151
|
Hu C, Chen Y, Tan MJA, Ren K, Wu H. Microfluidic technologies for vasculature biomimicry. Analyst 2019; 144:4461-4471. [DOI: 10.1039/c9an00421a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An overview of microfluidic technologies for vascular studies and fabrication of vascular structures.
Collapse
Affiliation(s)
- Chong Hu
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon
- China
| | - Yangfan Chen
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- China
| | - Ming Jun Andrew Tan
- Division of Biomedical Engineering
- The Hong Kong University of Science and Technology
- China
| | - Kangning Ren
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon
- China
- HKBU Institute of Research and Continuing Education
| | - Hongkai Wu
- Department of Chemistry
- The Hong Kong University of Science and Technology
- Kowloon
- China
- Division of Biomedical Engineering
| |
Collapse
|
152
|
Chi PY, Spuul P, Tseng FG, Genot E, Chou CF, Taloni A. Cell Migration in Microfluidic Devices: Invadosomes Formation in Confined Environments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1146:79-103. [PMID: 31612455 DOI: 10.1007/978-3-030-17593-1_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The last 20 years have seen the blooming of microfluidics technologies applied to biological sciences. Microfluidics provides effective tools for biological analysis, allowing the experimentalists to extend their playground to single cells and single molecules, with high throughput and resolution which were inconceivable few decades ago. In particular, microfluidic devices are profoundly changing the conventional way of studying the cell motility and cell migratory dynamics. In this chapter we will furnish a comprehensive view of the advancements made in the research domain of confinement-induced cell migration, thanks to the use of microfluidic devices. The chapter is subdivided in three parts. Each section will be addressing one of the fundamental questions that the microfluidic technology is contributing to unravel: (i) where cell migration takes place, (ii) why cells migrate and, (iii) how the cells migrate. The first introductory part is devoted to a thumbnail, and partially historical, description of microfluidics and its impact in biological sciences. Stress will be put on two aspects of the devices fabrication process, which are crucial for biological applications: materials used and coating methods. The second paragraph concerns the cell migration induced by environmental cues: chemical, leading to chemotaxis, mechanical, at the basis of mechanotaxis, and electrical, which induces electrotaxis. Each of them will be addressed separately, highlighting the fundamental role of microfluidics in providing the well-controlled experimental conditions where cell migration can be induced, investigated and ultimately understood. The third part of the chapter is entirely dedicated to how the cells move in confined environments. Invadosomes (the joint name for podosomes and invadopodia) are cell protrusion that contribute actively to cell migration or invasion. The formation of invadosomes under confinement is a research topic that only recently has caught the attention of the scientific community: microfluidic design is helping shaping the future direction of this emerging field of research.
Collapse
Affiliation(s)
- Pei-Yin Chi
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.,Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, Republic of China.,Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Pirjo Spuul
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Fan-Gang Tseng
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.,Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.,Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | - Elisabeth Genot
- Centre de Recherche Cardio-Thoracique de Bordeaux (INSERM U1045), Université de Bordeaux, Bordeaux, France.
| | - Chia-Fu Chou
- Institute of Physics, Academia Sinica, Taipei, Taiwan, Republic of China. .,Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China. .,Genomics Research Center and Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan, Republic of China.
| | - Alessandro Taloni
- Institute for Complex Systems, Consiglio Nazionale delle Ricerche, Roma, Italy.
| |
Collapse
|
153
|
Pandey B, Chatterjee S, Parekh N, Yadav P, Nisal A, Sen Gupta S. Silk-Mesoporous Silica-Based Hybrid Macroporous Scaffolds using Ice-Templating Method: Mechanical, Release, and Biological Studies. ACS APPLIED BIO MATERIALS 2018; 1:2082-2093. [DOI: 10.1021/acsabm.8b00553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bhawana Pandey
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Soumyajyoti Chatterjee
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Nimisha Parekh
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Prashant Yadav
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi 110025, India
| | - Anuya Nisal
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Sayam Sen Gupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, India
| |
Collapse
|
154
|
Mehrali M, Bagherifard S, Akbari M, Thakur A, Mirani B, Mehrali M, Hasany M, Orive G, Das P, Emneus J, Andresen TL, Dolatshahi‐Pirouz A. Blending Electronics with the Human Body: A Pathway toward a Cybernetic Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700931. [PMID: 30356969 PMCID: PMC6193179 DOI: 10.1002/advs.201700931] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/24/2018] [Indexed: 05/22/2023]
Abstract
At the crossroads of chemistry, electronics, mechanical engineering, polymer science, biology, tissue engineering, computer science, and materials science, electrical devices are currently being engineered that blend directly within organs and tissues. These sophisticated devices are mediators, recorders, and stimulators of electricity with the capacity to monitor important electrophysiological events, replace disabled body parts, or even stimulate tissues to overcome their current limitations. They are therefore capable of leading humanity forward into the age of cyborgs, a time in which human biology can be hacked at will to yield beings with abilities beyond their natural capabilities. The resulting advances have been made possible by the emergence of conformal and soft electronic materials that can readily integrate with the curvilinear, dynamic, delicate, and flexible human body. This article discusses the recent rapid pace of development in the field of cybernetics with special emphasis on the important role that flexible and electrically active materials have played therein.
Collapse
Affiliation(s)
- Mehdi Mehrali
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Sara Bagherifard
- Department of Mechanical EngineeringPolitecnico di Milano20156MilanItaly
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Biomedical ResearchUniversity of VictoriaVictoriaV8P 5C2Canada
- Center for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaV8P 5C2Canada
| | - Ashish Thakur
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Bahram Mirani
- Laboratory for Innovations in MicroEngineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Biomedical ResearchUniversity of VictoriaVictoriaV8P 5C2Canada
- Center for Advanced Materials and Related Technologies (CAMTEC)University of VictoriaVictoriaV8P 5C2Canada
| | - Mohammad Mehrali
- Process and Energy DepartmentDelft University of TechnologyLeeghwaterstraat 392628CBDelftThe Netherlands
| | - Masoud Hasany
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | - Gorka Orive
- NanoBioCel GroupLaboratory of PharmaceuticsSchool of PharmacyUniversity of the Basque Country UPV/EHUPaseo de la Universidad 701006Vitoria‐GasteizSpain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER‐BBN)Vitoria‐Gasteiz28029Spain
- University Institute for Regenerative Medicine and Oral Implantology—UIRMI (UPV/EHU‐Fundación Eduardo Anitua)Vitoria01007Spain
| | - Paramita Das
- School of Chemical and Biomedical EngineeringNanyang Technological University62 Nanyang DriveSingapore637459Singapore
| | - Jenny Emneus
- Technical University of DenmarkDTU Nanotech2800KgsDenmark
| | - Thomas L. Andresen
- Technical University of DenmarkDTU NanotechCenter for Nanomedicine and Theranostics2800KgsDenmark
| | | |
Collapse
|
155
|
Fan L, Lin C, Zhao P, Wen X, Li G. An Injectable Bioorthogonal Dextran Hydrogel for Enhanced Chondrogenesis of Primary Stem Cells. Tissue Eng Part C Methods 2018; 24:504-513. [PMID: 30088443 DOI: 10.1089/ten.tec.2018.0085] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Lin Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Chao Lin
- The Institute for Translational Medicine, The Institute for Biomedical Engineering and Nanoscience, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Peng Zhao
- The Institute for Translational Medicine, The Institute for Biomedical Engineering and Nanoscience, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Xuejun Wen
- The Institute for Translational Medicine, The Institute for Biomedical Engineering and Nanoscience, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Guodong Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
156
|
Miri AK, Khalilpour A, Cecen B, Maharjan S, Shin SR, Khademhosseini A. Multiscale bioprinting of vascularized models. Biomaterials 2018; 198:204-216. [PMID: 30244825 DOI: 10.1016/j.biomaterials.2018.08.006] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/24/2018] [Accepted: 08/02/2018] [Indexed: 12/18/2022]
Abstract
A basic prerequisite for the survival and function of three-dimensional (3D) engineered tissue constructs is the establishment of blood vessels. 3D bioprinting of vascular networks with hierarchical structures that resemble in vivo structures has allowed blood circulation within thick tissue constructs to accelerate vascularization and enhance tissue regeneration. Successful rapid vascularization of tissue constructs requires synergy between fabrication of perfusable channels and functional bioinks that induce angiogenesis and capillary formation within constructs. Combinations of 3D bioprinting techniques and four-dimensional (4D) printing concepts through patterning proangiogenic factors may offer novel solutions for implantation of thick constructs. In this review, we cover current bioprinting techniques for vascularized tissue constructs with vasculatures ranging from capillaries to large blood vessels and discuss how to implement these approaches for patterning proangiogenic factors to maintain long-term, stimuli-controlled formation of new capillaries.
Collapse
Affiliation(s)
- Amir K Miri
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028, USA.
| | - Akbar Khalilpour
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Berivan Cecen
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Sushila Maharjan
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA; Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA; Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA, USA; Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea; Center for Nanotechnology, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
157
|
Sugar glass fugitive ink loaded with calcium chloride for the rapid casting of alginate scaffold designs. Heliyon 2018; 4:e00680. [PMID: 29998199 PMCID: PMC6037883 DOI: 10.1016/j.heliyon.2018.e00680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 06/05/2018] [Accepted: 07/02/2018] [Indexed: 11/27/2022] Open
Abstract
Alginate-based hydrogels are widely used for the development of biomedical scaffolds in regenerative medicine. The use of sugar glass as a sacrificial template for fluidic channels fabrication within alginate scaffolds remains a challenge because of the premature dissolution of sugar by the water contained in the alginate as well as the relatively slow internal gelation rate of the alginate. Here, a new and simple method, based on a sugar glass fugitive ink loaded with calcium chloride to build sacrificial molds, is presented. We used a dual calcium cross-linking process by adding this highly soluble calcium source in the printed sugar, thus allowing the rapid gelation of a thin membrane of alginate around the sugar construct, followed by the addition of calcium carbonate and gluconic acid δ-lactone to complete the process. This innovative technique results in the rapid formation of "on-demand" alginate hydrogel with complex fluidic channels that could be used in biomedical applications such as highly vascularized scaffolds promoting pathways for nutrients and oxygen to the cells.
Collapse
|
158
|
Current Methods for Skeletal Muscle Tissue Repair and Regeneration. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1984879. [PMID: 29850487 PMCID: PMC5926523 DOI: 10.1155/2018/1984879] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 02/28/2018] [Accepted: 03/11/2018] [Indexed: 12/11/2022]
Abstract
Skeletal muscle has the capacity of regeneration after injury. However, for large volumes of muscle loss, this regeneration needs interventional support. Consequently, muscle injury provides an ongoing reconstructive and regenerative challenge in clinical work. To promote muscle repair and regeneration, different strategies have been developed within the last century and especially during the last few decades, including surgical techniques, physical therapy, biomaterials, and muscular tissue engineering as well as cell therapy. Still, there is a great need to develop new methods and materials, which promote skeletal muscle repair and functional regeneration. In this review, we give a comprehensive overview over the epidemiology of muscle tissue loss, highlight current strategies in clinical treatment, and discuss novel methods for muscle regeneration and challenges for their future clinical translation.
Collapse
|
159
|
Hozumi T, Kageyama T, Ohta S, Fukuda J, Ito T. Injectable Hydrogel with Slow Degradability Composed of Gelatin and Hyaluronic Acid Cross-Linked by Schiff’s Base Formation. Biomacromolecules 2018; 19:288-297. [DOI: 10.1021/acs.biomac.7b01133] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Takuro Hozumi
- Department
of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tatsuto Kageyama
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Seiichi Ohta
- Center
for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Junji Fukuda
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Taichi Ito
- Department
of Chemical System Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center
for Disease Biology and Integrative Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
160
|
Lee SJ, Lee JB, Park YW, Lee DY. 3D Bioprinting for Artificial Pancreas Organ. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1064:355-374. [PMID: 30471043 DOI: 10.1007/978-981-13-0445-3_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Type 1 diabetes mellitus (T1DM) results from an autoimmune destruction of insulin-producing beta cells in the islet of the endocrine pancreas. Although islet transplantation has been regarded as an ideal strategy for T1D, transplanted islets are rejected from host immune system. To immunologically protect them, islet encapsulation technology with biocompatible materials is emerged as an immuno-barrier. However, this technology has been limited for clinical trial such as hypoxia in the central core of islet bead, impurity of islet bead and retrievability from the body. Recently, 3D bioprinting has been emerged as an alternative approach to make the artificial pancreas. It can be used to position live cells in a desired location with real scale of human organ. Furthermore, constructing a vascularization of the artificial pancreas is actualized with 3D bioprinting. Therefore, it is possible to create real pancreas-mimic artificial organ for clinical application. In conclusion, 3D bioprinting can become a new leader in the development of the artificial pancreas to overcome the existed islet.
Collapse
Affiliation(s)
- Seon Jae Lee
- Department of Bioengineering, College of Engineering, BK21 PLUS Future Biopharmaceutical Human Resource Training and Research Team, Hanyang University, Seoul, South Korea
| | - Jae Bin Lee
- Department of Bioengineering, College of Engineering, BK21 PLUS Future Biopharmaceutical Human Resource Training and Research Team, Hanyang University, Seoul, South Korea
| | - Young-Woo Park
- Department of Bioengineering, College of Engineering, BK21 PLUS Future Biopharmaceutical Human Resource Training and Research Team, Hanyang University, Seoul, South Korea
| | - Dong Yun Lee
- Department of Bioengineering, College of Engineering, BK21 PLUS Future Biopharmaceutical Human Resource Training and Research Team, Hanyang University, Seoul, South Korea. .,Institute of Nano Science & Technology (INST), Hanyang University, Seoul, South Korea.
| |
Collapse
|
161
|
Antoine EE, Cornat FP, Barakat AI. The stentable in vitro artery: an instrumented platform for endovascular device development and optimization. J R Soc Interface 2017; 13:rsif.2016.0834. [PMID: 28003530 DOI: 10.1098/rsif.2016.0834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 11/28/2016] [Indexed: 11/12/2022] Open
Abstract
Although vascular disease is a leading cause of mortality, in vitro tools for controlled, quantitative studies of vascular biological processes in an environment that reflects physiological complexity remain limited. We developed a novel in vitro artery that exhibits a number of unique features distinguishing it from tissue-engineered or organ-on-a-chip constructs, most notably that it allows deployment of endovascular devices including stents, quantitative real-time tracking of cellular responses and detailed measurement of flow velocity and lumenal shear stress using particle image velocimetry. The wall of the stentable in vitro artery consists of an annular collagen hydrogel containing smooth muscle cells (SMCs) and whose lumenal surface is lined with a monolayer of endothelial cells (ECs). The system has in vivo dimensions and physiological flow conditions and allows automated high-resolution live imaging of both SMCs and ECs. To demonstrate proof-of-concept, we imaged and quantified EC wound healing, SMC motility and altered shear stresses on the endothelium after deployment of a coronary stent. The stentable in vitro artery provides a unique platform suited for a broad array of research applications. Wide-scale adoption of this system promises to enhance our understanding of important biological events affecting endovascular device performance and to reduce dependence on animal studies.
Collapse
Affiliation(s)
- Elizabeth E Antoine
- Hydrodynamics Laboratory (LadHyX), Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
| | - François P Cornat
- Hydrodynamics Laboratory (LadHyX), Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
| | - Abdul I Barakat
- Hydrodynamics Laboratory (LadHyX), Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
| |
Collapse
|
162
|
Patient-Derived and Intraoperatively Formed Biomaterial for Tissue Engineering. Methods Mol Biol 2017. [PMID: 28229423 DOI: 10.1007/978-1-4939-6756-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In this chapter, we introduce a completely intraoperative procedure for obtaining a patient-derived biomaterial in cell therapy and tissue engineering applications. An automated device for processing human peripheral-blood ensures a reproducible method for retrieving the patient's cellular-rich as well as cellular-poor plasma. By substituting calcium for animal-derived thrombin, we engineer a completely autologous hydrogel that eliminates the risk of disease transmission and lowers FDA regulation hurdles. Through this chapter, we will discuss a bedside protocol developed to prepare a patient-derived hydrogel. This method can be effectively used to develop a completely intraoperative tissue engineering strategy (CITES) that can be easily translated into the clinic for surgical use.
Collapse
|
163
|
Poh PSP, Chhaya MP, Wunner FM, De-Juan-Pardo EM, Schilling AF, Schantz JT, van Griensven M, Hutmacher DW. Polylactides in additive biomanufacturing. Adv Drug Deliv Rev 2016; 107:228-246. [PMID: 27492211 DOI: 10.1016/j.addr.2016.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/25/2016] [Indexed: 01/25/2023]
Abstract
New advanced manufacturing technologies under the alias of additive biomanufacturing allow the design and fabrication of a range of products from pre-operative models, cutting guides and medical devices to scaffolds. The process of printing in 3 dimensions of cells, extracellular matrix (ECM) and biomaterials (bioinks, powders, etc.) to generate in vitro and/or in vivo tissue analogue structures has been termed bioprinting. To further advance in additive biomanufacturing, there are many aspects that we can learn from the wider additive manufacturing (AM) industry, which have progressed tremendously since its introduction into the manufacturing sector. First, this review gives an overview of additive manufacturing and both industry and academia efforts in addressing specific challenges in the AM technologies to drive toward AM-enabled industrial revolution. After which, considerations of poly(lactides) as a biomaterial in additive biomanufacturing are discussed. Challenges in wider additive biomanufacturing field are discussed in terms of (a) biomaterials; (b) computer-aided design, engineering and manufacturing; (c) AM and additive biomanufacturing printers hardware; and (d) system integration. Finally, the outlook for additive biomanufacturing was discussed.
Collapse
Affiliation(s)
- Patrina S P Poh
- Department of Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Mohit P Chhaya
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.
| | - Felix M Wunner
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.
| | - Elena M De-Juan-Pardo
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia.
| | - Arndt F Schilling
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany; Clinic for Trauma Surgery, Orthopaedic Surgery and Plastic Surgery, University Medical Center Göttingen, Göttingen, Germany.
| | - Jan-Thorsten Schantz
- Department of Plastic Surgery and Hand Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Martijn van Griensven
- Department of Experimental Trauma Surgery, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany.
| | - Dietmar W Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, Australia; Institute for Advanced Study, Technical University of Munich, Garching, Germany.
| |
Collapse
|
164
|
Takei T, Sakai S, Yoshida M. In vitro formation of vascular-like networks using hydrogels. J Biosci Bioeng 2016; 122:519-527. [DOI: 10.1016/j.jbiosc.2016.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 01/19/2023]
|
165
|
Shirbin SJ, Karimi F, Chan NJA, Heath DE, Qiao GG. Macroporous Hydrogels Composed Entirely of Synthetic Polypeptides: Biocompatible and Enzyme Biodegradable 3D Cellular Scaffolds. Biomacromolecules 2016; 17:2981-91. [DOI: 10.1021/acs.biomac.6b00817] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Steven J. Shirbin
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Fatemeh Karimi
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Daniel E. Heath
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Greg G. Qiao
- Polymer Science Group, Department of Chemical
and Biomolecular Engineering, and §Department of Chemical
and Biomolecular Engineering, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| |
Collapse
|
166
|
3D Printed Vascular Networks Enhance Viability in High-Volume Perfusion Bioreactor. Ann Biomed Eng 2016; 44:3435-3445. [PMID: 27272210 DOI: 10.1007/s10439-016-1662-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/24/2016] [Indexed: 01/01/2023]
Abstract
There is a significant clinical need for engineered bone graft substitutes that can quickly, effectively, and safely repair large segmental bone defects. One emerging field of interest involves the growth of engineered bone tissue in vitro within bioreactors, the most promising of which are perfusion bioreactors. Using bioreactor systems, tissue engineered bone constructs can be fabricated in vitro. However, these engineered constructs lack inherent vasculature and once implanted, quickly develop a necrotic core, where no nutrient exchange occurs. Here, we utilized COMSOL modeling to predict oxygen diffusion gradients throughout aggregated alginate constructs, which allowed for the computer-aided design of printable vascular networks, compatible with any large tissue engineered construct cultured in a perfusion bioreactor. We investigated the effect of 3D printed macroscale vascular networks with various porosities on the viability of human mesenchymal stem cells in vitro, using both gas-permeable, and non-gas permeable bioreactor growth chamber walls. Through the use of 3D printed vascular structures in conjunction with a tubular perfusion system bioreactor, cell viability was found to increase by as much as 50% in the core of these constructs, with in silico modeling predicting construct viability at steady state.
Collapse
|
167
|
Liu CY, Matsusaki M, Akashi M. Control of vascular network location in millimeter-sized 3D-tissues by micrometer-sized collagen coated cells. Biochem Biophys Res Commun 2016; 472:131-6. [PMID: 26920051 DOI: 10.1016/j.bbrc.2016.02.080] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/19/2016] [Indexed: 01/12/2023]
Abstract
Engineering three-dimensional (3D) vascularized constructs remains a central challenge because capillary network structures are important for sufficient oxygen and nutrient exchange to sustain the viability of engineered constructs. However, construction of 3D-tissues at single cell level has yet to be reported. Previously, we established a collagen coating method for fabricating a micrometer-sized collagen matrix on cell surfaces to control cell distance or cell densities inside tissues. In this study, a simple fabrication method is presented for constructing vascular networks in 3D-tissues over micrometer-sized or even millimeter-sized with controlled cell densities. From the results, well vascularized 3D network structures can be observed with a fluorescence label method mixing collagen coated cells and endothelia cells, indicating that constructed ECM rich tissues have the potential for vascularization, which opens up the possibility for various applications in pharmaceutical or tissue engineering fields.
Collapse
Affiliation(s)
- Chun-Yen Liu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Mitsuru Akashi
- Graduate School of Frontier of Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|