151
|
Rama Rao KV, Kielian T. Neuron-astrocyte interactions in neurodegenerative diseases: Role of neuroinflammation. ACTA ACUST UNITED AC 2015; 6:245-263. [PMID: 26543505 DOI: 10.1111/cen3.12237] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Selective neuron loss in discrete brain regions is a hallmark of various neurodegenerative disorders, although the mechanisms responsible for this regional vulnerability of neurons remain largely unknown. Earlier studies attributed neuron dysfunction and eventual loss during neurodegenerative diseases as exclusively cell autonomous. Although cell-intrinsic factors are one critical aspect in dictating neuron death, recent evidence also supports the involvement of other central nervous system cell types in propagating non-cell autonomous neuronal injury during neurodegenerative diseases. One such example is astrocytes, which support neuronal and synaptic function, but can also contribute to neuroinflammatory processes through robust chemokine secretion. Indeed, aberrations in astrocyte function have been shown to negatively impact neuronal integrity in several neurological diseases. The present review focuses on neuroinflammatory paradigms influenced by neuron-astrocyte cross-talk in the context of select neurodegenerative diseases.
Collapse
Affiliation(s)
- Kakulavarapu V Rama Rao
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
152
|
Faissner A, Reinhard J. The extracellular matrix compartment of neural stem and glial progenitor cells. Glia 2015; 63:1330-49. [DOI: 10.1002/glia.22839] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| |
Collapse
|
153
|
Pooladi M, Abad SKR, Hashemi M. Proteomics analysis of human brain glial cell proteome by 2D gel. Indian J Cancer 2015; 51:159-62. [PMID: 25104200 DOI: 10.4103/0019-509x.138271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Proteomics is increasingly employed in both neurological and oncological research, and applied widely in every area of neuroscience research including brain cancer. Astrocytomas are the most common glioma and can occur in most parts of the brain and occasionally in the spinal cord. Patients with high-grade astrocytomas have a life expectancy of <1 year even after surgery, chemotherapy, and radiotherapy. MATERIALS AND METHODS We extracted proteins from tumors and normal brain tissues and then evaluated the protein purity by Bradford test and spectrophotometry method. In this study, we separated proteins by the two-dimensional (2DG) gel electrophoresis method, and the spots were analyzed and compared using statistical data. RESULTS On each analytical 2D gel, an average of 800 spots was observed. In this study, 164 spots exhibited up-regulation of expression level, whereas the remaining 179 spots decreased in astrocytoma tumor relative to normal tissue. RESULTS demonstrate that functional clustering and principal component analysis (PCA) has considerable merits in aiding the interpretation of proteomic data. Proteomics is a powerful tool in identifying multiple proteins that are altered following a neuropharmacological intervention in a disease of the central nervous system (CNS). CONCLUSION 2-D gel and cluster analysis have important roles in the diagnostic management of astrocytoma patients, providing insight into tumor biology. The application of proteomics to CNS research has invariably been very successful in yielding large amounts of data.
Collapse
Affiliation(s)
| | | | - M Hashemi
- Department of Genetics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
154
|
Dixon AR, Philbert MA. Morphometric assessment of toxicant induced neuronal degeneration in full and restricted contact co-cultures of embryonic cortical rat neurons and astrocytes: using m-Dinitrobezene as a model neurotoxicant. Toxicol In Vitro 2015; 29:564-74. [PMID: 25553915 PMCID: PMC4418429 DOI: 10.1016/j.tiv.2014.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/05/2014] [Accepted: 12/11/2014] [Indexed: 01/22/2023]
Abstract
With m-Dinitrobenzene (m-DNB) as a selected model neurotoxicant, we demonstrate how to assess neurotoxicity, using morphology based measurement of neurite degeneration, in a conventional "full-contact" and a modern "restricted-contact" co-culture of rat cortical neurons and astrocytes. In the "full-contact" co-culture, neurons and astrocytes in complete physical contact are "globally" exposed to m-DNB. A newly emergent "restricted-contact" co-culture is attained with a microfluidic device that polarizes neuron somas and neurites into separate compartments, and the neurite compartment is "selectively" exposed to m-DNB. Morphometric analysis of the neuronal area revealed that m-DNB exposure produced no significant change in mean neuronal cell area in "full-contact" co-cultures, whereas a significant decrease was observed for neuron monocultures. Neurite elaboration into a neurite exclusive compartment in a compartmentalized microfluidic device, for both monocultures (no astrocytes) and "restricted" co-cultures (astrocytes touching neurites), decreased with exposure to increasing concentrations of m-DNB, but the average neurite area was higher in co-cultures. By using co-culture systems that more closely approach biological and architectural complexities, and the directionality of exposure found in the brain, this study provides a methodological foundation for unraveling the role of physical contact between astrocytes and neurons in mitigating the toxic effects of chemicals such as m-DNB.
Collapse
Affiliation(s)
- Angela R Dixon
- Toxicology Program, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Martin A Philbert
- Toxicology Program, School of Public Health, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
155
|
Yoo HJ, Kim K, Kim IH, Rho SH, Park JE, Lee KY, Kim SA, Choi BY, Kim N. Whole exome sequencing for a patient with Rubinstein-Taybi syndrome reveals de novo variants besides an overt CREBBP mutation. Int J Mol Sci 2015; 16:5697-713. [PMID: 25768348 PMCID: PMC4394500 DOI: 10.3390/ijms16035697] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/16/2015] [Accepted: 02/28/2015] [Indexed: 11/16/2022] Open
Abstract
Rubinstein-Taybi syndrome (RSTS) is a rare condition with a prevalence of 1 in 125,000–720,000 births and characterized by clinical features that include facial, dental, and limb dysmorphology and growth retardation. Most cases of RSTS occur sporadically and are caused by de novo mutations. Cytogenetic or molecular abnormalities are detected in only 55% of RSTS cases. Previous genetic studies have yielded inconsistent results due to the variety of methods used for genetic analysis. The purpose of this study was to use whole exome sequencing (WES) to evaluate the genetic causes of RSTS in a young girl presenting with an Autism phenotype. We used the Autism diagnostic observation schedule (ADOS) and Autism diagnostic interview revised (ADI-R) to confirm her diagnosis of Autism. In addition, various questionnaires were used to evaluate other psychiatric features. We used WES to analyze the DNA sequences of the patient and her parents and to search for de novo variants. The patient showed all the typical features of Autism, WES revealed a de novo frameshift mutation in CREBBP and de novo sequence variants in TNC and IGFALS genes. Mutations in the CREBBP gene have been extensively reported in RSTS patients, while potential missense mutations in TNC and IGFALS genes have not previously been associated with RSTS. The TNC and IGFALS genes are involved in central nervous system development and growth. It is possible for patients with RSTS to have additional de novo variants that could account for previously unexplained phenotypes.
Collapse
Affiliation(s)
- Hee Jeong Yoo
- Department of Psychiatry, Seoul National University Hospital, Seongnam, Gyeonggi 463-707, Korea.
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul 110-744, Korea.
| | - Kyung Kim
- Epigenomics Research Center, Genome Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea.
- Department of Biomedical Informatics, Ajou University, School of Medicine, Suwon 443-749, Korea.
- Department of Biomedical Science, Ajou University Graduate School of Medicine, Suwon 443-749, Korea.
| | - In Hyang Kim
- Department of Psychiatry, Seoul National University Hospital, Seongnam, Gyeonggi 463-707, Korea.
| | | | - Jong-Eun Park
- Department of Psychiatry, Seoul National University Hospital, Seongnam, Gyeonggi 463-707, Korea.
| | - Ki Young Lee
- Department of Biomedical Informatics, Ajou University, School of Medicine, Suwon 443-749, Korea.
- Department of Biomedical Science, Ajou University Graduate School of Medicine, Suwon 443-749, Korea.
| | - Soon Ae Kim
- Department of Pharmacology, Eulji University College of Medicine, Daejeon 301-746, Korea.
| | - Byung Yoon Choi
- Department of Psychiatry, Seoul National University, College of Medicine, Seoul 110-744, Korea.
- Department of Otolaryngology, Seoul National University Hospital, Seongnam, Gyeonggi 463-707, Korea.
| | - Namshin Kim
- Epigenomics Research Center, Genome Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea.
| |
Collapse
|
156
|
|
157
|
Xie L, Lai Y, Lei F, Liu S, Liu R, Wang T. Exploring the association between interleukin-1β and its interacting proteins in Alzheimer's disease. Mol Med Rep 2015; 11:3219-28. [PMID: 25585621 PMCID: PMC4368090 DOI: 10.3892/mmr.2015.3183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 06/19/2014] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is an age-associated progressive neurodegenerative disorder which is of clinical concern. The association between the nervous and immune system is defined as an neuroimmunological theory that supports a model of pathology or treatment for AD. Interleukin (IL)-1β has a pro-inflammatory function in AD; however, the mechanism of its dysregulation in AD remains unknown. It is therefore of significance to understand the molecular mechanisms of IL-1β and how it may regulate AD. Proteins, which have been previously reported to be associated with IL-1β in AD, have been used in the present study as nodes to illustrate a net of protein interaction in Cytoscape. The Kyoto Encyclopedia of Genes and Genomes was used to further analyze the association of these proteins with the pathology of AD. The present study identified and subsequently compared two AD and six IL-1β pathways with the network produced in Cytoscape. The present study identified important mechanisms in the pathology of AD and constructed two novel networks using Cytoscape.
Collapse
Affiliation(s)
- Lushuang Xie
- Department of Histology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu Lai
- Department of Histology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 610072, P.R. China
| | - Fang Lei
- Department of Physiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Sujuan Liu
- Department of Histology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ran Liu
- Department of Histology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Tinghua Wang
- Department of Histology and Neurobiology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
158
|
Aggrecan and chondroitin-6-sulfate abnormalities in schizophrenia and bipolar disorder: a postmortem study on the amygdala. Transl Psychiatry 2015; 5:e496. [PMID: 25603412 PMCID: PMC4312825 DOI: 10.1038/tp.2014.128] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/08/2014] [Accepted: 10/26/2014] [Indexed: 12/18/2022] Open
Abstract
Perineuronal nets (PNNs) are specialized extracellular matrix aggregates surrounding distinct neuronal populations and regulating synaptic functions and plasticity. Previous findings showed robust PNN decreases in amygdala, entorhinal cortex and prefrontal cortex of subjects with schizophrenia (SZ), but not bipolar disorder (BD). These studies were carried out using a chondroitin sulfate proteoglycan (CSPG) lectin marker. Here, we tested the hypothesis that the CSPG aggrecan, and 6-sulfated chondroitin sulfate (CS-6) chains highly represented in aggrecan, may contribute to these abnormalities. Antibodies against aggrecan and CS-6 (3B3 and CS56) were used in the amygdala of healthy control, SZ and BD subjects. In controls, aggrecan immunoreactivity (IR) was observed in PNNs and glial cells. Antibody 3B3, but not CS56, also labeled PNNs in the amygdala. In addition, dense clusters of CS56 and 3B3 IR encompassed CS56- and 3B3-IR glia, respectively. In SZ, numbers of aggrecan- and 3B3-IR PNNs were decreased, together with marked reductions of aggrecan-IR glial cells and CS-6 (3B3 and CS56)-IR 'clusters'. In BD, numbers of 3B3-IR PNNs and CS56-IR clusters were reduced. Our findings show disruption of multiple PNN populations in the amygdala of SZ and, more modestly, BD. Decreases of aggrecan-IR glia and CS-6-IR glial 'clusters', in sharp contrast to increases of CSPG/lectin-positive glia previously observed, indicate that CSPG abnormalities may affect distinct glial cell populations and suggest a potential mechanism for PNN decreases. Together, these abnormalities may contribute to a destabilization of synaptic connectivity and regulation of neuronal functions in the amygdala of subjects with major psychoses.
Collapse
|
159
|
Aberrant production of tenascin-C in globoid cell leukodystrophy alters psychosine-induced microglial functions. J Neuropathol Exp Neurol 2014; 73:964-74. [PMID: 25192051 DOI: 10.1097/nen.0000000000000117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Globoid cell leukodystrophy (GLD), or Krabbe disease, is a rare and often fatal demyelinating disease caused by mutations in the galactocerebrosidase (galc) gene that result in accumulation of galactosylsphingosine (psychosine). We recently reported that the extracellular matrix (ECM) protease, matrix metalloproteinase-3, is elevated in GLD and that it regulates psychosine-induced microglial activation. Here, we examined central nervous system ECM component expression in human GLD patients and in the twitcher mouse model of GLD using immunohistochemistry. The influence of ECM proteins on primary murine microglial responses to psychosine was evaluated using ECM proteins as substrates and analyzed by quantitative real-time polymerase chain reaction, immunocytochemistry, and ELISA. Functional analysis of microglial cytotoxicity was performed on oligodendrocytes in coculture, and cell death was measured by lactose dehydrogenase assay. Tenascin-C (TnC) was expressed at higher levels in human GLD and in twitcher mice versus controls. Microglial responses to psychosine were enhanced by TnC, as determined by an increase in globoid-like cell formation, matrix metalloproteinase-3 mRNA expression, and higher toxicity toward oligodendrocytes in culture. These findings were consistent with a shift toward the M1 microglial phenotype in TnC-grown microglia. Thus, elevated TnC expression in GLD modified microglial responses to psychosine. These data offer a novel perspective and enhance understanding of the microglial contribution to GLD pathogenesis.
Collapse
|
160
|
Álvarez MI, Rivas L, Lacruz C, Toledano A. Astroglial cell subtypes in the cerebella of normal adults, elderly adults, and patients with Alzheimer's disease: A histological and immunohistochemical comparison. Glia 2014; 63:287-312. [DOI: 10.1002/glia.22751] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 08/27/2014] [Indexed: 12/28/2022]
Affiliation(s)
| | - Luís Rivas
- Department of Ophthalmology; Hospital Ramón y Cajal; Madrid Spain
| | - César Lacruz
- Department of Pathology; Hospital General Universitario Gregorio Marañón; Madrid Spain
| | | |
Collapse
|
161
|
Roll L, Faissner A. Influence of the extracellular matrix on endogenous and transplanted stem cells after brain damage. Front Cell Neurosci 2014; 8:219. [PMID: 25191223 PMCID: PMC4137450 DOI: 10.3389/fncel.2014.00219] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/18/2014] [Indexed: 01/07/2023] Open
Abstract
The limited regeneration capacity of the adult central nervous system (CNS) requires strategies to improve recovery of patients. In this context, the interaction of endogenous as well as transplanted stem cells with their environment is crucial. An understanding of the molecular mechanisms could help to improve regeneration by targeted manipulation. In the course of reactive gliosis, astrocytes upregulate Glial fibrillary acidic protein (GFAP) and start, in many cases, to proliferate. Beside GFAP, subpopulations of these astroglial cells coexpress neural progenitor markers like Nestin. Although cells express these markers, the proportion of cells that eventually give rise to neurons is limited in many cases in vivo compared to the situation in vitro. In the first section, we present the characteristics of endogenous progenitor-like cells and discuss the differences in their neurogenic potential in vitro and in vivo. As the environment plays an important role for survival, proliferation, migration, and other processes, the second section of the review describes changes in the extracellular matrix (ECM), a complex network that contains numerous signaling molecules. It appears that signals in the damaged CNS lead to an activation and de-differentiation of astrocytes, but do not effectively promote neuronal differentiation of these cells. Factors that influence stem cells during development are upregulated in the damaged brain as part of an environment resembling a stem cell niche. We give a general description of the ECM composition, with focus on stem cell-associated factors like the glycoprotein Tenascin-C (TN-C). Stem cell transplantation is considered as potential treatment strategy. Interaction of transplanted stem cells with the host environment is critical for the outcome of stem cell-based therapies. Possible mechanisms involving the ECM by which transplanted stem cells might improve recovery are discussed in the last section.
Collapse
Affiliation(s)
- Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr-University Bochum Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr-University Bochum Bochum, Germany ; International Graduate School of Neuroscience, Ruhr-University Bochum Bochum, Germany
| |
Collapse
|
162
|
Tiryaki VM, Ayres VM, Ahmed I, Shreiber DI. Differentiation of reactive-like astrocytes cultured on nanofibrillar and comparative culture surfaces. Nanomedicine (Lond) 2014; 10:529-45. [PMID: 24985141 DOI: 10.2217/nnm.14.33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To investigate the directive importance of nanophysical properties on the morphological and protein expression responses of dibutyryladenosine cyclic monophosphate (dBcAMP)-treated cerebral cortical astrocytes in vitro. MATERIALS & METHODS Elasticity and work of adhesion characterizations of culture surfaces were performed using atomic force microscopy and combined with previous surface roughness and polarity results. The morphological and biochemical differentiation of dBcAMP-treated astrocytes cultured on promising nanofibrillar scaffolds and comparative culture surfaces were investigated by immunocytochemistry, colocalization, super resolution microscopy and atomic force microscopy. The dBcAMP-treated astrocyte responses were further compared with untreated astrocyte responses. RESULTS & CONCLUSION Nanofibrillar scaffold properties were shown to reduce immunoreactivity responses while poly-L-lysine-functionalized Aclar® (Ted Pella Inc., CA, USA) properties were shown to induce responses reminiscent of glial scar formation. The comparison study indicated that directive cues may differ in wound-healing versus quiescent situations.
Collapse
Affiliation(s)
- Volkan Müjdat Tiryaki
- Electronic & Biological Nanostructures Laboratory, Department of Electrical and Computer Engineering, 428 S Shaw Lane, Michigan State University, Engineering Building Room 2120, East Lansing, MI, 48824, USA.
| | | | | | | |
Collapse
|
163
|
Kandalam U, Sarmiento N, Haspula D, Clark MA. Angiotensin III induces signal transducer and activator of transcription 3 and interleukin-6 mRNA levels in cultured rat astrocytes. J Renin Angiotensin Aldosterone Syst 2014; 16:758-67. [PMID: 24961501 DOI: 10.1177/1470320314534509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Recently we established that pro-inflammatory actions of angiotensin (Ang) II in astrocytes involved Janus kinase 2 (JAK2), signal transducer and activator of transcription 3 (STAT3), and interleukin-6 (IL-6). MATERIALS AND METHODS In our current study, we determined in brainstem and cerebellum whether Ang III also activates STAT3 leading to IL-6 mRNA expression and astrocyte proliferation. RESULTS Ang III induced STAT3 phosphorylation in a concentration- and time-dependent manner. Significant STAT3 phosphorylation was rapid and was maximal within 10 min, and with 100 nM Ang III. The Ang AT1 receptor was shown to mediate this action of Ang III. Ang III also significantly induced IL-6 mRNA expression within an hour, and maximal Ang III-mediated IL-6 mRNA expression occurred in the presence of 100 nM Ang III. Ang III-mediated IL-6 mRNA expression occurred by the interaction of the peptide with the Ang AT1 receptor and was mediated by STAT3. In addition, STAT3 was shown to mediate Ang III astrocyte proliferation. CONCLUSIONS These findings suggest that Ang III, similar to Ang II, has pro-inflammatory effects since it induces STAT3 leading to an induction of IL-6 mRNA expression, outcomes that lend relevance to the physiological importance of central Ang III.
Collapse
Affiliation(s)
- Umadevi Kandalam
- Department of Pediatric Dentistry, Nova Southeastern University, USA
| | - Nancy Sarmiento
- Farquhar College of Arts and Sciences, Nova Southeastern University, USA
| | - Dhanush Haspula
- Department of Pharmaceutical Sciences, Nova Southeastern University, USA
| | - Michelle A Clark
- Department of Pharmaceutical Sciences, Nova Southeastern University, USA
| |
Collapse
|
164
|
Chondroitin sulfate proteoglycans: structure-function relationship with implication in neural development and brain disorders. BIOMED RESEARCH INTERNATIONAL 2014; 2014:642798. [PMID: 24955366 PMCID: PMC4052930 DOI: 10.1155/2014/642798] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 12/12/2022]
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are extracellular matrix components that contain two structural parts with distinct functions: a protein core and glycosaminoglycan (GAG) side chains. CSPGs are known to be involved in important cell processes like cell adhesion and growth, receptor binding, or cell migration. It is recognized that the presence of CSPGs is critical in neuronal growth mechanisms including axon guidance following injury of nervous system components such as spinal cord and brain. CSPGs are upregulated in the central nervous system after injury and participate in the inhibition of axon regeneration mainly through their GAG side chains. Recently, it was shown that some CSPGs members like aggrecan, versican, and neurocan were strongly involved in brain disorders like bipolar disorder (BD), schizophrenia, and ADHD. In this paper, we present the chemical structure-biological functions relationship of CSPGs, both in health state and in genetic disorders, addressing methods represented by genome-wide and crystallographic data as well as molecular modeling and quantitative structure-activity relationship.
Collapse
|
165
|
RAS/ERK signaling controls proneural genetic programs in cortical development and gliomagenesis. J Neurosci 2014; 34:2169-90. [PMID: 24501358 DOI: 10.1523/jneurosci.4077-13.2014] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural cell fate specification is well understood in the embryonic cerebral cortex, where the proneural genes Neurog2 and Ascl1 are key cell fate determinants. What is less well understood is how cellular diversity is generated in brain tumors. Gliomas and glioneuronal tumors, which are often localized in the cerebrum, are both characterized by a neoplastic glial component, but glioneuronal tumors also have an intermixed neuronal component. A core abnormality in both tumor groups is overactive RAS/ERK signaling, a pro-proliferative signal whose contributions to cell differentiation in oncogenesis are largely unexplored. We found that RAS/ERK activation levels differ in two distinct human tumors associated with constitutively active BRAF. Pilocytic astrocytomas, which contain abnormal glial cells, have higher ERK activation levels than gangliogliomas, which contain abnormal neuronal and glial cells. Using in vivo gain of function and loss of function in the mouse embryonic neocortex, we found that RAS/ERK signals control a proneural genetic switch, inhibiting Neurog2 expression while inducing Ascl1, a competing lineage determinant. Furthermore, we found that RAS/ERK levels control Ascl1's fate specification properties in murine cortical progenitors--at higher RAS/ERK levels, Ascl1(+) progenitors are biased toward proliferative glial programs, initiating astrocytomas, while at moderate RAS/ERK levels, Ascl1 promotes GABAergic neuronal and less glial differentiation, generating glioneuronal tumors. Mechanistically, Ascl1 is phosphorylated by ERK, and ERK phosphoacceptor sites are necessary for Ascl1's GABAergic neuronal and gliogenic potential. RAS/ERK signaling thus acts as a rheostat to influence neural cell fate selection in both normal cortical development and gliomagenesis, controlling Neurog2-Ascl1 expression and Ascl1 function.
Collapse
|
166
|
Astrocyte-secreted matricellular proteins in CNS remodelling during development and disease. Neural Plast 2014; 2014:321209. [PMID: 24551460 PMCID: PMC3914553 DOI: 10.1155/2014/321209] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/18/2013] [Indexed: 12/20/2022] Open
Abstract
Matricellular proteins are secreted, nonstructural proteins that regulate the extracellular matrix (ECM) and interactions between cells through modulation of growth factor signaling, cell adhesion, migration, and proliferation. Despite being well described in the context of nonneuronal tissues, recent studies have revealed that these molecules may also play instrumental roles in central nervous system (CNS) development and diseases. In this minireview, we discuss the matricellular protein families SPARC (secreted protein acidic and rich in cysteine), Hevin/SC1 (SPARC-like 1), TN-C (Tenascin C), TSP (Thrombospondin), and CCN (CYR61/CTGF/NOV), which are secreted by astrocytes during development. These proteins exhibit a reduced expression in adult CNS but are upregulated in reactive astrocytes following injury or disease, where they are well placed to modulate the repair processes such as tissue remodeling, axon regeneration, glial scar formation, angiogenesis, and rewiring of neural circuitry. Conversely, their reexpression in reactive astrocytes may also lead to detrimental effects and promote the progression of neurodegenerative diseases.
Collapse
|
167
|
Li YN, Pan R, Qin XJ, Yang WL, Qi Z, Liu W, Liu KJ. Ischemic neurons activate astrocytes to disrupt endothelial barrier via increasing VEGF expression. J Neurochem 2013; 129:120-9. [PMID: 24251624 DOI: 10.1111/jnc.12611] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/12/2013] [Accepted: 11/18/2013] [Indexed: 01/22/2023]
Abstract
Blood-brain barrier (BBB) disruption occurring within the first few hours of ischemic stroke onset is closely associated with hemorrhagic transformation following thrombolytic therapy. However, the mechanism of this acute BBB disruption remains unclear. In the neurovascular unit, neurons do not have direct contact with the endothelial barrier; however, they are highly sensitive and vulnerable to ischemic injury, and may act as the initiator for disrupting BBB when cerebral ischemia occurs. Herein, we employed oxygen-glucose deprivation (OGD) and an in vitro BBB system consisting of brain microvascular cells and astrocytes to test this hypothesis. Neurons (CATH.a cells) were exposed to OGD for 3-h before co-culturing with endothelial monolayer (bEnd 3 cells), or endothelial cells plus astrocytes (C8-D1A cells). Incubation of OGD-treated neurons with endothelial monolayer alone did not increase endothelial permeability. However, when astrocytes were present, the endothelial permeability was significantly increased, which was accompanied by loss of occludin and claudin-5 proteins as well as increased vascular endothelial growth factor (VEGF) secretion into the conditioned medium. Importantly, all these changes were abolished when VEGF was knocked down in astrocytes by siRNA. Our findings suggest that ischemic neurons activate astrocytes to increase VEGF production, which in turn induces endothelial barrier disruption.
Collapse
Affiliation(s)
- Ying-Na Li
- Department of Geriatrics, The Second Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China
| | | | | | | | | | | | | |
Collapse
|
168
|
Şovrea AS, Boşca AB. Astrocytes reassessment - an evolving concept part one: embryology, biology, morphology and reactivity. J Mol Psychiatry 2013; 1:18. [PMID: 26019866 PMCID: PMC4445578 DOI: 10.1186/2049-9256-1-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/05/2013] [Indexed: 01/10/2023] Open
Abstract
The goal of this review is to integrate - in its two parts - the considerable amount of information that has accumulated during these recent years over the morphology, biology and functions of astrocytes - first part - and to illustrate the active role of these cells in pathophysiological processes implicated in various psychiatric and neurologic disorders – second part.
Collapse
Affiliation(s)
- Alina Simona Şovrea
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Adina Bianca Boşca
- Discipline of Histology, Department of Morphological Sciences, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
169
|
Schreiber J, Schachner M, Schumacher U, Lorke DE. Extracellular matrix alterations, accelerated leukocyte infiltration and enhanced axonal sprouting after spinal cord hemisection in tenascin-C-deficient mice. Acta Histochem 2013; 115:865-78. [PMID: 23701962 DOI: 10.1016/j.acthis.2013.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/10/2013] [Accepted: 04/11/2013] [Indexed: 01/08/2023]
Abstract
The extracellular matrix glycoprotein tenascin-C has been implicated in wound repair and axonal growth. Its role in mammalian spinal cord injury is largely unknown. In vitro it can be both neurite-outgrowth promoting and repellent. To assess its effects on glial reactions, extracellular matrix formation, and axonal regrowth/sprouting in vivo, 20 tenascin-C-deficient and 20 wild type control mice underwent lumbar spinal cord hemisection. One, three, seven and fourteen days post-surgery, cryostat sections of the spinal cord were examined by conventional histology and by immunohistochemistry using antibodies against F4/80 (microglia/macrophage), GFAP (astroglia), neurofilament, fibronectin, laminin and collagen type IV. Fibronectin immunoreactivity was significantly down-regulated in tenascin-C-deficient mice. Moreover, fourteen days after injury, immunodensity of neurofilament-positive fibers was two orders of magnitude higher along the incision edges of tenascin-C-deficient mice as compared to control mice. In addition, lymphocyte infiltration was seen two days earlier in tenascin-C-deficient mice than in control mice and neutrophil infiltration was increased seven days after injury. The increase in thin neurofilament positive fibers in tenascin-C-deficient mice indicates that lack of tenascin-C alters the inflammatory reaction and extracellular matrix composition in a way that penetration of axonal fibers into spinal cord scar tissue may be facilitated.
Collapse
Affiliation(s)
- Jenny Schreiber
- University Medical Center Hamburg-Eppendorf, Center for Experimental Medicine, Department of Anatomy and Experimental Morphology, Martinistraße 52, 20246 Hamburg, Germany
| | | | | | | |
Collapse
|
170
|
Carare RO, Hawkes CA, Jeffrey M, Kalaria RN, Weller RO. Review: Cerebral amyloid angiopathy, prion angiopathy, CADASIL and the spectrum of protein elimination failure angiopathies (PEFA) in neurodegenerative disease with a focus on therapy. Neuropathol Appl Neurobiol 2013; 39:593-611. [DOI: 10.1111/nan.12042] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/07/2013] [Indexed: 01/03/2023]
Affiliation(s)
- R. O. Carare
- Clinical Neurosciences and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton; UK
| | - C. A. Hawkes
- Clinical Neurosciences and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton; UK
| | - M. Jeffrey
- Animal Health and Veterinary Laboratories Agency (AHVLA); Bush Loan Penicuik; Edinburgh; UK
| | - R. N. Kalaria
- Centre for Brain Ageing & Vitality; Institute for Ageing and Health; Newcastle University; Newcastle Upon Tyne; UK
| | - R. O. Weller
- Clinical Neurosciences and Experimental Sciences; Faculty of Medicine; University of Southampton; Southampton; UK
| |
Collapse
|
171
|
Misumi Y, Ando Y, Gonçalves NP, Saraiva MJ. Fibroblasts endocytose and degrade transthyretin aggregates in transthyretin-related amyloidosis. J Transl Med 2013; 93:911-20. [PMID: 23817086 DOI: 10.1038/labinvest.2013.83] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/24/2013] [Accepted: 06/03/2013] [Indexed: 12/12/2022] Open
Abstract
Transthyretin (TTR)-related amyloidosis is a fatal disorder characterized by systemic extracellular deposition of TTR amyloid fibrils. Mutations in the TTR gene cause an autosomal dominant form of the disease-familial amyloidotic polyneuropathy (FAP). Wild-type (WT) TTR can also form amyloid fibrils in elderly patients with senile systemic amyloidosis. Regression of amyloid deposits in FAP patients who undergo liver transplantation to remove the main source of mutant TTR suggests the existence of mechanisms for the clearance of TTR deposits from the extracellular matrix (ECM), but the precise mechanisms are largely unknown. Because fibroblasts are abundant, playing a central role in the maintenance of the ECM and because the skin is one of the major sites of soluble TTR catabolism, in the present study, we analyzed their role in clearance of TTR aggregates. In vitro studies with a fibroblast cell line revealed that fibroblasts endocytosed and degraded aggregated TTR. Subcutaneous injection of soluble and aggregated TTR into WT mice showed internalization and clearance over time by both fibroblasts and macrophages. Immunohistochemical studies of skin biopsies from V30M patients, asymptomatic carriers, recipients of domino FAP livers as well as transgenic mice for human V30M showed intracellular TTR immunoreactivity in fibroblasts and macrophages that increased with clinical status and with age in transgenic mice. Overall, the present in vitro and in vivo data show that fibroblasts endocytose and degrade TTR aggregates. The function or dysfunction of TTR clearance by fibroblasts may have important implications for the development, progression, and regression of TTR deposition in the ECM.
Collapse
Affiliation(s)
- Yohei Misumi
- Molecular Neurobiology, IBMC-Instituto de Biologia Molecular e Celular, Porto, Portugal
| | | | | | | |
Collapse
|
172
|
Astrocyte regulation of CNS inflammation and remyelination. Brain Sci 2013; 3:1109-27. [PMID: 24961523 PMCID: PMC4061872 DOI: 10.3390/brainsci3031109] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 01/17/2023] Open
Abstract
Astrocytes regulate fundamentally important functions to maintain central nervous system (CNS) homeostasis. Altered astrocytic function is now recognized as a primary contributing factor to an increasing number of neurological diseases. In this review, we provide an overview of our rapidly developing understanding of the basal and inflammatory functions of astrocytes as mediators of CNS responsiveness to inflammation and injury. Specifically, we elaborate on ways that astrocytes actively participate in the pathogenesis of demyelinating diseases of the CNS through their immunomodulatory roles as CNS antigen presenting cells, modulators of blood brain barrier function and as a source of chemokines and cytokines. We also outline how changes in the extracellular matrix can modulate astrocytes phenotypically, resulting in dysregulation of astrocytic responses during inflammatory injury. We also relate recent studies describing newly identified roles for astrocytes in leukodystrophies. Finally, we describe recent advances in how adapting this increasing breadth of knowledge on astrocytes has fostered new ways of thinking about human diseases, which offer potential to modulate astrocytic heterogeneity and plasticity towards therapeutic gain. In summary, recent studies have provided improved insight in a wide variety of neuroinflammatory and demyelinating diseases, and future research on astrocyte pathophysiology is expected to provide new perspectives on these diseases, for which new treatment modalities are increasingly necessary.
Collapse
|
173
|
Identification of tumor differentiation factor (TDF) in select CNS neurons. Brain Struct Funct 2013; 219:1333-42. [DOI: 10.1007/s00429-013-0571-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 04/30/2013] [Indexed: 10/26/2022]
|
174
|
Williamson LL, Bilbo SD. Chemokines and the hippocampus: a new perspective on hippocampal plasticity and vulnerability. Brain Behav Immun 2013; 30:186-94. [PMID: 23376170 DOI: 10.1016/j.bbi.2013.01.077] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 01/07/2013] [Accepted: 01/15/2013] [Indexed: 12/13/2022] Open
Abstract
The hippocampus is critical for several aspects of learning and memory and is unique among other cortical regions in structure, function and the potential for plasticity. This remarkable region recapitulates development throughout the lifespan with enduring neurogenesis and well-characterized plasticity. The structure and traits of the hippocampus that distinguish it from other brain regions, however, may be the same reasons that this important brain region is particularly vulnerable to insult and injury. The immune system within the brain responds to insult and injury, and the hippocampus and the immune system are extensively interconnected. Immune signaling molecules, cytokines and chemokines (chemotactic cytokines), are well known for their functions during insult or injury. They are also increasingly implicated in normal hippocampal neurogenesis (e.g., CXCR4 on newborn neurons), cellular plasticity (e.g., interleukin-6 in LTP maintenance), and learning and memory (e.g., interleukin-1β in fear conditioning). We provide evidence from the small but growing literature that neuroimmune interactions and immune signaling molecules, especially chemokines, may be a primary underlying mechanism for the coexistence of plasticity and vulnerability within the hippocampus. We also highlight the evidence that the hippocampus exhibits a remarkable resilience in response to diverse environmental events (e.g., enrichment, exercise), which all may converge onto common neuroimmune mechanisms.
Collapse
Affiliation(s)
- Lauren L Williamson
- Duke University, Genome Science Research Building 2, 210 Research Dr., Box 91050, Durham, NC 27710, United States.
| | | |
Collapse
|
175
|
Rusu MC, Dermengiu D, Loreto C, Motoc AGM, Pop E. Astrocitary niches in human adult medulla oblongata. Acta Histochem 2013; 115:296-300. [PMID: 22909904 DOI: 10.1016/j.acthis.2012.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2012] [Revised: 07/15/2012] [Accepted: 07/16/2012] [Indexed: 11/24/2022]
Abstract
Astrocytes are considered as neuromodulators of the CNS. Whereas experimental studies on astrocitary functions are gaining importance, the anatomy of the astrocitary niches in the human CNS has been overlooked. The study was performed on the brainstem of 10 adult cadavers. We aimed to determine astrocitary niches in the human medulla oblongata using immunohistochemical labeling with vimentin and also CD34 immunostaining to accurately diagnose associated microvessels. Niches rich in astrocytes were identified as follows: (a) the superficial layer of astrocytes, ventral and ventrolateral, in the rostral medulla oblongata; (b) the median raphe; (c) medullary nuclei: arcuate nucleus, area postrema, nucleus of the solitary tract; (d) the subependymal zone (SEZ, caudal medulla) and subventricular zone (SVZ, rostral medulla). Astrocytes were scarce in the ventrolateral medulla, and mostly present within the pyramidal tract and the olivary nucleus. Apart from the SEZ and SVZ, the brainstem niches of astrocytes mostly overlap those regions known to perform roles as central respiratory chemoreceptors. The astrocytes of the SEZ and SVZ, which are known as stem cell niches, are related to an increased microvascular density.
Collapse
|
176
|
Krencik R, Ullian EM. A cellular star atlas: using astrocytes from human pluripotent stem cells for disease studies. Front Cell Neurosci 2013; 7:25. [PMID: 23503583 PMCID: PMC3596764 DOI: 10.3389/fncel.2013.00025] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/28/2013] [Indexed: 11/13/2022] Open
Abstract
What roles do astrocytes play in human disease?This question remains unanswered for nearly every human neurological disorder. Yet, because of their abundance and complexity astrocytes can impact neurological function in many ways. The differentiation of human pluripotent stem cells (hPSCs) into neuronal and glial subtypes, including astrocytes, is becoming routine, thus their use as tools for modeling neurodevelopment and disease will provide one important approach to answer this question. When designing experiments, careful consideration must be given to choosing paradigms for differentiation, maturation, and functional analysis of these temporally asynchronous cellular populations in culture. In the case of astrocytes, they display heterogeneous characteristics depending upon species of origin, brain region, developmental stage, environmental factors, and disease states, all of which may render experimental results highly variable. In this review, challenges and future directions are discussed for using hPSC-derived astroglial progenitors and mature astrocytes for neurodevelopmental studies with a focus on exploring human astrocyte effects upon neuronal function. As new technologies emerge to measure the functions of astrocytes in vitro and in vivo, there is also a need for a standardized source of human astrocytes that are most relevant to the diseases of interest.
Collapse
Affiliation(s)
- Robert Krencik
- Departments of Ophthalmology and Physiology, Neuroscience Program, University of California San Francisco, CA, USA
| | | |
Collapse
|
177
|
Bruschi F, Pinto B. The significance of matrix metalloproteinases in parasitic infections involving the central nervous system. Pathogens 2013; 2:105-29. [PMID: 25436884 PMCID: PMC4235708 DOI: 10.3390/pathogens2010105] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/30/2013] [Accepted: 02/11/2013] [Indexed: 12/29/2022] Open
Abstract
Matrix metalloproteinases (MMPs) represent a large family of over twenty different secreted or membrane-bound endopeptidases, involved in many physiological (embryogenesis, precursor or stem cell mobilization, tissue remodeling during wound healing, etc.), as well as pathological (inflammation, tumor progression and metastasis in cancer, vascular pathology, etc.) conditions. For a long time, MMPs were considered only for the ability to degrade extracellular matrix (ECM) molecules (e.g., collagen, laminin, fibronectin) and to release hidden epitopes from the ECM. In the last few years, it has been fully elucidated that these molecules have many other functions, mainly related to the immune response, in consideration of their effects on cytokines, hormones and chemokines. Among others, MMP-2 and MMP-9 are endopeptidases of the MMP family produced by neutrophils, macrophages and monocytes. When infection is associated with leukocyte influx into specific organs, immunopathology and collateral tissue damage may occur. In this review, the involvement of MMPs and, in particular, of gelatinases in both protozoan and helminth infections will be described. In cerebral malaria, for example, MMPs play a role in the pathogenesis of such diseases. Also, trypanosomosis and toxoplasmosis will be considered for protozoan infections, as well as neurocysticercosis and angiostrongyloidosis, as regards helminthiases. All these situations have in common the proteolytic action on the blood brain barrier, mediated by MMPs.
Collapse
Affiliation(s)
- Fabrizio Bruschi
- Department of Translational Research, N.T.M.S., University of Pisa, School of Medicine, Via Roma, 55, 56126, Italy.
| | - Barbara Pinto
- Department of Translational Research, N.T.M.S., University of Pisa, School of Medicine, Via Roma, 55, 56126, Italy.
| |
Collapse
|
178
|
Jakovcevski I, Miljkovic D, Schachner M, Andjus PR. Tenascins and inflammation in disorders of the nervous system. Amino Acids 2012; 44:1115-27. [DOI: 10.1007/s00726-012-1446-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 12/10/2012] [Indexed: 12/20/2022]
|
179
|
Bilbo SD, Schwarz JM. The immune system and developmental programming of brain and behavior. Front Neuroendocrinol 2012; 33:267-86. [PMID: 22982535 PMCID: PMC3484177 DOI: 10.1016/j.yfrne.2012.08.006] [Citation(s) in RCA: 401] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 12/16/2022]
Abstract
The brain, endocrine, and immune systems are inextricably linked. Immune molecules have a powerful impact on neuroendocrine function, including hormone-behavior interactions, during health as well as sickness. Similarly, alterations in hormones, such as during stress, can powerfully impact immune function or reactivity. These functional shifts are evolved, adaptive responses that organize changes in behavior and mobilize immune resources, but can also lead to pathology or exacerbate disease if prolonged or exaggerated. The developing brain in particular is exquisitely sensitive to both endogenous and exogenous signals, and increasing evidence suggests the immune system has a critical role in brain development and associated behavioral outcomes for the life of the individual. Indeed, there are associations between many neuropsychiatric disorders and immune dysfunction, with a distinct etiology in neurodevelopment. The goal of this review is to describe the important role of the immune system during brain development, and to discuss some of the many ways in which immune activation during early brain development can affect the later-life outcomes of neural function, immune function, mood and cognition.
Collapse
Affiliation(s)
- Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, 572 Research Drive, Box 91050, Durham, NC 27708, USA.
| | | |
Collapse
|