mitochondrial biology identifying major roles in biological processes ranging from cellular oxygen sensing and regulation of intracellular calcium levels through to initiation of apoptosis or a shift in cell phenotype. Chronic respiratory diseases are no exception to the resurgent interest in mitochondrial biology. Microscopic observations of lungs from patients with chronic respiratory diseases such as pulmonary arterial hypertension, asthma and COPD show accumulation of dysmorphic mitochondria and provide the first evidence of mitochondrial dysfunction in diseased lungs. Recent mechanistic insights have established links between mitochondrial dysfunction or aberrant biogenesis and the pathogenesis of chronic respiratory diseases through playing a causative role in structural remodeling of the lung. The aim here is to discuss the case for a mitochondrial basis of lung remodeling in patients with chronic respiratory diseases. The present article will focus on the question of whether currently available data supports mitochondrial mechanisms as a viable point of therapeutic intervention in respiratory diseases and suggestions for future avenues of research in this rapidly evolving field.
Collapse
Affiliation(s)
- David J Rowlands
- Novartis Institutes for Biomedical Research, 250 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
161
|
Hodge S, Upham JW, Pizzutto S, Petsky HL, Yerkovich S, Baines KJ, Gibson P, Simpson JL, Buntain H, Chen ACH, Hodge G, Chang AB. Is Alveolar Macrophage Phagocytic Dysfunction in Children With Protracted Bacterial Bronchitis a Forerunner to Bronchiectasis? Chest 2016; 149:508-515. [PMID: 26867834 DOI: 10.1016/j.chest.2015.10.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/11/2015] [Accepted: 10/15/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Children with recurrent protracted bacterial bronchitis (PBB) and bronchiectasis share common features, and PBB is likely a forerunner to bronchiectasis. Both diseases are associated with neutrophilic inflammation and frequent isolation of potentially pathogenic microorganisms, including nontypeable Haemophilus influenzae (NTHi), from the lower airway. Defective alveolar macrophage phagocytosis of apoptotic bronchial epithelial cells (efferocytosis), as found in other chronic lung diseases, may also contribute to tissue damage and neutrophil persistence. Thus, in children with bronchiectasis or PBB and in control subjects, we quantified the phagocytosis of airway apoptotic cells and NTHi by alveolar macrophages and related the phagocytic capacity to clinical and airway inflammation. METHODS Children with bronchiectasis (n = 55) or PBB (n = 13) and control subjects (n = 13) were recruited. Alveolar macrophage phagocytosis, efferocytosis, and expression of phagocytic scavenger receptors were assessed by flow cytometry. Bronchoalveolar lavage fluid interleukin (IL) 1β was measured by enzyme-linked immunosorbent assay. RESULTS For children with PBB or bronchiectasis, macrophage phagocytic capacity was significantly lower than for control subjects (P = .003 and P < .001 for efferocytosis and P = .041 and P = .004 for phagocytosis of NTHi; PBB and bronchiectasis, respectively); median phagocytosis of NTHi for the groups was as follows: bronchiectasis, 13.7% (interquartile range [IQR], 11%-16%); PBB, 16% (IQR, 11%-16%); control subjects, 19.0% (IQR, 13%-21%); and median efferocytosis for the groups was as follows: bronchiectasis, 14.1% (IQR, 10%-16%); PBB, 16.2% (IQR, 14%-17%); control subjects, 18.1% (IQR, 16%-21%). Mannose receptor expression was significantly reduced in the bronchiectasis group (P = .019), and IL-1β increased in both bronchiectasis and PBB groups vs control subjects. CONCLUSIONS A reduced alveolar macrophage phagocytic host response to apoptotic cells or NTHi may contribute to neutrophilic inflammation and NTHi colonization in both PBB and bronchiectasis. Whether this mechanism also contributes to the progression of PBB to bronchiectasis remains unknown.
Collapse
Affiliation(s)
- Sandra Hodge
- Chronic Inflammatory Lung Disease Research Laboratory, Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and The School of Medicine, The University of Adelaide, Adelaide, SA, Australia.
| | - John W Upham
- Princess Alexandra Hospital, Brisbane, QLD, Australia; The School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Susan Pizzutto
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia
| | - Helen L Petsky
- Queensland University of Technology, South Brisbane, QLD, Australia
| | - Stephanie Yerkovich
- The School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Katherine J Baines
- Respiratory and Sleep Medicine, School of Medicine and Public Health, Centre for Asthma and Respiratory Disease, The University of Newcastle, Callaghan, NSW, Australia
| | - Peter Gibson
- Respiratory and Sleep Medicine, School of Medicine and Public Health, Centre for Asthma and Respiratory Disease, The University of Newcastle, Callaghan, NSW, Australia
| | - Jodie L Simpson
- Respiratory and Sleep Medicine, School of Medicine and Public Health, Centre for Asthma and Respiratory Disease, The University of Newcastle, Callaghan, NSW, Australia
| | - Helen Buntain
- Queensland Children's Health Service, Brisbane, QLD, and Queensland Children's Medical Research Institute, Brisbane, QLD, Australia
| | - Alice C H Chen
- The School of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Greg Hodge
- Chronic Inflammatory Lung Disease Research Laboratory, Lung Research Unit, Hanson Institute and Department of Thoracic Medicine, Royal Adelaide Hospital, and The School of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Anne B Chang
- Child Health Division, Menzies School of Health Research, Darwin, NT, Australia; Queensland Children's Health Service, Brisbane, QLD, and Queensland Children's Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
162
|
Yu YRA, Hotten DF, Malakhau Y, Volker E, Ghio AJ, Noble PW, Kraft M, Hollingsworth JW, Gunn MD, Tighe RM. Flow Cytometric Analysis of Myeloid Cells in Human Blood, Bronchoalveolar Lavage, and Lung Tissues. Am J Respir Cell Mol Biol 2016; 54:13-24. [PMID: 26267148 DOI: 10.1165/rcmb.2015-0146oc] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Clear identification of specific cell populations by flow cytometry is important to understand functional roles. A well-defined flow cytometry panel for myeloid cells in human bronchoalveolar lavage (BAL) and lung tissue is currently lacking. The objective of this study was to develop a flow cytometry-based panel for human BAL and lung tissue. We obtained and performed flow cytometry/sorting on human BAL cells and lung tissue. Confocal images were obtained from lung tissue using antibodies for cluster of differentiation (CD)206, CD169, and E cadherin. We defined a multicolor flow panel for human BAL and lung tissue that identifies major leukocyte populations. These include macrophage (CD206(+)) subsets and other CD206(-) leukocytes. The CD206(-) cells include: (1) three monocyte (CD14(+)) subsets, (2) CD11c(+) dendritic cells (CD14(-), CD11c(+), HLA-DR(+)), (3) plasmacytoid dendritic cells (CD14(-), CD11c(-), HLA-DR(+), CD123(+)), and (4) other granulocytes (neutrophils, mast cells, eosinophils, and basophils). Using this panel on human lung tissue, we defined two populations of pulmonary macrophages: CD169(+) and CD169(-) macrophages. In lung tissue, CD169(-) macrophages were a prominent cell type. Using confocal microscopy, CD169(+) macrophages were located in the alveolar space/airway, defining them as alveolar macrophages. In contrast, CD169(-) macrophages were associated with airway/alveolar epithelium, consistent with interstitial-associated macrophages. We defined a flow cytometry panel in human BAL and lung tissue that allows identification of multiple immune cell types and delineates alveolar from interstitial-associated macrophages. This study has important implications for defining myeloid cells in human lung samples.
Collapse
Affiliation(s)
- Yen-Rei A Yu
- 1 Department of Medicine, Duke University, Durham, North Carolina
| | | | - Yuryi Malakhau
- 1 Department of Medicine, Duke University, Durham, North Carolina
| | - Ellen Volker
- 1 Department of Medicine, Duke University, Durham, North Carolina
| | - Andrew J Ghio
- 2 National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, North Carolina
| | - Paul W Noble
- 3 Department of Medicine, Cedar Sinai Medical Center, Los Angeles, California; and
| | - Monica Kraft
- 1 Department of Medicine, Duke University, Durham, North Carolina
| | | | - Michael D Gunn
- 1 Department of Medicine, Duke University, Durham, North Carolina
| | - Robert M Tighe
- 1 Department of Medicine, Duke University, Durham, North Carolina
| |
Collapse
|
163
|
Bozinovski S, Vlahos R, Anthony D, McQualter J, Anderson G, Irving L, Steinfort D. COPD and squamous cell lung cancer: aberrant inflammation and immunity is the common link. Br J Pharmacol 2016; 173:635-48. [PMID: 26013585 PMCID: PMC4742298 DOI: 10.1111/bph.13198] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 04/30/2015] [Accepted: 05/14/2015] [Indexed: 12/25/2022] Open
Abstract
Cigarette smoking has reached epidemic proportions within many regions of the world and remains the highest risk factor for chronic obstructive pulmonary disease (COPD) and lung cancer. Squamous cell lung cancer is commonly detected in heavy smokers, where the risk of developing lung cancer is not solely defined by tobacco consumption. Although therapies that target common driver mutations in adenocarcinomas are showing some promise, they are proving ineffective in smoking-related squamous cell lung cancer. Since COPD is characterized by an excessive inflammatory and oxidative stress response, this review details how aberrant innate, adaptive and systemic inflammatory processes can contribute to lung cancer susceptibility in COPD. Activated leukocytes release increasing levels of proteases and free radicals as COPD progresses and tertiary lymphoid aggregates accumulate with increasing severity. Reactive oxygen species promote formation of reactive carbonyls that are not only tumourigenic through initiating DNA damage, but can directly alter the function of regulatory proteins involved in host immunity and tumour suppressor functions. Systemic inflammation is also markedly increased during infective exacerbations in COPD and the interplay between tumour-promoting serum amyloid A (SAA) and IL-17A is discussed. SAA is also an endogenous allosteric modifier of FPR2 expressed on immune and epithelial cells, and the therapeutic potential of targeting this receptor is proposed as a novel strategy for COPD-lung cancer overlap.
Collapse
Affiliation(s)
- Steven Bozinovski
- School of Health Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Vic., Australia
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Ross Vlahos
- School of Health Sciences and Health Innovations Research Institute, RMIT University, Melbourne, Vic., Australia
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Desiree Anthony
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Jonathan McQualter
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Gary Anderson
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Vic., Australia
| | - Louis Irving
- Department of Respiratory Medicine, The Royal Melbourne Hospital, Parkville, Vic., Australia
| | - Daniel Steinfort
- Department of Respiratory Medicine, The Royal Melbourne Hospital, Parkville, Vic., Australia
| |
Collapse
|
164
|
Gender difference in plasma fatty-acid-binding protein 4 levels in patients with chronic obstructive pulmonary disease. Biosci Rep 2016; 36:e00302. [PMID: 26823558 PMCID: PMC4770303 DOI: 10.1042/bsr20150281] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/25/2016] [Indexed: 02/05/2023] Open
Abstract
Plasma FABP4 levels were higher in females with COPD compared with both males with COPD and healthy females. FABP4 levels correlated inversely with lung function, and positively with adiponectin and TNFα in COPD. COPD (chronic obstructive pulmonary disease) is characterized by airway inflammation and increases the likelihood of the development of atherosclerosis. Recent studies have indicated that FABP4 (fatty-acid-binding protein 4), an intracellular lipid chaperone of low molecular mass, plays an important role in the regulation of inflammation and atherosclerosis. We carried out a preliminary clinical study aiming at investigating the relationships between circulating FABP4 levels in patients with COPD and inflammation and lung function. We enrolled 50 COPD patients and 39 healthy controls in the study. Lung function tests were performed in all subjects. Plasma levels of FABP4 and adiponectin, TNFα (tumour necrosis factor α) and CRP (C-reactive protein) were measured. The correlations between FABP4 and lung function, adipokine (adiponectin), inflammatory factors and BMI (body mass index) were analysed. Compared with both males with COPD and healthy females, plasma FABP4 levels in females with COPD were significantly increased. Adiponectin and CRP levels were significantly higher in patients with COPD. Furthermore, we found that FABP4 levels were inversely correlated with FEV1% predicted (FEV1 is forced expiratory volume in 1 s) and positively correlated with adiponectin and TNFα in COPD patients. In addition, a positive correlation between plasma FABP4 and CRP was found in females with COPD. However, FABP4 levels were not correlated with BMI. Our results underline a gender difference in FABP4 secretion in stable COPD patients. Further studies are warranted to clarify the exact role of FABP4 in the pathogenesis of COPD.
Collapse
|
165
|
Yoon CM, Nam M, Oh YM, Dela Cruz CS, Kang MJ. Mitochondrial Regulation of Inflammasome Activation in Chronic Obstructive Pulmonary Disease. J Innate Immun 2015; 8:121-8. [PMID: 26536345 DOI: 10.1159/000441299] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/25/2015] [Indexed: 12/14/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by enhanced chronic airway and lung inflammatory responses to noxious particles or gases. It is a major unmet medical need worldwide, and in Western society is strongly associated with exposure to cigarette smoke (CS). CS-induced inflammation is believed to be a key immune driver in the pathogenesis of COPD. Since the concept of inflammasomes was first introduced nearly a decade ago, these have been increasingly recognized as a central player in innate immune and inflammatory responses. In addition, studies have emerged demonstrating that mitochondrial innate immune signaling plays an important role in CS-induced inflammasome activation, pulmonary inflammation and tissue remodeling responses. Here, recent discoveries about inflammasome activation and mitochondrial biology and their role in COPD pathogenesis are reviewed. In addition, the current limitations of our understanding of this theme and future research directions are discussed.
Collapse
Affiliation(s)
- Chang Min Yoon
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, Conn., USA
| | | | | | | | | |
Collapse
|
166
|
Bhat TA, Panzica L, Kalathil SG, Thanavala Y. Immune Dysfunction in Patients with Chronic Obstructive Pulmonary Disease. Ann Am Thorac Soc 2015; 12 Suppl 2:S169-75. [PMID: 26595735 PMCID: PMC4722840 DOI: 10.1513/annalsats.201503-126aw] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 05/27/2015] [Indexed: 01/09/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a complex chronic disease. Chronic inflammation is the hallmark of COPD, involving the interplay of a wide variety of cells in the lung microenvironment. Cigarette smoke (CS) induces chronic lung inflammation and is considered a key etiological factor in the development and pathogenesis of COPD. Structural and inflammatory cells in the lung respond to CS exposure by releasing proinflammatory mediators that recruit additional inflammatory immune cells, which collectively contribute to the establishment of a chronic inflammatory microenvironment. Chronic inflammation contributes to lung damage, compromises innate and adaptive immune responses, and facilitates the recurrent episodes of respiratory infection that punctuate and further contribute to the pathological manifestations of the stable disease. A number of studies support the conclusion that immune dysfunction leads to exacerbations and disease severity in COPD. Our group has clearly demonstrated that CS exacerbates lung inflammation and compromises immunity to respiratory pathogens in a mouse model of COPD. We have also investigated the phenotype of immune cells in patients with COPD compared with healthy control subjects and found extensive immune dysfunction due to the presence and functional activity of T regulatory cells, CD4(+)PD-1(+) exhausted effector T cells and myeloid-derived suppressor cells. Manipulation of these immunosuppressive networks in COPD could provide a rational strategy to restore functional immune responses, reduce exacerbations, and improve lung function. In this review, we discuss the role of immune dysfunction in COPD that may contribute to recurrent respiratory infections and disease severity.
Collapse
Affiliation(s)
- Tariq A Bhat
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | - Louis Panzica
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Yasmin Thanavala
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
167
|
Cao WJ, Li MH, Li JX, Xu X, Ren SX, Rajbanshi B, Xu JF. High Expression of Cathepsin E is Associated with the Severity of Airflow Limitation in Patients with COPD. COPD 2015; 13:160-6. [PMID: 26488201 DOI: 10.3109/15412555.2015.1057273] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND It was reported that Cathepsin E (Cat E) plays a critical role in antigen processing and in the development of pulmonary emphysema. The aim of this study was to investigate the role of Cat E and airflow limitation in the pathogenesis of COPD. METHODS Sixty-five patients with COPD, 20 smoking control subjects without COPD and 15 non-smoking healthy control subjects were enrolled. Cat E and EIC (Elastase inhibitory capacity) expressions were measured by ELISA in sputum and serum samples and compared according to different subgroups. RESULTS Cat E concentrations were significantly higher in patients with COPD than smoking control and non-smoking control subjects (P < 0.01). The levels of CatE were inversely correlated with FEV1% predicted in COPD patients (r = -0.95, P < 0.01). The levels of EIC were inversely positively correlated with FEV1% predicted in COPD patients (r = 0.926, P < 0.01). Levels of Cat E were also inversely correlated with the levels of EIC (r = -0.922, P < 0.01). CONCLUSIONS Cat E contributes to the severity of airflow limitation during progression of COPD.
Collapse
Affiliation(s)
- Wei-Jun Cao
- a 1 Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine , Shanghai , China.,b 2 Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Soochow University , Suzhou , China
| | - Man-Hui Li
- a 1 Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine , Shanghai , China.,b 2 Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Soochow University , Suzhou , China
| | - Jian-Xiong Li
- a 1 Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine , Shanghai , China
| | - Xin Xu
- a 1 Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine , Shanghai , China
| | - Sheng-Xiang Ren
- c 3 Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine , Shanghai , China
| | - Bhavana Rajbanshi
- a 1 Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine , Shanghai , China
| | - Jin-Fu Xu
- a 1 Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine , Shanghai , China.,b 2 Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Soochow University , Suzhou , China
| |
Collapse
|
168
|
Smoking, inflammation and small cell lung cancer: recent developments. Wien Med Wochenschr 2015; 165:379-86. [PMID: 26289596 DOI: 10.1007/s10354-015-0381-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/23/2015] [Indexed: 12/16/2022]
Abstract
Small cell lung cancer (SCLC) accounts for 15 % of all lung tumors and represents an invasive neuroendocrine malignancy with poor survival rates. This cancer is highly prevalent in smokers and characterized by inactivation of p53 and retinoblastoma. First in vitro expansion of circulating tumor cells (CTCs) of SCLC patients allowed for investigation of the cell biology of tumor dissemination. In the suggested CTC SCLC model, the primary tumor attracts and educates tumor-promoting and immunosuppressive macrophages which in turn arm CTCs to spread and generate distal lesions. Preexisting inflammatory processes associated with chronic obstructive pulmonary disease (COPD) seem to potentiate the subsequent activity of tumor-associated macrophages (TAM). Activation of signal transducer and activator of transcription 3 (STAT3) and expression of chitinase-3-like 1/YKL-40 in SCLC CTCs seems to be associated with drug resistance. In conclusion, inflammation-associated generation of invasive and chemoresistant CTCs most likely explains the characteristic features of SCLC, namely early dissemination and rapid failure of chemotherapy.
Collapse
|
169
|
Wang T, Chen X, Zhang W, Xiang X, Leng C, Jia Q. Roles of macrophage stimulating protein and tyrosine kinase receptor RON in smoke-induced airway inflammation of rats. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:8797-8808. [PMID: 26464622 PMCID: PMC4583854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 07/23/2015] [Indexed: 06/05/2023]
Abstract
OBJECTIVE To investigate the roles of macrophage stimulating protein (MSP) and its tyrosine kinase receptor RON in smoke-induced airway inflammation of rats. METHODS Inhalation of combustion smoke was administered in rats to induce airway inflammation. Alveolar macrophages (AM) of healthy and smoking rats were isolated at different time points, cultured and then treated with different concentrations of MSP for 24 h. RESULTS When compared with healthy rats, MSP increased in the serum and bronchoalveolar lavage fluid (BALF) of smoking rats in a time dependent manner. In smoking rats, the RON expression in the lung and AM was higher than in healthy rats, and these increases were time dependent. MSP stimulated the production of malondialdehyde (MDA) and reduced superoxide dismutase (SOD) activity in rat AM cells in a dose dependent manner. MSP also stimulated the release of inflammatory factors TNF-α, IL-8, IL-1β and IL-10 in rat AM in a dose-dependent manner. Moreover, at the same MSP concentration, the contents of MDA, TNF-α, IL-8 and IL-1β in the AM of smoking rates were higher than in healthy rats, while the IL-10 content and SOD activity were lower than in healthy rats. CONCLUSION MSP and its receptor RON are involved in the smoke-induced airway inflammation in rats via promoting AM to release inflammatory cytokines and inducing the increase of oxygen free radical.
Collapse
Affiliation(s)
- Tao Wang
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Xiaoju Chen
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Wenbo Zhang
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Xiaojun Xiang
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Changyan Leng
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| | - Qinyao Jia
- Department of Respiratory Medicine, Affiliated Hospital of North Sichuan Medical College Nanchong, Sichuan 637000, China
| |
Collapse
|
170
|
King PT. Inflammation in chronic obstructive pulmonary disease and its role in cardiovascular disease and lung cancer. Clin Transl Med 2015. [PMID: 26220864 PMCID: PMC4518022 DOI: 10.1186/s40169-015-0068-z] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by lung inflammation that persists after smoking cessation. This inflammation is heterogeneous but the key inflammatory cell types involved are macrophages, neutrophils and T cells. Other lung cells may also produce inflammatory mediators, particularly the epithelial cells. The main inflammatory mediators include tumor necrosis factor alpha, interleukin-1, interleukin-6, reactive oxygen species and proteases. COPD is also associated with systemic inflammation and there is a markedly increased risk of cardiovascular disease (particularly coronary artery disease) and lung cancer in patients with COPD. There is strong associative evidence that the inflammatory cells/mediators in COPD are also relevant to the development of cardiovascular disease and lung cancer. There are a large number of potential inhibitors of inflammation in COPD that may well have beneficial effects for these comorbidities. This is a not well-understood area and there is a requirement for more definitive clinical and mechanistic studies to define the relationship between the inflammatory process of COPD and cardiovascular disease and lung cancer.
Collapse
Affiliation(s)
- Paul T King
- Monash Lung and Sleep, Monash Medical Centre, 246 Clayton Rd, Clayton, Melbourne, 3168, Australia,
| |
Collapse
|
171
|
Sanjurjo L, Aran G, Roher N, Valledor AF, Sarrias MR. AIM/CD5L: a key protein in the control of immune homeostasis and inflammatory disease. J Leukoc Biol 2015; 98:173-84. [PMID: 26048980 DOI: 10.1189/jlb.3ru0215-074r] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/12/2015] [Indexed: 01/16/2023] Open
Abstract
CD5L, a soluble protein belonging to the SRCR superfamily, is expressed mostly by macrophages in lymphoid and inflamed tissues. The expression of this protein is transcriptionally controlled by LXRs, members of the nuclear receptor family that play major roles in lipid homeostasis. Research undertaken over the last decade has uncovered critical roles of CD5L as a PRR of bacterial and fungal components and in the control of key mechanisms in inflammatory responses, with involvement in processes, such as infection, atherosclerosis, and cancer. In this review, we summarize the current knowledge of CD5L, its roles at the intersection between lipid homeostasis and immune response, and its potential use as a diagnostic biomarker in a variety of diseases, such as TB and liver cirrhosis.
Collapse
Affiliation(s)
- Lucía Sanjurjo
- *Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol, Badalona, Spain; Evolutive Immunology Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Nuclear Receptor Group, Department of Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain; and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Gemma Aran
- *Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol, Badalona, Spain; Evolutive Immunology Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Nuclear Receptor Group, Department of Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain; and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Nerea Roher
- *Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol, Badalona, Spain; Evolutive Immunology Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Nuclear Receptor Group, Department of Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain; and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Annabel F Valledor
- *Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol, Badalona, Spain; Evolutive Immunology Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Nuclear Receptor Group, Department of Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain; and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Maria-Rosa Sarrias
- *Innate Immunity Group, Health Sciences Research Institute Germans Trias i Pujol, Badalona, Spain; Evolutive Immunology Group, Institute of Biotechnology and Biomedicine, Universitat Autònoma de Barcelona, Barcelona, Spain; Nuclear Receptor Group, Department of Physiology and Immunology, School of Biology, University of Barcelona, Barcelona, Spain; and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| |
Collapse
|
172
|
Xia D, Sun WK, Tan MM, Ding Y, Liu ZC, Li P, Qian Q, Su X, Shi Y. An Adenoviral Vector Encoding Full-Length Dectin-1 Promotes Aspergillus-Induced Innate Immune Response in Macrophages. Lung 2015; 193:549-57. [PMID: 25944256 DOI: 10.1007/s00408-015-9740-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/27/2015] [Indexed: 01/10/2023]
Abstract
INTRODUCTION The incidence of invasive pulmonary aspergillosis (IPA) has increased significantly over the last two decades. Alveolar macrophages (AMs) represent the first line of pulmonary host response to Aspergillus conidia. Recognition of conidia by AMs involves Dectin-1 (CLEC7A), which is a conserved structure to combine β-glucans. The deficiency of Dectin-1 results in impaired fungal killing and uncontrolled growth of Aspergillus fumigatus. Thus, we hypothesized that high expression of Dectin-1 would enhance the host recognition and fungal killing. METHODS We set out to develop an adenoviral vector encoding full-length Dectin-1 (Ad-Dectin-1-EGFP) and then transfect it to MH-S cells. Transfect cell model was verified by using real-time RT-PCR, Western blot, flow cytometric, and confocal microscopic assays. And also, the function of Dectin-1 was explored by measuring cytokine release and killing ability during the course of A. fumigatus infection. RESULTS We constructed a recombinant adenovirus which could upregulate the expression of Dectin-1 and verified that Dectin-1 was expressed on cell membrane. The function of Dectin-1 was also demonstrated by its ability in promoting the production of cytokines and increasing the killing ability during the course of A. fumigatus infection. CONCLUSIONS An adenoviral vector was successfully applied to the production of a recombinant adenovirus encoding full-length Dectin-1, and also, its function in Aspergillus-induced innate immune response was demonstrated.
Collapse
Affiliation(s)
- Di Xia
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Schultze JL, Freeman T, Hume DA, Latz E. A transcriptional perspective on human macrophage biology. Semin Immunol 2015; 27:44-50. [PMID: 25843246 DOI: 10.1016/j.smim.2015.02.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 01/31/2015] [Accepted: 02/04/2015] [Indexed: 12/12/2022]
Abstract
Macrophages are a major cell type in tissue homeostasis and contribute to both pathology and resolution in all acute and chronic inflammatory diseases ranging from infections, cancer, obesity, atherosclerosis, autoimmune disorders to neurodegenerative diseases such as Alzheimer's disease. The cellular and functional diversity of macrophages depends upon tightly regulated transcription. The innate immune system is under profound evolutionary selection. There is increasing recognition that human macrophage biology differs very significantly from that of commonly studied animal models, which therefore can have a limited predictive value. Here we report on the newest findings on transcriptional control of macrophage activation, and how we envision integrating studies on transcriptional and epigenetic regulation, and more classical approaches in murine models. Moreover, we provide new insights into how we can learn about transcriptional regulation in the human system from larger efforts such as the FANTOM (Functional Annotation of the Mammalian Genome) consortium.
Collapse
Affiliation(s)
- Joachim L Schultze
- Genomics and Immunoregulation, LIMES-Institute, University of Bonn, 53115 Bonn, Germany.
| | - Tom Freeman
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Midlothian EH25 9RG, Scotland, UK
| | - David A Hume
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Edinburgh, Midlothian EH25 9RG, Scotland, UK
| | - Eicke Latz
- Institute of Innate Immunity, University Hospitals, University of Bonn, 53127 Bonn, Germany; Division of Infectious Diseases and Immunology, UMass Medical School, Worcester, MA 01605, USA; German Center of Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany
| |
Collapse
|
174
|
Mills CD, Lenz LL, Ley K. Macrophages at the fork in the road to health or disease. Front Immunol 2015; 6:59. [PMID: 25762997 PMCID: PMC4329822 DOI: 10.3389/fimmu.2015.00059] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/30/2015] [Indexed: 01/04/2023] Open
Affiliation(s)
| | - Laurel L Lenz
- Department of Immunology and Microbiology, University of Colorado School of Medicine , Aurora, CO , USA
| | - Klaus Ley
- La Jolla Institute for Allergy and Immunology , La Jolla, CA , USA
| |
Collapse
|
175
|
Patel B, Gupta N, Ahsan F. Particle engineering to enhance or lessen particle uptake by alveolar macrophages and to influence the therapeutic outcome. Eur J Pharm Biopharm 2015; 89:163-74. [DOI: 10.1016/j.ejpb.2014.12.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 11/26/2014] [Accepted: 12/02/2014] [Indexed: 12/23/2022]
|