151
|
Brosseau NE, Vallée I, Mayer-Scholl A, Ndao M, Karadjian G. Aptamer-Based Technologies for Parasite Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23020562. [PMID: 36679358 PMCID: PMC9867382 DOI: 10.3390/s23020562] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 05/30/2023]
Abstract
Centuries of scientific breakthroughs have brought us closer to understanding and managing the spread of parasitic diseases. Despite ongoing technological advancements in the detection, treatment, and control of parasitic illnesses, their effects on animal and human health remain a major concern worldwide. Aptamers are single-stranded oligonucleotides whose unique three-dimensional structures enable them to interact with high specificity and affinity to a wide range of targets. In recent decades, aptamers have emerged as attractive alternatives to antibodies as therapeutic and diagnostic agents. Due to their superior stability, reusability, and modifiability, aptamers have proven to be effective bioreceptors for the detection of toxins, contaminants, biomarkers, whole cells, pathogens, and others. As such, they have been integrated into a variety of electrochemical, fluorescence, and optical biosensors to effectively detect whole parasites and their proteins. This review offers a summary of the various types of parasite-specific aptamer-based biosensors, their general mechanisms and their performance.
Collapse
Affiliation(s)
- Noah Emerson Brosseau
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Isabelle Vallée
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| | - Anne Mayer-Scholl
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Momar Ndao
- Infectious Diseases and Immunity in Global Health (IDIGH) Program, Research Institute of McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Grégory Karadjian
- UMR BIPAR, Anses, Laboratoire de Santé Animale, INRAE, Ecole Nationale Vétérinaire d’Alfort, 94700 Maisons-Alfort, France
| |
Collapse
|
152
|
He B, Cui Y, Lei Y, Li W, Sun J. Design and application of g-C 3N 4-based materials for fuels photosynthesis from CO 2 or H 2O based on reaction pathway insights. J Colloid Interface Sci 2023; 629:825-846. [PMID: 36202027 DOI: 10.1016/j.jcis.2022.09.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022]
Abstract
Photocatalytic CO2 reduction reaction (CRR) and hydrogen evolution reaction (HER) based on graphitic carbon nitride (g-C3N4) that is regarded as the metal-free "holy grail" photocatalyst, provide promising strategies for producing next-generation fuels, contributing to achieving carbon neutrality, alleviating energy and environment crisis. However, the activity of CRR and HER over g-C3N4 leaves much to be desired. Therefore, numerous studies have sprung up to enhance photoactivity. A comprehensive understanding of the CRR and HER reaction pathways is crucial for designing g-C3N4-based materials, further promoting efficient fuel production. Different from previous reviews that focus on g-C3N4 modification from the viewpoint of material science. In this review, we divided the multistep processes of CRR and HER into five reaction pathways and summarized the latest advances for improving each pathway of fuels synthesis through CRR or HER. Meanwhile, the existing bottleneck issues of each step were also discussed. Finally, comprehensive conclusions, including the remaining challenges, outlooks, etc., for CRR and HER over g-C3N4 were put forward. We are sure that this review will conduce to the understanding of the structure-activity relationship between CRR, HER processes, and g-C3N4 structure, which can provide the reference for developing high-powered photocatalysts, not confined to g-C3N4.
Collapse
Affiliation(s)
- Bin He
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yuandong Cui
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China; School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, PR China
| | - Yu Lei
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Wenjin Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jian Sun
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China; Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
153
|
Complexation of anthocyanins, betalains and carotenoids with biopolymers: An approach to complexation techniques and evaluation of binding parameters. Food Res Int 2023; 163:112277. [PMID: 36596187 DOI: 10.1016/j.foodres.2022.112277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Natural pigments are bioactive compounds that can present health-promoting bioactivities in the human body. Due to their strong coloring properties, these compounds have been widely used as color additives as an alternative to artificial colorants. However, since these pigments are unstable under certain conditions, such as the presence of light, oxygen, and heat, the use of complexation and encapsulation techniques with biopolymers is in demand. Moreover, some functional properties can be achieved by using natural pigments-biopolymers complexes in food matrices. The complexation and encapsulation of natural pigments with biopolymers consist of forming a complex with the aim to make these compounds less susceptible to oxidative and degrading agents, and can also be used to improve their solubility in different media. This review aims to discuss different techniques that have been used over the last years to create natural pigment-biopolymers complexes, as well as the recent advances, limitations, effects, and possible applications of these complexes in foods. Moreover, the understanding of thermodynamic parameters between natural pigments and biopolymers is very important regarding the complex formation and their use in food systems. In this sense, thermodynamic techniques that can be used to determine binding parameters between natural pigments and potential wall materials, as well as their applications, advantages, and limitations are presented in this work. Several studies have shown an improvement in many aspects regarding the use of these complexes, including increased thermal and storage stability. Nonetheless, data regarding the biological effects on the human body and the sensory acceptance of natural pigments-biopolymers complexes in food systems are scarce in the literature.
Collapse
|
154
|
Abstract
Surface plasmon resonance (SPR) is an optical technique that is utilized for detecting molecular interactions that occur in direct protein-protein interactions. Binding of a mobile molecule (analyte) to a molecule immobilized on a thin metal film (ligand) changes the refractive index of the film. The angle of extinction of light that is completely reflected, after polarized light impinges upon the surface, is altered and monitored as a change in detector position for a dip in reflected intensity (the surface plasmon resonance phenomenon). Because the method strictly detects mass, there is no need to label the interacting components, thus eliminating possible changes of their molecular properties. One of the advantages in SPR is its high sensitivity, compatible with the need for purification of small amounts of protein for analysis. This chapter concentrates on practical methodologies for performing surface plasmon resonance analysis.
Collapse
Affiliation(s)
- Dennis G Drescher
- Departments of Otolaryngology and Biochemistry-Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Marian J Drescher
- Departments of Otolaryngology and Biochemistry-Molecular Biology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
155
|
Calidonio JM, Hamad-Schifferli K. Biophysical and biochemical insights in the design of immunoassays. Biochim Biophys Acta Gen Subj 2023; 1867:130266. [PMID: 36309294 PMCID: PMC11193098 DOI: 10.1016/j.bbagen.2022.130266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Rapid antigen assays have been attractive for decentralized, point of care diagnostics because of their low cost, robustness, and ease of use. The development of a diagnostic assay for a newly emerging infectious disease needs to take into account the progression of a disease, whether there is human to human transmission, and patient biomarker levels with time, and these all impact the choice of antigen targets and affinity agents. SCOPE OF REVIEW The factors involved in the biophysical design of rapid antigen immunoassays are discussed, focusing on antigen selection and designing for cross-reactivity. State of the art in the biophysical characterization of protein-ligand or antigen-antibody interactions, the different types of affinity agents used in immunoassays, and biochemical conjugation strategies are described. MAJOR CONCLUSIONS Antigen choice is a critical factor in immunoassay diagnostic development, and should account for the properties of the virion, virus, and disease progression. Biophysical and biochemical aspects of immunoassays are critical for performance. GENERAL SIGNIFICANCE This review can serve as an instructive guide to aid in diagnostic development for future emerging diseases.
Collapse
Affiliation(s)
| | - Kimberly Hamad-Schifferli
- Dept. of Engineering, University of Massachusetts Boston, Boston, MA, USA; School for the Environment, University of Massachusetts Boston, Boston, MA, USA.
| |
Collapse
|
156
|
Tohari TR, Anshori I, Baroroh U, Nugroho AE, Gumilar G, Kusumawardani S, Syahruni S, Yuliarto B, Arnafia W, Faizal I, Hartati YW, Subroto T, Yusuf M. Development of a Single-Chain Variable Fragment of CR3022 for a Plasmonic-Based Biosensor Targeting the SARS-CoV-2 Spike Protein. BIOSENSORS 2022; 12:1133. [PMID: 36551102 PMCID: PMC9776105 DOI: 10.3390/bios12121133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Two years after SARS-CoV-2 caused the first case of COVID-19, we are now in the "new normal" period, where people's activity has bounced back, followed by the easing of travel policy restrictions. The lesson learned is that the wide availability of accurate and rapid testing procedures is crucial to overcome possible outbreaks in the future. Therefore, many laboratories worldwide have been racing to develop a new point-of-care diagnostic test. To aid continuous innovation, we developed a plasmonic-based biosensor designed explicitly for portable Surface Plasmon Resonance (SPR). In this study, we designed a single chain variable fragment (scFv) from the CR3022 antibody with a particular linker that inserted a cysteine residue at the second position. It caused the linker to have a strong affinity to the gold surface through thiol-coupling and possibly become a ready-to-use bioreceptor toward a portable SPR gold chip without purification steps. The theoretical affinity of this scFv on spike protein was -64.7 kcal/mol, computed using the Molecular Mechanics Generalized Born Surface Area (MM/GBSA) method from the 100 ns molecular dynamics trajectory. Furthermore, the scFv was produced in Escherichia coli BL21 (DE3) as a soluble protein. The binding activity toward Spike Receptor Binding Domain (RBD) SARS-CoV-2 was confirmed with a spot-test, and the experimental binding free energy of -10.82 kcal/mol was determined using portable SPR spectroscopy. We hope this study will be useful in designing specific and low-cost bioreceptors, particularly early in an outbreak when the information on antibody capture is still limited.
Collapse
Affiliation(s)
- Taufik Ramdani Tohari
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung 40133, Indonesia
| | - Isa Anshori
- Lab-on-Chip Group, Biomedical Engineering Department, Institute of Technology, Bandung 40132, Indonesia
- Research Center for Nanoscience and Nanotechnology (RCNN), Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Umi Baroroh
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung 40133, Indonesia
- Department of Biotechnology, Indonesian School of Pharmacy, Bandung 40266, Indonesia
| | - Antonius Eko Nugroho
- Lab-on-Chip Group, Biomedical Engineering Department, Institute of Technology, Bandung 40132, Indonesia
| | - Gilang Gumilar
- Research Center for Nanoscience and Nanotechnology (RCNN), Institut Teknologi Bandung, Bandung 40132, Indonesia
- Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
- Research and Development Division, PT. Biostark Analitika Inovasi, Bandung 40375, Indonesia
| | - Shinta Kusumawardani
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung 40133, Indonesia
| | - Sari Syahruni
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung 40133, Indonesia
| | - Brian Yuliarto
- Research Center for Nanoscience and Nanotechnology (RCNN), Institut Teknologi Bandung, Bandung 40132, Indonesia
- Advanced Functional Material Research Group, Faculty of Industrial Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Wyanda Arnafia
- Research and Development Division, PT. Tekad Mandiri Citra, Bandung 40292, Indonesia
| | - Irvan Faizal
- Centre for Vaccine and Drug Research, National Research and Innovation Agency Republic of Indonesia, Kawasan Puspiptek Serpong, Tangerang Selatan 15314, Indonesia
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Yeni Wahyuni Hartati
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung 40133, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Toto Subroto
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung 40133, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Muhammad Yusuf
- Research Center for Molecular Biotechnology and Bioinformatics, Universitas Padjadjaran, Bandung 40133, Indonesia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
157
|
Lou B, Liu Y, Shi M, Chen J, Li K, Tan Y, Chen L, Wu Y, Wang T, Liu X, Jiang T, Peng D, Liu Z. Aptamer-based biosensors for virus protein detection. Trends Analyt Chem 2022; 157:116738. [PMID: 35874498 PMCID: PMC9293409 DOI: 10.1016/j.trac.2022.116738] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/23/2022] [Accepted: 07/13/2022] [Indexed: 02/07/2023]
Abstract
Virus threatens life health seriously. The accurate early diagnosis of the virus is vital for clinical control and treatment of virus infection. Aptamers are small single-stranded oligonucleotides (DNAs or RNAs). In this review, we summarized aptasensors for virus detection in recent years according to the classification of the viral target protein, and illustrated common detection mechanisms in the aptasensors (colorimetry, fluorescence assay, surface plasmon resonance (SPR), surface-enhanced raman spectroscopy (SERS), electrochemical detection, and field-effect transistor (FET)). Furthermore, aptamers against different target proteins of viruses were summarized. The relationships between the different biomarkers of the viruses and the detection methods, and their performances were revealed. In addition, the challenges and future directions of aptasensors were discussed. This review will provide valuable references for constructing on-site aptasensors for detecting viruses, especially the SARS-CoV-2.
Collapse
Affiliation(s)
- Beibei Lou
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yanfei Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Meilin Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, PR China
| | - Jun Chen
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Ke Li
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Yifu Tan
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Liwei Chen
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Yuwei Wu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Ting Wang
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China
| | - Xiaoqin Liu
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Ting Jiang
- Department of Pharmaceutical Engineering, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan Province, PR China
| | - Dongming Peng
- Department of Medicinal Chemistry, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China
| | - Zhenbao Liu
- Department of Pharmaceutics, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, Hunan Province, PR China.,Molecular Imaging Research Center of Central South University, Changsha, 410008, Hunan, PR China
| |
Collapse
|
158
|
Francis BM, Sundaram A, Manavalan RK, Peng WK, Zhang H, Ponraj JS, Chander Dhanabalan S. Two-dimensional nanostructures based '-onics' and '-omics' in personalized medicine. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:5019-5039. [PMID: 39634291 PMCID: PMC11501768 DOI: 10.1515/nanoph-2022-0439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/07/2024]
Abstract
With the maturing techniques for advanced synthesis and engineering of two-dimensional (2D) materials, its nanocomposites, hybrid nanostructures, alloys, and heterostructures, researchers have been able to create materials with improved as well as novel functionalities. One of the major applications that have been taking advantage of these materials with unique properties is biomedical devices, which currently prefer to be decentralized and highly personalized with good precision. The unique properties of these materials, such as high surface to volume ratio, a large number of active sites, tunable bandgap, nonlinear optical properties, and high carrier mobility is a boon to 'onics' (photonics/electronics) and 'omics' (genomics/exposomics) technologies for developing personalized, low-cost, feasible, decentralized, and highly accurate medical devices. This review aims to unfold the developments in point-of-care technology, the application of 'onics' and 'omics' in point-of-care medicine, and the part of two-dimensional materials. We have discussed the prospects of photonic devices based on 2D materials in personalized medicine and briefly discussed electronic devices for the same.
Collapse
Affiliation(s)
- Bibi Mary Francis
- Center for Advanced Materials, Aaivalayam-DIRAC Institute, Coimbatore, Tamil Nadu, India
| | - Aravindkumar Sundaram
- Institute of Natural Science and Mathematics, Ural Federal University, 620002Yekaterinburg, Russia
| | - Rajesh Kumar Manavalan
- Institute of Natural Science and Mathematics, Ural Federal University, 620002Yekaterinburg, Russia
| | - Weng Kung Peng
- Songshan Lake Materials Laboratory, Innovation Park, 523808Dongguan, China
| | - Han Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Shenzhen University, Shenzhen518060, China
| | - Joice Sophia Ponraj
- Center for Advanced Materials, Aaivalayam-DIRAC Institute, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
159
|
Real-time monitoring of polymyxin B-sodium deoxycholate sulfate binding with immobilized human serum albumin by surface plasmon resonance. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
160
|
Pioz MJ, Espinosa RL, Laguna MF, Santamaria B, Murillo AMM, Hueros ÁL, Quintero S, Tramarin L, Valle LG, Herreros P, Bellido A, Casquel R, Holgado M. A review of Optical Point-of-Care devices to Estimate the Technology Transfer of These Cutting-Edge Technologies. BIOSENSORS 2022; 12:bios12121091. [PMID: 36551058 PMCID: PMC9776401 DOI: 10.3390/bios12121091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/12/2022] [Accepted: 11/18/2022] [Indexed: 06/07/2023]
Abstract
Despite the remarkable development related to Point-of-Care devices based on optical technology, their difficulties when used outside of research laboratories are notable. In this sense, it would be interesting to ask ourselves what the degree of transferability of the research work to the market is, for example, by analysing the relation between the scientific work developed and the registered one, through patent. In this work, we provide an overview of the state-of-the-art in the sector of optical Point-of-Care devices, not only in the research area but also regarding their transfer to market. To this end, we explored a methodology for searching articles and patents to obtain an indicator that relates to both. This figure of merit to estimate this transfer is based on classifying the relevant research articles in the area and the patents that have been generated from these ones. To delimit the scope of this study, we researched the results of a large enough number of publications in the period from 2015 to 2020, by using keywords "biosensor", "optic", and "device" to obtain the most representative articles from Web of Science and Scopus. Then, we classified them according to a particular classification of the optical PoC devices. Once we had this sampling frame, we defined a patent search strategy to cross-link the article with a registered patent (by surfing Google Patents) and classified them accordingly to the categories described. Finally, we proposed a relative figure called Index of Technology Transference (IoTT), which estimates to what extent our findings in science materialized in published articles are protected by patent.
Collapse
Affiliation(s)
- María Jesús Pioz
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- University of Nebrija, C/del Hostal, Campus Berzosa, 28248 Madrid, Spain
| | - Rocío L. Espinosa
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - María Fe Laguna
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Beatriz Santamaria
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Metch, Chem & Industrial Design Engineering Department, Escuela Técnica Superior de Ingeniería y Diseño Industrial, Universidad Politécnica de Madrid, Ronda de Valencia 3, 28012 Madrid, Spain
| | - Ana María M. Murillo
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Álvaro Lavín Hueros
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Sergio Quintero
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Luca Tramarin
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Luis G Valle
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
| | - Pedro Herreros
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Alberto Bellido
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Multiplex Molecular Diagnostics S.L. C/ Munner 10, 08022 Barcelona, Spain
| | - Rafael Casquel
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Miguel Holgado
- Optics, Photonics and Biophotonics Group, Center for Biomedical Technology, Optics, Universidad Politécnica de Madrid, Campus Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
- Group of Organ and Tissue on-a-Chip and In-Vitro Detection, Health Research Institute of the Hospital Clínico San Carlos IdISSC, C/Profesor Martín Lagos s/n, 4ª _Planta Sur, 28040 Madrid, Spain
- Department of Applied Physics and Materials Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, C/José Gutiérrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
161
|
Vráblová M, Smutná K, Koutník I, Prostějovský T, Žebrák R. Surface Plasmon Resonance Imaging Sensor for Detection of Photolytically and Photocatalytically Degraded Glyphosate. SENSORS (BASEL, SWITZERLAND) 2022; 22:9217. [PMID: 36501920 PMCID: PMC9738441 DOI: 10.3390/s22239217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Glyphosate is one of the most widely used pesticides, which, together with its primary metabolite aminomethylphosphonic acid, remains present in the environment. Many technologies have been developed to reduce glyphosate amounts in water. Among them, heterogeneous photocatalysis with titanium dioxide as a commonly used photocatalyst achieves high removal efficiency. Nevertheless, glyphosate is often converted to organic intermediates during its degradation. The detection of degraded glyphosate and emerging products is, therefore, an important element of research in terms of disposal methods. Attention is being paid to new sensors enabling the fast detection of glyphosate and its degradation products, which would allow the monitoring of its removal process in real time. The surface plasmon resonance imaging (SPRi) method is a promising technique for sensing emerging pollutants in water. The aim of this work was to design, create, and test an SPRi biosensor suitable for the detection of glyphosate during photolytic and photocatalytic experiments focused on its degradation. Cytochrome P450 and TiO2 were selected as the detection molecules. We developed a sensor for the detection of the target molecules with a low molecular weight for monitoring the process of glyphosate degradation, which could be applied in a flow-through arrangement and thus detect changes taking place in real-time. We believe that SPRi sensing could be widely used in the study of xenobiotic removal from surface water or wastewater.
Collapse
Affiliation(s)
- Martina Vráblová
- Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Kateřina Smutná
- Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Ivan Koutník
- Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
- Faculty of Materials Science and Technology, VSB-Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Tomáš Prostějovský
- Institute of Environmental Technology, CEET, VSB-Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Radim Žebrák
- Dekonta Inc., Dřetovice 109, 273 42 Stehelčeves, Czech Republic
| |
Collapse
|
162
|
Dong T, Han C, Jiang M, Zhang T, Kang Q, Wang P, Zhou F. A Four-Channel Surface Plasmon Resonance Sensor Functionalized Online for Simultaneous Detections of Anti-SARS-CoV-2 Antibody, Free Viral Particles, and Neutralized Viral Particles. ACS Sens 2022; 7:3560-3570. [PMID: 36382569 DOI: 10.1021/acssensors.2c02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Current tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detect either the constituent nucleic acids/proteins of the viral particles or antibodies specific to the virus, but cannot provide information about viral neutralization by an antibody and the efficacy of an antibody. Such information is important about individuals' vulnerability to severe symptoms or their likelihood of showing no symptoms. We immobilized online SARS-CoV-2 spike (S1) protein and angiotensin-converting enzyme 2 (ACE2) into separate surface plasmon resonance (SPR) channels of a tris-nitrilotriacetic acid (tris-NTA) chip to simultaneously detect the anti-S1 antibody and viral particles in serum samples. In addition, with a high-molecular-weight-cutoff filter, we separated the neutralized viral particles from the free antibody molecules and used a sensing channel immobilized with Protein G to determine antibody-neutralized viral particles. The optimal density of probe molecules in each fluidic channel can be precisely controlled through the closure and opening of the specific ports. By utilizing the high surface density of ACE2, multiple assays can be carried out without regenerations. These three species can be determined with a short analysis time (<12 min per assay) and excellent sensor-to-sensor/cycle-to-cycle reproducibility (RSD < 5%). When coupled with an autosampler, continuous assays can be performed in an unattended manner at a single chip for up to 6 days. Such a sensor capable of assaying serum samples containing the three species at different levels provides additional insights into the disease status and immunity of persons being tested, which should be helpful for containing the SARS-CoV-2 spread during the era of incessant viral mutations.
Collapse
Affiliation(s)
- Tianbao Dong
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, P. R. China, 250022
| | - Chaowei Han
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, P. R. China, 250022
| | - Meng Jiang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, P. R. China, 250022
| | - Tiantian Zhang
- University Hospital, University of Jinan, Jinan, Shandong, P. R. China, 250022
| | - Qing Kang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, P. R. China, 250022
| | - Pengcheng Wang
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, P. R. China, 250022
| | - Feimeng Zhou
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan, Shandong, P. R. China, 250022
| |
Collapse
|
163
|
Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation. SEPARATIONS 2022. [DOI: 10.3390/separations9110370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metal-Chelating Peptides (MCPs), obtained from protein hydrolysates, present various applications in the field of nutrition, pharmacy, cosmetic etc. The separation of MCPs from hydrolysates mixture is challenging, yet, techniques based on peptide-metal ion interactions such as Immobilized Metal Ion Affinity Chromatography (IMAC) seem to be efficient. However, separation processes are time consuming and expensive, therefore separation prediction using chromatography modelling and simulation should be necessary. Meanwhile, the obtention of sorption isotherm for chromatography modelling is a crucial step. Thus, Surface Plasmon Resonance (SPR), a biosensor method efficient to screen MCPs in hydrolysates and with similarities to IMAC might be a good option to acquire sorption isotherm. This review highlights IMAC experimental methodology to separate MCPs and how, IMAC chromatography can be modelled using transport dispersive model and input data obtained from SPR for peptides separation simulation.
Collapse
|
164
|
Qayoom T, Najeeb-Ud-Din H. Comprehensive field pattern analysis for tailoring of reflectance in a hybrid subwavelength plasmonic grating refractive index sensor and its potential for noninvasive salivary glucose monitoring. APPLIED OPTICS 2022; 61:9429-9438. [PMID: 36606889 DOI: 10.1364/ao.474204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
A compact hybrid two-dimensional plasmonic subwavelength grating composed of gold and semiconductor ZnS is proposed. By implementing the finite-difference time-domain numerical technique, detailed field pattern analysis and reflectance characteristics of the grating structure are comprehensively investigated, tailored, and improved. An unfamiliar phenomenon of exponential decrease in resonance wavelength with an increase in groove width is observed, validated, and empirically modeled. This confirms that the reflectance resonance dip is because of the surface plasmon resonance in the grating structure, unlike the resonance dip obtained in the diffraction grating because of the Fabry-Perot resonance. A rigorous sensitivity analysis is performed for both generalized bulk and surface analyte detection. The surface sensitivity is observed to be 100.5 nm/RIU at dip 1 for 10-nm-surface analyte thickness. The bulk sensitivity for dip 1 and dip 2 was 104.3 nm/RIU and 800 nm/RIU, respectively. The refractive index range variation of dip 1 for the surface analyte is correlated with the refractive index of the blood by using the linear refractive index model and Gladstone-Dale law for blood. A linear regression analysis correlating blood glucose and salivary glucose with a surface analyte is used. The proposed sensor is observed to be promising for noninvasive salivary glucose monitoring with high surface sensitivity of 1.104 nm/mg/dl with a compact footprint of about 0.5µm×0.2µm in x-z dimensions.
Collapse
|
165
|
Yao S, Wang D, Yu Y, Zhang Z, Wei L, Yang J. Design of an Er-doped surface plasmon resonance-photonic crystal fiber to improve magnetic field sensitivity. OPTICS EXPRESS 2022; 30:41240-41254. [PMID: 36366606 DOI: 10.1364/oe.471614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
In order to meet the demand for large-scale magnetic field testing, this paper proposes a D-shaped magneto-refractive photonic crystal fiber (MRPCF) based on surface plasmon resonance (SPR) by using the erbium-doped materials. The four different structures of Models A, B, C, and D are designed by changing the diameter, the position, and the number of layers of the air holes, and the corresponding magnetic field sensing characteristics are analyzed. The results show that in the magnetic field range of 5-405 mT, the magnetic field sensitivities of Models A, B, C, and D are 28 pm/mT, 48 pm/mT, 36 pm/mT, and 21 pm/mT, respectively. Meanwhile, the figure of merit (FOM) of the four MRPCF-SPR sensors is investigated, which have FOMs of 4.8 × 10-4 mT-1, 6.4 × 10-4 mT-1, 1.9 × 10-4 mT-1, 0.9 × 10-4 mT-1. Model B has higher sensitivity and larger FOM. In addition, the effect of the structural parameters of Model B on the sensing performance is also studied. By optimizing each parameter, the magnetic field sensitivity of the optimized Model B is increased to 53 pm/mT, and its magneto-refractive sensitivity and FOM are 2.27 × 10-6 RIU/mT and 6.2 × 10-4 mT-1, respectively. It shows that the magneto-refractive effect of MRPCF can be effectively enhanced by optimizing the structural design of fiber. The proposed MRPCF is an all-solid-state fiber, which solves the instability problem of the magnetic fluid-filled fiber and reduces the complexity of the fabrication process. The all-solid-state MRPCF can be used in the development of quasi-distributed optical fiber magnetic field sensors and has broad applications in the fields of geological exploration, earthquake and tsunami monitoring, and military navigation.
Collapse
|
166
|
Song Y, Sun M, Wu H, Zhao W, Wang Q. Temperature Sensor Based on Surface Plasmon Resonance with TiO 2-Au-TiO 2 Triple Structure. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7766. [PMID: 36363358 PMCID: PMC9653889 DOI: 10.3390/ma15217766] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
Temperature sensors have been widely applied in daily life and production, but little attention has been paid to the research on temperature sensors based on surface plasmon resonance (SPR) sensors. Therefore, an SPR temperature sensor with a triple structure of titanium dioxide (TiO2) film, gold (Au) film, and TiO2 nanorods is proposed in this article. By optimizing the thickness and structure of TiO2 film and nanorods and Au film, it is found that the sensitivity of the SPR temperature sensor can achieve 6038.53 nm/RIU and the detection temperature sensitivity is -2.40 nm/°C. According to the results, the sensitivity of the optimized sensor is 77.81% higher than that of the sensor with pure Au film, which is attributed to the TiO2(film)-Au-TiO2(nanorods) structure. Moreover, there is a good linear correlation (greater than 0.99) between temperature and resonance wavelength in the range from 0 °C to 60 °C, which can ensure the detection resolution. The high sensitivity, FOM, and detection resolution indicate that the proposed SPR sensor has a promising application in temperature monitoring.
Collapse
Affiliation(s)
- Yutong Song
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Meng Sun
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Haoyu Wu
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Wanli Zhao
- Science and Technology on Electro-Optical Information Security Control Laboratory, Tianjin 300308, China
| | - Qi Wang
- College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
167
|
Chen KL, Tsai PH, Lin CW, Chen JM, Lin YJ, Kumar P, Jeng CC, Wu CH, Wang LM, Tsao HM. Sensitivity enhancement of magneto-optical Faraday effect immunoassay method based on biofunctionalized γ-Fe 2O 3@Au core-shell magneto-plasmonic nanoparticles for the blood detection of Alzheimer's disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 46:102601. [PMID: 36089233 DOI: 10.1016/j.nano.2022.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
In this work, we conducted a proof-of-concept experiment based on biofunctionalized magneto-plasmonic nanoparticles (MPNs) and magneto-optical Faraday effect for in vitro Alzheimer's disease (AD) assay. The biofunctionalized γ-Fe2O3@Au MPNs of which the surfaces are modified with the antibody of Tau protein (anti-τ). As anti-τ reacts with Tau protein, biofunctionalized MPNs aggregate to form magnetic clusters which will hence induce the change of the reagent's Faraday rotation angle. The result showed that the γ-Fe2O3@Au core-shell MPNs can enhance the Faraday rotation with respect to the raw γ-Fe2O3 nanoparticles. Because of their magneto-optical enhancement effect, biofunctionalized γ-Fe2O3@Au MPNs effectively improve the detection sensitivity. The detection limit of Tau protein as low as 9 pg/mL (9 ppt) was achieved. Furthermore, the measurements of the clinical samples from AD patients agreed with the CDR evaluated by the neurologist. The results suggest that our method has the potential for disease assay applications.
Collapse
Affiliation(s)
- Kuen-Lin Chen
- Institute of Nanoscience, National Chung Hsing University, Taichung, Taiwan; Department of Physics, National Chung Hsing University, Taichung, Taiwan.
| | - Ping-Huang Tsai
- Department of Neurology, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan.; Institute of Hospital and Health Care Administration, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chin-Wei Lin
- Graduate Institute of Applied Physics, National Taiwan University, Taipei, Taiwan
| | - Jian-Ming Chen
- Institute of Nanoscience, National Chung Hsing University, Taichung, Taiwan
| | - You-Jun Lin
- Institute of Nanoscience, National Chung Hsing University, Taichung, Taiwan
| | - Pradeep Kumar
- Department of Physics, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chung Jeng
- Institute of Nanoscience, National Chung Hsing University, Taichung, Taiwan; Department of Physics, National Chung Hsing University, Taichung, Taiwan
| | - Chiu-Hsien Wu
- Institute of Nanoscience, National Chung Hsing University, Taichung, Taiwan; Department of Physics, National Chung Hsing University, Taichung, Taiwan
| | - Li-Min Wang
- Graduate Institute of Applied Physics, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Ming Tsao
- Division of Cardiology, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| |
Collapse
|
168
|
Bao F, Liang Z, Deng J, Lin Q, Li W, Peng Q, Fang Y. Toward intelligent food packaging of biosensor and film substrate for monitoring foodborne microorganisms: A review of recent advancements. Crit Rev Food Sci Nutr 2022; 64:3920-3931. [PMID: 36300845 DOI: 10.1080/10408398.2022.2137774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Microorganisms in food do harms to human. They can cause serious adverse reactions and sometimes even death. So it is an urgent matter to find an effective method to control them. The research of intelligent- biosensor packaging is in the ascendant in recent years, which is mainly promoted by reflecting on food safety and reducing resource waste. Intelligent biosensor-packaging is an instant and efficient intelligent packaging technology, which can directly and scientifically manifest the quality of food without complex operation. In this review, the purposes of providing relevant information on intelligent biosensor-packaging are reviewed, such as types of biosensors for monitoring foodborne microorganism, the suitable material for intelligent biosensor-packaging and design and fabrication of intelligent biosensor-packaging. The potential of intelligent biosensor-packaging in the detection of foodborne microorganisms is emphasized. The challenges and directions of the intelligent biosensor-packaging in the detection of foodborne pathogens are discussed. With the development of science and technology in the future, the intelligent biosensor-packaging should be commercialized in a real sense. And it is expected that commercial products can be manufactured in the future, which will provide a far-reaching approach in food safety and food prevention. HighlightsSeveral biosensors are suitable for the detection of food microorganisms.Plastic polymer is an excellent choice for the construction of intelligent biosensor packaging.Design and fabrication can lay the foundation for intelligent-biosensor packaging.Intelligent biosensor-packaging can realize fast and real-time detection of microorganisms in food.
Collapse
Affiliation(s)
- Feng Bao
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| | - Zhao Liang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo City, P. R. China
| | - Jing Deng
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| | - Wen Li
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| | - Qiong Peng
- Hunan Province Key Laboratory of Edible forestry Resource Safety and Processing Utilization, National Engineering Research Center of Rice and Byproduct Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, JiangShu, Nanjing, China
| |
Collapse
|
169
|
Tharani S, Durgalakshmi D, Balakumar S, Rakkesh RA. Futuristic Advancements in Biomass‐Derived Graphene Nanoassemblies: Versatile Biosensors for Point‐of‐Care Devices. ChemistrySelect 2022. [DOI: 10.1002/slct.202203603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- S. Tharani
- Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203 TN India
| | - D. Durgalakshmi
- Department of Medical Physics Anna University Chennai 600 025 TN India
- Department of Physics Ethiraj College for Women Chennai 600 008 TN India
| | - S. Balakumar
- National Centre for Nanoscience and Nanotechnology University of Madras Chennai 600 025 TN India
| | - R. Ajay Rakkesh
- Department of Physics and Nanotechnology SRM Institute of Science and Technology Kattankulathur 603203 TN India
| |
Collapse
|
170
|
Gan Z, Roslan MAM, Abd Shukor MY, Halim M, Yasid NA, Abdullah J, Md Yasin IS, Wasoh H. Advances in Aptamer-Based Biosensors and Cell-Internalizing SELEX Technology for Diagnostic and Therapeutic Application. BIOSENSORS 2022; 12:bios12110922. [PMID: 36354431 PMCID: PMC9687594 DOI: 10.3390/bios12110922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 05/28/2023]
Abstract
Aptamers are a group of synthetic single-stranded nucleic acids. They are generated from a random library of single-stranded DNA or RNA by a technology named systematic evolution of ligands by exponential enrichment (SELEX). SELEX is a repetitive process to select and identify suitable aptamers that show high affinity and specificity towards target cells. Great strides have been achieved in the design, construction, and use of aptamers up to this point. However, only a small number of aptamer-based applications have achieved widespread commercial and clinical acceptance. Additionally, finding more effective ways to acquire aptamers with high affinity remains a challenge. Therefore, it is crucial to thoroughly examine the existing dearth and advancement in aptamer-related technologies. This review focuses on aptamers that are generated by SELEX to detect pathogenic microorganisms and mammalian cells, as well as in cell-internalizing SELEX for diagnostic and therapeutic purposes. The development of novel aptamer-based biosensors using optical and electrical methods for microbial detection is reported. The applications and limitations of aptamers are also discussed.
Collapse
Affiliation(s)
- Zixuen Gan
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | | | - Mohd Yunus Abd Shukor
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Murni Halim
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Nur Adeela Yasid
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Jaafar Abdullah
- Faculty of Science, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Ina Salwany Md Yasin
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| | - Helmi Wasoh
- Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, SGR, Malaysia
| |
Collapse
|
171
|
Lin B, Jiang J, Jia J, Zhou X. Recent Advances in Exosomal miRNA Biosensing for Liquid Biopsy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27217145. [PMID: 36363975 PMCID: PMC9655350 DOI: 10.3390/molecules27217145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/05/2022]
Abstract
As a noninvasive detection technique, liquid biopsy plays a valuable role in cancer diagnosis, disease monitoring, and prognostic assessment. In liquid biopsies, exosomes are considered among the potential biomarkers because they are important bioinformation carriers for intercellular communication. Exosomes transport miRNAs and, thus, play an important role in the regulation of cell growth and function; therefore, detection of cancer cell-derived exosomal miRNAs (exo-miRNAs) gives effective information in liquid biopsy. The development of sensitive, convenient, and reliable exo-miRNA assays will provide new perspectives for medical diagnosis. This review presents different designs and detection strategies of recent exo-miRNA assays in terms of signal transduction and amplification, as well as signal detection. In addition, this review outlines the current attempts at bioassay methods in liquid biopsies. Lastly, the challenges and prospects of exosome bioassays are also considered.
Collapse
Affiliation(s)
- Bingqian Lin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Correspondence: (B.L.); (X.Z.)
| | - Jinting Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jingxuan Jia
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- Correspondence: (B.L.); (X.Z.)
| |
Collapse
|
172
|
Fan J, Wei X, Dong H, Zhang Y, Zhou Y, Xu M, Xiao G. Advancement in Analytical Techniques for Determining the Activity of β-Site Amyloid Precursor Protein Cleaving Enzyme 1. Crit Rev Anal Chem 2022; 54:1797-1809. [PMID: 36227582 DOI: 10.1080/10408347.2022.2132812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. The pathogenesis is still not fully clear. One of the main histopathological manifestations is senile plaques formed by β-amyloid (Aβ) accumulation. Aβ is generated from the sequential proteolysis of amyloid precursor protein (APP) by β-secretase [i.e. β-site APP cleaving enzyme 1 (BACE1)] and γ-secretase, with a rate-limiting step controlled by BACE1 activity. Therefore, inhibiting BACE1 activity has become a potential therapeutic strategy for AD. The development of reliable detection methods for BACE1 activity plays an important role in early diagnosis of AD and evaluation of the therapeutic effect of new drugs for AD. This article has reviewed the recent advances in BACE1 activity detection techniques. The challenges of applying these analysis techniques to early clinical diagnosis of AD and development trends of the detection techniques have been prospected.
Collapse
Affiliation(s)
- Jie Fan
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Xiuhua Wei
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, China
| | - Yintang Zhang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu, China
| | - Guoqing Xiao
- College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| |
Collapse
|
173
|
Antiviral Compounds Screening Targeting HBx Protein of the Hepatitis B Virus. Int J Mol Sci 2022; 23:ijms231912015. [PMID: 36233317 PMCID: PMC9569680 DOI: 10.3390/ijms231912015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022] Open
Abstract
A functional cure of hepatitis B virus (HBV) infection or HB antigen loss is rarely achieved by nucleos(t)ide analogs which target viral polymerase. HBx protein is a regulatory protein associated with HBV replication. We thought to identify antiviral compounds targeting HBx protein by analyzing HBx binding activity. Recombinant GST-tagged HBx protein was applied on an FDA-approved drug library chip including 1018 compounds to determine binding affinity by surface plasmon resonance imaging (SPRi) using a PlexArray HT system. GST protein alone was used for control experiments. Candidate compounds were tested for anti-HBV activity as well as cell viability using HepG2.2.15.7 cells and HBV-infected human hepatocytes. Of the 1018 compounds screened, 24 compounds showed binding to HBx protein. Of the top 6 compounds with high affinity to HBx protein, tranilast was found to inhibit HBV replication without affecting cell viability using HepG2.2.15.7 cells. Tranilast also inhibited HBV infection using cultured human hepatocytes. Tranilast reduced HB antigen level dose-dependently. Overall, theSPRi screening assay identified novel drug candidates targeting HBx protein. Tranilast and its related compounds warrant further investigation for the treatment of HBV infection.
Collapse
|
174
|
Dao L, Zhao Q, Hu J, Xia X, Yang Q, Li S. A microfluidics-based method for isolation and visualization of cells based on receptor-ligand interactions. PLoS One 2022; 17:e0274601. [PMID: 36201506 PMCID: PMC9536614 DOI: 10.1371/journal.pone.0274601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/31/2022] [Indexed: 11/21/2022] Open
Abstract
Receptor-ligand binding has been analyzed at the protein level using isothermal titration calorimetry and surface plasmon resonance and at the cellular level using interaction-associated downstream gene induction/suppression. However, no currently available technique can characterize this interaction directly through visualization. In addition, all available assays require a large pool of cells; no assay capable of analyzing receptor-ligand interactions at the single-cell level is publicly available. Here, we describe a new microfluidic chip-based technique for analyzing and visualizing these interactions at the single-cell level. First, a protein is immobilized on a glass slide and a low-flow-rate pump is used to isolate cells that express receptors that bind to the immobilized ligand. Specifically, we demonstrate the efficacy of this technique by immobilizing biotin-conjugated FGL2 on an avidin-coated slide chip and passing a mixture of GFP-labeled wild-type T cells and RFP-labeled FcγRIIB-knockout T cells through the chip. Using automated scanning and counting, we found a large number of GFP+ T cells with binding activity but significantly fewer RFP+ FcγRIIB-knockout T cells. We further isolated T cells expressing a membrane-anchored, tumor-targeted IL-12 based on the receptor's affinity to vimentin to confirm the versatility of our technique. This protocol allows researchers to isolate receptor-expressing cells in about 4 hours for further downstream processing.
Collapse
Affiliation(s)
- Long Dao
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Qingnan Zhao
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Jiemiao Hu
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Xueqing Xia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Qing Yang
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
175
|
Zhou J, Chen J, Peng Y, Xie Y, Xiao Y. A Promising Tool in Serological Diagnosis: Current Research Progress of Antigenic Epitopes in Infectious Diseases. Pathogens 2022; 11:1095. [PMID: 36297152 PMCID: PMC9609281 DOI: 10.3390/pathogens11101095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 07/30/2023] Open
Abstract
Infectious diseases, caused by various pathogens in the clinic, threaten the safety of human life, are harmful to physical and mental health, and also increase economic burdens on society. Infections are a complex mechanism of interaction between pathogenic microorganisms and their host. Identification of the causative agent of the infection is vital for the diagnosis and treatment of diseases. Etiological laboratory diagnostic tests are therefore essential to identify pathogens. However, due to its rapidity and automation, the serological diagnostic test is among the methods of great significance for the diagnosis of infections with the basis of detecting antigens or antibodies in body fluids clinically. Epitopes, as a special chemical group that determines the specificity of antigens and the basic unit of inducing immune responses, play an important role in the study of immune responses. Identifying the epitopes of a pathogen may contribute to the development of a vaccine to prevent disease, the diagnosis of the corresponding disease, and the determination of different stages of the disease. Moreover, both the preparation of neutralizing antibodies based on useful epitopes and the assembly of several associated epitopes can be used in the treatment of disease. Epitopes can be divided into B cell epitopes and T cell epitopes; B cell epitopes stimulate the body to produce antibodies and are therefore commonly used as targets for the design of serological diagnostic experiments. Meanwhile, epitopes can fall into two possible categories: linear and conformational. This article reviews the role of B cell epitopes in the clinical diagnosis of infectious diseases.
Collapse
|
176
|
Sazaklıoğlu SA, Torul H, Vatansever HS, Tamer U, Çelikkan H. Direct impedimetric detection of exosomes and practical application in urine. J APPL ELECTROCHEM 2022. [DOI: 10.1007/s10800-022-01753-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
177
|
Li S, Ren R, Lyu L, Song J, Wang Y, Lin TW, Brun AL, Hsu HY, Shen HH. Solid and Liquid Surface-Supported Bacterial Membrane Mimetics as a Platform for the Functional and Structural Studies of Antimicrobials. MEMBRANES 2022; 12:membranes12100906. [PMID: 36295664 PMCID: PMC9609327 DOI: 10.3390/membranes12100906] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 06/02/2023]
Abstract
Increasing antibiotic resistance has provoked the urgent need to investigate the interactions of antimicrobials with bacterial membranes. The reasons for emerging antibiotic resistance and innovations in novel therapeutic approaches are highly relevant to the mechanistic interactions between antibiotics and membranes. Due to the dynamic nature, complex compositions, and small sizes of native bacterial membranes, bacterial membrane mimetics have been developed to allow for the in vitro examination of structures, properties, dynamics, and interactions. In this review, three types of model membranes are discussed: monolayers, supported lipid bilayers, and supported asymmetric bilayers; this review highlights their advantages and constraints. From monolayers to asymmetric bilayers, biomimetic bacterial membranes replicate various properties of real bacterial membranes. The typical synthetic methods for fabricating each model membrane are introduced. Depending on the properties of lipids and their biological relevance, various lipid compositions have been used to mimic bacterial membranes. For example, mixtures of phosphatidylethanolamines (PE), phosphatidylglycerols (PG), and cardiolipins (CL) at various molar ratios have been used, approaching actual lipid compositions of Gram-positive bacterial membranes and inner membranes of Gram-negative bacteria. Asymmetric lipid bilayers can be fabricated on solid supports to emulate Gram-negative bacterial outer membranes. To probe the properties of the model bacterial membranes and interactions with antimicrobials, three common characterization techniques, including quartz crystal microbalance with dissipation (QCM-D), surface plasmon resonance (SPR), and neutron reflectometry (NR) are detailed in this review article. Finally, we provide examples showing that the combination of bacterial membrane models and characterization techniques is capable of providing crucial information in the design of new antimicrobials that combat bacterial resistance.
Collapse
Affiliation(s)
- Shiqi Li
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Ruohua Ren
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Letian Lyu
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Yajun Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Tsung-Wu Lin
- Department of Chemistry, Tunghai University, No. 1727, Sec. 4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | - Anton Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Hsien-Yi Hsu
- Department of Materials Science and Engineering, School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
178
|
Vaccinomics to Design a Multiepitope Vaccine against Legionella pneumophila. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4975721. [PMID: 36164443 PMCID: PMC9509222 DOI: 10.1155/2022/4975721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
Legionella pneumophila is found in the natural aquatic environment and can resist a wide range of environmental conditions. There are around fifty species of Legionella, at least twenty-four of which are directly linked to infections in humans. L. pneumophila is the cause of Legionnaires' disease, a potentially lethal form of pneumonia. By blocking phagosome-lysosome fusion, L. pneumophila lives and proliferates inside macrophages. For this disease, there is presently no authorized multiepitope vaccine available. For the multi-epitope-based vaccine (MEBV), the best antigenic candidates were identified using immunoinformatics and subtractive proteomic techniques. Several immunoinformatics methods were utilized to predict B and T cell epitopes from vaccine candidate proteins. To construct an in silico vaccine, epitopes (07 CTL, 03 HTL, and 07 LBL) were carefully selected and docked with MHC molecules (MHC-I and MHC-II) and human TLR4 molecules. To increase the immunological response, the vaccine was combined with a 50S ribosomal adjuvant. To maximize vaccine protein expression, MEBV was cloned and reverse-translated in Escherichia coli. To prove the MEBV's efficacy, more experimental validation is required. After its development, the resulting vaccine is greatly hoped to aid in the prevention of L. pneumophila infections.
Collapse
|
179
|
Cennamo N, Arcadio F, Seggio M, Maniglio D, Zeni L, Bossi AM. Spoon-shaped polymer waveguides to excite multiple plasmonic phenomena: A multisensor based on antibody and molecularly imprinted nanoparticles to detect albumin concentrations over eight orders of magnitude. Biosens Bioelectron 2022; 217:114707. [PMID: 36116224 DOI: 10.1016/j.bios.2022.114707] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/13/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
A polymeric multimode waveguide, characterized by a pioneering spoon-shaped geometry, was herein proposed for the first time to devise Surface Plasmon Resonance (SPR) biochemical sensors. The plasmon excitation was enabled by layering a gold nanofilm of ∼60 nm onto the spoon-waveguide. As a consequence of the waveguide's extra-ordinary geometry, two distinct sensing regions were identified: a planar one, located on the spoon's neck, and a concave one on the bowl, with angled surfaces. The bulk sensitivity (Sn) is correlated both to the way the light was launched in/collected from the sensor (parallel or orthogonal to the main axis of the waveguide) and to the sensing area interrogated (planar-neck or angled-bowl), indicating that the sensor's performance can be conveniently tuned, depending on the chosen measuring configuration. The SPR sensor's characterization showed Sn equal to 750 nm/RIU for the neck and to 950 nm/RIU for the bowl. To further inspect the peculiar sensing-features and assess the application niches, the spoon-shaped waveguide was functionalized with two kinds of receptors, both specific for human serum albumin (HSA): an antibody on the bowl region (high Sn); molecularly imprinted nanoparticles (nanoMIPs) on the neck region (low Sn). The experimental results showed a limit of detection (LOD) for the immune-sensor of 280 pM and an LOD for the nanoMIP-sensor of 4.16 fM. The overall response of the HSA multi-sensor encompassed eight orders of magnitude, suggesting that the spoon-shaped waveguide's provides multi-scale detection and holds potential to devise multi-analyte sensing platforms.
Collapse
Affiliation(s)
- Nunzio Cennamo
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Francesco Arcadio
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Mimimorena Seggio
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy
| | - Devid Maniglio
- University of Trento, Department of Industrial Engineering, Via Sommarive 9, 38123, Trento, Italy
| | - Luigi Zeni
- University of Campania Luigi Vanvitelli, Department of Engineering, Via Roma 29, 81031, Aversa, Italy
| | - Alessandra Maria Bossi
- University of Verona, Department of Biotechnology, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
180
|
Mousavi SM, Hashemi SA, Kalashgrani MY, Rahmanian V, Gholami A, Chiang WH, Lai CW. Biomedical Applications of an Ultra-Sensitive Surface Plasmon Resonance Biosensor Based on Smart MXene Quantum Dots (SMQDs). BIOSENSORS 2022; 12:743. [PMID: 36140128 PMCID: PMC9496527 DOI: 10.3390/bios12090743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
In today's world, the use of biosensors occupies a special place in a variety of fields such as agriculture and industry. New biosensor technologies can identify biological compounds accurately and quickly. One of these technologies is the phenomenon of surface plasmon resonance (SPR) in the development of biosensors based on their optical properties, which allow for very sensitive and specific measurements of biomolecules without time delay. Therefore, various nanomaterials have been introduced for the development of SPR biosensors to achieve a high degree of selectivity and sensitivity. The diagnosis of deadly diseases such as cancer depends on the use of nanotechnology. Smart MXene quantum dots (SMQDs), a new class of nanomaterials that are developing at a rapid pace, are perfect for the development of SPR biosensors due to their many advantageous properties. Moreover, SMQDs are two-dimensional (2D) inorganic segments with a limited number of atomic layers that exhibit excellent properties such as high conductivity, plasmonic, and optical properties. Therefore, SMQDs, with their unique properties, are promising contenders for biomedicine, including cancer diagnosis/treatment, biological sensing/imaging, antigen detection, etc. In this review, SPR biosensors based on SMQDs applied in biomedical applications are discussed. To achieve this goal, an introduction to SPR, SPR biosensors, and SMQDs (including their structure, surface functional groups, synthesis, and properties) is given first; then, the fabrication of hybrid nanoparticles (NPs) based on SMQDs and the biomedical applications of SMQDs are discussed. In the next step, SPR biosensors based on SMQDs and advanced 2D SMQDs-based nanobiosensors as ultrasensitive detection tools are presented. This review proposes the use of SMQDs for the improvement of SPR biosensors with high selectivity and sensitivity for biomedical applications.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Chemical Engineering Department, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Seyyed Alireza Hashemi
- Nano-Materials and Polymer Nano-Composites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Masoomeh Yari Kalashgrani
- The Center of Biotechnology Research, Shiraz University of Medical Science, Shiraz 71468-64685, Iran
| | - Vahid Rahmanian
- The Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland
| | - Ahmad Gholami
- The Center of Biotechnology Research, Shiraz University of Medical Science, Shiraz 71468-64685, Iran
| | - Wei-Hung Chiang
- Chemical Engineering Department, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya (MU), Kuala Lumpur 50603, Malaysia
| |
Collapse
|
181
|
Hemocompatibility challenge of membrane oxygenator for artificial lung technology. Acta Biomater 2022; 152:19-46. [PMID: 36089235 DOI: 10.1016/j.actbio.2022.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 11/24/2022]
Abstract
The artificial lung (AL) technology is one of the membrane-based artificial organs that partly augments lung functions, i.e. blood oxygenation and CO2 removal. It is generally employed as an extracorporeal membrane oxygenation (ECMO) device to treat acute and chronic lung-failure patients, and the recent outbreak of the COVID-19 pandemic has re-emphasized the importance of this technology. The principal component in AL is the polymeric membrane oxygenator that facilitates the O2/CO2 exchange with the blood. Despite the considerable improvement in anti-thrombogenic biomaterials in other applications (e.g., stents), AL research has not advanced at the same rate. This is partly because AL research requires interdisciplinary knowledge in biomaterials and membrane technology. Some of the promising biomaterials with reasonable hemocompatibility - such as emerging fluoropolymers of extremely low surface energy - must first be fabricated into membranes to exhibit effective gas exchange performance. As AL membranes must also demonstrate high hemocompatibility in tandem, it is essential to test the membranes using in-vitro hemocompatibility experiments before in-vivo test. Hence, it is vital to have a reliable in-vitro experimental protocol that can be reasonably correlated with the in-vivo results. However, current in-vitro AL studies are unsystematic to allow a consistent comparison with in-vivo results. More specifically, current literature on AL biomaterial in-vitro hemocompatibility data are not quantitatively comparable due to the use of unstandardized and unreliable protocols. Such a wide gap has been the main bottleneck in the improvement of AL research, preventing promising biomaterials from reaching clinical trials. This review summarizes the current state-of-the-art and status of AL technology from membrane researcher perspectives. Particularly, most of the reported in-vitro experiments to assess AL membrane hemocompatibility are compiled and critically compared to suggest the most reliable method suitable for AL biomaterial research. Also, a brief review of current approaches to improve AL hemocompatibility is summarized. STATEMENT OF SIGNIFICANCE: The importance of Artificial Lung (AL) technology has been re-emphasized in the time of the COVID-19 pandemic. The utmost bottleneck in the current AL technology is the poor hemocompatibility of the polymer membrane used for O2/CO2 gas exchange, limiting its use in the long-term. Unfortunately, most of the in-vitro AL experiments are unsystematic, irreproducible, and unreliable. There are no standardized in-vitro hemocompatibility characterization protocols for quantitative comparison between AL biomaterials. In this review, we tackled this bottleneck by compiling the scattered in-vitro data and suggesting the most suitable experimental protocol to obtain reliable and comparable hemocompatibility results. To the best of our knowledge, this is the first review paper focusing on the hemocompatibility challenge of AL technology.
Collapse
|
182
|
Santos JC, Dametto M, Masson AP, Faça VM, Bonacin R, Donadi EA, Passos GA. The AIRE G228W mutation disturbs the interaction of AIRE with its partner molecule SIRT1. Front Immunol 2022; 13:948419. [PMID: 36148232 PMCID: PMC9485725 DOI: 10.3389/fimmu.2022.948419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
The autoimmune regulator (AIRE) protein functions as a tetramer, interacting with partner proteins to form the “AIRE complex,” which relieves RNA Pol II stalling in the chromatin of medullary thymic epithelial cells (mTECs). AIRE is the primary mTEC transcriptional controller, promoting the expression of a large set of peripheral tissue antigen genes implicated in the negative selection of self-reactive thymocytes. Under normal conditions, the SIRT1 protein temporarily interacts with AIRE and deacetylates K residues of the AIRE SAND domain. Once the AIRE SAND domain is deacetylated, the binding with SIRT1 is undone, allowing the AIRE complex to proceed downstream with the RNA Pol II to the elongation phase of transcription. Considering that the in silico and in vitro binding of the AIRE SAND domain with SIRT1 provides a powerful model system for studying the dominant SAND G228W mutation mechanism, which causes the autoimmune polyglandular syndrome-1, we integrated computational molecular modeling, docking, dynamics between the whole SAND domain with SIRT1, and surface plasmon resonance using a peptide harboring the 211 to 230 residues of the SAND domain, to compare the structure and energetics of binding/release between AIRE G228 (wild-type) and W228 (mutant) SAND domain to SIRT1. We observed that the G228W mutation in the SAND domain negatively influences the AIRE-SIRT1 interaction. The disturbed interaction might cause a disruption in the binding of the AIRE SAND domain with the SIRT1 catalytic site, impairing the AIRE complex to proceed downstream with RNA Pol II.
Collapse
Affiliation(s)
- Jadson C. Santos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Mariangela Dametto
- Renato Archer Information Technology Center (CTI Brazil), Ministry of Science, Technology and Innovation (MCTI), Campinas, SP, Brazil
| | - Ana Paula Masson
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Vitor M. Faça
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Rodrigo Bonacin
- Renato Archer Information Technology Center (CTI Brazil), Ministry of Science, Technology and Innovation (MCTI), Campinas, SP, Brazil
| | - Eduardo A. Donadi
- Division of Clinical Immunology, Department of Medicine, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Geraldo Aleixo Passos
- Molecular Immunogenetics Group, Department of Genetics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
- Laboratory of Genetics and Molecular Biology, Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
- Center for Cell-Based Therapy in Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, SP, Brazil
- *Correspondence: Geraldo Aleixo Passos,
| |
Collapse
|
183
|
Celik M, Fuehrlein B. A Review of Immunotherapeutic Approaches for Substance Use Disorders: Current Status and Future Prospects. Immunotargets Ther 2022; 11:55-66. [PMID: 36199734 PMCID: PMC9528911 DOI: 10.2147/itt.s370435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/23/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Muhammet Celik
- Research Division, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Brian Fuehrlein
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Mental Health Service Line, VA Connecticut Healthcare System, West Haven, CT, USA
- Correspondence: Brian Fuehrlein, Mental Health Service Line, VA Connecticut Healthcare System, 950 Campbell Ave, West Haven, CT, 06516, Tel +1-203-932-5711 x4471, Fax +1-203-937-4904, Email
| |
Collapse
|
184
|
Chen Q, Li F, Wang H, Bu C, Shi F, Jin L, Zhang Q, Chi L. Evaluating the immunogenicity of heparin and heparin derivatives by measuring their binding to platelet factor 4 using biolayer interferometry. Front Mol Biosci 2022; 9:966754. [PMID: 36090049 PMCID: PMC9458964 DOI: 10.3389/fmolb.2022.966754] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Heparin (HP) is a polysaccharide that is widely used in the clinic as an anticoagulant. A major side effect associated with HP is the heparin-induced thrombocytopenia (HIT), which is initiated by the immune response to complex formed by HP and platelet factor 4 (PF4). Low molecular weight heparins (LMWHs) are the depolymerized version of HP, which have reduced risks of inducing HIT. However, it is still necessary to evaluate the immunogenicity of LMWHs to ensure their drug safety. Since HIT involves very complicated processes, the evaluation of HP and LMWH immunogenicity requires experiments from multiple aspects, of which the binding affinity between HP and PF4 is a key property to be monitored. Herein, we developed a novel competitive biolayer interferometry (BLI) method to investigate the binding affinity between HP and PF4. The influence of different domains in HP on its immunogenicity was compared for better understanding of the molecular mechanism of HP immunogenicity. Furthermore, the half maximal inhibitory concentration (IC50) of HP and LMWH can be measured by competitive combination, which is important for the quality control during the developing and manufacturing of HP and LMWH drugs.
Collapse
Affiliation(s)
- Qingqing Chen
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Fei Li
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Haoran Wang
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Changkai Bu
- National Glycoengineering Research Center, Shandong University, Qingdao, China
| | - Feng Shi
- Scientific Research Division, Shandong Institute for Food and Drug Control, Jinan, China
| | - Lan Jin
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- *Correspondence: Lan Jin, ; Qunye Zhang, ; Lianli Chi,
| | - Qunye Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Qilu Hospital, Shandong University, Jinan, China
- *Correspondence: Lan Jin, ; Qunye Zhang, ; Lianli Chi,
| | - Lianli Chi
- National Glycoengineering Research Center, Shandong University, Qingdao, China
- *Correspondence: Lan Jin, ; Qunye Zhang, ; Lianli Chi,
| |
Collapse
|
185
|
Dong Y, Bandaru PR. Enhanced graphene surface plasmonics through incorporation into metallic nanostructures. OPTICS EXPRESS 2022; 30:30696-30704. [PMID: 36242168 DOI: 10.1364/oe.461754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 06/16/2023]
Abstract
A methodology for enhancing the surface plasmon polariton (SPP) resonance associated with graphene, through nanoscale metal-dielectric-metal (MDM) gaps, is proposed. The modulation of the resonances, in the range of 0.7 µm to 1 µm was done through tuning the carrier density in graphene and has been shown to be of potential utility for surface analyte sensing. It was shown, from finite element simulations in the frequency domain, that the related hybrid SPP modes could be clearly delineated in far field spectroscopy.
Collapse
|
186
|
Thobakgale L, Ombinda-Lemboumba S, Mthunzi-Kufa P. Chemical Sensor Nanotechnology in Pharmaceutical Drug Research. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2688. [PMID: 35957119 PMCID: PMC9370582 DOI: 10.3390/nano12152688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The increase in demand for pharmaceutical treatments due to pandemic-related illnesses has created a need for improved quality control in drug manufacturing. Understanding the physical, biological, and chemical properties of APIs is an important area of health-related research. As such, research into enhanced chemical sensing and analysis of pharmaceutical ingredients (APIs) for drug development, delivery and monitoring has become immensely popular in the nanotechnology space. Nanomaterial-based chemical sensors have been used to detect and analyze APIs related to the treatment of various illnesses pre and post administration. Furthermore, electrical and optical techniques are often coupled with nano-chemical sensors to produce data for various applications which relate to the efficiencies of the APIs. In this review, we focus on the latest nanotechnology applied to probing the chemical and biochemical properties of pharmaceutical drugs, placing specific interest on several types of nanomaterial-based chemical sensors, their characteristics, detection methods, and applications. This study offers insight into the progress in drug development and monitoring research for designing improved quality control methods for pharmaceutical and health-related research.
Collapse
Affiliation(s)
- Lebogang Thobakgale
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
- College of Agriculture, Engineering and Science, School of Chemistry and Physics, University of Kwa-Zulu Natal, University Road, Westville, Durban 3630, South Africa
| | - Saturnin Ombinda-Lemboumba
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
| | - Patience Mthunzi-Kufa
- National Laser Centre, Council for Scientific and Industrial Research, P.O. Box 395, Pretoria 0001, South Africa
- College of Agriculture, Engineering and Science, School of Chemistry and Physics, University of Kwa-Zulu Natal, University Road, Westville, Durban 3630, South Africa
| |
Collapse
|
187
|
Oh HE, Eathorne S, Jones MA. Use of biosensor technology in analysing milk and dairy components: A review. INT J DAIRY TECHNOL 2022. [DOI: 10.1111/1471-0307.12900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
188
|
Cao F, Zhao X, Lv X, Hu L, Jiang W, Yang F, Chi L, Chang P, Xu C, Xie Y. An LSPR Sensor Integrated with VCSEL and Microfluidic Chip. NANOMATERIALS 2022; 12:nano12152607. [PMID: 35957038 PMCID: PMC9370176 DOI: 10.3390/nano12152607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022]
Abstract
The work introduces a localized surface plasmon resonance (LSPR) sensor chip integrated with vertical-cavity surface-emitting lasers (VCSELs). Using VCSEL as the light source, the hexagonal gold nanoparticle array was integrated with anodic aluminum oxide (AAO) as the mask on the light-emitting end face. The sensitivity sensing test of the refractive index solution was realized, combined with microfluidic technology. At the same time, the finite-difference time- domain (FDTD) algorithm was applied to model and simulate the gold nanostructures. The experimental results showed that the output power of the sensor was related to the refractive index of the sucrose solution. The maximum sensitivity of the sensor was 1.65 × 106 nW/RIU, which gives it great application potential in the field of biomolecular detection.
Collapse
Affiliation(s)
- Fang Cao
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China; (F.C.); (X.Z.); (L.H.); (W.J.); (F.Y.); (P.C.); (C.X.)
| | - Xupeng Zhao
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China; (F.C.); (X.Z.); (L.H.); (W.J.); (F.Y.); (P.C.); (C.X.)
| | - Xiaoqing Lv
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductor, Chinese Academy of Sciences, Beijing 100083, China
- Correspondence: (X.L.); (L.C.); (Y.X.); Tel.: +86-10-67391641-868 (Y.X.)
| | - Liangchen Hu
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China; (F.C.); (X.Z.); (L.H.); (W.J.); (F.Y.); (P.C.); (C.X.)
| | - Wenhui Jiang
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China; (F.C.); (X.Z.); (L.H.); (W.J.); (F.Y.); (P.C.); (C.X.)
| | - Feng Yang
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China; (F.C.); (X.Z.); (L.H.); (W.J.); (F.Y.); (P.C.); (C.X.)
| | - Li Chi
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
- Correspondence: (X.L.); (L.C.); (Y.X.); Tel.: +86-10-67391641-868 (Y.X.)
| | - Pengying Chang
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China; (F.C.); (X.Z.); (L.H.); (W.J.); (F.Y.); (P.C.); (C.X.)
| | - Chen Xu
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China; (F.C.); (X.Z.); (L.H.); (W.J.); (F.Y.); (P.C.); (C.X.)
| | - Yiyang Xie
- Key Laboratory of Optoelectronics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China; (F.C.); (X.Z.); (L.H.); (W.J.); (F.Y.); (P.C.); (C.X.)
- Correspondence: (X.L.); (L.C.); (Y.X.); Tel.: +86-10-67391641-868 (Y.X.)
| |
Collapse
|
189
|
Zheng D, Huang S, Zhu C, Li Z, Zhang Y, Yang D, Tian H, Li J, Yang H, Li J. Enhancement of lattice dynamics by an azimuthal surface plasmon on the femtosecond time scale in multi-walled carbon nanotubes. NANOSCALE 2022; 14:10477-10482. [PMID: 35822870 DOI: 10.1039/d2nr01272c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plasmon-enhanced light-matter interactions have been widely investigated in the past decades. Here, we report surface plasmon-enhanced structural dynamics in multi-walled carbon nanotubes. The optical polarization dependent dynamic properties of multi-walled carbon nanotubes are investigated using ultrafast transmission electron microscopy. Lattice contractions in the femtosecond time regime are observed upon excitation of the azimuthal plasmon by light polarized perpendicular to the tubular axis. The polarization dependence of the plasmon near field was examined using photon-induced near-field electron microscopy. The lattice changes resulting from the azimuthal plasmon enhance ultrafast alterations in both localized evanescent fields and the collective charge excitation, which play critical roles governing the light-matter interaction. These results suggest that the ultrafast responses of lattice degrees of freedom in nanomaterials could be essential for understanding the mechanism of surface plasmon enhanced effects.
Collapse
Affiliation(s)
- Dingguo Zheng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Siyuan Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Chunhui Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Zhongwen Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Yongzhao Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
| | - Dong Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Huanfang Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Jun Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Huaixin Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Jianqi Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
190
|
Biodetection Techniques for Quantification of Chemokines. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10080294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Chemokines are a class of cytokine whose special properties, together with their involvement and relevant role in various diseases, make them a restricted group of biomarkers suitable for diagnosis and monitoring. Despite their importance, biodetection techniques dedicated to the selective determination of one or more chemokines are very scarce. For some years now, the critical diagnosis of inflammatory diseases by detecting both cytokine and chemokine biomarkers, has had a strong impact on the development of multiple detection platforms. However, it would be desirable to implement methodologies with a higher degree of selectivity for chemokines, in order to provide more precise information. In addition, better development of biosensor technology applied to this specific field would make it possible to address the main challenges of detection methods for several diseases with a high incidence in the population, avoiding high costs and low sensitivity. Taking this into account, this review aims to present the state of the art of chemokine biodetection techniques and emphasize the role of these systems in the prevention, monitoring and treatment of various diseases associated with chemokines as a starting point for future developments that are also analyzed throughout the article.
Collapse
|
191
|
Rizzato S, Monteduro AG, Leo A, Todaro MT, Maruccio G. From ion‐sensitive field‐effect transistor to 2D materials field‐effect‐transistor biosensors. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202200006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Silvia Rizzato
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi” University of Salento and INFN Sezione di Lecce Lecce Italy
- Institute of Nanotechnology CNR‐Nanotec Lecce Italy
| | - Anna Grazia Monteduro
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi” University of Salento and INFN Sezione di Lecce Lecce Italy
- Institute of Nanotechnology CNR‐Nanotec Lecce Italy
| | - Angelo Leo
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi” University of Salento and INFN Sezione di Lecce Lecce Italy
- Institute of Nanotechnology CNR‐Nanotec Lecce Italy
| | | | - Giuseppe Maruccio
- Omnics Research Group, Department of Mathematics and Physics “Ennio De Giorgi” University of Salento and INFN Sezione di Lecce Lecce Italy
- Institute of Nanotechnology CNR‐Nanotec Lecce Italy
| |
Collapse
|
192
|
Xiao S, Liu L, Sun Z, Liu X, Xu J, Guo Z, Yin X, Liao F, Xu J, You Y, Zhang T. Network Pharmacology and Experimental Validation to Explore the Mechanism of Qing-Jin-Hua-Tan-Decoction Against Acute Lung Injury. Front Pharmacol 2022; 13:891889. [PMID: 35873580 PMCID: PMC9304690 DOI: 10.3389/fphar.2022.891889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022] Open
Abstract
Qing-Jin-Hua-Tan-Decoction (QJHTD), a classic famous Chinese ancient prescription, has been used for treatment of pulmonary diseases since Ming Dynasty. A total of 22 prototype compounds of QJHTD absorbed into rat blood were chosen as candidates for the pharmacological network analysis and molecular docking. The targets from the intersection of compound target and ALI disease targets were used for GO and KEGG enrichment analyses. Molecular docking was adopted to further verify the interactions between 22 components and the top 20 targets with higher degree values in the component–target–pathway network. In vitro experiments were performed to verify the results of network pharmacology using SPR experiments, Western blot experiments, and the PMA-induced neutrophils to produce neutrophil extracellular trap (NET) model. The compound–target–pathway network includes 176 targets and 20 signaling pathways in which the degree of MAPK14, CDK2, EGFR, F2, SRC, and AKT1 is higher than that of other targets and which may be potential disease targets. The biological processes in QJHTD for ALI mainly included protein phosphorylation, response to wounding, response to bacterium, regulation of inflammatory response, and so on. KEGG enrichment analyses revealed multiple signaling pathways, including lipid and atherosclerosis, HIF-1 signaling pathway, renin–angiotensin system, and neutrophil extracellular trap formation. The molecular docking results showed that baicalin, oroxylin A-7-glucuronide, hispidulin-7-O-β-D-glucuronide, wogonoside, baicalein, wogonin, tianshic acid, and mangiferin can be combined with most of the targets, which might be the core components of QJHTD in treatment of ALI. Direct binding ability of baicalein, wogonin, and baicalin to thrombin protein was all micromolar, and their KD values were 11.92 μM, 1.303 μM, and 1.146 μM, respectively, revealed by SPR experiments, and QJHTD could inhibit Src phosphorylation in LPS-activated neutrophils by Western blot experiments. The experimental results of PMA-induced neutrophils to produce NETs indicated that QJHTD could inhibit the production of NETs. This study revealed the active compounds, effective targets, and potential pharmacological mechanisms of QJHTD acting on ALI.
Collapse
Affiliation(s)
- Shunli Xiao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lu Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhengxiao Sun
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoqian Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyuan Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaojie Yin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fulong Liao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Xu
- National and Local United Engineering Laboratory of Modern Preparation and Quality Control Technology of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Yun You
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yun You, ; Tiejun Zhang,
| | - Tiejun Zhang
- National and Local United Engineering Laboratory of Modern Preparation and Quality Control Technology of Traditional Chinese Medicine, Tianjin Institute of Pharmaceutical Research, Tianjin, China
- *Correspondence: Yun You, ; Tiejun Zhang,
| |
Collapse
|
193
|
Borghei YS, Hosseinkhani S, Ganjali MR. "Plasmonic Nanomaterials": An emerging avenue in biomedical and biomedical engineering opportunities. J Adv Res 2022; 39:61-71. [PMID: 35777917 PMCID: PMC9263747 DOI: 10.1016/j.jare.2021.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Plasmonic nanomaterials asnoble metal-based materials have unique optical characteristic upon exposure to incident light with an appropriate wavelength. Today, generated plasmon by nanoparticles has receivedincreasingattention in nanomedicine; from diagnosis, tissue and tumor imaging to therapeutic and biomedical engineering. AIM OF REVIEW Due to rapid growing of knowledge in the inorganic nanomaterial field, this paper aims to be a comprehensive and authoritative, critical, and broad interest to the scientific community. Here, we introduce basic physicochemical properties of plasmonic nanoparticles and their applications in biomedical and tissue engineering The first part of each division explain the basic physico-chemical properties of each nanomaterial with a graphical abstract. In the second part, concepts by describing classic examples taken from the biomedical and biomedical engineering literature are illustrated. The selected case studies are intended to give an overview of the different systems and mechanisms utilized in nanomedicine. KEY SCIENTIFIC CONCEPTS OF REVIEW In this communication, we have tried to introduce the needed concepts of plasmonic nanomaterials and their implication in a particular part of biomedical over the last 20 years. Moreover, in each part with insist on limitations, a perspective is presented which can guide a researcher how they can develop or modify new scaffolds for biomedical engineering.
Collapse
Affiliation(s)
- Yasaman-Sadat Borghei
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, Faculty of Chemistry, University of Tehran, Tehran, Iran
| |
Collapse
|
194
|
Kabay G, DeCastro J, Altay A, Smith K, Lu HW, Capossela AM, Moarefian M, Aran K, Dincer C. Emerging Biosensing Technologies for the Diagnostics of Viral Infectious Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201085. [PMID: 35288985 DOI: 10.1002/adma.202201085] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Several viral infectious diseases appear limitless since the beginning of the 21st century, expanding into pandemic lengths. Thus, there are extensive efforts to provide more efficient means of diagnosis, a better understanding of acquired immunity, and improved monitoring of inflammatory biomarkers, as these are all crucial for controlling the spread of infection while aiding in vaccine development and improving patient outcomes. In this regard, various biosensors have been developed recently to streamline pathogen and immune response detection by addressing the limitations of traditional methods, including isothermal amplification-based systems and lateral flow assays. This review explores state-of-the-art biosensors for detecting viral pathogens, serological assays, and inflammatory biomarkers from the material perspective, by discussing their advantages, limitations, and further potential regarding their analytical performance, clinical utility, and point-of-care adaptability. Additionally, next-generation biosensing technologies that offer better sensitivity and selectivity, and easy handling for end-users are highlighted. An emerging example of these next-generation biosensors are those powered by novel synthetic biology tools, such as clustered regularly interspaced short palindromic repeats (CRISPR) with CRISPR-associated proteins (Cas), in combination with integrated point-of-care devices. Lastly, the current challenges are discussed and a roadmap for furthering these advanced biosensing technologies to manage future pandemics is provided.
Collapse
Affiliation(s)
- Gözde Kabay
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
- Institute of Functional Interfaces - IFG, Karlsruhe Institute of Technology, 76344, Karlsruhe, Germany
| | - Jonalyn DeCastro
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Alara Altay
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
| | - Kasey Smith
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Hsiang-Wei Lu
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | | | - Maryam Moarefian
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kiana Aran
- The Claremont Colleges, Keck Graduate Institute, Claremont, CA, 91711, USA
- Cardea Bio Inc., San Diego, CA, 92121, USA
| | - Can Dincer
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, 79110, Freiburg, Germany
- Department of Microsystems Engineering - IMTEK, University of Freiburg, 79110, Freiburg, Germany
| |
Collapse
|
195
|
Hedhly M, Wang Y, Zeng S, Ouerghi F, Zhou J, Humbert G. Highly Sensitive Plasmonic Waveguide Biosensor Based on Phase Singularity-Enhanced Goos-Hänchen Shift. BIOSENSORS 2022; 12:bios12070457. [PMID: 35884260 PMCID: PMC9312834 DOI: 10.3390/bios12070457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 05/27/2023]
Abstract
The detection for small molecules with low concentrations is known to be challenging for current chemical and biological sensors. In this work, we designed a highly sensitive plasmonic biosensor based on the symmetric metal cladding plasmonic waveguide (SMCW) structure for the detection of biomolecules. By precisely designing the configuration and tuning the thickness of the guiding layer, ultra-high order modes can be excited, which generates a steep phase change and a large position shift from the Goos−Hänchen effect (with respect to refractive index changes). This position shift is related to the sharpness of the optical phase change from the reflected signal of the SPR sensing substrate and can be directly measured by a position sensor. Based on our knowledge, this is the first experimental study done using this configuration. Experimental results showed a lateral position signal change > 90 µm for glycerol with a sensitivity figure-of-merit of 2.33 × 104 µm/RIU and more than 15 µm for 10−4 M biotin, which is a low molecular weight biomolecule (less than 400 Da) and difficult to be detected with traditional SPR sensing techniques. Through integrating the waveguide with a guiding layer, a strong improvement in the electric field, as well as sensitivity have been achieved. The lateral position shift has been further improved from 14.17 µm to 284 µm compared with conventional SPR substrate with 50 nm gold on single side. The as-reported sensing technique allows for the detection of ultra-small biological molecules and will play an important role in biomedical and clinical diagnostics.
Collapse
Affiliation(s)
- Manel Hedhly
- XLIM Research Institute, UMR 7252 CNRS/University of Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France; (M.H.); (Y.W.); (G.H.)
- Faculty of Sciences of Tunis, Université de Tunis El Manar, 2092-El Manar, Tunis 1068, Tunisia;
| | - Yuye Wang
- XLIM Research Institute, UMR 7252 CNRS/University of Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France; (M.H.); (Y.W.); (G.H.)
- Bionic Sensing and Intelligence Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Shuwen Zeng
- XLIM Research Institute, UMR 7252 CNRS/University of Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France; (M.H.); (Y.W.); (G.H.)
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-ERL 7004, Université de Technologie de Troyes, 10000 Troyes, France
| | - Faouzi Ouerghi
- Faculty of Sciences of Tunis, Université de Tunis El Manar, 2092-El Manar, Tunis 1068, Tunisia;
| | - Jun Zhou
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, No. 818 Fenghua Road, Ningbo 315211, China;
| | - Georges Humbert
- XLIM Research Institute, UMR 7252 CNRS/University of Limoges, 123 Avenue Albert Thomas, 87060 Limoges, France; (M.H.); (Y.W.); (G.H.)
| |
Collapse
|
196
|
Acquasaliente L, Pontarollo G, Radu CM, Peterle D, Artusi I, Pagotto A, Uliana F, Negro A, Simioni P, De Filippis V. Exogenous human α-Synuclein acts in vitro as a mild platelet antiaggregant inhibiting α-thrombin-induced platelet activation. Sci Rep 2022; 12:9880. [PMID: 35701444 PMCID: PMC9198058 DOI: 10.1038/s41598-022-12886-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
α-Synuclein (αSyn) is a small disordered protein, highly conserved in vertebrates and involved in the pathogenesis of Parkinson’s disease (PD). Indeed, αSyn amyloid aggregates are present in the brain of patients with PD. Although the pathogenic role of αSyn is widely accepted, the physiological function of this protein remains elusive. Beyond the central nervous system, αSyn is expressed in hematopoietic tissue and blood, where platelets are a major cellular host of αSyn. Platelets play a key role in hemostasis and are potently activated by thrombin (αT) through the cleavage of protease-activated receptors. Furthermore, both αT and αSyn could be found in the same spatial environment, i.e. the platelet membrane, as αT binds to and activates platelets that can release αSyn from α-granules and microvesicles. Here, we investigated the possibility that exogenous αSyn could interfere with platelet activation induced by different agonists in vitro. Data obtained from distinct experimental techniques (i.e. multiple electrode aggregometry, rotational thromboelastometry, immunofluorescence microscopy, surface plasmon resonance, and steady-state fluorescence spectroscopy) on whole blood and platelet-rich plasma indicate that exogenous αSyn has mild platelet antiaggregating properties in vitro, acting as a negative regulator of αT-mediated platelet activation by preferentially inhibiting P-selectin expression on platelet surface. We have also shown that both exogenous and endogenous (i.e. cytoplasmic) αSyn preferentially bind to the outer surface of activated platelets. Starting from these findings, a coherent model of the antiplatelet function of αSyn is proposed.
Collapse
Affiliation(s)
- Laura Acquasaliente
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy
| | - Giulia Pontarollo
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy.,Center for Thrombosis and Hemostasis (CTH) University Medical Center Mainz, Langenbeckstraße 1, 55131, Mainz, Germany
| | - Claudia Maria Radu
- Department of Women's & Children's Health, University of Padua, Padua, Italy.,Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, University of Padua, via Giustiniani, 2, 35128, Padua, Italy
| | - Daniele Peterle
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy.,Department of Chemistry and Chemical Biology, Northeastern University, 360 Huntington Ave. 02115, Boston, MA, USA
| | - Ilaria Artusi
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy
| | - Anna Pagotto
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy
| | - Federico Uliana
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy.,Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Alessandro Negro
- Department of Biomedical Sciences, University of Padua, viale G. Colombo 3, 35100, Padua, Italy.
| | - Paolo Simioni
- Thrombotic and Hemorrhagic Diseases Unit, Department of Medicine, University of Padua, via Giustiniani, 2, 35128, Padua, Italy.
| | - Vincenzo De Filippis
- Laboratory of Protein Chemistry and Molecular Hematology, Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of Padua, via Marzolo, 5, 35131, Padua, Italy. .,Biotechnology Center, CRIBI, University of Padua, Padua, Italy.
| |
Collapse
|
197
|
β-lactoglobulin and resveratrol nanocomplex formation is driven by solvation water release. Food Res Int 2022; 158:111567. [DOI: 10.1016/j.foodres.2022.111567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022]
|
198
|
Characterising biomolecular interactions and dynamics with mass photometry. Curr Opin Chem Biol 2022; 68:102132. [DOI: 10.1016/j.cbpa.2022.102132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 12/25/2022]
|
199
|
Basso CR, Yamakawa AC, Cruz TF, Pedrosa VA, Magro M, Vianello F, Araújo Júnior JP. Colorimetric Kit for Rapid Porcine Circovirus 2 (PCV-2) Diagnosis. Pathogens 2022; 11:570. [PMID: 35631091 PMCID: PMC9147935 DOI: 10.3390/pathogens11050570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/05/2023] Open
Abstract
The aim of the current study is to present a low-cost and easy-to-interpret colorimetric kit used to diagnose porcine circovirus 2 (PCV-2) to the naked eye, without any specific equipment. The aforementioned kit used as base hybrid nanoparticles resulting from the merge of surface active maghemite nanoparticles and gold nanoparticles, based on the deposition of specific PCV-2 antibodies on their surface through covalent bonds. In total, 10 negative and 40 positive samples (≥102 DNA copies/µL of serum) confirmed by qPCR technique were tested. PCV-1 virus, adenovirus, and parvovirus samples were tested as interferents to rule out likely false-positive results. Positive samples showed purple color when they were added to the complex, whereas negative samples showed red color; they were visible to the naked eye. The entire color-change process took place approximately 1 min after the analyzed samples were added to the complex. They were tested at different dilutions, namely pure, 1:10, 1:100, 1:1000, and 1:10,000. Localized surface plasmon resonance (LSPR) and transmission electron microscopy (TEM) images were generated to validate the experiment. This new real-time PCV-2 diagnostic methodology emerged as simple and economic alternative to traditional tests since the final price of the kit is USD 4.00.
Collapse
Affiliation(s)
- Caroline Rodrigues Basso
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (A.C.Y.); (T.F.C.); (J.P.A.J.)
| | - Ana Carolina Yamakawa
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (A.C.Y.); (T.F.C.); (J.P.A.J.)
| | - Taís Fukuta Cruz
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (A.C.Y.); (T.F.C.); (J.P.A.J.)
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| | - Valber Albuquerque Pedrosa
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| | - Massimiliano Magro
- Comparative Biomedicine and Food Science Department, University of Padua, 35020 Legnaro, Italy; (M.M.); (F.V.)
| | - Fabio Vianello
- Comparative Biomedicine and Food Science Department, University of Padua, 35020 Legnaro, Italy; (M.M.); (F.V.)
| | - João Pessoa Araújo Júnior
- Biotechnology Institute, São Paulo State University, Botucatu 18607-440, SP, Brazil; (A.C.Y.); (T.F.C.); (J.P.A.J.)
- Chemical and Biological Sciences Department, Bioscience Institute, São Paulo State University, Botucatu 18618-000, SP, Brazil;
| |
Collapse
|
200
|
Lee RV, Zareie HM, Sarikaya M. Chimeric Peptide-Based Biomolecular Constructs for Versatile Nucleic Acid Biosensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:23164-23181. [PMID: 35543419 DOI: 10.1021/acsami.2c03341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nucleic acid biomarkers hold great potential as key indicators for the diagnosis and monitoring of diseases. Herein we design and implement bifunctional chimeric biomolecules composed of a solid-binding peptide (SBP) domain that specifically adsorbs onto solid sensor surfaces and a peptide nucleic acid (PNA) moiety that facilitates anchoring of antisense oligonucleotide (ASO) probes for the detection of nucleic acid targets. A gold-binding peptide, AuBP1, previously selected by directed evolution to specifically bind to gold, served as the basis for immobilizing nucleic acid probes onto gold substrates. Using surface plasmon resonance (SPR) spectroscopy and quartz crystal microbalance (QCM) analyses, we demonstrate the sequential biomolecular assembly of the heterofunctional solid-binding peptide-antisense oligomer (SBP-ASO) construct onto a sensor surface and the subsequent detection of DNA in an aqueous environment. The effect of steric hindrance on optimal probe assembly is observed, establishing that less packing density results in greater target capture efficacy. In addition, an adsorbed layer of chimeric solid-binding peptide-peptide nucleic acid (SBP-PNA) undergoes viscoelastic changes at the solid-liquid interface upon probe immobilization and DNA target capture, whereby the rigid biofunctional layer becomes more flexible. The dual nature of the chimeric construct is highly amenable to a variety of platforms allowing for both specific recognition and probe immobilization on the sensor surface, while the modular design of the solid-binding peptide-antisense oligonucleotide provides facile functionalization of a wide diversity of solid substrates.
Collapse
Affiliation(s)
- Richard V Lee
- GEMSEC, Genetically Engineered Materials Science and Engineering Center, Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Hadi M Zareie
- GEMSEC, Genetically Engineered Materials Science and Engineering Center, Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Mehmet Sarikaya
- GEMSEC, Genetically Engineered Materials Science and Engineering Center, Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|