151
|
Mariotti M, Lombardini G, Rizzo S, Scarafile D, Modesto M, Truzzi E, Benvenuti S, Elmi A, Bertocchi M, Fiorentini L, Gambi L, Scozzoli M, Mattarelli P. Potential Applications of Essential Oils for Environmental Sanitization and Antimicrobial Treatment of Intensive Livestock Infections. Microorganisms 2022; 10:822. [PMID: 35456873 PMCID: PMC9029798 DOI: 10.3390/microorganisms10040822] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022] Open
Abstract
The extensive use of antibiotics has contributed to the current antibiotic resistance crisis. Livestock infections of Salmonella spp, Clostridium spp. and E. coli antimicrobial-resistant bacteria represent a public threat to human and animal health. To reduce the incidence of these zoonoses, essential oils (EOs) could be effective antibiotic alternatives. This study aims at identifying EOs safe for use, effective both in complementary therapy and in the environmental sanitization of intensive farming. Natural products were chemo-characterized by gas chromatography. Three S. Typhimurium, three C. perfringens and four E. coli strains isolated from poultry and swine farms were used to assess the antimicrobial properties of nine EOs and a modified GR-OLI (mGR-OLI). The toxicity of the most effective ones (Cinnamomum zeylanicum, Cz; Origanum vulgare, Ov) was also evaluated on porcine spermatozoa and Galleria mellonella larvae. Cz, Ov and mGR-OLI showed the strongest antimicrobial activity; their volatile components were also able to significantly inhibit the growth of tested strains. In vitro, Ov toxicity was slightly lower than Cz, while it showed no toxicity on G. mellonella larvae. In conclusion, the study confirms the importance of evaluating natural products to consolidate the idea of safe EO applications in reducing and preventing intensive livestock infections.
Collapse
Affiliation(s)
- Melinda Mariotti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (G.L.); (S.R.)
| | - Giulia Lombardini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (G.L.); (S.R.)
| | - Silvia Rizzo
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy; (G.L.); (S.R.)
| | - Donatella Scarafile
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (D.S.); (M.M.); (P.M.)
| | - Monica Modesto
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (D.S.); (M.M.); (P.M.)
| | - Eleonora Truzzi
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (S.B.)
| | - Stefania Benvenuti
- Dipartimento di Scienze della Vita, Università di Modena e Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (E.T.); (S.B.)
| | - Alberto Elmi
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.E.); (M.B.)
| | - Martina Bertocchi
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Via Tolara di Sopra 50, Ozzano dell’Emilia, 40064 Bologna, Italy; (A.E.); (M.B.)
| | - Laura Fiorentini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER)—Sede Territoriale di Forlì, Via Don Eugenio Servadei 3E/3F, 47122 Forlì, Italy; (L.F.); (L.G.)
| | - Lorenzo Gambi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna (IZSLER)—Sede Territoriale di Forlì, Via Don Eugenio Servadei 3E/3F, 47122 Forlì, Italy; (L.F.); (L.G.)
| | - Maurizio Scozzoli
- Società Italiana per la Ricerca sugli Oli Essenziali (SIROE), Viale Regina Elena 299, 00161 Rome, Italy;
| | - Paola Mattarelli
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Viale G. Fanin 42, 40127 Bologna, Italy; (D.S.); (M.M.); (P.M.)
| |
Collapse
|
152
|
Torres-Martínez R, Moreno-León A, García-Rodríguez YM, Hernández-Delgado T, Delgado-Lamas G, Espinosa-García FJ. The Tagetes lucida Cav. essential oil and the mixture of its main compounds are antibacterial and modulate antibiotic resistance in multi-resistant pathogenic bacteria. Lett Appl Microbiol 2022; 75:210-223. [PMID: 35419861 DOI: 10.1111/lam.13721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/24/2022] [Accepted: 04/05/2022] [Indexed: 11/26/2022]
Abstract
We evaluated an essential oil (EO) of Tagetes lucida Cav. and the mixture of its main compounds against multi-drug resistant bacteria. We found that EO and the partially reconstituted blend of its main components have antibacterial activity and inhibit antibiotic resistance (ampicillin, chloramphenicol, nalidixic acid, vancomycin, and imipenem) in strains of Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa HIM-MR01. The T. lucida EO alone or added to the antibiotics showed antimicrobial activity against S. aureus and P. aeruginosa. The EO main bioactive compounds were methyl eugenol (46.15%), estragole (32.93%), linalool (2.48%), and geraniol (0.33%). The mixture (PREO) of those compounds at those proportions inhibited the growth of P. aeruginosa in 45% at 683.62 µg mL-1 and that of S. aureus in 51.7% at 39.04 µg mL-1 . The PREO had higher antibacterial and modulatory activities than the original EO. In conclusion, we overcame the unpredictability of EO activity (due to their natural variability) by determining which EO components inhibited bacteria and then producing a PREO to generate a reproducible mixture with predictable antibacterial and modulation of resistance activities. Thus, the PREO, and its components, show potential as alternatives to manage multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Rafael Torres-Martínez
- Laboratorio de Ecología Química y Agroecología, Instituto de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Ex Hacienda de San José de la Huerta 58190, Morelia, Michoacán, México
| | - Agustín Moreno-León
- Laboratorio de Ecología Química y Agroecología, Instituto de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Ex Hacienda de San José de la Huerta 58190, Morelia, Michoacán, México
| | - Yolanda Magdalena García-Rodríguez
- Laboratorio de Ecología Química y Agroecología, Instituto de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Ex Hacienda de San José de la Huerta 58190, Morelia, Michoacán, México
| | - Tzasná Hernández-Delgado
- Laboratorio de Bioactividad de Productos Naturales, UBIPRO, FES-Iztacala, Universidad Nacional Autónoma de México, Av. de los Barrios No. 1, Tlalnepantla, 54090, Estado de México, México
| | - Guillermo Delgado-Lamas
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, México
| | - Francisco Javier Espinosa-García
- Laboratorio de Ecología Química y Agroecología, Instituto de Investigaciones en Ecosistemas, Universidad Nacional Autónoma de México, Ex Hacienda de San José de la Huerta 58190, Morelia, Michoacán, México
| |
Collapse
|
153
|
Nanoliposomes Containing Carvacrol and Carvacrol-Rich Essential Oils as Effective Mosquitoes Larvicides. BIONANOSCIENCE 2022. [DOI: 10.1007/s12668-022-00971-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
154
|
Application of Green Gold Nanoparticles in Cancer Therapy and Diagnosis. NANOMATERIALS 2022; 12:nano12071102. [PMID: 35407220 PMCID: PMC9000429 DOI: 10.3390/nano12071102] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023]
Abstract
Nanoparticles are currently used for cancer theranostics in the clinical field. Among nanoparticles, gold nanoparticles (AuNPs) attract much attention due to their usability and high performance in imaging techniques. The wide availability of biological precursors used in plant-based synthesized AuNPs allows for the development of large-scale production in a greener manner. Conventional cancer therapies, such as surgery and chemotherapy, have significant limitations and frequently fail to produce satisfying results. AuNPs have a prolonged circulation time, allow easy modification with ligands detected via cancer cell surface receptors, and increase uptake through receptor-mediated endocytosis. To exploit these unique features, studies have been carried out on the use of AuNPs as contrast agents for X-ray-based imaging techniques (i.e., computed tomography). As nanocarriers, AuNPs synthesized by nontoxic and biocompatible plants to deliver therapeutic biomolecules could be a significant stride forward in the effective treatment of various cancers. Fluorescent-plant-based markers, including AuNPs, fabricated using Medicago sativa, Olax Scandens, H. ambavilla, and H. lanceolatum, have been used in detecting cancers. Moreover, green synthesized AuNPs using various extracts have been applied for the treatment of different types of solid tumors. However, the cytotoxicity of AuNPs primarily depends on their size, surface reactivity, and surface area. In this review, the benefits of plant-based materials in cancer therapy are firstly explained. Then, considering the valuable position of AuNPs in medicine, the application of AuNPs in cancer therapy and detection is highlighted with an emphasis on limitations faced by the application of such NPs in drug delivery platforms.
Collapse
|
155
|
Essential Oils and Hydrolates: Potential Tools for Defense against Bacterial Plant Pathogens. Microorganisms 2022; 10:microorganisms10040702. [PMID: 35456755 PMCID: PMC9031397 DOI: 10.3390/microorganisms10040702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/16/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
The essential oils (EOs) of Origanum compactum and Satureja montana chemotyped (CT) at carvacrol, two Thymus vulgaris CT at thujanol and thymol, and Hydrolates (Hys) of S. montana and Citrus aurantium var. amara were chosen for studying their bactericidal efficacy against few phytobacterial pathogens. The Minimal Inhibitory Concentration (MIC) and Bactericidal Concentration (MBC) were found by microdilution assay. The essential oils of O. compactum (MBC 0.06% v/v), T. vulgaris CT thymol (MBC 0.06% v/v), and Hy of C. aurantium (MBC 6.25% v/v) resulted in being the most effective against Erwinia amylovora; thus, they were used as starting concentrations for ex vivo assays. Despite the great in vitro effectiveness, the disease incidence and the population dynamic ex vivo assays showed no significant results. On the other hand, EO of O. compactum and Hy of C. aurantium (at 0.03% and 4.5% v/v, respectively) showed resistance induction in tomato plants against Xanthomonas vesicatoria infections; both treatments resulted in approximately 50% protection. In conclusion, EOs and Hys could be promising tools for agricultural defense, but further studies will be necessary to stabilize the EOs emulsions, while Hys application could be an effective method to prevent bacterial diseases when used as resistance inducer by pre-transplantation treatment at roots.
Collapse
|
156
|
Villar Rodríguez J, Pérez Pico AM, Mingorance Álvarez E, Mayordomo Acevedo R. Meta-analysis of the antifungal activities of three essential oils as alternative therapies in dermatophytosis infections. J Appl Microbiol 2022; 133:241-253. [PMID: 35332625 PMCID: PMC9545424 DOI: 10.1111/jam.15539] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022]
Abstract
Aims This work examines the available scientific evidence about the efficiency of essential oils (EO) as an alternative therapy to traditional treatment of fungal infections, including onychomycosis, assessing the effect of the three EO most frequently studied for their antifungal activity (thyme, cinnamon and tea tree EO) against three causative agents of fungal diseases in humans: Trichophyton rubrum, Trichophyton mentagrophytes complex and Candida albicans. Methods and Results The PRISMA statement protocol was followed to conduct a bibliographical search and 54 articles that met all the inclusion criteria were retrieved. Differences were observed in the MIC and MFC values depending on the micro‐organism strain and the EO used. The lowest MIC were observed with Cinnamomum zeylanicum EO (0.013–1120 μl ml−1) against the three micro‐organisms. For MFC, the lowest value was found for Thymus vulgaris EO (4.2 μl ml−1) against Trichophyton rubrum. Conclusions The antifungal effects of EO could be a very promising solution to overcome the therapeutic shortcomings of antimycotic medication. More experiments are needed to examine the properties of these oils to devise effective and nonaggressive therapies for treatment of dermatophytosis. Significance and Impact of Study The results indicate that EO remain good candidates for future treatments and could provide a solution for failed medications and/or adverse reactions to current pharmacological treatments.
Collapse
Affiliation(s)
- Julia Villar Rodríguez
- Department of Anatomy, Cellular Biology and Zoology, University Centre of Plasencia, University of Extremadura, Spain
| | - Ana María Pérez Pico
- Department of Nursing, University Centre of Plasencia, University of Extremadura, Spain
| | - Esther Mingorance Álvarez
- Department of Anatomy, Cellular Biology and Zoology, University Centre of Plasencia, University of Extremadura, Spain
| | - Raquel Mayordomo Acevedo
- Department of Anatomy, Cellular Biology and Zoology, University Centre of Plasencia, University of Extremadura, Spain
| |
Collapse
|
157
|
In Vitro Pharmacological Screening of Essential Oils from Baccharis parvidentata and Lippia origanoides Growing in Brazil. Molecules 2022; 27:molecules27061926. [PMID: 35335288 PMCID: PMC8953750 DOI: 10.3390/molecules27061926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/10/2022] Open
Abstract
In this study, the in vitro antimicrobial, antiparasitic, antiproliferative and cytotoxic activities of essential oil from Baccharis parvidentata Malag. (EO-Bp) and Lippia origanoides Kunth (EO-Lo) were explored. The relevant effects were observed against the parasitic protozoans Plasmodium falciparum, Trypanosoma cruzi, Trypanosoma brucei and Leishmania amazonensis (ranging 0.6 to 39.7 µg/mL) and malignant MCF-7, MCF-7/HT, 22Rv1, and A431 cell lines (ranging 6.1 to 31.5 µg/mL). In parallel, EO-Bp showed better selective indexes in comparison with EO-Lo against peritoneal macrophages from BALB/c mice and MRC-5 cell line. In conclusion, EO-Lo is known to show a wide range of health benefits that could be added as another potential use of this oil with the current study. In the case of EO-Bp, the wide spectrum of its activities against protozoal parasites and malignant cells, as well as its selectivity in comparison with non-malignant cells, could suggest an interesting candidate for further tests as a new therapeutic alternative.
Collapse
|
158
|
Effect of cinnamaldehyde nanoemulsion on the microbiological property of sausage. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
159
|
Developing Eco-Friendly Skin Care Formulations with Microemulsions of Essential Oil. COSMETICS 2022. [DOI: 10.3390/cosmetics9020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the rising public awareness of environmental issues, consumers are increasingly demanding skin care products that create less environmental impact but still provide the same or even greater efficacy. In the skin care arena, microemulsions have been receiving increased attention as the promising delivery technology of skin care actives. Essential oils such as peppermint oil, lavender oil and eucalyptus oil are purported to have excellent antioxidant and antimicrobial properties that could be used as the eco-friendly alternatives for synthetic antioxidants and preservatives in the skin care formulations. This work therefore seeks to develop eco-friendly skin care formulations based on microemulsions of essential oil. Peppermint oil, lavender oil and eucalyptus oil were used as the oil phase to formulate naringin-loaded microemulsions, which demonstrated similar or better antioxidant and antimicrobial properties compared to the synthetic ones. When formulated into gel form, naringin-loaded microemulsion-gel formulations showed enhanced stability and release profile over their unformulated counterpart. Hence, microemulsions of essential oil developed in this work conferred a 4-fold benefits to the skin care formulations: (1) improved release (membrane permeation) of skin care active, (2) improved stability of skin care active, (3) as an eco-friendly alternative to synthetic antioxidant, and (4) a self-preserving system.
Collapse
|
160
|
Bangonan L, Blore K, Peper ST, Aryaprema VS, Bond J, Qualls WA, Xue RD. Laboratory Evaluation of Bigshot Maxim Against Three Species of Larval and Adult Mosquitoes, Aedes aegypti, Culex quinquefasciatus, and Anopheles quadrimaculatus. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2022; 38:70-73. [PMID: 35276725 DOI: 10.2987/21-7032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The use of synthetic insecticides has been the main approach in mosquito control programs (MCPs) to prevent or reduce mosquito populations. The global problem of insecticide resistance and the concern of environmental impacts of synthetic insecticides have resulted in the interest of botanicals as an alternative. In this study, the botanical product BigShot Maxim, which contains cedarwood oil (14%), thyme oil (0.53%), and cinnamon oil (0.23%) as active ingredients, was examined in adulticide and larvicide bioassays against Aedes aegypti, Culex quinquefasciatus, and Anopheles quadrimaculatus. In the adulticide bioassay, 100% mortality was reached at a dilution of 1:10 after 4 h of exposure for all 3 species. In the larvicide bioassay, at the highest tested concentration (30 ppm by volume) the greatest mortality was 96.44 ± 1.44% SE for Ae. aegypti, 92.44 ± 2.07% SE for Cx. quinquefasciatus, and 33.33 ± 3.61% for An. quadrimaculatus, respectively. Insecticidal properties presented in all the experiments indicate that BigShot Maxim could be a viable alternative to some synthetic insecticides used in MCPs.
Collapse
Affiliation(s)
- Lea Bangonan
- Anastasia Mosquito Control District, 120 EOC Drive, St. Augustine, FL 32092
| | - Kai Blore
- Anastasia Mosquito Control District, 120 EOC Drive, St. Augustine, FL 32092
| | - Steven T Peper
- Anastasia Mosquito Control District, 120 EOC Drive, St. Augustine, FL 32092
| | | | - Jerry Bond
- Anastasia Mosquito Control District, 120 EOC Drive, St. Augustine, FL 32092
| | - Whitney A Qualls
- Anastasia Mosquito Control District, 120 EOC Drive, St. Augustine, FL 32092
| | - Rui-De Xue
- Anastasia Mosquito Control District, 120 EOC Drive, St. Augustine, FL 32092
| |
Collapse
|
161
|
Štrbac F, Bosco A, Maurelli MP, Ratajac R, Stojanović D, Simin N, Orčić D, Pušić I, Krnjajić S, Sotiraki S, Saralli G, Cringoli G, Rinaldi L. Anthelmintic Properties of Essential Oils to Control Gastrointestinal Nematodes in Sheep-In Vitro and In Vivo Studies. Vet Sci 2022; 9:vetsci9020093. [PMID: 35202346 PMCID: PMC8880401 DOI: 10.3390/vetsci9020093] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
Herbal products such as essential oils may play a promising role in the treatment of infections caused by gastrointestinal nematodes (GINs). The aim of this study was to evaluate the in vitro potential of 11 essential oils (EOs) and one binary combination of isolated EO compounds, as well as the in vivo anthelmintic efficacy of two EO formulations. Four GIN genera were identified in the coproculture examination: Haemonchus, Trichostrongylus, Teladorsagia and Chabertia. The in vitro egg hatch test (EHT) was performed at six different concentrations (50, 12.5, 3.125, 0.781, 0.195 and 0.049 mg/mL) for each EO, whereas in the in vivo faecal egg count reduction test (FECRT), each EO sample was diluted in sunflower oil and orally administrated at a dose of 100 mg/kg to the different group of animals. In the EHT, the EOs of Origanum vulgare, Foeniculum vulgare, Satureja montana, Satureja hortensis and two types of Thymus vulgaris were the most effective. The dominant compounds of these EOs were carvacrol, thymol, anethol, p-cymene and γ-terpinene, indicating their importance for the anthelmintic activity. In the FECRT, both T. vulgaris EO type 1 and linalool:estragole combination show an anthelmintic potential with a mean effect on FECR of approximately 25%. The results suggest the possible role of tested EOs as anthelmintic agents in sheep farms, although further in vivo tests are needed.
Collapse
Affiliation(s)
- Filip Štrbac
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21102 Novi Sad, Serbia;
- Correspondence: ; Tel.: +381-613181091
| | - Antonio Bosco
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Via Federico Delpino 1, 80137 Naples, Italy; (A.B.); (M.P.M.); (G.C.); (L.R.)
| | - Maria Paola Maurelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Via Federico Delpino 1, 80137 Naples, Italy; (A.B.); (M.P.M.); (G.C.); (L.R.)
| | - Radomir Ratajac
- Scientific Veterinary Institute Novi Sad, Rumenački put 20, 21113 Novi Sad, Serbia; (R.R.); (I.P.)
| | - Dragica Stojanović
- Department of Veterinary Medicine, Faculty of Agriculture, University of Novi Sad, Trg Dositeja Obradovića 8, 21102 Novi Sad, Serbia;
| | - Nataša Simin
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia; (N.S.); (D.O.)
| | - Dejan Orčić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21102 Novi Sad, Serbia; (N.S.); (D.O.)
| | - Ivan Pušić
- Scientific Veterinary Institute Novi Sad, Rumenački put 20, 21113 Novi Sad, Serbia; (R.R.); (I.P.)
| | - Slobodan Krnjajić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia;
| | - Smaragda Sotiraki
- Veterinary Research Institute, National Agricultural Research Foundation, NAGREF Campus, 57001 Thessaloniki, Greece;
| | - Giorgio Saralli
- Experimental Zooprophylactic Institute of Lazio and Tuscany M. Aleandri, Via Appia Nuova, 00178 Rome, Italy;
| | - Giuseppe Cringoli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Via Federico Delpino 1, 80137 Naples, Italy; (A.B.); (M.P.M.); (G.C.); (L.R.)
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, CREMOPAR, Via Federico Delpino 1, 80137 Naples, Italy; (A.B.); (M.P.M.); (G.C.); (L.R.)
| |
Collapse
|
162
|
Secretory Products in Petals of Centaurea cyanus L. Flowers: A Histochemistry, Ultrastructure, and Phytochemical Study of Volatile Compounds. Molecules 2022; 27:molecules27041371. [PMID: 35209163 PMCID: PMC8877098 DOI: 10.3390/molecules27041371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 12/04/2022] Open
Abstract
(1) Background: Centaurea cyanus L. is a medicinal plant whose flowers are widely used in herbal medicine. The aim of the study was to localise flower tissues that are responsible for the production of secretory products in petals and to analyse the volatile compounds. The volatile compounds of the flowers of this species have not been investigated to date. (2) Methods: Light, fluorescence, scanning and transmission electron microscopy techniques were used in the study. Lipophilic compounds were localised in the tissues using histochemical assays. Volatile compounds were determined with the use of solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). (3) Results: The study showed production of secretion in the petal parenchyma, whose ultrastructure has features of a secretory tissue. The lipophilic secretion was localised in the cells and intercellular spaces of the parenchyma and in the walls and surface of epidermal cells, where it accumulated after release through cuticle microchannels. Sesquiterpenes were found to constitute the main group of volatile compounds, with the highest content of β-caryophyllene (26.17%) and α-humulene (9.77%). (4) Conclusions: Given the presence of some volatile components that are often found in resins (caryophyllene, delta-cadinene) and the abundant secretion residues on the epidermal surface, we suppose that the C. cyanus secretion released by the flowers is a resinaceous mixture (oleoresin), which is frequently found in plants, as shown by literature data. This secretion may play an important role in the therapeutic effects of C. cyanus flowers.
Collapse
|
163
|
Mukherjee S, Chouhan KBS, Chandrakar M, Gupta P, Lal K, Mandal V. A cross talk based critical analysis of solvent free microwave extraction to accentuate it as the new normal for extraction of essential oil: an attempt to overhaul the science of distillation through a comprehensive tutelage. Crit Rev Food Sci Nutr 2022; 63:6960-6982. [PMID: 35142568 DOI: 10.1080/10408398.2022.2036694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microwave-assisted extraction (MAE) is a sustainable non-contact heating source and has been extensively researched for extraction of plant bioactives. There are various derivatives or modules available for MAE and solvent free microwave extraction (SFME) is one of them where by operational aspects of MAE have been maneuvered to make it compatible for extraction of essential oil (EO). This article makes an attempt to overhaul the science of distillation by revisiting SFME and trying to learn through a comprehensive tutelage comprising of 20 years of published literature in Web of Science so that a shrewd decision can be obtained through a cross talk based critical analysis on the science SFME. A total of 312 articles within the time frame of 2001-2020 were extracted from WOS and critically analyzed. Considering the various uncertainties involved with SFME the articles establishes some global working standards and tries to explore the dynamic relationship between plant part/genus and microwave power, microwave power and time, microwave power and extracted volatile principles, prioritizes plant family selection and also presents a research blueprint of SFME. A techno-commercial feasibility study has been presented for smooth industrial transition of SFME. The tutelage presented decodes the publication trends and SFME blueprint.
Collapse
Affiliation(s)
- Souvik Mukherjee
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, Chhattisgarh, India
| | | | - Monika Chandrakar
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, Chhattisgarh, India
| | - Pragya Gupta
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, Chhattisgarh, India
| | - Kajal Lal
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, Chhattisgarh, India
| | - Vivekananda Mandal
- Department of Pharmacy, Guru Ghasidas Central University, Bilaspur, Chhattisgarh, India
| |
Collapse
|
164
|
Volatile Organic Compounds from Basil Essential Oils: Plant Taxonomy, Biological Activities, and Their Applications in Tropical Fruit Productions. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020144] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Basils of the genus Ocimum are aromatic plants grown widely throughout the tropical and temperate regions. The essential oils obtained from their aerial parts are enriched with volatile organic compounds with high market demand for food and pharmaceutical industries. The volatile organic compounds have been shown to exhibit biological activities. Therefore, their novel applications have been extensively explored in the last few decades. The most widely available basils in the tropical areas include white holy basil (O. sanctum var. Shyama), red holy basil (O. sanctum var. Rama), Thai basil (O. basilicum var. thyrsiflorum), lemon basil (O. citriodorum), and tree basil (O. gratissimum). Over 60 volatiles of different classes have been exclusively described, and some of them could be useful as biomarkers for genotype specification. The major volatile ingredient is the phenylpropanoids, such as methyl eugenol, which has the potential as a natural product for mitigating Oriental fruit fly (Bactrocera dorsalis) during tropical fruit production. Moreover, basil essential oils are also used to control diseases of the fruits during post-harvest storage. As a result, the application of basil essential oils as a sustainable defect control strategy for tropical fruit value chains seems intriguing. This review provides comprehensive information on plant taxonomy and volatile compositions of the essential oil fractions from different basil species. Their biological activities and applications are also discussed, mainly during the pre- and post-production of tropical fruits. Additionally, the available techniques to enhance the efficacy of the volatile active compounds are also described.
Collapse
|
165
|
Role of plant extracts and essential oils in fighting against postharvest fruit pathogens and extending fruit shelf life: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
166
|
GC-MS and SPME-GC/MS Analysis and Bioactive Potential Evaluation of Essential Oils from Two Viola Species Belonging to the V. calcarata Complex. SEPARATIONS 2022. [DOI: 10.3390/separations9020039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Viola calcarata L. and Viola dubyana Burnat ex Gremli belong to the V. calcarata complex in Viola section Melanium (Violaceae family). For the first time, the essential oils (EOS) obtained by hydrodistillation from dried flowers, were analyzed by GC/MS and SPME-GC/MS to describe their volatile chemical profile. Differences in the qualitative and quantitative composition between the two violets have been found. A total of 43 compounds were identified among which methyl salicylate was the most abundant (from 45.5 to 68.0%) both in the vapor and liquid phase. The performed bioactivity tests pointed out the greater effect of V. dubyana EO compared to that obtained from V. calcarata. Nevertheless, both EOs proved to be good scavengers, especially toward the ABTS⋅+ radical. They also showed a dose-dependent phytotoxic action against Sinapis alba and Lolium multiflorum. Their seed germination was inhibited up to 100% and 25%, respectively, in response to the highest used dose (100 μL) of each EO. Furthermore, a significant decrease in root and shoot length was observed. The resulting seedling vigor index was reduced by 15–100% and 8–82% for S. alba and by 11–91% and 4–91% for L. multiflorum by V. dubyana and V. calcarata EOS, respectively.
Collapse
|
167
|
Foudah AI, Alqarni MH, Alam A, Salkini MA, Ross SA, Yusufoglu HS. Phytochemical Screening, In Vitro and In Silico Studies of Volatile Compounds from Petroselinum crispum (Mill) Leaves Grown in Saudi Arabia. Molecules 2022; 27:molecules27030934. [PMID: 35164196 PMCID: PMC8840193 DOI: 10.3390/molecules27030934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/21/2022] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
The herbal plant Petroselinum crispum (P. crispum) (Mill) is commonly available around the world. In this study, the leaves of the herbal plant P. crispum were collected from the central region of Al-Kharj, Saudi Arabia, to explore their in vitro pharmacological activity. Essential oil from the leaves of P. crispum was isolated using the hydrodistillation method. The composition of P. crispum essential oil (PCEO) was determined using Gas chromatography-mass spectrometry (GC-MS). A total of 67 components were identified, representing approximately 96.02% of the total volatile composition. Myristicin was identified as the principal constituent (41.45%). The in vitro biological activity was assessed to evaluate the antioxidant, antimicrobial, and anti-inflammatory potential of PCEO. PCEO showed the highest antimicrobial activity against Candida albicans and Staphylococcus aureus among all the evaluated microbial species. In vitro anti-inflammatory evaluation using albumin and trypsin assays showed the excellent anti-inflammatory potential of PCEO compared to the standard drugs. An in silico study of the primary PCEO compound was conducted using online tools such as PASS, Swiss ADME, and Molecular docking. In silico PASS prediction results supported our in vitro findings. Swiss ADME revealed the drug likeness and safety properties of the major metabolites present in PCEO. Molecular docking results were obtained by studying the interaction of Myristicin with an antifungal (PDB: 1IYL and 3LD6), antibacterial (PDB: 1AJ6 and 1JIJ), antioxidant (PDB: 3NM8 and 1HD2), and anti-inflammatory (3N8Y and 3LN1) receptors supported the in vitro results. Therefore, PCEO or Myristicin might be valuable for developing anti-inflammatory and antimicrobial drugs.
Collapse
Affiliation(s)
- Ahmed I. Foudah
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (M.H.A.); (A.A.); (M.A.S.)
- Correspondence:
| | - Mohammad H. Alqarni
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (M.H.A.); (A.A.); (M.A.S.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (M.H.A.); (A.A.); (M.A.S.)
| | - Mohammad Ayman Salkini
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia; (M.H.A.); (A.A.); (M.A.S.)
| | - Samir A. Ross
- National Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, MS 38677, USA;
- Department of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Hasan S. Yusufoglu
- Department of Pharmacognosy & Pharmaceutical Chemistry, College of Dentistry & Pharmacy, Buraydah Private College, Buraydah 81418, Saudi Arabia;
| |
Collapse
|
168
|
D’Aquila P, Paparazzo E, Crudo M, Bonacci S, Procopio A, Passarino G, Bellizzi D. Antibacterial Activity and Epigenetic Remodeling of Essential Oils from Calabrian Aromatic Plants. Nutrients 2022; 14:nu14020391. [PMID: 35057572 PMCID: PMC8780331 DOI: 10.3390/nu14020391] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/27/2023] Open
Abstract
Natural compounds have historically had a wide application in nutrition. Recently, a fundamental role has been identified for essential oils extracted from aromatic plants for their nutritional, antimicrobial, and antioxidant properties, and as food preservatives. In the present study, essential oils (EOs) from ten aromatic plants grown in Calabria (Italy), used routinely to impart aroma and taste to food, were evaluated for their antibacterial activity. This activity was investigated against Escherichia coli strain JM109, and its derived antibiotic-resistant cells selected by growing the strain at low concentrations of ampicillin, ciprofloxacin, and gentamicin by measuring the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). Although all the essential oils showed bactericidal activity, those from Clinopodium nepeta, Origanum vulgare, and Foeniculum vulgare displayed the greatest inhibitory effects on the bacterial growth of all cell lines. It is plausible that the antibacterial activity is mediated by epigenetic modifications since the tested essential oils induce methylation both at adenine and cytosine residues in the genomes of most cell lines. This study contributes to a further characterization of the properties of essential oils by shedding new light on the molecular mechanisms that mediate these properties.
Collapse
Affiliation(s)
- Patrizia D’Aquila
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.P.); (M.C.); (G.P.)
| | - Ersilia Paparazzo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.P.); (M.C.); (G.P.)
| | - Michele Crudo
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.P.); (M.C.); (G.P.)
| | - Sonia Bonacci
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| | - Antonio Procopio
- Department of Health Sciences, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy; (S.B.); (A.P.)
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.P.); (M.C.); (G.P.)
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy; (P.D.); (E.P.); (M.C.); (G.P.)
- Correspondence:
| |
Collapse
|
169
|
Kumar P, Mahato DK, Gupta A, Pandhi S, Mishra S, Barua S, Tyagi V, Kumar A, Kumar M, Kamle M. Use of essential oils and phytochemicals against the mycotoxins producing fungi for shelf‐life enhancement and food preservation. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15563] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Pradeep Kumar
- Applied Microbiology Lab Department of Forestry North Eastern Regional Institute of Science and Technology Nirjuli 791109 India
| | - Dipendra Kumar Mahato
- CASS Food Research Centre School of Exercise and Nutrition Sciences Deakin University Burwood VIC 3125 Australia
| | - Akansha Gupta
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Sadhna Mishra
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
- Faculty of Agricultural Sciences GLA University Mathura 281406 India
| | - Sreejani Barua
- Department of Agricultural and Food Engineering Indian Institute of Technology Kharagpur‐721302 India
- Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Vidhi Tyagi
- University School of Biotechnology Guru Gobind Singh Indraprastha University Sector 16C Dwarka New Delhi 110078 India
| | - Arvind Kumar
- Department of Dairy Science and Food Technology Institute of Agricultural Sciences Banaras Hindu University Varanasi 221005 India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR—Central Institute for Research on Cotton Technology Mumbai 400019 India
| | - Madhu Kamle
- Applied Microbiology Lab Department of Forestry North Eastern Regional Institute of Science and Technology Nirjuli 791109 India
| |
Collapse
|
170
|
Abstract
Eucalyptus plants have attracted the attention of researchers and environmentalists worldwide because they are a rapidly growing source of wood and a source of oil used for multiple purposes. The main and the most important oil component is 1,8-cineole (eucalyptol: 60–85%). This review summarizes the literature reported to date involving the use of 1,8-cineole for the treatment of disorders. Additionally, we describe our efforts in the use of eucalyptol as a solvent for the synthesis of O,S,N-heterocycles. Solvents used in chemistry are a fundamental element of the environmental performance of processes in corporate and academic laboratories. Their influence on costs, safety and health cannot be neglected. Green solvents such as bio-based systems hold considerable additional promise to reduce the environmental impact of organic chemistry. The first section outlines the process leading to our discovery of an unprecedented solvent and its validation in the first coupling reactions. This section continues with the description of its properties and characteristics and its reuse as reported in the various studies conducted. The second section highlights the use of eucalyptol in a series of coupling reactions (i.e., Suzuki–Miyaura, Sonogashira–Hagihara, Buchwald–Hartwig, Migita–Kosugi–Stille, Hiyama and cyanation) that form O,S,N-heterocycles. We describe the optimization process applied to reach the ideal conditions. We also show that eucalyptol can be a good alternative to build heterocycles that contain oxygen, sulfur and nitrogen. These studies allowed us to demonstrate the viability and potential that bio solvents can have in synthesis laboratories.
Collapse
|
171
|
Alves NM, Cruz VDS, Nepomuceno LL, Soares NP, Arnhold E, Graziani D, Gonçalves PDAM, Badan GHS, Santos ADM, Araújo EGD. Turmeric ethanol extract (Curcuma longa L.) reduces apoptosis and promotes canine osteosarcoma cell proliferation. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v23e-72215e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract Curcuma longa L., also known as turmeric, has been widely studied for its various therapeutic properties, including antineoplastic action. The ethanolic extract of the plant contains several phenolic compounds, especially curcumin. Osteosarcoma is a predominant bone tumor in dogs and humans, characterized by high metastatic potential and an unfavorable prognosis. The aim of this study was to investigate the effects of turmeric ethanol extract on canine osteosarcoma cells from established culture. The cells were cultured and treated with different curcumin concentrations (0, 10 μM, 20 μM, 50 μM, 100 μM, and 1000 μM) and exposure times (24h, 48h, and 72h). We first performed tetrazolium reduction technique (MTT) assay and calculated IC50. An immunocytochemistry assay was performed after extract treatment to verify the expression of mutated p53 and therefore study the proliferative potential of malignant cells; Bcl-2 and Ki-67 were used to assess apoptosis and the degree of malignancy, respectively. The extract enhanced the proliferation of canine osteosarcoma cells, reaching 3,819.74% at 50 μM of curcumin. The extract also significantly altered the expression of mutated p53 and Ki-67 proteins but not that of Bcl-2, suggesting that it did not induce this antiapoptotic pathway. Overall, these results are prerequisite to better understanding how natural compounds such as turmeric ethanolic extract affect cell proliferation and could be used to treat various diseases.
Collapse
|
172
|
Syafri S, Jaswir I, Yusof F, Rohman A, Ahda M, Hamidi D. The use of instrumental technique and chemometrics for essential oil authentication: A review. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
173
|
Bezerra JN, Gomez MCV, Rolón M, Coronel C, Almeida-Bezerra JW, Fidelis KR, Menezes SAD, Cruz RPD, Duarte AE, Ribeiro PRV, Brito ESD, Coutinho HDM, Morais-Braga MFB, Bezerra CF. Chemical composition, Evaluation of Antiparasitary and Cytotoxic Activity of the essential oil of Psidium brownianum MART EX. DC. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102247] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
174
|
Alves NM, Cruz VDS, Nepomuceno LL, Soares NP, Arnhold E, Graziani D, Gonçalves PDAM, Badan GHS, Santos ADM, Araújo EGD. Extrato etanólico de açafrão (Curcuma longa L.) reduz apoptose e promove proliferação de células de osteossarcoma canino. CIÊNCIA ANIMAL BRASILEIRA 2022. [DOI: 10.1590/1809-6891v23e-72715p] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Resumo A Curcuma longa L., planta conhecida popularmente como açafrão, tem sido amplamente estudada por suas diversas propriedades terapêuticas, incluindo a ação antineoplásica. O extrato etanólico da planta contém diversos compostos fenólicos, com destaque para a curcumina. O osteossarcoma é um tumor ósseo predominante em cães e humanos, caracterizado por apresentar alto potencial metastático e prognóstico desfavorável. Procurou-se investigar os efeitos de diferentes concentrações de curcumina do extrato etanólico de açafrão sobre células de osteossarcoma canino de cultura estabelecida. As células foram cultivadas e submetidas ao tratamento com extrato com diferentes concentrações de curcumina (0, 10 μM, 20 μM, 50 μM, 100 μM e 1000 μM) e tempos de exposição (24h, 48h e 72h) pelo EEA. Inicialmente, foram realizados: técnica de redução do tetrazólio (MTT) e cálculo da IC50. Posteriormente, após o tratamento com o extrato, realizou-se o ensaio de imunocitoquímica para verificar a expressão de p53 mutada e estudar o potencial proliferativo das células malignas; Bcl-2, com intuito de averiguar o estímulo de via antiapoptótica; e o marcador Ki-67, que sinaliza aumento no grau de malignidade. O extrato promoveu proliferação de células de osteossarcoma canino, com incremento de até 3819,74% na concentração de 50μM de curcumina. O composto também alterou a expressão das proteínas p53 mutante e Ki-67 significativamente, mas não alterou a expressão de Bcl-2, mostrando que não induziu a via antiapoptótica mediada por esta. Estes resultados demonstram que o extrato etanólico do açafrão apresenta potencial proliferativo sobre células de osteossarcoma canino, sugerindo a necessidade de conscientização e conhecimento dos reais efeitos de determinados compostos naturais, considerados seguros ao serem utilizados como tratamento de diversas enfermidades.
Collapse
|
175
|
Khalil HE, Ibrahim HIM, Darrag HM, Matsunami K. Insight into Analysis of Essential Oil from Anisosciadium lanatum Boiss.-Chemical Composition, Molecular Docking, and Mitigation of Hepg2 Cancer Cells through Apoptotic Markers. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010066. [PMID: 35009072 PMCID: PMC8747166 DOI: 10.3390/plants11010066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 05/20/2023]
Abstract
Essential oils have been used in various traditional healing systems since ancient times worldwide, due to their diverse biological activities. Several studies have demonstrated their plethora of biological activities-including anti-cancer activity-in a number of cell lines. Anisosciadium lanatum Boiss. is a perennial aromatic herb. Traditionally, it is an edible safe herb with few studies exploring its importance. The current study aims to investigate the chemical composition of essential oil isolated from Anisosciadium lanatum using GC-MS, as well as report its anti-cancer potential and its mechanistic effect on HepG2 liver cancer cell lines, and conduct molecular docking studies. To achieve this, the essential oil was isolated using a Clevenger apparatus and analyzed using GC-MS. The cell viability of HepG2 liver cancer and normal fibroblast NIH-3T3 cell lines was assessed by MTT cytotoxicity assay. The effects of the essential oil on cell migration and invasion were assessed using wound healing and matrigel assays, respectively. The effect of the essential oil on migration and apoptotic-regulating mRNA and proteins was quantified using quantitative real-time PCR and Western blot techniques, respectively. Finally, computational docking tools were used to analyze in silico binding of major constituents from the essential oil against apoptotic and migration markers. A total of 38 components were identified and quantified. The essential oil demonstrated regulation of cell proliferation and cell viability in HepG2 liver cancer cells at a sub-lethal dose of 10 to 25 μg/mL, and expressed reductions of migration and invasion. The treatment with essential oil indicated mitigation of cancer activity by aborting the mRNA of pro-apoptotic markers such as BCL-2, CASPASE-3, CYP-1A1, and NFκB. The algorithm-based binding studies demonstrated that eucalyptol, nerol, camphor, and linalool have potent binding towards the anti-apoptotic protein BCL-2. On the other hand, camphor and eucalyptol showed potent binding towards the pro-apoptotic protein CASPASE-3. These findings highlight the effectiveness of the essential oil isolated from Anisosciadium lanatum to drive alleviation of HepG2 cancer cell progression by modulating apoptotic markers. Our findings suggest that Anisosciadium lanatum could be used as a phytotherapeutic anti-cancer agent, acting through the regulation of apoptotic markers. More well-designed in vivo trials are needed in order to verify the obtained results.
Collapse
Affiliation(s)
- Hany Ezzat Khalil
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Correspondence:
| | - Hairul-Islam Mohamed Ibrahim
- Biological Sciences Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Pondicherry Centre for Biological Sciences and Educational Trust, Kottakuppam 605104, India
| | - Hossam M. Darrag
- Research and Training Station, King Faisal University King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Pesticide Chemistry and Technology Department, Faculty of Agriculture, Alexandria University, Alexandria 21545, Egypt
| | - Katsuyoshi Matsunami
- Department of Pharmacognosy, Graduate School of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan;
| |
Collapse
|
176
|
Sharma M, Grewal K, Jandrotia R, Batish DR, Singh HP, Kohli RK. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed Pharmacother 2021; 146:112514. [PMID: 34963087 DOI: 10.1016/j.biopha.2021.112514] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer retains a central place in fatality rates among the wide variety of diseases known world over, and the conventional synthetic medicaments, albeit used until now, produce numerous side effects. As a result, newer, better, and safer alternatives such as natural plant products, are gravely required. Essential oils (EOs) offer a plethora of bioactivities including antibacterial, antiviral, antioxidant, and anticancer properties, therefore, the use of EOs in combination with synthetic drugs or aromatherapy continues to be popular in many settings. In view of the paramount importance of EOs and their potential bioactivities, this review summarizes the current knowledge on the interconnection between EOs and cancer treatment. In particular, the current review presents an updated summary of the chemical composition of EOs, their current applications in cancer treatments based on clinical studies, and the mechanism of action against the cancer cell lines. Similarly, an overview of using EOs in aromatherapy and enhancing immunity during cancer treatment is provided. Further, this review focuses on the recent technological advancements such as the loading of EOs using protein microspheres, ligands, or nanoemulsions/nanoencapsulation, which offer multiple benefits in cancer treatment via site-specific and target-oriented delivery of drugs. The continuing clinical studies of EOs implicate that their pharmacological applications are a rewarding research area.
Collapse
Affiliation(s)
- Mansi Sharma
- Department of Environment Studies, Panjab University, Chandigarh 160 014, India
| | - Kamaljit Grewal
- Department of Botany, Panjab University, Chandigarh 160 014, India
| | - Rupali Jandrotia
- Department of Botany, Panjab University, Chandigarh 160 014, India
| | | | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh 160 014, India.
| | | |
Collapse
|
177
|
Lamiaceae Essential Oils, Phytochemical Profile, Antioxidant, and Biological Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6748052. [PMID: 34950215 PMCID: PMC8692021 DOI: 10.1155/2021/6748052] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/25/2021] [Indexed: 01/22/2023]
Abstract
Medicinal and aromatic plants present important active compounds that have potential for use in food, pharmaceutical, and agriculture industries. In this sense, the present work aimed to conduct a literature review on the potential applications of essential oils from Lamiaceae species. Antioxidant, anti-inflammatory, and antimicrobial activities were evaluated. The importance of this study is demonstrated as a way to theoretically provide information on the use of different plants belonging to the Lamiaceae family, especially with regard to the physical, chemical, and biological properties of its essential oils.
Collapse
|
178
|
Soares GABE, Bhattacharya T, Chakrabarti T, Tagde P, Cavalu S. Exploring Pharmacological Mechanisms of Essential Oils on the Central Nervous System. PLANTS (BASEL, SWITZERLAND) 2021; 11:21. [PMID: 35009027 PMCID: PMC8747111 DOI: 10.3390/plants11010021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 06/01/2023]
Abstract
Essential oils (EOs) have been traditionally used as ancient remedies to treat many health disorders due to their enormous biological activities. As mainstream allopathic medication currently used for CNS disorders is associated with adverse effects, the search to obtain safer alternatives as compared to the currently marketed therapies is of tremendous significance. Research conducted suggests that concurrent utilization of allopathic medicines and EOs is synergistically beneficial. Due to their inability to show untoward effects, various scientists have tried to elucidate the pharmacological mechanisms by which these oils exert beneficial effects on the CNS. In this regard, our review aims to improve the understanding of EOs' biological activity on the CNS and to highlight the significance of the utilization of EOs in neuronal disorders, thereby improving patient acceptability of EOs as therapeutic agents. Through data compilation from library searches and electronic databases such as PubMed, Google Scholar, etc., recent preclinical and clinical data, routes of administration, and the required or maximal dosage for the observation of beneficial effects are addressed. We have also highlighted the challenges that require attention for further improving patient compliance, research gaps, and the development of EO-based nanomedicine for targeted therapy and pharmacotherapy.
Collapse
Affiliation(s)
- Giselle A. Borges e Soares
- Department of Medicinal and Biological Chemistry, University of Toledo, 3000 Arlington Ave., Toledo, OH 43614, USA;
| | - Tanima Bhattacharya
- Innovation, Incubation & Industry (I-Cube) Laboratory, Techno India NJR Institute of Technology, Udaipur 313003, Rajasthan, India
- Department of Science & Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770, Australia
| | - Tulika Chakrabarti
- Department of Chemistry, Sir Padampat Singhania University, Udaipur 313601, Rajasthan, India;
| | - Priti Tagde
- Bhabha Pharmacy Research Institute, Bhabha University Bhopal, Bhopal 462026, Madhya Pradesh, India;
- PRISAL Foundation (Pharmaceutical Royal International Society), Bhopal 462042, India
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
179
|
Yap KM, Sekar M, Fuloria S, Wu YS, Gan SH, Mat Rani NNI, Subramaniyan V, Kokare C, Lum PT, Begum MY, Mani S, Meenakshi DU, Sathasivam KV, Fuloria NK. Drug Delivery of Natural Products Through Nanocarriers for Effective Breast Cancer Therapy: A Comprehensive Review of Literature. Int J Nanomedicine 2021; 16:7891-7941. [PMID: 34880614 PMCID: PMC8648329 DOI: 10.2147/ijn.s328135] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Despite recent advances in the diagnosis and treatment of breast cancer (BC), it remains a global health issue affecting millions of women annually. Poor prognosis in BC patients is often linked to drug resistance as well as the lack of effective therapeutic options for metastatic and triple-negative BC. In response to these unmet needs, extensive research efforts have been devoted to exploring the anti-BC potentials of natural products owing to their multi-target mechanisms of action and good safety profiles. Various medicinal plant extracts/essential oils and natural bioactive compounds have demonstrated anti-cancer activities in preclinical BC models. Despite the promising preclinical results, however, the clinical translation of natural products has often been hindered by their poor stability, aqueous solubility and bioavailability. There have been attempts to overcome these limitations, particularly via the use of nano-based drug delivery systems (NDDSs). This review highlights the tumour targeting mechanisms of NDDSs, the advantages and disadvantages of the major classes of NDDSs and their current clinical status in BC treatment. Besides, it also discusses the proposed anti-BC mechanisms and nanoformulations of nine medicinal plants' extracts/essential oils and nine natural bioactive compounds; selected via the screening of various scientific databases, including PubMed, Scopus and Google Scholar, based on the following keywords: "Natural Product AND Nanoparticle AND Breast Cancer". Overall, these nanoformulations exhibit improved anti-cancer efficacy against preclinical BC models, with some demonstrating biocompatibility with normal cell lines and mouse models. Further clinical studies are, however, warranted to ascertain their efficacy and biocompatibility in humans.
Collapse
Affiliation(s)
- Kah Min Yap
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - Mahendran Sekar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | | - Yuan Seng Wu
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Selangor, 47500, Malaysia
| | - Siew Hua Gan
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor Darul Ehsan, 47500, Malaysia
| | - Nur Najihah Izzati Mat Rani
- Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | | | - Chandrakant Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society’s, Sinhgad Institute of Pharmacy, Narhe, Pune, 411041, India
| | - Pei Teng Lum
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Health Sciences, Universiti Kuala Lumpur Royal College of Medicine Perak, Ipoh, Perak, 30450, Malaysia
| | - M Yasmin Begum
- Department of Pharmaceutics, College of Pharmacy, King Khalid University (KKU), Asir-Abha, 61421, Saudi Arabia
| | - Shankar Mani
- Department of Pharmaceutical Chemistry, Sri Adichunchanagiri College of Pharmacy, Adichunchanagiri University, Mandya, Karnataka, 571418, India
| | | | | | | |
Collapse
|
180
|
Abstract
The excess level of reactive oxygen species (ROS) disturbs the oxidative balance leading to oxidative stress, which, in turn, causes diabetes mellites, cancer, and cardiovascular diseases. These effects of ROS and oxidative stress can be balanced by dietary antioxidants. In recent years, there has been an increasing trend in the use of herbal products for personal and beauty care. The Apiaceae (previously Umbelliferae) family is a good source of antioxidants, predominantly phenolic compounds, therefore, widely used in the pharmaceutical, cosmetic, cosmeceutical, flavor, and perfumery industries. These natural antioxidants include polyphenolic acids, flavonoids, carotenoids, tocopherols, and ascorbic acids, and exhibit a wide range of biological effects, including anti-inflammatory, anti-aging, anti-atherosclerosis, and anticancer. This review discusses the Apiaceae family plants as an important source of antioxidants their therapeutic value and the use in cosmetics.
Collapse
|
181
|
Free Volatile Compounds of Veronica austriaca ssp. jacquinii (Baumg.) Eb. Fisch. and Their Biological Activity. PLANTS 2021; 10:plants10112529. [PMID: 34834892 PMCID: PMC8618523 DOI: 10.3390/plants10112529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/17/2022]
Abstract
The composition of free volatile compounds of essential oils (EO) and hydrosols (Hy) from four different localities of the species Veronica austriaca ssp. jacquinii (Baumg.) Eb. Fisch. were analyzed by gas chromatography coupled with mass spectrometry. In the EOs, the most abundant compounds identified were hexahydrofarnesyl acetone (23.34–52.56%), hexadecanoic acid (palmitic acid, 26.71–58.91%) and octadecanol acetate (0–6.24%). The hydrosols were characterized by high abundance of methyl eugenol (23.35–57.93%), trans-p-mentha-1(7),8-dien-2-ol (5.24–7.69%) and thymol (3.48–9.45%). Glandular trichomes were analyzed using SEM (Scanning Electron Microscopy), as they are the sites of synthesis of free volatile compounds. We have detected glandular trichomes, consisting of a one stalk cell and two elliptically shaped head cells, and non-glandular (unbranched, bi-cellular to multicellular) trichomes on stems, leaves and the sepals. Data for volatile compounds from EOs and hydrosols were analyzed using Principal Component Analyses (PCA) to demonstrate variations in the composition of the volatile compounds identified. Isolated samples of EO and hydrosols were analyzed for their antioxidant activity using two methods, DPPH (2,2-diphenyl-1-picrylhydrazyl) and ORAC (Oxygen Radical Absorbance Capacity). The essential oils showed higher antioxidant activity than the hydrosols in ORAC method, but lower activity by the DPPH method. The isolates were also tested for their antiproliferative activity on different types of cancer cells and also on two lines of healthy cells, and the results showed that the extracts were not toxic to the cell lines tested. Total polyphenols, total tannins, total flavonoids and total phenolic acids were also analyzed and determined spectrophotometrically. The free volatile compounds of Veronica austriaca ssp. jacquinii can be considered as a safe natural product.
Collapse
|
182
|
Monzote L, García J, González R, Scotti MT, Setzer WN. Bioactive Essential Oils from Cuban Plants: An Inspiration to Drug Development. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112515. [PMID: 34834878 PMCID: PMC8620706 DOI: 10.3390/plants10112515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 05/07/2023]
Abstract
Aromatic plants and essential oils are important agents as complementary and alternative medicines in many cultures and geographical locations. In this review, a literature search on essential oils from Cuba, their chemical compositions, and their pharmacological properties was carried out. Out of 171 published scientific articles on essential oils of Cuban plants, a total of 31 documents, focused on both chemical composition and pharmacological properties, were considered for this review. In general, an increase in articles published in the last decade was noted, particularly in recognized international journals in English. Myrtaceae and Piperaceae were the most representative families collected in the occidental area of the country. Leaves and aerial parts were predominantly used, while a wide and variable number of components were identified, including terpenes, aliphatic derivatives, sulfur-containing compounds, phenylpropanoids, alkaloids and amine-type compounds. Finally, different biological activities were reported such as antiprotozoal, antibacterial, antifungal, cytotoxic, anthelmintic, larvicidal and insecticidal. In conclusion, we encourage further studies that would promote the use of essential oils from Cuban plants in new pharmaceutical products.
Collapse
Affiliation(s)
- Lianet Monzote
- Department of Parasitology, Center of Research, Diagnostic and Reference, Institute of Tropical Medicine “Pedro Kouri”, Havana 11400, Cuba
- Research Network Natural Products against Neglected Diseases (ResNetNPND), University of Münster, 48149 Münster, Germany;
- Correspondence: (L.M.); (W.N.S.)
| | - Jesús García
- Department of Pharmacy, Faculty of Natural and Exact Sciences, University of Oriente, Santiago de Cuba 90500, Cuba;
| | - Rosalia González
- Toxicology and Biomedicine Centre (TOXIMED), University of Medical Science, Santiago de Cuba 90400, Cuba;
| | - Marcus Tullius Scotti
- Research Network Natural Products against Neglected Diseases (ResNetNPND), University of Münster, 48149 Münster, Germany;
- Post-Graduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, João Pessoa 58051-900, Brazil
| | - William N. Setzer
- Research Network Natural Products against Neglected Diseases (ResNetNPND), University of Münster, 48149 Münster, Germany;
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA
- Correspondence: (L.M.); (W.N.S.)
| |
Collapse
|
183
|
Shanaida M, Hudz N, Białoń M, Kryvtsowa M, Svydenko L, Filipska A, Paweł Wieczorek P. Chromatographic profiles and antimicrobial activity of the essential oils obtained from some species and cultivars of the Mentheae tribe ( Lamiaceae). Saudi J Biol Sci 2021; 28:6145-6152. [PMID: 34759738 PMCID: PMC8568706 DOI: 10.1016/j.sjbs.2021.06.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/04/2022] Open
Abstract
The present study was focused on the chemical composition and antimicrobial activity of the essential oils (EsO) obtained from five Lamiaceae representatives grown in the south of Ukraine. Among them are Salvia sclarea L., Monarda didyma (cultivar ‘Cambridge Scarlet’), Thymus pulegioides (cultivar ‘2/6-07’), Thymus vulgaris (cultivar ‘Jalos’), and Thymus serpyllum L. The component analysis of the EsO was carried out by gas chromatography method coupled with mass spectrometry (GC–MS). The antimicrobial properties of the EsO were determined using the agar diffusion test against widespread pathogenic bacterial strains (Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, Streptococcus pyogenes) and opportunistic yeast Candida albicans. The EsO of Thymus serpyllum and Thymus vulgaris (cultivar ‘Jalos’) displayed noteworthy antibacterial properties against a wide spectrum of the microorganisms. These antimicrobial properties could be attributed to the high content of aromatic monoterpenoid thymol (52.56% and 47.33%, respectively). The EsO of Salvia sclarea with the dominance of linalyl acetate (45.51%) and linalool (38.98%) as well as Thymus pulegioides (cultivar ‘2/6-07’) containing α-citral (27.10%) and β-citral (17.11%) demonstrated the strongest antimicrobial effects on typical and clinical strains of Staphylococcus aureus with the inhibition zones in the range of 24.0–31.0 mm. The Salvia sclarea EsO demonstrated the most significant effect against clinical strains of Candida albicans. In conclusion, the present study revealed the chemical composition of five Lamiaceae species and cultivars grown in the south of Ukraine and considerable antimicrobial activity of the tested EsO, especially against the typical and clinical strains of Staphylococcus aureus and Candida albicans. The obtained results could be perspective for applying in the pharmaceutical industry and for the conservation of food and cosmetic products.
Collapse
Affiliation(s)
- Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, Ternopil 4600, Ukraine
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, Lviv 79010, Ukraine
| | - Marietta Białoń
- Department of Analytical Chemistry, University of Opole, Opole 45-052, Poland
| | - Maryna Kryvtsowa
- Department of Genetic, Plant Physiology and Microbiology, Uzhgorod National University, Uzhhorod 88000, Ukraine
| | - Liudmyla Svydenko
- Sector of Mobilization and Conservation of Plant Resources of the Rice Institute of the NAAS, Plodove, Kherson Region, Kherson 74992, Ukraine
| | - Anna Filipska
- Department of Drug Technology and Biopharmacy, Danylo Halytsky Lviv National Medical University, Lviv 79010, Ukraine
| | | |
Collapse
|
184
|
Landi L, Peralta-Ruiz Y, Chaves-López C, Romanazzi G. Chitosan Coating Enriched With Ruta graveolens L. Essential Oil Reduces Postharvest Anthracnose of Papaya ( Carica papaya L.) and Modulates Defense-Related Gene Expression. FRONTIERS IN PLANT SCIENCE 2021; 12:765806. [PMID: 34858463 PMCID: PMC8632526 DOI: 10.3389/fpls.2021.765806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Anthracnose of papaya (Carica papaya L.) caused by the fungus Colletotrichum spp. is one of the most economically important postharvest diseases. Coating with chitosan (CS) and Ruta graveolens essential oil (REO) might represent a novel eco-friendly method to prevent postharvest anthracnose infection. These compounds show both antimicrobial and eliciting activities, although the molecular mechanisms in papaya have not been investigated to date. In this study, the effectiveness of CS and REO alone and combined (CS-REO) on postharvest anthracnose of papaya fruit during storage were investigated, along with the expression of selected genes involved in plant defense mechanisms. Anthracnose incidence was reduced with CS, REO, and CS-REO emulsions after 9 days storage at 25°C, by 8, 21, and 37%, respectively, with disease severity reduced by 22, 29, and 44%, respectively. Thus, McKinney's decay index was reduced by 22, 30, and 44%, respectively. A protocol based on reverse transcription quantitative real-time PCR (RT-qPCR) was validated for 17 papaya target genes linked to signaling pathways that regulate plant defense, pathogenesis-related protein, cell wall-degrading enzymes, oxidative stress, abiotic stress, and the phenylpropanoid pathway. CS induced gene upregulation mainly at 6 h posttreatment (hpt) and 48 hpt, while REO induced the highest upregulation at 0.5 hpt, which then decreased over time. Furthermore, CS-REO treatment delayed gene upregulation by REO alone, from 0.5 to 6 hpt, and kept that longer over time. This study suggests that CS stabilizes the volatile and/or hydrophobic substances of highly reactive essential oils. The additive effects of CS and REO were able to reduce postharvest decay and affect gene expression in papaya fruit.
Collapse
Affiliation(s)
- Lucia Landi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Yeimmy Peralta-Ruiz
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
- Facultad de Ingeniería, Programa de Ingeniería Agroindustrial, Universidad del Atlántico, Puerto Colombia, Colombia
| | - Clemencia Chaves-López
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Gianfranco Romanazzi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| |
Collapse
|
185
|
Elgamoudi BA, Korolik V. Campylobacter Biofilms: Potential of Natural Compounds to Disrupt Campylobacter jejuni Transmission. Int J Mol Sci 2021; 22:12159. [PMID: 34830039 PMCID: PMC8617744 DOI: 10.3390/ijms222212159] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial biofilms occur naturally in many environmental niches and can be a significant reservoir of infectious microbes in zoonotically transmitted diseases such as that caused by Campylobacter jejuni, the leading cause of acute human bacterial gastroenteritis world-wide. The greatest challenge in reducing the disease caused by this organism is reducing transmission of C. jejuni to humans from poultry via the food chain. Biofilms enhance the stress tolerance and antimicrobial resistance of the microorganisms they harbor and are considered to play a crucial role for Campylobacter spp. survival and transmission to humans. Unconventional approaches to control biofilms and to improve the efficacy of currently used antibiotics are urgently needed. This review summarizes the use plant- and microorganism-derived antimicrobial and antibiofilm compounds such as essential oils, antimicrobial peptides (AMPs), polyphenolic extracts, algae extracts, probiotic-derived factors, d-amino acids (DAs) and glycolipid biosurfactants with potential to control biofilms formed by Campylobacter, and the suggested mechanisms of their action. Further investigation and use of such natural compounds could improve preventative and remedial strategies aimed to limit the transmission of campylobacters and other human pathogens via the food chain.
Collapse
Affiliation(s)
- Bassam A. Elgamoudi
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
| | - Victoria Korolik
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
186
|
Abutaha N, Al-Keridis LA, Mohamed RAEH, AL-mekhlafi FA. Potency and selectivity indices of Myristica fragrans Houtt. mace chloroform extract against non-clinical and clinical human pathogens. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
This study assessed the antimicrobial, toxicity, and phytochemical profiles of Myristica fragrans extracts. Different solvent extracts were tested for antimicrobial activity against clinical and reference microbial strains, using disc and well diffusion assays and microdilution techniques. Antioxidant potential was investigated using 2,2-diphenyl-1-picryhydrazyl (DPPH) assays. Cytotoxicity assay was conducted against human umbilical vein endothelial cells (HUVECs) using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Acute toxicity was assessed in laboratory Swiss albino mice at a single dose of 2,000 mg/kg body weight for 14 days. To assess the phytochemical constituents, spectrophotometric and gas chromatography-mass spectrometry (GC-MS) methods were used. The chloroform extract revealed antimicrobial potencies against the Gram-positive bacteria and C. albicans with minimum inhibitory concentrations. In the DPPH assay, the IC50 value of the chloroform extract was determined to be 1.49 mg/mL. The phenolic and flavonoid contents were 26.64 ± 0.1 mg of gallic acid equivalents/g and 8.28 ± 0.1 mg quercetin equivalents/g, respectively. The IC50 value was determined to be 49 µg/mL against the HUVEC line. No mortality or morbidity was observed. GC-MS analysis indicated the presence of 2-cyclopenten-1-one (44.72%) as a major compound. The current results provide scientific support for the use of M. fragrans in folk medicine.
Collapse
Affiliation(s)
- Nael Abutaha
- Bioproducts Research Chair Department of Zoology, College of Science, King Saud University , Riyadh , Saudi Arabia
| | - Lamya Ahmed Al-Keridis
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University , Riyadh , Saudi Arabia
| | - Rania Ali El Hadi Mohamed
- Biology Department, Faculty of Science, Princess Nourah Bint Abdulrahman University , Riyadh , Saudi Arabia
- Epidemiology Department, Scientific Researcher and Research Coordinator, Federal Ministry of Health , Khartoum , Sudan
| | - Fahd A. AL-mekhlafi
- Bioproducts Research Chair Department of Zoology, College of Science, King Saud University , Riyadh , Saudi Arabia
- Department of Agricultural Production, College of Agriculture and Veterinary Medicine, Thamar University , Dhamar , Yemen
| |
Collapse
|
187
|
EL-Shahid ZA, Abd EL-Hady FK, Fayad W, Abdel-Aziz MS, Abd EL-Azeem EM, Ahmed EK. Antimicrobial, Cytotoxic, and α-Glucosidase Inhibitory Potentials Using the One Strain Many Compounds Technique for Red Sea Soft Corals Associated Fungi’ Secondary Metabolites and Chemical Composition Correlations. JOURNAL OF BIOLOGICALLY ACTIVE PRODUCTS FROM NATURE 2021; 11:467-489. [DOI: 10.1080/22311866.2021.1978862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 09/01/2023]
Affiliation(s)
- Zeinab A. EL-Shahid
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, Egypt
| | - Faten K. Abd EL-Hady
- Chemistry of Natural and Microbial Products Department, National Research Centre, Giza, Egypt
| | - Walid Fayad
- Drug Bioassay-Cell Culture Laboratory, Pharmacognosy Department, National Research Centre, Giza, Egypt
| | | | | | - Emad K. Ahmed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
188
|
Munteanu BS, Vasile C. Encapsulation of Natural Bioactive Compounds by Electrospinning-Applications in Food Storage and Safety. Polymers (Basel) 2021; 13:3771. [PMID: 34771329 PMCID: PMC8588354 DOI: 10.3390/polym13213771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/18/2022] Open
Abstract
Packaging is used to protect foods from environmental influences and microbial contamination to maintain the quality and safety of commercial food products, to avoid their spoilage and to extend their shelf life. In this respect, bioactive packaging is developing to additionally provides antibacterial and antioxidant activity with the same goals i.e., extending the shelf life while ensuring safety of the food products. New solutions are designed using natural antimicrobial and antioxidant agents such as essential oils, some polysaccharides, natural inorganic nanoparticles (nanoclays, oxides, metals as silver) incorporated/encapsulated into appropriate carriers in order to be used in food packaging. Electrospinning/electrospraying are receiving attention as encapsulation methods due to their cost-effectiveness, versatility and scalability. The electrospun nanofibers and electro-sprayed nanoparticles can preserve the functionality and protect the encapsulated bioactive compounds (BC). In this review are summarized recent results regarding applications of nanostructured suitable materials containing essential oils for food safety.
Collapse
Affiliation(s)
| | - Cornelia Vasile
- Laboratory of Physical Chemistry of Polymers, “P. Poni” Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania
| |
Collapse
|
189
|
Korinek M, Handoussa H, Tsai YH, Chen YY, Chen MH, Chiou ZW, Fang Y, Chang FR, Yen CH, Hsieh CF, Chen BH, El-Shazly M, Hwang TL. Anti-Inflammatory and Antimicrobial Volatile Oils: Fennel and Cumin Inhibit Neutrophilic Inflammation via Regulating Calcium and MAPKs. Front Pharmacol 2021; 12:674095. [PMID: 34707494 PMCID: PMC8545060 DOI: 10.3389/fphar.2021.674095] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/31/2021] [Indexed: 12/03/2022] Open
Abstract
Neutrophilic inflammatory diseases, such as chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), or psoriasis, exert a huge burden on the global health system due to the lack of safe and effective treatments. Volatile oils from terrestrial plants showed impressive therapeutic effects against disorders of the skin, digestive system, lungs, liver, metabolism, and nervous system. However, their effect on the immune system and neutrophil function is still elusive. Fennel, cumin, marjoram, lavender, caraway, and anise are the common nutraceuticals that are widely used in the Mediterranean diet. The volatile oils of these herbs were screened for various biological activities, including anti-inflammatory, anti-allergic, antimicrobial, and antiviral effects. Several oils showed anti-inflammatory and antimicrobial potential. Fennel (Foeniculum vulgare) and cumin (Cuminum cyminum) fruits' volatile oils significantly suppressed the activation of human neutrophils, including respiratory burst and the degranulation induced by formyl peptide receptor agonists fMLF/CB and MMK1 in the human neutrophils (IC50, 3.8–17.2 µg/ml). The cytotoxic effect and free-radical scavenging effects (ABTS, DPPH) of these oils did not account for the observed effects. Both fennel and cumin volatile oils significantly shortened calcium influx recovery time and inhibited phosphorylation of mitogen-activated protein kinases (p38, JNK, and ERK) expression. The gas chromatography–mass spectrometry analysis of these oils revealed the presence of estragole and cuminaldehyde as the major components of fennel and cumin volatile oils, respectively. Our findings suggested that cumin and fennel, common in the Mediterranean diet, hold the potential to be applied for the treatment of neutrophilic inflammatory diseases.
Collapse
Affiliation(s)
- Michal Korinek
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Heba Handoussa
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Yi-Hong Tsai
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - You-Ying Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Meng-Hua Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Zan-Wei Chiou
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu Fang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hung Yen
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Fan Hsieh
- The Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Bing-Hung Chen
- Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mohamed El-Shazly
- Department of Pharmaceutical Biology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, Egypt
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| |
Collapse
|
190
|
Valková V, Ďúranová H, Galovičová L, Štefániková J, Vukovic N, Kačániová M. The Citrus reticulata essential oil: evaluation of antifungal activity against penicillium species related to bakery products spoilage. POTRAVINARSTVO 2021. [DOI: 10.5219/1695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fungal food spoilage plays a key role in the deterioration of food products, and finding a suitable natural preservative can solve this problem. Therefore, antifungal activity of green mandarin (Citrus reticulata) essential oil (GMEO) in the vapor phase against the growth of Penicillium (P.) expansum and P. chrysogenum inoculated on wheat bread (in situ experiment) was investigated in the current research. The volatile compounds of the GMEO were analyzed by a gas chromatograph coupled to a mass spectrometer (GC–MS), and its antioxidant activity was determined by testing free radical-scavenging capacity (DPPH assay). Moreover, the disc diffusion method was used to analyze the antifungal activity of GMEO in in vitro conditions. The results demonstrate that the Citrus reticulata EO consisted of α-limonene as the most abundant component (71.5%), followed by γ-terpinene (13.9%), and β-pinene (3.5%), and it displayed the weak antioxidant activity with the value of inhibition 5.6 ±0.7%, which corresponds to 103.0 ±6.4 µg TEAC.mL-1. The findings from the GMEO antifungal activity determination revealed that values for the inhibition zone with disc diffusion method ranged from 0.00 ±0.00 (no antifungal effectiveness) to 5.67 ±0.58 mm (moderate antifungal activity). Finally, exposure of Penicillium strains growing on bread to GMEO in vapor phase led to the finding that 250 μL.L-1 of GMEO exhibited the lowest value for mycelial growth inhibition (MGI) of P. expansum (-51.37 ±3.01%) whose negative value reflects even supportive effect of the EO on the microscopic fungus growth. On the other hand, GMEO at this concentration (250 μL.L-1) resulted in the strongest inhibitory action (MGI: 54.15 ±1.15%) against growth of P. chrysogenum. Based on the findings it can be concluded that GMEO in the vapor phase is not an effective antifungal agent against the growth of P. expansum inoculated on bread; however, its antifungal potential manifested against P. chrysogenum suggests GMEO to be an appropriate alternative to the use of chemical inhibitors for bread preservation.
Collapse
|
191
|
Passos BG, de Albuquerque RDDG, Muñoz-Acevedo A, Echeverria J, Llaure-Mora AM, Ganoza-Yupanqui ML, Rocha L. Essential oils from Ocotea species: Chemical variety, biological activities and geographic availability. Fitoterapia 2021; 156:105065. [PMID: 34688821 DOI: 10.1016/j.fitote.2021.105065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/15/2022]
Abstract
This review describes the chemical composition and biological properties of essential oils from plants of the Ocotea genus, from different origin. This taxon belongs to the Laureaceae family, which in turn, is best known for medicinal use, often related to the essential oils. The text includes studies about Ocotea species distributed mainly on the South American continent, but also reporting species located in North America and Africa. Brazil, Colombia, Costa Rica and Ecuador are countries with highest number of species mentioned in the review. Also, the major components of each essential oil, its chemical structures, as well as the description and extent of biological activities related to essential oils are detailed in this review. Finally, the text discusses the chemical and biological aspects of these studies in a comparatively way, also informing additional data such as yield, biome of origin and pharmacobotanical location.
Collapse
Affiliation(s)
- Bruno Goulart Passos
- Laboratório de Tecnologia em Productos Naturais, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Brazil
| | - Ricardo Diego Duarte Galhardo de Albuquerque
- Laboratório de Tecnologia em Productos Naturais, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Brazil; Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Peru.
| | - Amner Muñoz-Acevedo
- Departamento de Química y Biología, Universidad del Norte, Barranquilla, Colombia.
| | - Javier Echeverria
- Departamento de Ciencias Ambientales, Facultad de Química y Biología, Universidad Santiago de Chile, Chile.
| | - Alejandrina M Llaure-Mora
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Peru.
| | - Mayar L Ganoza-Yupanqui
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Trujillo, Peru.
| | - Leandro Rocha
- Laboratório de Tecnologia em Productos Naturais, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, Brazil
| |
Collapse
|
192
|
Khan UM, Sameen A, Aadil RM, Shahid M, Sezen S, Zarrabi A, Ozdemir B, Sevindik M, Kaplan DN, Selamoglu Z, Ydyrys A, Anitha T, Kumar M, Sharifi-Rad J, Butnariu M. Citrus Genus and Its Waste Utilization: A Review on Health-Promoting Activities and Industrial Application. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2488804. [PMID: 34795782 PMCID: PMC8595006 DOI: 10.1155/2021/2488804] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 11/18/2022]
Abstract
Citrus fruits such as oranges, grapefruits, lemons, limes, tangerines, and mandarins, whose production is increasing every year with the rise of consumer demand, are among the most popular fruits cultivated throughout the globe. Citrus genus belongs to the Rutaceae family and is known for its beneficial effects on health for centuries. These plant groups contain many beneficial nutrients and bioactive compounds. These compounds have antimicrobial, anticancer, antidiabetic, antiplatelet aggregation, and anti-inflammatory activities. Citrus waste, generated by citrus-processing industries in large amounts every year, has an important economic value due to richness of bioactive compounds. The present review paper has summarized the application and properties of Citrus and its waste in some fields such as food and drinks, traditional medicine practices, and recent advances in modern approaches towards pharmaceutical and nutraceutical formulations.
Collapse
Affiliation(s)
- Usman Mir Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Aysha Sameen
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad 38000, Pakistan
| | - Serap Sezen
- Faculty of Engineering and Natural Science, Sabanci University, Tuzla, Istanbul 34956, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul 34956, Turkey
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Betul Ozdemir
- Department of Cardiology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde, Turkey
| | - Mustafa Sevindik
- Bahçe Vocational High School, Osmaniye Korkut Ata University, Osmaniye 80500, Turkey
| | - Dilara Nur Kaplan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Karabuk University, Karabuk 78050, Turkey
| | - Zeliha Selamoglu
- Department of Medical Biology, Faculty of Medicine, Nigde Ömer Halisdemir University, Nigde 51240, Turkey
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi Av. 71, Almaty 050040, Kazakhstan
| | - T. Anitha
- Department of Postharvest Technology, Horticultural College and Research Institute, Periyakulam 625604, Tamil Nadu, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR–Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Monica Butnariu
- Banat's University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” from Timisoara, Timisoara, Romania
| |
Collapse
|
193
|
Crotti AEM, Pagotti MC, Candido ACBB, Marçal MG, Vieira TM, Groppo M, Silva MLA, Ferreira DS, Esperandim VR, Magalhães LG. Trypanocidal Activity of Dysphania ambrosioides, Lippia alba, and Tetradenia riparia Essential Oils against Trypanosoma cruzi. Chem Biodivers 2021; 18:e2100678. [PMID: 34669244 DOI: 10.1002/cbdv.202100678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/01/2021] [Indexed: 01/01/2023]
Abstract
Despite the current treatments against Chagas Disease (CD), this vector-borne parasitic disease remains a serious public health concern. In this study, we have explored the in vitro and/or in vivo trypanocidal and cytotoxic activities of the essential oils (EOs) obtained from Dysphania ambrosioides (L.) Mosyakin & Clemants (Amaranthaceae) (DA-EO), Lippia alba (Mill.) N.E. Brown (Verbenaceae) (LA-EO), and Tetradenia riparia (Hochst.) Codd (Lamiaceae) (TR-EO) grown in Brazil Southeast. DA-EO was the most active against the trypomastigote and amastigote forms in vitro; the IC50 values were 8.7 and 12.2 μg mL-1 , respectively. The EOs displayed moderate toxicity against LLCMK2 cells, but the DA-EO showed high selectivity index (SI) for trypomastigote (SI=33.2) and amastigote (SI=11.7) forms. Treatment with 20 mg/kg DA-EO, LA-EO, or TR-EO for 20 days by intraperitoneal administration reduced parasitemia by 6.36 %, 4.74 %, and 32.68 % on day 7 and by 12.04 %, 27.96 %, and 65.5 % on day 9. These results indicated that DA-EO, LA-EO, and TR-EO have promising trypanocidal potential in vitro, whereas TR-EO has also potential trypanocidal effects in vivo.
Collapse
Affiliation(s)
- Antônio E M Crotti
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Mariana C Pagotti
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Ana C B B Candido
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Maria G Marçal
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Tatiana M Vieira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Milton Groppo
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, CEP 14040-901, Ribeirão Preto, SP, Brazil
| | - Márcio L A Silva
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Daniele S Ferreira
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Viviane R Esperandim
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| | - Lizandra G Magalhães
- Núcleo de Pesquisas em Ciências Exatas e Tecnológicas, Universidade de Franca, Dr. Armando Salles Oliveira 201, CEP 14404-600, Franca, SP, Brazil
| |
Collapse
|
194
|
Effects of Essential Oils and Selected Compounds from Lamiaceae Family as Adjutants on the Treatment of Subjects with Periodontitis and Cardiovascular Risk. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11209563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Essential oils from different plant species were found to contain different compounds exhibiting anti-inflammatory effects with the potential to be a valid alternative to conventional chemotherapy that is limited in long-term use due to its serious side effects. Generally, the first mechanism by which an organism counteracts injurious stimuli is inflammation, which is considered a part of the innate immune system. Periodontitis is an infectious and inflammatory disease caused by a dysbiosis in the subgingival microbiome that triggers an exacerbated immune response of the host. The immune–inflammatory component leads to the destruction of gingival and alveolar bone tissue. The main anti-inflammation strategies negatively modulate the inflammatory pathways and the involvement of inflammatory mediators by interfering with the gene’s expression or on the activity of some enzymes and so affecting the release of proinflammatory cytokines. These effects are a possible target from an effective and safe approach, suing plant-derived anti-inflammatory agents. The aim of the present review is to summarize the current evidence about the effects of essentials oils from derived from plants of the Lamiaceae family as complementary agents for the treatment of subjects with periodontitis and their possible effect on the cardiovascular risk of these patients.
Collapse
|
195
|
Majidi N, Kosari Monfared M, Mazaheri-Eftekhar F, Movahedi A, Karandish M. The effects of saffron petals and damask rose petals on biochemical and inflammatory measurements. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2021; 19:251-259. [PMID: 34624188 DOI: 10.1515/jcim-2021-0420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVES Diabetes is a chronic disease caused by high blood sugar greatly affected by diet. The chemical medicines applied to treat diabetes usually have side effects. This study aimed to investigate the effect of saffron petals, damask rose petals, and saffron-damask rose petal herbal teas on weight loss, fasting blood sugar, lipid profile, and the inflammatory factors of diabetic rats. METHODS In this study, 40 male Sprague Dawley rats with an average age of four weeks received a high-calorie, high-fat, high-sugar diet for nine weeks. The rats were then randomly assigned to five groups, including normal, control, saffron petal, damask rose petal, and saffron plus damask rose petal groups. For nine weeks, 3 mL of the herbal tea was administered to the intervention groups daily through oral gavage. The levels of FBS, lipid profile, Insulin-like growth factor 1 (IGF-1), the high-sensitivity C-reactive protein (hs-CRP), hemoglobin A1c (HbA1C), and glucose tolerance test (GTT) were measured following the intervention. RESULTS Saffron petals reduced weight gain, Triglyceride (TG), and HbA1c and increased hs-CRP and IGF-1 (all p < 0.05). The damask rose petal reduced weight gain, FBS, hs-CRP, and HbA1c and increased the IGF-1 (all p < 0.05). Saffron plus damask-rose petals reduced the weight gain, TG, hs-CRP and HbA1c, and increase IGF-1 factor (all p < 0.05) compared to the control group. No significant effect was found on visceral fat, LDL-C, and HDL-C. Compared with the normal group, saffron petals and damask rose petals increased the FBS, HDL, and LDL levels. Damask rose and the combination of saffron petals and damask rose decreased IGF-1 compared with the normal group (all p < 0.05). CONCLUSIONS Saffron and damask rose petals could have beneficial effects on improving the status of biochemical markers. The simultaneous use of saffron and damask rose may counteract the adverse effects of saffron on inflammatory indices.
Collapse
Affiliation(s)
- Nazanin Majidi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Ariyo Movahedi
- Department of Nutrition, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Majid Karandish
- Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
196
|
Comparative Analysis of Phenolic Composition of Six Commercially Available Chamomile ( Matricaria chamomilla L.) Extracts: Potential Biological Implications. Int J Mol Sci 2021; 22:ijms221910601. [PMID: 34638940 PMCID: PMC8508714 DOI: 10.3390/ijms221910601] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/29/2022] Open
Abstract
Several phytochemical-containing herbal extracts are increasingly marketed as health-promoting products. In particular, chamomile (Matricaria recutita L.) is well known for its anti-inflammatory, analgesic, and antitumor properties. Here, we evaluated differences in chemical composition among six commercially available products and their potential impact on biological activity in human immortalized colonocytes. Our investigation encompassed: (i) preparation of dry extracts and yield evaluation; (ii) qualitative and quantitative analysis of phenol content; (iii) modulation of redox state; and (iv) bioavailability of main bioactive compounds. We demonstrated that apparently identical products showed huge heterogeneity, in terms of yield extraction, chemical composition, and antioxidant effects. All samples contained high amounts of flavonoids and cinnamic acid derivatives, but differentially concentrated in the six extracts. Depending on polyphenol content, chamomile samples possessed variable antioxidant potential, in terms of decreased radical generation and increased reduced glutathione levels. The observed effects might be ascribed to flavones (apigenin, luteolin, and their glycones) highly represented in the six extracts. Nonetheless, chamomile extracts exerted cytotoxic effects at high concentrations, suggesting that a herbal medicine is not always safe. In conclusion, due to the complexity and variability of plant matrices, studies evaluating effectiveness of chamomile should always be accompanied by preliminary characterization of phytochemical composition.
Collapse
|
197
|
Spirescu VA, Șuhan R, Niculescu AG, Grumezescu V, Negut I, Holban AM, Oprea OC, Bîrcă AC, Vasile BȘ, Grumezescu AM, Bejenaru LE, Mogoşanu GD, Bejenaru C, Balaure PC, Andronescu E, Mogoantă L. Biofilm-Resistant Nanocoatings Based on ZnO Nanoparticles and Linalool. NANOMATERIALS 2021; 11:nano11102564. [PMID: 34685006 PMCID: PMC8540015 DOI: 10.3390/nano11102564] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022]
Abstract
Biofilms represent an increasing challenge in the medical practice worldwide, imposing a serious threat to public health. As bacterial strains have developed antibiotic resistance, researcher’s attention has been extensively focused on developing more efficient antimicrobial strategies. In this context, the present study reports the synthesis, physicochemical characterization, ex vivo biodistribution, and in vitro evaluation of the capacity of nanostructured surfaces based on zinc oxide (ZnO) and biologically active molecules to modulate clinically relevant microbial biofilms. ZnO nanoparticles (NPs) were synthesized through a co-precipitation method without thermal treatment. The matrix-assisted pulsed laser evaporation (MAPLE) was applied for preparing nanostructured coatings based on ZnO NPs surface modified with linalool that were further characterized by X-ray diffraction (XRD), thermogravimetric analysis with differential scanning calorimetry (TGA-DSC), scanning electron microscopy (SEM), transmission electron microscopy with selected area electron diffraction (TEM-SAED), Fourier-transform infrared spectroscopy (FT-IR), and infrared microscopy (IRM). Histological analyses carried out at 7 days and 14 days after the intraperitoneal administration of linalool modified ZnO NPs revealed the absence of the latter from the brain, kidney, liver, lung, myocardium, and pancreas. Through in vitro assays on prokaryotic cells, it was proven that ZnO coatings hinder microbial biofilm formation of both Gram-positive and Gram-negative bacteria strains.
Collapse
Affiliation(s)
- Vera Alexandra Spirescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (R.Ș.); (A.-G.N.); (A.C.B.); (B.Ș.V.); (A.M.G.); (E.A.)
| | - Raluca Șuhan
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (R.Ș.); (A.-G.N.); (A.C.B.); (B.Ș.V.); (A.M.G.); (E.A.)
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (R.Ș.); (A.-G.N.); (A.C.B.); (B.Ș.V.); (A.M.G.); (E.A.)
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (V.G.); (I.N.)
| | - Irina Negut
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania; (V.G.); (I.N.)
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, 077206 Bucharest, Romania;
| | - Ovidiu-Cristian Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (R.Ș.); (A.-G.N.); (A.C.B.); (B.Ș.V.); (A.M.G.); (E.A.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (R.Ș.); (A.-G.N.); (A.C.B.); (B.Ș.V.); (A.M.G.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (R.Ș.); (A.-G.N.); (A.C.B.); (B.Ș.V.); (A.M.G.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Ludovic Everard Bejenaru
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (L.E.B.); (G.D.M.)
| | - George Dan Mogoşanu
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania; (L.E.B.); (G.D.M.)
| | - Cornelia Bejenaru
- Department of Pharmaceutical Botany, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | - Paul Cătălin Balaure
- Department of Organic Chemistry, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Correspondence:
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (V.A.S.); (R.Ș.); (A.-G.N.); (A.C.B.); (B.Ș.V.); (A.M.G.); (E.A.)
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Laurenţiu Mogoantă
- Research Center for Microscopic Morphology and Immunology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
198
|
Neto LJDL, Ramos AGB, de Freitas TS, Barbosa CRDS, de Sousa Júnior DL, Siyadatpanah A, Nejat M, Wilairatana P, Coutinho HDM, da Cunha FAB. Evaluation of Benzaldehyde as an Antibiotic Modulator and Its Toxic Effect against Drosophila melanogaster. Molecules 2021; 26:5570. [PMID: 34577039 PMCID: PMC8471095 DOI: 10.3390/molecules26185570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/05/2023] Open
Abstract
Products of natural origin remain important in the discovery of new bioactive molecules and are less damaging to the environment. Benzaldehyde is a product of the metabolism of plants, and similarly to oxygenated terpenes, it can have antibacterial activity against Staphylococcus aureus and toxic action against Drosophila melanogaster; we aimed to verify these activities. The broth microdilution tests determined the minimum inhibitory concentration (MIC) of benzaldehyde alone and in association with antibiotics and ethidium bromide (EtBr). Toxicity against Drosophila melanogaster was determined by fumigation tests that measured lethality and damage to the locomotor system. The results indicated that there was an association of norfloxacin and ciprofloxacin with benzaldehyde, from 64 μg/mL to 32 μg/mL of ciprofloxacin in the strain K6028 and from 256 μg/mL to 128 μg/mL of norfloxacin in the strain 1199B; however, the associations were not able to interfere with the functioning of the tested efflux pumps. In addition, benzaldehyde had a toxic effect on flies. Thus, the results proved the ability of benzaldehyde to modulate quinolone antibiotics and its toxic effects on fruit flies, thus enabling further studies in this area.
Collapse
Affiliation(s)
- Luiz Jardelino de Lacerda Neto
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri, Crato 63105-000, CE, Brazil; (L.J.d.L.N.); (A.G.B.R.); (D.L.d.S.J.); (F.A.B.d.C.)
- Graduate Program in Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.)
| | - Andreza Guedes Barbosa Ramos
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri, Crato 63105-000, CE, Brazil; (L.J.d.L.N.); (A.G.B.R.); (D.L.d.S.J.); (F.A.B.d.C.)
- Graduate Program in Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.)
| | - Thiago Sampaio de Freitas
- Graduate Program in Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.)
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri (URCA), Crato 63105-000, CE, Brazil
| | - Cristina Rodrigues dos Santos Barbosa
- Graduate Program in Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.)
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri (URCA), Crato 63105-000, CE, Brazil
| | - Dárcio Luiz de Sousa Júnior
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri, Crato 63105-000, CE, Brazil; (L.J.d.L.N.); (A.G.B.R.); (D.L.d.S.J.); (F.A.B.d.C.)
- Graduate Program in Biological Chemistry, Regional University of Cariri, Crato 63105-000, CE, Brazil; (T.S.d.F.); (C.R.d.S.B.)
| | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand 9717434765, Iran
| | - Morteza Nejat
- Master of Internal Surgery Nursing, Birjand University of Medical Sciences, Birjand 9717434765, Iran;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology (LMBM), Regional University of Cariri (URCA), Crato 63105-000, CE, Brazil
| | - Francisco Assis Bezerra da Cunha
- Laboratory of Semi-Arid Bioprospecting (LABSEMA), Regional University of Cariri, Crato 63105-000, CE, Brazil; (L.J.d.L.N.); (A.G.B.R.); (D.L.d.S.J.); (F.A.B.d.C.)
| |
Collapse
|
199
|
Kutawa AB, Ahmad K, Ali A, Hussein MZ, Abdul Wahab MA, Adamu A, Ismaila AA, Gunasena MT, Rahman MZ, Hossain MI. Trends in Nanotechnology and Its Potentialities to Control Plant Pathogenic Fungi: A Review. BIOLOGY 2021; 10:881. [PMID: 34571758 PMCID: PMC8465907 DOI: 10.3390/biology10090881] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 12/16/2022]
Abstract
Approximately 15-18% of crops losses occur as a result of animal pests, while weeds and microbial diseases cause 34 and 16% losses, respectively. Fungal pathogens cause about 70-80% losses in yield. The present strategies for plant disease control depend transcendently on agrochemicals that cause negative effects on the environment and humans. Nanotechnology can help by reducing the negative impact of the fungicides, such as enhancing the solubility of low water-soluble fungicides, increasing the shelf-life, and reducing toxicity, in a sustainable and eco-friendly manner. Despite many advantages of the utilization of nanoparticles, very few nanoparticle-based products have so far been produced in commercial quantities for agricultural purposes. The shortage of commercial uses may be associated with many factors, for example, a lack of pest crop host systems usage and the insufficient number of field trials. In some areas, nanotechnology has been advanced, and the best way to be in touch with the advances in nanotechnology in agriculture is to understand the major aspect of the research and to address the scientific gaps in order to facilitate the development which can provide a rationale of different nanoproducts in commercial quantity. In this review, we, therefore, described the properties and synthesis of nanoparticles, their utilization for plant pathogenic fungal disease control (either in the form of (a) nanoparticles alone, that act as a protectant or (b) in the form of a nanocarrier for different fungicides), nano-formulations of agro-nanofungicides, Zataria multiflora, and ginger essential oils to control plant pathogenic fungi, as well as the biosafety and limitations of the nanoparticles applications.
Collapse
Affiliation(s)
- Abdulaziz Bashir Kutawa
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Department of Biological Sciences, Faculty of Life Science, Federal University Dutsin-Ma, Dutsin-ma P.M.B 5001, Nigeria
| | - Khairulmazmi Ahmad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Sustainable Agronomy and Crop Protection, Institute of Plantation Studies (IKP), Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Asgar Ali
- Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Malaysia
| | - Mohd Zobir Hussein
- Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang 43400, Malaysia;
| | - Mohd Aswad Abdul Wahab
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
| | - Abdullahi Adamu
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Department of Biological Sciences, Faculty of Science, Sokoto State University, Birnin Kebbi Road, Sokoto P.M.B 2134, Nigeria
| | - Abubakar A. Ismaila
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Department of Integrated Science, School of Secondary Education (Science), Federal College of Education (Technical), Bichi P.M.B 3473, Nigeria
| | - Mahesh Tiran Gunasena
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Grain Legume and Oil Crop Research and Development Centre, Angunakolapelessa 82220, Sri Lanka
| | - Muhammad Ziaur Rahman
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
- Plant Pathology Division, Regional Agricultural Research Station (RARS), Bangladesh Agricultural Research Institute (BARI), Barishal 8211, Bangladesh
| | - Md Imam Hossain
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (M.A.A.W.); (A.A.); (A.A.I.); (M.T.G.); (M.Z.R.); (M.I.H.)
| |
Collapse
|
200
|
Chitosan nanoparticles containing Elettaria cardamomum and Cinnamomum zeylanicum essential oils; repellent and larvicidal effects against a malaria mosquito vector, and cytotoxic effects on a human skin normal cell line. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01829-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|