151
|
Solovey M, Scialdone A. COMUNET: a tool to explore and visualize intercellular communication. Bioinformatics 2020; 36:4296-4300. [PMID: 32399572 PMCID: PMC7520036 DOI: 10.1093/bioinformatics/btaa482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/16/2020] [Accepted: 05/05/2020] [Indexed: 01/30/2023] Open
Abstract
MOTIVATION Intercellular communication plays an essential role in multicellular organisms and several algorithms to analyze it from single-cell transcriptional data have been recently published, but the results are often hard to visualize and interpret. RESULTS We developed Cell cOmmunication exploration with MUltiplex NETworks (COMUNET), a tool that streamlines the interpretation of the results from cell-cell communication analyses. COMUNET uses multiplex networks to represent and cluster all potential communication patterns between cell types. The algorithm also enables the search for specific patterns of communication and can perform comparative analysis between two biological conditions. To exemplify its use, here we apply COMUNET to investigate cell communication patterns in single-cell transcriptomic datasets from mouse embryos and from an acute myeloid leukemia patient at diagnosis and after treatment. AVAILABILITY AND IMPLEMENTATION Our algorithm is implemented in an R package available from https://github.com/ScialdoneLab/COMUNET, along with all the code to perform the analyses reported here. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Maria Solovey
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München – German Research Center for Environmental Health, München 81377, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Antonio Scialdone
- Institute of Computational Biology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg 85764, Germany
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München – German Research Center for Environmental Health, München 81377, Germany
- Institute of Functional Epigenetics, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg 85764, Germany
| |
Collapse
|
152
|
Ponferrada AR, Orriach JLG, Manso AM, Haro ES, Molina SR, Heredia AF, Lopez MB, Mañas JC. Anaesthesia and cancer: can anaesthetic drugs modify gene expression? Ecancermedicalscience 2020; 14:1080. [PMID: 32863874 PMCID: PMC7434501 DOI: 10.3332/ecancer.2020.1080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Indexed: 01/21/2023] Open
Abstract
Cancer remains a primary cause of morbidity and mortality worldwide, and its incidence continues to increase. The most common cause of death in cancer patients is tumour recurrence. Surgery is the gold standard in the treatment of most tumours. However, cancer surgery can lead to the release of tumour cells into the systemic circulation. Surgical stress and several perioperative factors have been suggested to boost tumour growth, thereby increasing the risk of metastatic recurrence. Preclinical and clinical studies suggest that anaesthetics and adjuvants administered during the perioperative period may impact cancer recurrence and survival. This document summarises the current evidence regarding the effects of anaesthetic drugs and analgesic techniques on the immune system, systemic inflammatory response and tumour cells, as well as their impact on cancer recurrence.
Collapse
Affiliation(s)
- Aida Raigon Ponferrada
- Institute of Biomedical Research in Malaga [IBIMA], Malaga 29010, Spain
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Jose Luis Guerrero Orriach
- Institute of Biomedical Research in Malaga [IBIMA], Malaga 29010, Spain
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, Malaga 29010, Spain
- Member of COST Action 15204
| | - Alfredo Malo Manso
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Enrique Sepúlveda Haro
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Salvador Romero Molina
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Ana Fontaneda Heredia
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Manolo Baena Lopez
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| | - Jose Cruz Mañas
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, Malaga 29010, Spain
| |
Collapse
|
153
|
D'Angelo E, Lindoso RS, Sensi F, Pucciarelli S, Bussolati B, Agostini M, Collino F. Intrinsic and Extrinsic Modulators of the Epithelial to Mesenchymal Transition: Driving the Fate of Tumor Microenvironment. Front Oncol 2020; 10:1122. [PMID: 32793478 PMCID: PMC7393251 DOI: 10.3389/fonc.2020.01122] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/04/2020] [Indexed: 12/11/2022] Open
Abstract
The epithelial to mesenchymal transition (EMT) is an evolutionarily conserved process. In cancer, EMT can activate biochemical changes in tumor cells that enable the destruction of the cellular polarity, leading to the acquisition of invasive capabilities. EMT regulation can be triggered by intrinsic and extrinsic signaling, allowing the tumor to adapt to the microenvironment demand in the different stages of tumor progression. In concomitance, tumor cells undergoing EMT actively interact with the surrounding tumor microenvironment (TME) constituted by cell components and extracellular matrix as well as cell secretome elements. As a result, the TME is in turn modulated by the EMT process toward an aggressive behavior. The current review presents the intrinsic and extrinsic modulators of EMT and their relationship with the TME, focusing on the non-cell-derived components, such as secreted metabolites, extracellular matrix, as well as extracellular vesicles. Moreover, we explore how these modulators can be suitable targets for anticancer therapy and personalized medicine.
Collapse
Affiliation(s)
- Edoardo D'Angelo
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- LIFELAB Program, Consorzio per la Ricerca Sanitaria–CORIS, Veneto Region, Padua, Italy
- Institute of Pediatric Research, Fondazione Citta della Speranza, Padua, Italy
| | - Rafael Soares Lindoso
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine–REGENERA, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Francesca Sensi
- Institute of Pediatric Research, Fondazione Citta della Speranza, Padua, Italy
- Department of Molecular Sciences and Nanosystems, Cà Foscari University of Venice, Venice, Italy
| | - Salvatore Pucciarelli
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
| | - Benedetta Bussolati
- Department of Medical Sciences, Molecular Biotechnology Center, University of Torino, Turin, Italy
| | - Marco Agostini
- First Surgical Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, Padua, Italy
- LIFELAB Program, Consorzio per la Ricerca Sanitaria–CORIS, Veneto Region, Padua, Italy
- Institute of Pediatric Research, Fondazione Citta della Speranza, Padua, Italy
| | - Federica Collino
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Pediatric Nephrology, Dialysis and Transplant Unit, Fondazione Ca' Granda, IRCCS Policlinico di Milano, Milan, Italy
| |
Collapse
|
154
|
Hwang HJ, Lee YR, Kang D, Lee HC, Seo HR, Ryu JK, Kim YN, Ko YG, Park HJ, Lee JS. Endothelial cells under therapy-induced senescence secrete CXCL11, which increases aggressiveness of breast cancer cells. Cancer Lett 2020; 490:100-110. [PMID: 32659248 DOI: 10.1016/j.canlet.2020.06.019] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022]
Abstract
The effects of senescence associated secretory phenotype (SASP) from therapy-induced senescent endothelial cells on tumor microenvironment (TME) remains to be clarified. Here, we investigated effects of ionizing radiation (IR)- and doxorubicin-induced senescent HUVEC on TME. MDA-MB-231 cancer cells treated with conditioned medium (CM) from senescent HUVEC or co-cultured with senescent HUVEC significantly increased cancer cell proliferation, migration, and invasion. We found that CXCL11 plays a principal role in the senescent CM-induced aggressive activities of MDA-MB-231 cells. When we treated HUVEC with a neutralizing anti-CXCL11 antibody or CXCL11 SiRNA, or treated MDA-MB-231 cells with CXCR3 SiRNA, we observed synergistic diminution of the ability of the HUVEC SASP to alter the migration and spheroid invasion of cancer cells. ERK activation was involved in the HUVEC SASP-induced aggressive activity of MDA-MB-231 cells. Finally, we observed the in vivo effect of CXCL11 from the senescent HUVEC in tumor-bearing mice. Together, our results demonstrate that SASP from endothelial cells experiencing therapy-induced senescence promotes the aggressive behavior of cancer cells, and that CXCL11 can potentially be targeted to prevent the adverse effects of therapy-induced senescent endothelial cells on the tumor microenvironment.
Collapse
Affiliation(s)
- Hyun Jung Hwang
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Ye-Rim Lee
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Donghee Kang
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Hyung Chul Lee
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea
| | - Haeng Ran Seo
- Cancer Biology Research Laboratory, Institute Pasteur Korea, Gyeonggi-do, South Korea
| | - Ji-Kan Ryu
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Urology, Inha University College of Medicine, Incheon, South Korea
| | - Yong-Nyun Kim
- Division of Translational Research, Research Institute, National Cancer Center, Goyang, 10408, South Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Heon Joo Park
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Microbiology, Inha University College of Medicine, Incheon, South Korea
| | - Jae-Seon Lee
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, South Korea; Department of Molecular Medicine, Inha University College of Medicine, Incheon, South Korea.
| |
Collapse
|
155
|
Javid A, Ghani MJ, Shahzad S, Rezaei-Zarchi S. Antineoplastic drug-loaded polymer-modified magnetite nanoparticles: Comparative analysis of EPR-mediated drug delivery. Cell Biol Int 2020; 44:2042-2052. [PMID: 32584486 DOI: 10.1002/cbin.11413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 06/10/2020] [Accepted: 06/23/2020] [Indexed: 01/04/2023]
Abstract
This study aimed to design and evaluate enhanced permeation and retention (EPR)-mediated anticancer effect of polymer-modified and drug-loaded magnetite nanocomposites. The preformulated bare (10 nm), chitosan-superparamagnetic iron oxide (SPIO; 69 nm), heparin-SPIO (42 nm), and (3-aminopropyl)triethoxysilane-polyethylene glycol-SPIO (17 nm) nanocomposites were utilized to evaluate the EPR-mediated localized cancer targeting and retention of doxorubicin (DOX) and paclitaxel (PTX) in human ovarian cancer cell lines, A2780 and OVCAR-3 in vitro and in the tumor-baring Balb/c mice in vivo. Fluorescence microscopy showed that DOX- and PTX-loaded SPIO nanoparticles caused long-term accumulation and cytoplasmic retention in A2780 and OVCAR-3 cells, as compared to free drugs in vitro. In vivo antiproliferative effect of present formulations on immunodeficient female Balb/c mice showed a tremendous amount of ovarian tumor shrinkage within 6 weeks. The present nanocomposite systems of targeted drug delivery proved to be efficient drug carrier with sustained drug release and long-term retention with enhanced cytotoxic properties in vitro and in vivo.
Collapse
Affiliation(s)
- Amaneh Javid
- Department of Biology, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran.,Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Madiha Javeed Ghani
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Sughra Shahzad
- Department of Obstetrics and Gynecology, Social Security Hospital, Islamabad, Pakistan
| | | |
Collapse
|
156
|
Barros da Silva P, Coelho M, Bidarra SJ, Neves SC, Barrias CC. Reshaping in vitro Models of Breast Tissue: Integration of Stromal and Parenchymal Compartments in 3D Printed Hydrogels. Front Bioeng Biotechnol 2020; 8:494. [PMID: 32596217 PMCID: PMC7300215 DOI: 10.3389/fbioe.2020.00494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
Breast tissue consists of an epithelial parenchyma embedded in stroma, of heterogeneous and complex composition, undergoing several morphological and functional alterations throughout females' lifespan. Improved knowledge on the crosstalk between parenchymal and stromal mammary cells should provide important insights on breast tissue dynamics, both under healthy and diseased states. Here, we describe an advanced 3D in vitro model of breast tissue, combining multiple components, namely stromal cells and their extracellular matrix (ECM), as well as parenchymal epithelial cells, in a hybrid system. To build the model, porous scaffolds were produced by extrusion 3D printing of peptide-modified alginate hydrogels, and then populated with human mammary fibroblasts. Seeded fibroblasts were able to adhere, spread and produce endogenous ECM, providing adequate coverage of the scaffold surface, without obstructing the pores. On a second stage, a peptide-modified alginate pre-gel laden with mammary gland epithelial cells was used to fill the scaffold's pores, forming a hydrogel in situ by ionic crosslinking. Throughout time, epithelial cells formed prototypical mammary acini-like structures, in close proximity with fibroblasts and their ECM. This generated a heterotypic 3D model that partially recreates both stromal and parenchymal compartments of breast tissue, promoting cell-cell and cell-matrix crosstalk. Furthermore, the hybrid system could be easily dissolved for cell recovery and subsequent analysis by standard cellular/molecular assays. In particular, we show that retrieved cell populations could be discriminated by flow cytometry using cell-type specific markers. This integrative 3D model stands out as a promising in vitro platform for studying breast stroma-parenchyma interactions, both under physiological and pathological settings.
Collapse
Affiliation(s)
- Patrícia Barros da Silva
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Mariana Coelho
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sílvia Joana Bidarra
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sara Carvalheira Neves
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- FEUP—Faculdade de Engenharia, Universidade do Porto, Porto, Portugal
| | - Cristina Carvalho Barrias
- i3S—Instituto de Inovação e Investigação em Saúde, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
157
|
Significance of STAT3 in Immune Infiltration and Drug Response in Cancer. Biomolecules 2020; 10:biom10060834. [PMID: 32486001 PMCID: PMC7355836 DOI: 10.3390/biom10060834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/19/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor and regulates tumorigenesis. However, the functions of STAT3 in immune and drug response in cancer remain elusive. Hence, we aim to reveal the impact of STAT3 in immune infiltration and drug response comprehensively by bioinformatics analysis. The expression of STAT3 and its relationship with tumor stage were explored by Tumor Immune Estimation Resource (TIMER), Human Protein Altas (HPA), and UALCAN databases. The correlations between STAT3 and immune infiltration, gene markers of immune cells were analyzed by TIMER. Moreover, the association between STAT3 and drug response was evaluated by the Cancer Cell Line Encyclopedia (CCLE) and Cancer Therapeutics Response Portal (CTRP). The results suggested that the mRNA transcriptional level of STAT3 was lower in tumors than normal tissues and mostly unrelated to tumor stage. Besides, the protein expression of STAT3 decreased in colorectal and renal cancer compared with normal tissues. Importantly, STAT3 was correlated with immune infiltration and particularly regulated tumor-associated macrophage (TAM), M2 macrophage, T-helper 1 (Th1), follicular helper T (Treg), and exhausted T-cells. Remarkably, STAT3 was closely correlated with the response to specified inhibitors and natural compounds in cancer. Furthermore, the association between STAT3 and drug response was highly cell line type dependent. Significantly, the study provides thorough insight that STAT3 is associated with immunosuppression, as well as drug response in clinical treatment.
Collapse
|
158
|
Longmate WM, Varney S, Power D, Miskin RP, Anderson KE, DeFreest L, Van De Water L, DiPersio CM. Integrin α3β1 on Tumor Keratinocytes Is Essential to Maintain Tumor Growth and Promotes a Tumor-Supportive Keratinocyte Secretome. J Invest Dermatol 2020; 141:142-151.e6. [PMID: 32454065 DOI: 10.1016/j.jid.2020.05.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/08/2020] [Accepted: 05/01/2020] [Indexed: 02/01/2023]
Abstract
The development of integrin-targeted cancer therapies is hindered by incomplete understanding of integrin function in tumor cells and the tumor microenvironment. Previous studies showed that mice with epidermis-specific deletion of the α3 integrin subunit fail to form skin tumors during two-step chemical tumorigenesis, indicating a protumorigenic role for integrin α3β1. Here, we generated mice with tamoxifen-inducible, epidermis-specific α3 knockout to determine the role of α3β1 in the maintenance of established tumor cells and/or the associated stroma. Genetic ablation of α3 in established skin tumors caused their rapid regression, indicating that α3β1 is essential to maintain tumor growth. Although reduced proliferation and increased apoptosis were observed in α3β1-deficient tumor cells, these changes followed a robust increase in stromal apoptosis. Furthermore, macrophages and fibulin-2 levels were reduced in stroma following α3 deletion from tumor cells. Mass spectrometric analysis of conditioned medium from immortalized keratinocytes showed that α3β1 regulates a substantial fraction of the keratinocyte secretome, including fibulin-2 and macrophage CSF1; RNA in situ hybridization showed that expression of these two genes was reduced in tumor keratinocytes in vivo. Our findings identify α3β1 as a regulator of the keratinocyte secretome and skin tumor microenvironment and as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Scott Varney
- Department of Surgery Albany Medical College, Albany, New York, USA
| | - Derek Power
- Department of Surgery Albany Medical College, Albany, New York, USA
| | | | - Karl E Anderson
- Department of Surgery Albany Medical College, Albany, New York, USA
| | - Lori DeFreest
- Department of Surgery Albany Medical College, Albany, New York, USA
| | - Livingston Van De Water
- Department of Surgery Albany Medical College, Albany, New York, USA; Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA
| | - C Michael DiPersio
- Department of Surgery Albany Medical College, Albany, New York, USA; Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
159
|
Reyes ME, de La Fuente M, Hermoso M, Ili CG, Brebi P. Role of CC Chemokines Subfamily in the Platinum Drugs Resistance Promotion in Cancer. Front Immunol 2020; 11:901. [PMID: 32499779 PMCID: PMC7243460 DOI: 10.3389/fimmu.2020.00901] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is a significant medical issue, being one of the main causes of mortality around the world. The therapies for this pathology depend on the stage in which the cancer is found, but it is usually diagnosed at an advanced stage in which the treatment is chemotherapy. Platinum drugs are among the most commonly used in therapy, unfortunately, one of the main obstacles to this treatment is the development of chemoresistance, which is the ability of cancer cells to evade the effects of drugs. Although some molecular mechanisms involved in resistance to platinum drugs are described, elucidation is still required of others. Secretion of inflammatory mediators such as cytokines and chemokines, by tumor microenvironment components or tumor cells, show direct influence on proliferation, metastasis and progression of cancer and are related to chemoresistance and poor prognosis. In this review, the general mechanisms associated with resistance to platinum drugs, inflammation on cancer development and chemoresistance in various types of cancer will be approached with special emphasis on the current history of CC chemokines subfamily-mediated chemoresistance.
Collapse
Affiliation(s)
- Maria E. Reyes
- Laboratorio de Biología Integrativa (LIBi), Centro de Excelencia en Medicina Traslacional-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de la Frontera, Temuco, Chile
| | - Marjorie de La Fuente
- Laboratorio de Inmunidad Innata, Programa de Inmunología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Dirección Académica, Clínica Las Condes, Santiago, Chile
| | - Marcela Hermoso
- Laboratorio de Inmunidad Innata, Programa de Inmunología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carmen G. Ili
- Laboratorio de Biología Integrativa (LIBi), Centro de Excelencia en Medicina Traslacional-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de la Frontera, Temuco, Chile
| | - Priscilla Brebi
- Laboratorio de Biología Integrativa (LIBi), Centro de Excelencia en Medicina Traslacional-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Universidad de la Frontera, Temuco, Chile
| |
Collapse
|
160
|
Jin H, Kim HJ. NLRC4, ASC and Caspase-1 Are Inflammasome Components that Are Mediated by P2Y 2R Activation in Breast Cancer Cells. Int J Mol Sci 2020; 21:ijms21093337. [PMID: 32397236 PMCID: PMC7246622 DOI: 10.3390/ijms21093337] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
The inflammasomes are reported to be associated with tumor progression. In our previous study, we determined that extracellular ATP enhances invasion and tumor growth by inducing inflammasome activation in a P2Y purinergic receptor 2 (P2Y2R)-dependent manner. However, it is not clear which inflammasome among the diverse complexes is associated with P2Y2R activation in breast cancer. Thus, in this study, we determined which inflammasome components are regulated by P2Y2R activation and are involved in tumor progression in breast cancer cells and radiotherapy-resistant (RT-R)-breast cancer cells. First, we found that NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3); NLR family caspase activation and recruitment domain (CARD) containing 4 (NLRC4); apoptosis-associated speck-like protein containing a CARD complex (ASC); and caspase-1 mRNA levels were upregulated in RT-R-MDA-MB-231 cells compared to MDA-MB-231 cells, whereas tumor necrosis factor-α (TNF-α) or ATP treatment induced NLRC4, ASC, and caspase-1 but not NLRP3 protein levels. Moreover, TNF-α or ATP increased protein levels of NLRC4, ASC, and caspase-1 in a P2Y2R-dependent manner in MDA-MB-231 and RT-R-MDA-MB-231 cells. In addition, P2Y2R activation by ATP induced the secretion of IL-1β and VEGF-A, as well as invasion, in MDA-MB-231 and RT-R-MDA-MB-231 cells, which was inhibited by NLRC4, ASC, and caspase-1 small interfering RNA (siRNA). Taken together, this report suggests that P2Y2R activation by ATP induces tumor invasion and angiogenesis through inflammasome activation, specifically by regulating the inflammasome components NLRC4, ASC, and caspase-1.
Collapse
|
161
|
The Intrinsic Biological Identities of Iron Oxide Nanoparticles and Their Coatings: Unexplored Territory for Combinatorial Therapies. NANOMATERIALS 2020; 10:nano10050837. [PMID: 32349362 PMCID: PMC7712800 DOI: 10.3390/nano10050837] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
Abstract
Over the last 20 years, iron oxide nanoparticles (IONPs) have been the subject of increasing investigation due to their potential use as theranostic agents. Their unique physical properties (physical identity), ample possibilities for surface modifications (synthetic identity), and the complex dynamics of their interaction with biological systems (biological identity) make IONPs a unique and fruitful resource for developing magnetic field-based therapeutic and diagnostic approaches to the treatment of diseases such as cancer. Like all nanomaterials, IONPs also interact with different cell types in vivo, a characteristic that ultimately determines their activity over the short and long term. Cells of the mononuclear phagocytic system (macrophages), dendritic cells (DCs), and endothelial cells (ECs) are engaged in the bulk of IONP encounters in the organism, and also determine IONP biodistribution. Therefore, the biological effects that IONPs trigger in these cells (biological identity) are of utmost importance to better understand and refine the efficacy of IONP-based theranostics. In the present review, which is focused on anti-cancer therapy, we discuss recent findings on the biological identities of IONPs, particularly as concerns their interactions with myeloid, endothelial, and tumor cells. Furthermore, we thoroughly discuss current understandings of the basic molecular mechanisms and complex interactions that govern IONP biological identity, and how these traits could be used as a stepping stone for future research.
Collapse
|
162
|
Li X, Wang J. Mechanical tumor microenvironment and transduction: cytoskeleton mediates cancer cell invasion and metastasis. Int J Biol Sci 2020; 16:2014-2028. [PMID: 32549750 PMCID: PMC7294938 DOI: 10.7150/ijbs.44943] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
Metastasis is a complicated, multistep process that is responsible for over 90% of cancer-related death. Metastatic disease or the movement of cancer cells from one site to another requires dramatic remodeling of the cytoskeleton. The regulation of cancer cell migration is determined not only by biochemical factors in the microenvironment but also by the biomechanical contextual information provided by the extracellular matrix (ECM). The responses of the cytoskeleton to chemical signals are well characterized and understood. However, the mechanisms of response to mechanical signals in the form of externally applied force and forces generated by the ECM are still poorly understood. Furthermore, understanding the way cellular mechanosensors interact with the physical properties of the microenvironment and transmit the signals to activate the cytoskeletal movements may help identify an effective strategy for the treatment of cancer. Here, we will discuss the role of tumor microenvironment during cancer metastasis and how physical forces remodel the cytoskeleton through mechanosensing and transduction.
Collapse
Affiliation(s)
- Xingchen Li
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
| | - Jianliu Wang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, 100044, China
- Beijing Key Laboratory of Female Pelvic Floor Disorders Diseases, Beijing, 100044, China
| |
Collapse
|
163
|
Berretta M, Bignucolo A, Di Francia R, Comello F, Facchini G, Ceccarelli M, Iaffaioli RV, Quagliariello V, Maurea N. Resveratrol in Cancer Patients: From Bench to Bedside. Int J Mol Sci 2020; 21:E2945. [PMID: 32331450 PMCID: PMC7216168 DOI: 10.3390/ijms21082945] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 02/07/2023] Open
Abstract
Resveratrol (3,5,4'-trihydroxystilbene) is a natural phytoalexin that accumulates in several vegetables and fruits like nuts, grapes, apples, red fruits, black olives, capers, red rice as well as red wines. Being both an extremely reactive molecule and capable to interact with cytoplasmic and nuclear proteins in human cells, resveratrol has been studied over the years as complementary and alternative medicine (CAM) for the therapy of cancer, metabolic and cardiovascular diseases like myocardial ischemia, myocarditis, cardiac hypertrophy and heart failure. This review will describe the main biological targets, cardiovascular outcomes, physico-chemical and pharmacokinetic properties of resveratrol in preclinical and clinical models implementing its potential use in cancer patients.
Collapse
Affiliation(s)
- Massimiliano Berretta
- Department of Medical Oncology-Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy
| | - Alessia Bignucolo
- Experimental and Clinical Pharmacology-Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.B.); (F.C.)
| | - Raffaele Di Francia
- Gruppo Oncologico Ricercatori Italiani, GORI-ONLUS, 33170 Pordenone (PN), Italy;
| | - Francesco Comello
- Experimental and Clinical Pharmacology-Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, Italy; (A.B.); (F.C.)
| | - Gaetano Facchini
- UOC Oncologia, ASL Napoli 2 Nord, P.O. “S.M. delle Grazie”, Pozzuoli-Ischia, 80078 Napoli, Italy;
| | - Manuela Ceccarelli
- Department of Clinical and Experimental Medicine, Unit of Infectious Diseases, University of Catania, 95122 Catania, Italy;
| | - Rosario Vincenzo Iaffaioli
- Association for Multidisciplinary Studies in Oncology and Mediterranean Diet, Piazza Nicola Amore, 80138 Naples, Italy;
| | - Vincenzo Quagliariello
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, 80131 Napoli, Italy; (V.Q.); (N.M.)
| | - Nicola Maurea
- Division of Cardiology, Istituto Nazionale Tumori- IRCCS- Fondazione G. Pascale, 80131 Napoli, Italy; (V.Q.); (N.M.)
| |
Collapse
|
164
|
Revisiting Cancer Stem Cells as the Origin of Cancer-Associated Cells in the Tumor Microenvironment: A Hypothetical View from the Potential of iPSCs. Cancers (Basel) 2020; 12:cancers12040879. [PMID: 32260363 PMCID: PMC7226406 DOI: 10.3390/cancers12040879] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 02/17/2020] [Accepted: 03/30/2020] [Indexed: 12/18/2022] Open
Abstract
The tumor microenvironment (TME) has an essential role in tumor initiation and development. Tumor cells are considered to actively create their microenvironment during tumorigenesis and tumor development. The TME contains multiple types of stromal cells, cancer-associated fibroblasts (CAFs), Tumor endothelial cells (TECs), tumor-associated adipocytes (TAAs), tumor-associated macrophages (TAMs) and others. These cells work together and with the extracellular matrix (ECM) and many other factors to coordinately contribute to tumor growth and maintenance. Although the types and functions of TME cells are well understood, the origin of these cells is still obscure. Many scientists have tried to demonstrate the origin of these cells. Some researchers postulated that TME cells originated from surrounding normal tissues, and others demonstrated that the origin is cancer cells. Recent evidence demonstrates that cancer stem cells (CSCs) have differentiation abilities to generate the original lineage cells for promoting tumor growth and metastasis. The differentiation of CSCs into tumor stromal cells provides a new dimension that explains tumor heterogeneity. Using induced pluripotent stem cells (iPSCs), our group postulates that CSCs could be one of the key sources of CAFs, TECs, TAAs, and TAMs as well as the descendants, which support the self-renewal potential of the cells and exhibit heterogeneity. In this review, we summarize TME components, their interactions within the TME and their insight into cancer therapy. Especially, we focus on the TME cells and their possible origin and also discuss the multi-lineage differentiation potentials of CSCs exploiting iPSCs to create a society of cells in cancer tissues including TME.
Collapse
|
165
|
Yang H, Zhao K, Kang H, Wang M, Wu A. Exploring immune-related genes with prognostic value in microenvironment of breast cancer from TCGA database. Medicine (Baltimore) 2020; 99:e19561. [PMID: 32243373 PMCID: PMC7220520 DOI: 10.1097/md.0000000000019561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/01/2020] [Accepted: 02/13/2020] [Indexed: 12/21/2022] Open
Abstract
Breast cancer is one of the most common malignancies in women worldwide. Many studies have shown that tumor microenvironment cells, immune cells, and stromal cell infiltration have an important impact on prognosis, so it is important to identify biomarkers for achieving better treatment and prognosis.To better understand the relationship between immune and stromal cell-related genes and prognosis, we screened patients with breast cancer in The Cancer Genome Atlas (TCGA) database and divided them into high and low groups based on immune/stromal scores. We next identified differentially expressed immune-related genes that are significantly associated with the prognosis of patients with breast cancer for functional enrichment analysis and protein-protein interaction networks, respectively. Finally, we selected a separate breast cancer cohort in gene expression synthesis (GEO) for validation.Both immune scores and stromal scores are meaningful in the correlation of subtype classification. Disease-free survival of cases with the high score group of immune scores is statistically longer than the cases in the low score group. Differentially expressed immune-related genes extracted from the comparison can effectively evaluate the prognosis of patients with breast cancer and these genes are primarily involved in immune responses, extracellular matrix, and chemokine activity. At last, we obtained a series of verified tumor immune-related genes that predict the prognosis of patients with breast cancer.Combining the Estimation of Stromal and Immune Cells in Malignant Tumor Tissues using Expression database and the TCGA database to extract the list of tumor microenvironment related genes which may help to outline the prognosis of patients with breast cancer. Some previously overlooked genes have the potential to become additional biomarkers for breast cancer. Further research on these genes can reveal a new understanding of the potential relationship between tumor microenvironment and breast cancer prognosis.
Collapse
|
166
|
Lau HCH, Kranenburg O, Xiao H, Yu J. Organoid models of gastrointestinal cancers in basic and translational research. Nat Rev Gastroenterol Hepatol 2020; 17:203-222. [PMID: 32099092 DOI: 10.1038/s41575-019-0255-2] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/11/2019] [Indexed: 12/24/2022]
Abstract
Cancer is a major public health problem worldwide. Gastrointestinal cancers account for approximately one-third of the total global cancer incidence and mortality. Historically, the mechanisms of tumour initiation and progression in the gastrointestinal tract have been studied using cancer cell lines in vitro and animal models. Traditional cell culture methods are associated with a strong selection of aberrant genomic variants that no longer reflect the original tumours in terms of their (metastatic) behaviour or response to therapy. Organoid technology has emerged as a powerful alternative method for culturing gastrointestinal tumours and the corresponding normal tissues in a manner that preserves their genetic, phenotypic and behavioural traits. Importantly, accumulating evidence suggests that organoid cultures have great value in predicting the outcome of therapy in individual patients. Herein, we review the current literature on organoid models of the most common gastrointestinal cancers, including colorectal cancer, gastric cancer, oesophageal cancer, liver cancer and pancreatic cancer, and their value in modelling tumour initiation, metastatic progression and therapy response. We also explore the limitations of current organoid models and discuss how they could be improved to maximally benefit basic and translational research in the future, especially in the fields of drug discovery and personalized medicine.
Collapse
Affiliation(s)
- Harry Cheuk Hay Lau
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Onno Kranenburg
- UMC Utrecht Cancer Center, Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, Netherlands
| | - Haipeng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
167
|
Daskalopoulos AG, Avgoustidis D, Chaisuparat R, Karanikou M, Lazaris AC, Sklavounou A, Nikitakis NG. Assessment of TLR4 and TLR9 signaling and correlation with human papillomavirus status and histopathologic parameters in oral tongue squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2020; 129:493-513. [PMID: 32173390 DOI: 10.1016/j.oooo.2020.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/26/2019] [Accepted: 01/02/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Toll-like receptors (TLRs) may promote or inhibit tumor progression. The aim of this study was to assess the expression of TLR4 and TLR9 and their downstream targets in oral tongue squamous cell carcinoma (OTSCC) in correlation with histopathologic parameters and human papillomavirus (HPV) status. STUDY DESIGN OTSCC (fully or superficially invasive and in situ) were studied. Immunohistochemical expression of TLR4, TLR9, nuclear factor-κΒ (NF-κΒ/p65), and interferon-β (IFN-β) was evaluated in tumor and inflammatory cells and in adjacent morphologically normal mucosa. HPV status was also determined. RESULTS TLR4 showed increased expression levels in tumor and infiltrating inflammatory cells compared with adjacent mucosa, especially in fully invasive cases; a negative correlation between TLR4 levels in inflammatory cells and tumor grade was observed. TLR9 was upregulated in tumor and infiltrating inflammatory cells compared with the adjacent mucosa; its expression in inflammatory cells was higher in well differentiated tumors. NF-κΒ and IFN-β were elevated in cancerous tissues, especially in fully invasive cases, and positively correlated with TLR4 and/or TLR9. HPV positivity (detected in 15.9% of the cases) demonstrated positive correlation with TLR9 and NF-κΒ levels. CONCLUSIONS TLR4 and TLR9 are upregulated in OTSCC and its microenvironment and, by affecting important downstream molecules, such as NF-κB and IFN-β, may play a role in oral cancer development and progression.
Collapse
Affiliation(s)
- Argyrios G Daskalopoulos
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Greece.
| | - Dimitrios Avgoustidis
- Department of Oral and Maxillofacial Surgery, "Evaggelismos" General Hospital, National and Kapodistrian University of Athens, Greece
| | - Risa Chaisuparat
- Department of Oral Pathology, Faculty of Dentistry, Chulalongkom University, Bangkok, Thailand
| | - Maria Karanikou
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Andreas C Lazaris
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, Greece
| | - Alexandra Sklavounou
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Greece
| | - Nikolaos G Nikitakis
- Department of Oral Medicine and Pathology, School of Dentistry, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
168
|
Saha A, Nandi P, Dasgupta S, Bhuniya A, Ganguly N, Ghosh T, Guha I, Banerjee S, Baral R, Bose A. Neem Leaf Glycoprotein Restrains VEGF Production by Direct Modulation of HIF1α-Linked Upstream and Downstream Cascades. Front Oncol 2020; 10:260. [PMID: 32211322 PMCID: PMC7067891 DOI: 10.3389/fonc.2020.00260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Neem Leaf Glycoprotein (NLGP) is a natural immunomodulator, have shown sustained tumor growth restriction as well as angiogenic normalization chiefly by activating CD8+ T cells. Here, we have investigated the direct role of NLGP as a regulator of tumor microenvironmental hypoxia and associated vascular endothelial growth factor (VEGF) production. We observed a significant reduction in VEGF level in both in vivo murine tumor and in vitro cancer cells (B16Mel, LLC) and macrophages after NLGP treatment. Interestingly, NLGP mediated VEGF downregulation in tumor cells or macrophages within hypoxic chamber was found at an early 4 h and again at late 24 h in mRNA level. Our data suggested that NLGP prevented hypoxia-induced strong binding of HIF1α with its co-factors, CBP/p300 and Sp3, but not with Sp1, which eventually limit the binding of HIF1α-transcriptional complex to hypoxia responsive element of VEGF promoter and results in restricted early VEGF transcription. On the otherhand, suppressed phosphorylation of Stat3 by NLGP results reduction of HIF1α at 24 h of hypoxia that further support sustained VEGF down-regulation. However, NLGP fails to regulate VHL activity as observed by both in vivo and in vitro studies. Therefore, this study for the first time reveals a mechanistic insight of NLGP mediated inhibition of angiogenesis by suppressing VEGF, which might help in vascular normalization to influence better drug delivery.
Collapse
Affiliation(s)
- Akata Saha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Partha Nandi
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Shayani Dasgupta
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Nilanjan Ganguly
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Saptak Banerjee
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), Kolkata, India
| |
Collapse
|
169
|
A Novel Model of Cancer Drug Resistance: Oncosomal Release of Cytotoxic and Antibody-Based Drugs. BIOLOGY 2020; 9:biology9030047. [PMID: 32150875 PMCID: PMC7150871 DOI: 10.3390/biology9030047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/23/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs), such as exosomes or oncosomes, often carry oncogenic molecules derived from tumor cells. In addition, accumulating evidence indicates that tumor cells can eject anti-cancer drugs such as chemotherapeutics and targeted drugs within EVs, a novel mechanism of drug resistance. The EV-releasing drug resistance phenotype is often coupled with cellular dedifferentiation and transformation in cells undergoing epithelial-mesenchymal transition (EMT), and the adoption of a cancer stem cell phenotype. The release of EVs is also involved in immunosuppression. Herein, we address different aspects by which EVs modulate the tumor microenvironment to become resistant to anticancer and antibody-based drugs, as well as the concept of the resistance-associated secretory phenotype (RASP).
Collapse
|
170
|
Lee R, Choi YJ, Jeong MS, Park YI, Motoyama K, Kim MW, Kwon SH, Choi JH. Hyaluronic Acid-Decorated Glycol Chitosan Nanoparticles for pH-Sensitive Controlled Release of Doxorubicin and Celecoxib in Nonsmall Cell Lung Cancer. Bioconjug Chem 2020; 31:923-932. [DOI: 10.1021/acs.bioconjchem.0c00048] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ruda Lee
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| | - Yu Jin Choi
- Korea Basic Science Institute, Chuncheon 24341, Republic of Korea
| | | | - Yong Il Park
- School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 860-8555, Japan
| | - Min Woo Kim
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto 860-8555, Japan
| | - Seung-Hae Kwon
- Korea Basic Science Institute, Seoul 02841, Republic of Korea
| | - Jung Hoon Choi
- Department of Anatomy & Institute of Veterinary Science, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
171
|
Ramón y Cajal S, Sesé M, Capdevila C, Aasen T, De Mattos-Arruda L, Diaz-Cano SJ, Hernández-Losa J, Castellví J. Clinical implications of intratumor heterogeneity: challenges and opportunities. J Mol Med (Berl) 2020; 98:161-177. [PMID: 31970428 PMCID: PMC7007907 DOI: 10.1007/s00109-020-01874-2] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
In this review, we highlight the role of intratumoral heterogeneity, focusing on the clinical and biological ramifications this phenomenon poses. Intratumoral heterogeneity arises through complex genetic, epigenetic, and protein modifications that drive phenotypic selection in response to environmental pressures. Functionally, heterogeneity provides tumors with significant adaptability. This ranges from mutual beneficial cooperation between cells, which nurture features such as growth and metastasis, to the narrow escape and survival of clonal cell populations that have adapted to thrive under specific conditions such as hypoxia or chemotherapy. These dynamic intercellular interplays are guided by a Darwinian selection landscape between clonal tumor cell populations and the tumor microenvironment. Understanding the involved drivers and functional consequences of such tumor heterogeneity is challenging but also promises to provide novel insight needed to confront the problem of therapeutic resistance in tumors.
Collapse
Affiliation(s)
- Santiago Ramón y Cajal
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
- Department of Pathology, Vall d’Hebron University Hospital, Autonomous University of Barcelona, Pg. Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Marta Sesé
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Claudia Capdevila
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032 USA
| | - Trond Aasen
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Leticia De Mattos-Arruda
- Vall d’Hebron Institute of Oncology, Vall d’Hebron University Hospital, c/Natzaret, 115-117, 08035 Barcelona, Spain
| | - Salvador J. Diaz-Cano
- Department of Histopathology, King’s College Hospital and King’s Health Partners, London, UK
| | - Javier Hernández-Losa
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Josep Castellví
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| |
Collapse
|
172
|
Zhang Q, Wang W, Zhou Q, Chen C, Yuan W, Liu J, Li X, Sun Z. Roles of circRNAs in the tumour microenvironment. Mol Cancer 2020; 19:14. [PMID: 31973726 PMCID: PMC6977266 DOI: 10.1186/s12943-019-1125-9] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023] Open
Abstract
The tumour microenvironment (TME) constitutes the area surrounding the tumour during its development and has been demonstrated to play roles in cancer-related diseases through crosstalk with tumour cells. Circular RNAs (circRNAs) are a subpopulation of endogenous noncoding RNAs (ncRNAs) that are ubiquitously expressed in eukaryotes and have multiple biological functions in the regulation of cancer onset and progression. An increasing number of studies have shown that circRNAs participate in the multifaceted biological regulation of the TME. However, details on the mechanisms involved have remained elusive until now. In this review, we analyse the effects of circRNAs on the TME from various perspectives, including immune surveillance, angiogenesis, hypoxia, matrix remodelling, exo-circRNAs and chemoradiation resistance. Currently, the enormous potential for circRNA use in targeted therapy and as noninvasive biomarkers have drawn our attention. We emphasize the prospect of targeting circRNAs as an essential strategy to regulate TME, overcome cancer resistance and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Qiuge Zhang
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chen Chen
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Xiaoli Li
- Department of Geriatric Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
173
|
Chao TY, Satriyo P, Yeh CT, Chen JH, Aryandono T, Haryana S. Dual therapeutic strategy targeting tumor cells and tumor microenvironment in triple-negative breast cancer. JOURNAL OF CANCER RESEARCH AND PRACTICE 2020. [DOI: 10.4103/jcrp.jcrp_13_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
174
|
Karsch-Bluman A, Benny O. Necrosis in the Tumor Microenvironment and Its Role in Cancer Recurrence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:89-98. [PMID: 32030649 DOI: 10.1007/978-3-030-35727-6_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer recurrence is one of the most imminent problems in the current world of medicine, and it is responsible for most of the cancer-related death rates worldwide. Long-term administration of anticancer cytotoxic drugs may act as a double-edged sword, as necrosis may lead to renewed cancer progression and treatment resistance. The lack of nutrients, coupled with the induced hypoxia, triggers cell death and secretion of signals that affect the tumor niche. Many efforts have been made to better understand the contribution of hypoxia and metabolic stress to cancer progression and resistance, but mostly with respect to inflammation. Here we provide an overview of the direct anticancer effects of necrotic signals, which are not necessarily mediated by inflammation and the role of DAMPs (damage-associated molecular patterns) on the formation of a pro-cancerous environment.
Collapse
Affiliation(s)
- Adi Karsch-Bluman
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ofra Benny
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
175
|
Nishioka S, Wu PH, Yakabe T, Giaccia AJ, Le QT, Aoyama H, Shimizu S, Shirato H, Onodera Y, Nam JM. Rab27b contributes to radioresistance and exerts a paracrine effect via epiregulin in glioblastoma. Neurooncol Adv 2020; 2:vdaa091. [PMID: 33409495 PMCID: PMC7770522 DOI: 10.1093/noajnl/vdaa091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Radiotherapy is the standard treatment for glioblastoma (GBM). However, radioresistance of GBM cells leads to recurrence and poor patient prognosis. Recent studies suggest that secretion factors have important roles in radioresistance of tumor cells. This study aims to determine whether Rab27b, a small GTPase involved in secretory vesicle trafficking, plays a role in radioresistance of GBM. METHODS Microarray analysis, cell viability analysis, apoptosis assay, immunostaining, and in vivo experiments were performed to assess the effect of Rab27b on radioresistance of GBM. We further investigated paracrine effects mediated by Rab27b after X-ray irradiation using coculture systems of glioma cell lines. RESULTS Rab27b was specifically upregulated in irradiated U87MG cells. Furthermore, Rab27b knockdown decreased the proliferation of GBM cells after irradiation. Knockdown of Rab27b in U87MG cells combined with radiation treatment suppressed orthotopic tumor growth in the mouse brain and prolonged the survival of recipient mice. Interestingly, the co-upregulation of Rab27b and epiregulin (EREG), a member of the epidermal growth factor (EGF) family, correlated with radioresistance in glioma cell lines. Additionally, EREG, which was secreted from U87MG cells via Rab27b-mediated mechanism, activated EGF receptor and contributed to H4 cell proliferation in a paracrine manner. CONCLUSIONS Our results show that Rab27b mediates the radioresistance of highly malignant GBM cells. Rab27b promotes the proliferation of adjacent cells through EREG-mediated paracrine signaling after irradiation. Thus, the Rab27b-EREG pathway is a novel potential target to improve the efficacy of radiotherapy in GBM.
Collapse
Affiliation(s)
- Soichiro Nishioka
- Molecular and Cellular Dynamics Research, Graduate School of Biomedical Science and Engineering, Hokkaido University, Sapporo, Japan
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Ping-Hsiu Wu
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Quynh-Thu Le
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California, USA
| | - Hidefumi Aoyama
- Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichi Shimizu
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Department of Radiation Medical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroki Shirato
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Department of Molecular Biology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Jin-Min Nam
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
176
|
Carofino BL, Dinshaw KM, Ho PY, Cataisson C, Michalowski AM, Ryscavage A, Alkhas A, Wong NW, Koparde V, Yuspa SH. Head and neck squamous cancer progression is marked by CLIC4 attenuation in tumor epithelium and reciprocal stromal upregulation of miR-142-3p, a novel post-transcriptional regulator of CLIC4. Oncotarget 2019; 10:7251-7275. [PMID: 31921386 PMCID: PMC6944452 DOI: 10.18632/oncotarget.27387] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023] Open
Abstract
Chloride intracellular channel 4 (CLIC4) is a tumor suppressor implicated in processes including growth arrest, differentiation, and apoptosis. CLIC4 protein expression is diminished in the tumor parenchyma during progression in squamous cell carcinoma (SCC) and other neoplasms, but the underlying mechanisms have not been identified. Data from The Cancer Genome Atlas suggest this is not driven by genomic alterations. However, screening and functional assays identified miR-142-3p as a regulator of CLIC4. CLIC4 and miR-142-3p expression are inversely correlated in head and neck (HN) SCC and cervical SCC, particularly in advanced stage cancers. In situ localization revealed that stromal immune cells, not tumor cells, are the predominant source of miR-142-3p in HNSCC. Furthermore, HNSCC single-cell expression data demonstrated that CLIC4 is lower in tumor epithelial cells than in stromal fibroblasts and endothelial cells. Tumor-specific downregulation of CLIC4 was confirmed in an SCC xenograft model concurrent with immune cell infiltration and miR-142-3p upregulation. These findings provide the first evidence of CLIC4 regulation by miRNA. Furthermore, the distinct localization of CLIC4 and miR-142-3p within the HNSCC tumor milieu highlight the limitations of bulk tumor analysis and provide critical considerations for both future mechanistic studies and use of miR-142-3p as a HNSCC biomarker.
Collapse
Affiliation(s)
- Brandi L. Carofino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kayla M. Dinshaw
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Pui Yan Ho
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aleksandra M. Michalowski
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Andrew Ryscavage
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Nathan W. Wong
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Vishal Koparde
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Stuart H. Yuspa
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
177
|
Wang L, Niu Z, Wang X, Li Z, Liu Y, Luo F, Yan X. PHD2 exerts anti-cancer and anti-inflammatory effects in colon cancer xenografts mice via attenuating NF-κB activity. Life Sci 2019; 242:117167. [PMID: 31838134 DOI: 10.1016/j.lfs.2019.117167] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 02/05/2023]
Abstract
Recent studies suggested that prolyl hydroxylase 2 (PHD2) functions as an important regulator in vascular inflammation and Streptococcus pneumonia infection. However, whether PHD2 contributed to tumor progression prompted by intratumoral inflammation remains elusive. In this study, the effects of PHD2 in colon cancer were evaluated, and the underlying molecular mechanisms were investigated. The results showed that overexpressing PHD2 exerted proliferative and migratory inhibition in colon cancer cells. The expression of cell cycle and epithelial-mesenchymal transition (EMT)-associated proteins were changed: CyclinD1, CDK4, N-cadherin, and Vimentin were down-regulated, while E-cadherin was up-regulated in PHD2-overexpressing colon cancer cells. Moreover, in colon cancer xenograft mice, PHD2 overexpression suppressed tumor growth accompanied by decreased Ki67 expression. Importantly, we further demonstrated that overexpressing PHD2 attenuated inflammation in colon cancer xenograft mice through weakening accumulation of myeloid-derived suppressor cells (MDSCs) and M2-like tumor-associated macrophages (TAMs), as well as secretions of pro-inflammatory cytokines including G-CSF, TNF-α, IL-6, IL-8, IL-1β, and IL-4. Mechanistically, PHD2 overexpression obviously suppressed NF-κB activity through decreasing phosphorylated IκB-α while increasing cytoplasmic NF-κB p65 levels in colon cancer. Our findings support the anti-cancer and anti-inflammatory roles of PHD2 and offer a preclinical proof of tumor progression regulated by cancer cells and inflammation.
Collapse
Affiliation(s)
- Li Wang
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Zhendong Niu
- Department of Emergency Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xia Wang
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China; Department of Medical Oncology, Ganzhou City People's Hospital, Ganzhou, Jiangxi, China
| | - Zhixi Li
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yanyang Liu
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Feng Luo
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Xi Yan
- Lung Cancer Center, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
178
|
Heaster TM, Landman BA, Skala MC. Quantitative Spatial Analysis of Metabolic Heterogeneity Across in vivo and in vitro Tumor Models. Front Oncol 2019; 9:1144. [PMID: 31737571 PMCID: PMC6839277 DOI: 10.3389/fonc.2019.01144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 10/15/2019] [Indexed: 12/12/2022] Open
Abstract
Metabolic preferences of tumor cells vary within a single tumor, contributing to tumor heterogeneity, drug resistance, and patient relapse. However, the relationship between tumor treatment response and metabolically distinct tumor cell populations is not well-understood. Here, a quantitative approach was developed to characterize spatial patterns of metabolic heterogeneity in tumor cell populations within in vivo xenografts and 3D in vitro cultures (i.e., organoids) of head and neck cancer. Label-free images of cell metabolism were acquired using two-photon fluorescence lifetime microscopy of the metabolic co-enzymes NAD(P)H and FAD. Previous studies have shown that NAD(P)H mean fluorescence lifetimes can identify metabolically distinct cells with varying drug response. Thus, density-based clustering of the NAD(P)H mean fluorescence lifetime was used to identify metabolic sub-populations of cells, then assessed in control, cetuximab-, cisplatin-, and combination-treated xenografts 13 days post-treatment and organoids 24 h post-treatment. Proximity analysis of these metabolically distinct cells was designed to quantify differences in spatial patterns between treatment groups and between xenografts and organoids. Multivariate spatial autocorrelation and principal components analyses of all autofluorescence intensity and lifetime variables were developed to further improve separation between cell sub-populations. Spatial principal components analysis and Z-score calculations of autofluorescence and spatial distribution variables also visualized differences between models. This analysis captures spatial distributions of tumor cell sub-populations influenced by treatment conditions and model-specific environments. Overall, this novel spatial analysis could provide new insights into tumor growth, treatment resistance, and more effective drug treatments across a range of microscopic imaging modalities (e.g., immunofluorescence, imaging mass spectrometry).
Collapse
Affiliation(s)
- Tiffany M. Heaster
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States
- Morgridge Institute for Research, Madison, WI, United States
| | - Bennett A. Landman
- Department of Electrical Engineering, Computer Engineering, and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Melissa C. Skala
- Department of Biomedical Engineering, University of Wisconsin—Madison, Madison, WI, United States
- Morgridge Institute for Research, Madison, WI, United States
| |
Collapse
|
179
|
Chesnokova V, Melmed S. Growth hormone in the tumor microenvironment. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:568-575. [PMID: 31939481 PMCID: PMC7025769 DOI: 10.20945/2359-3997000000186] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/27/2019] [Indexed: 12/20/2022]
Abstract
Tumor development is a multistep process whereby local mechanisms enable somatic mutations during preneoplastic stages. Once a tumor develops, it becomes a complex organ composed of multiple cell types. Interactions between malignant and non-transformed cells and tissues create a tumor microenvironment (TME) comprising epithelial cancer cells, cancer stem cells, non-tumorous cells, stromal cells, immune-inflammatory cells, blood and lymphatic vascular network, and extracellular matrix. We review reports and present a hypothesis that postulates the involvement of growth hormone (GH) in field cancerization. We discuss GH contribution to TME, promoting epithelial-to-mesenchymal transition, accumulation of unrepaired DNA damage, tumor vascularity, and resistance to therapy. Arch Endocrinol Metab. 2019;63(6):568-75.
Collapse
Affiliation(s)
- Vera Chesnokova
- Pituitary CenterDepartment of MedicineCedars-Sinai Medical CenterLos AngelesCAUSAPituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shlomo Melmed
- Pituitary CenterDepartment of MedicineCedars-Sinai Medical CenterLos AngelesCAUSAPituitary Center, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
180
|
Romano S, Fonseca N, Simões S, Gonçalves J, Moreira JN. Nucleolin-based targeting strategies for cancer therapy: from targeted drug delivery to cytotoxic ligands. Drug Discov Today 2019; 24:1985-2001. [PMID: 31271738 DOI: 10.1016/j.drudis.2019.06.018] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/08/2019] [Accepted: 06/26/2019] [Indexed: 01/10/2023]
Abstract
Cancer is currently the second leading cause of death worldwide and current therapeutic approaches remain ineffective in several cases. Therefore, there is a need to develop more efficacious therapeutic agents, especially for subtypes of cancer lacking targeted therapies. Limited drug penetration into tumors impairs the efficacy of therapies targeting cancer cells. One of the strategies to overcome this problem is targeting the more accessible tumor vasculature via molecules such as nucleolin, which is expressed at the surface of cancer and angiogenic endothelial cells, thus enabling a dual cellular targeting strategy. In this review, we present and discuss nucleolin-based targeting strategies that have been developed for cancer therapy, with a special focus on recent antibody-based approaches.
Collapse
Affiliation(s)
- Sofia Romano
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; IIIUC - Institute for Interdisciplinary Research, University of Coimbra, Casa Costa Alemão - Pólo II, Rua Dom Francisco de Lemos, 3030-789 Coimbra, Portugal
| | - Nuno Fonseca
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; TREAT U, SA, Parque Industrial de Taveiro, Lote 44, 3045-508 Coimbra, Portugal
| | - Sérgio Simões
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548 Portugal
| | - João Gonçalves
- iMed. ULisboa - Research Institute for Medicines, Faculty of Pharmacy, University of Lisbon, Avenida Prof. Gama Pinto, 1649-003 Lisbon, Portugal
| | - João Nuno Moreira
- CNC - Center for Neuroscience and Cell Biology, Faculty of Medicine (Pólo I), University of Coimbra, Rua Larga, 3004-504, Coimbra, Portugal; FFUC - Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, Coimbra, 3000-548 Portugal.
| |
Collapse
|
181
|
Vihervuori H, Autere TA, Repo H, Kurki S, Kallio L, Lintunen MM, Talvinen K, Kronqvist P. Tumor-infiltrating lymphocytes and CD8 + T cells predict survival of triple-negative breast cancer. J Cancer Res Clin Oncol 2019; 145:3105-3114. [PMID: 31562550 PMCID: PMC6861359 DOI: 10.1007/s00432-019-03036-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/19/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE Tumor inflammatory response was evaluated as a prognostic feature in triple-negative breast cancer (TNBC) and compared with the clinical prognosticators of breast cancer and selected biomarkers of cancer cell proliferation. METHODS TNBC patients (n = 179) with complete clinical data and up to 18-year follow-up were obtained from Auria biobank, Turku University Hospital, Turku, Finland. Tumor-infiltrating lymphocytes (TILs) and several subtypes of inflammatory cells detected with immunohistochemistry were evaluated in different tumor compartments in full tissue sections and tissue microarrays. RESULTS Deficiency of stromal TILs and low number of CD8+ T cells independently predicted mortality in TNBC (HR 2.4, p 0.02 and HR 2.1, p 0.02, respectively). Each 10% decrease in stromal TILs resulted in 20% increased risk of mortality. An average of 13.2-year survival difference was observed between the majority (> 75%) of patients with low (< 14% of TILs) vs high (≥ 14% of TILs) frequency of CD8+ T cells. The prognostic value of TILs and CD8+ T cells varied when evaluated in different tumor compartments. TILs and CD8+ T cells were significantly associated with Securin and Separase, essential regulators of metaphase-anaphase transition of the cell cycle. DISCUSSION TILs and CD8+ T cells provide additional prognostic value to the established clinical prognostic markers in TNBC. However, possible clinical applications would still benefit from systematic guidelines for evaluating tumor inflammatory response. Increasing understanding on the interactions between the regulation of cancer cell proliferation and inflammatory response may in future advance treatment of TNBC.
Collapse
Affiliation(s)
- H Vihervuori
- Department of Pathology, Institute of Biomedicine, University of Turku, Turku, Finland.
| | - T A Autere
- Department of Pathology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - H Repo
- Department of Pathology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - S Kurki
- Auria Biobank, Turku, Finland
| | | | - M M Lintunen
- Department of Pathology, Turku University Hospital, Turku, Finland
| | - K Talvinen
- Department of Pathology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - P Kronqvist
- Department of Pathology, Institute of Biomedicine, University of Turku, Turku, Finland.,Department of Pathology, Turku University Hospital, Turku, Finland
| |
Collapse
|
182
|
Choodetwattana P, Proungvitaya S, Jearanaikoon P, Limpaiboon T. The Upregulation of OCT4 in Acidic Extracellular pH is Associated with Gemcitabine Resistance in Cholangiocarcinoma Cell Lines. Asian Pac J Cancer Prev 2019; 20:2745-2748. [PMID: 31554372 PMCID: PMC6976837 DOI: 10.31557/apjcp.2019.20.9.2745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Cholangiocarcinoma (CCA), although is an uncommon liver cancer originating from bile duct epithelial cells, is one of the top 10 most fatal cancers. Chemoresistance is an unmet need always found in CCA patients. Tumor microenvironment conditions such as hypoxia, nutrient starvation and acidic extracellular pH play critical roles in chemoresistance and cancer progression. However, the effect of acidic extracellular pH on cellular response and chemoresistance in CCA has not been studied. Methods: Human CCA cell lines (KKU-M213, KKU-M055 and KKU-100) were cultured under acidic (pH 6.5) or non-acidic (pH 7.4) condition and were used for gene expression, doubling time and cytotoxicity assay. Results: The acidic extracellular pH (pH 6.5) significantly increased doubling times of CCA cell lines compared with non-acidic condition (pH 7.4). Interestingly, extracellular acid condition induced gemcitabine resistance in CCA cell lines. We showed that Octamer-binding transcription factor 4 (Oct4) was upregulated in these cell lines under extracellular acid condition. Conclusion: Our findings demonstrate that CCA cells can adapt to survive in acidic environment after which chemoresistance has been developed. Oct4 may be a key transcriptional regulator which mediates chemoresistance in response to acidic extracellular pH.
Collapse
Affiliation(s)
- Phatchareeporn Choodetwattana
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Siriporn Proungvitaya
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Patcharee Jearanaikoon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Temduang Limpaiboon
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.
| |
Collapse
|
183
|
Shang H, Cao Z, Zhao J, Guan J, Liu J, Peng J, Chen Y, Joseph Sferra T, Sankararaman S, Lin J. Babao Dan induces gastric cancer cell apoptosis via regulating MAPK and NF-κB signaling pathways. J Int Med Res 2019; 47:5106-5119. [PMID: 31456462 PMCID: PMC6833375 DOI: 10.1177/0300060519867502] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Objective The objective was to further investigate apoptosis induction by Babao Dan (BBD), which supports its anti-tumor mechanisms, using two human gastric cancer cell lines (AGS and MGC80-3). Methods After treatment with various BBD concentrations, cell viability and cytotoxic effects were investigated using methyl thiazolyl tetrazolium (MTT) and lactate dehydrogenase (LDH) assays, respectively. The following indicators of cell apoptosis were evaluated: Annexin V-APC staining, caspase-3/-8/-9 activation, and mitochondrial membrane potential loss. Apoptosis-related protein levels (including Bcl-2-associated X protein [Bax], B-cell CLL/lymphoma 2 [Bcl-2], factor associated suicide [Fas], and Fas ligand [FasL]) were determined by western blot. The following multi-pathway factors were also assessed: p-ERK1/2, p-JNK, p-p38, and p-NF-κB. Results The MTT and LDH assays both demonstrated increased BBD cytotoxicity. BBD induced cell apoptosis by stimulating caspase-3/-8/-9 activity and destroying the mitochondrial membrane potential. BBD also regulated key factor expression levels including Bcl-2, Bax, Fas, and FasL and down-regulated protein phosphorylation via the MAPK and NF-κB pathway. Conclusions The possible anti-tumor mechanism is that BBD induces apoptosis via the MAPK and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Haixia Shang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Zhiyun Cao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jinyan Zhao
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jianhua Guan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jianxin Liu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| | - Youqin Chen
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Thomas Joseph Sferra
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Senthilkumar Sankararaman
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Department of Pediatrics, Case Western Reserve University School of Medicine, Rainbow Babies and Children's Hospital, Cleveland, OH, USA
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China.,Fujian Key Laboratory of Integrative Medicine on Geriatric, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, China
| |
Collapse
|
184
|
Zhang X, Hwang YS. Cancer-associated fibroblast stimulates cancer cell invasion in an interleukin-1 receptor (IL-1R)-dependent manner. Oncol Lett 2019; 18:4645-4650. [PMID: 31611973 PMCID: PMC6781746 DOI: 10.3892/ol.2019.10784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/05/2019] [Indexed: 12/30/2022] Open
Abstract
Tumor microenvironment serves an important role in tumor growth and metastasis. Cancer cells can promote growth and malignancy by altering the surrounding stroma. Cancer-associated fibroblast (CAF) are an abundant cell type present within the tumor microenvironment and provide tumorigenic features by secreting cytokines. In the current study, the CAF-mediated invasion of oral squamous cell carcinoma (OSCC) was investigated and the associated mechanisms were elucidated. Cancer invasion was estimated using a Matrigel-coated Transwell chamber and FITC-gelatin matrix. To verify the effect of the tumor microenvironment, conditioned media (CM) from normal fibroblast (NF) and CAFs were prepared. An ELISA was performed to estimate the level of IL-1β. A proteome profiler human protease array was performed to verify the proteases affected by stimulation with CM, from CAF. Recombinant IL-1β protein increased the invasion of OSCC cells. IL-1β expression was higher in CAF than NF. CM from CAF (CM-CAF) increased cancer invasion and FITC-gelatin matrix degradation. The invasive capacity provided by CAF was abrogated by an IL-1 receptor (IL-1R) antagonist. Additionally, CM-CAF increased the secretion of ADAM 9 and Kallikrein 11 from OSCC cells. The invasion activity by CM-CAF was partially abrogated by the neutralization of ADAM 9 or Kallikrein 11. In conclusion, by providing stromal factor, CAFs were a critical inducer of OSCC invasion, and CAF secretes the required amount of IL-1β to increase cancer invasion activity. The invasive capacity of CAF was identified to be IL-1R-dependent. ADAM 9 and Kallikrein 11 were influencing factors involved in the increase of CAF-mediated cancer invasion.
Collapse
Affiliation(s)
- Xianglan Zhang
- Department of Pathology, Yanbian University Hospital, Yanji, Jilin 133000, P.R. China.,Oral Cancer Institute, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Young Sun Hwang
- Department of Dental Hygiene, College of Health Science, Eulji University, Seongnam, Gyunggi-Do 13135, Republic of Korea
| |
Collapse
|
185
|
Shan L, Fan W, Wang W, Tang W, Yang Z, Wang Z, Liu Y, Shen Z, Dai Y, Cheng S, Jacobson O, Zhai K, Hu J, Ma Y, Kiesewetter DO, Gao G, Chen X. Organosilica-Based Hollow Mesoporous Bilirubin Nanoparticles for Antioxidation-Activated Self-Protection and Tumor-Specific Deoxygenation-Driven Synergistic Therapy. ACS NANO 2019; 13:8903-8916. [PMID: 31374171 DOI: 10.1021/acsnano.9b02477] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A major concern about glucose oxidase (GOx)-mediated cancer starvation therapy is its ability to induce serious oxidative damage to normal tissues through the massive production of H2O2 byproducts in the oxygen-involved glucose decomposition reaction, which may be addressed by using a H2O2 scavenger, known as an antioxidation agent. Surprisingly, H2O2 removal accelerates the aerobic glycometabolism of tumors by activating the H2O2-dependent "redox signaling" pathway of cancer cells. Simultaneous oxygen depletion further aggravates tumor hypoxia to increase the toxicity of a bioreductive prodrug, such as tirapazamine (TPZ), thereby improving the effectiveness of cancer starvation therapy and bioreductive chemotherapy. Herein, a "nitrogen-protected silica template" method is proposed to design a nanoantioxidant called an organosilica-based hollow mesoporous bilirubin nanoparticle (HMBRN), which can act as an excellent nanocarrier to codeliver GOx and TPZ. In addition to efficient removal of H2O2 for self-protection of normal tissues via antioxidation, GOx/TPZ-coloaded HMBRN can also rapidly deplete intratumoral glucose/oxygen to promote a synergistic starvation-enhanced bioreductive chemotherapeutic effect for the substantial suppression of solid tumor growth. Distinct from the simple combination of two treatments, this study introduces antioxidation-activated self-protection nanotechnology for the significant improvement of tumor-specific deoxygenation-driven synergistic treatment efficacy without additional external energy input, thus realizing the renaissance of precise endogenous cancer therapy with negligible side effects.
Collapse
Affiliation(s)
- Lingling Shan
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering , Suzhou University , Suzhou 234000 , China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Weiwei Wang
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering , Suzhou University , Suzhou 234000 , China
| | - Wei Tang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Zheyu Shen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Yunlu Dai
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Siyuan Cheng
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Orit Jacobson
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Kefeng Zhai
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering , Suzhou University , Suzhou 234000 , China
| | - Junkai Hu
- Department of Chemistry & Biochemistry , University of Maryland , College Park , Maryland 20742 , United States
| | - Ying Ma
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Dale O Kiesewetter
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Guizhen Gao
- Institute of Pharmaceutical Biotechnology, School of Biology and Food Engineering , Suzhou University , Suzhou 234000 , China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB) , National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| |
Collapse
|
186
|
Barriga V, Kuol N, Nurgali K, Apostolopoulos V. The Complex Interaction between the Tumor Micro-Environment and Immune Checkpoints in Breast Cancer. Cancers (Basel) 2019; 11:cancers11081205. [PMID: 31430935 PMCID: PMC6721629 DOI: 10.3390/cancers11081205] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/08/2019] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
The progression of breast cancer and its association with clinical outcome and treatment remain largely unexplored. Accumulating data has highlighted the interaction between cells of the immune system and the tumor microenvironment in cancer progression, and although studies have identified multiple facets of cancer progression within the development of the tumor microenvironment (TME) and its constituents, there is lack of research into the associations between breast cancer subtype and staging. Current literature has provided insight into the cells and pathways associated with breast cancer progression through expression analysis. However, there is lack of co-expression studies between immune pathways and cells of the TME that form pro-tumorigenic relationships contributing to immune-evasion. We focus on the immune checkpoint and TME elements that influence cancer progression, particularly studies in molecular subtypes of breast cancer.
Collapse
Affiliation(s)
- Vanessa Barriga
- College of Health and Biomedicine, Victoria University, Melbourne 3030, Australia
- Institute for Health and Sport, Victoria University, Melbourne 3030, Australia
| | - Nyanbol Kuol
- Institute for Health and Sport, Victoria University, Melbourne 3030, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne 3030, Australia
| | | |
Collapse
|
187
|
Gap Junction Intercellular Communication in the Carcinogenesis Hallmarks: Is This a Phenomenon or Epiphenomenon? Cells 2019; 8:cells8080896. [PMID: 31416286 PMCID: PMC6721698 DOI: 10.3390/cells8080896] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/03/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022] Open
Abstract
If occupational tumors are excluded, cancer causes are largely unknown. Therefore, it appeared useful to work out a theory explaining the complexity of this disease. More than fifty years ago the first demonstration that cells communicate with each other by exchanging ions or small molecules through the participation of connexins (Cxs) forming Gap Junctions (GJs) occurred. Then the involvement of GJ Intercellular Communication (GJIC) in numerous physiological cellular functions, especially in proliferation control, was proven and accounts for the growing attention elicited in the field of carcinogenesis. The aim of the present paper is to verify and discuss the role of Cxs, GJs, and GJIC in cancer hallmarks, pointing on the different involved mechanisms in the context of the multi-step theory of carcinogenesis. Functional GJIC acts both as a tumor suppressor and as a tumor enhancer in the metastatic stage. On the contrary, lost or non-functional GJs allow the uncontrolled proliferation of stem/progenitor initiated cells. Thus, GJIC plays a key role in many biological phenomena or epiphenomena related to cancer. Depending on this complexity, GJIC can be considered a tumor suppressor in controlling cell proliferation or a cancer ally, with possible preventive or therapeutic implications in both cases.
Collapse
|
188
|
Azodyes as markers for tumor hypoxia imaging and therapy: An up-to-date review. Chem Biol Interact 2019; 307:91-104. [DOI: 10.1016/j.cbi.2019.04.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/21/2019] [Accepted: 04/28/2019] [Indexed: 12/20/2022]
|
189
|
Morimoto Y, Tamura R, Ohara K, Kosugi K, Oishi Y, Kuranari Y, Yoshida K, Toda M. Prognostic significance of VEGF receptors expression on the tumor cells in skull base chordoma. J Neurooncol 2019; 144:65-77. [PMID: 31240525 DOI: 10.1007/s11060-019-03221-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Chordoma is a rare refractory neoplasm that arises from the embryological remnants of the notochord, which is incurable using any multimodality therapy. Vascular endothelial growth factor (VEGF) is a potent activator of angiogenesis that is strongly associated with the tumor-immune microenvironment. These factors have not been elucidated for chordomas. METHODS To evaluate the characteristics of vascular and tumor cells in chordoma, we first analyzed the expression of VEGF receptor (VEGFR) 1, VEGFR2, CD34, and Brachyury in a cell line and 54 tumor tissues. Patients with primary skull base chordomas were divided into the following two groups as per the tumor growth rate: patients with slow progression (SP: < 3 mm/year) and those with rapid progression (RP: ≥ 3 mm/year). Thus, the expressions of VEGF-A, VEGFR 1, and VEGFR2 on tumor cells; tumor infiltrative immune cells, including regulatory T cells (Tregs) and tumor-associated macrophages (TAMs); and immune-checkpoint molecules (PD-1/PD-L1) were analyzed with the clinical courses, especially in a comparison between the two groups. RESULTS In chordomas, both VEGFR1 and VEGFR2 were strongly expressed not only on vascular endothelial cells, but also on tumor cells. The recurrent cases showed significantly higher VEGFR1 expressions on tumor cells than the primary cases. The expression of VEGF-A was significantly higher in RP than that in SP group. The numbers of CD163+ TAMs and Foxp3+ Tregs were higher in RP than that in SP group. CONCLUSIONS Expression of VEGFR1 and VEGFR2 on tumor cells and immunosuppressive tumor-microenvironment were related to tumor growth in patients with chordomas.
Collapse
Affiliation(s)
- Yukina Morimoto
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Ryota Tamura
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kentaro Ohara
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kenzo Kosugi
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yumiko Oishi
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuki Kuranari
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kazunari Yoshida
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masahiro Toda
- Department of Neurosurgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
190
|
Prostate carcinoma cell-derived exosomal MicroRNA-26a modulates the metastasis and tumor growth of prostate carcinoma. Biomed Pharmacother 2019; 117:109109. [PMID: 31229922 DOI: 10.1016/j.biopha.2019.109109] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022] Open
Abstract
Prostate carcinoma may develop into metastatic castration-resistant prostate carcinoma (mCRPC) after endocrine therapy. Exosomal microRNAs play an important role in the regulation of tumor microenvironment. Our study aimed to investigate the effect of exosomal miR-26a on tumor phenotype of prostate carcinoma. Low-grade prostate carcinoma cell line (LNCAP) and mCRPC cell line (PC-3) were treated as experimental subjects according to their miR-26a expressions. Wound healing, transwell and colony-forming unit assays were performed after miR-26a mimic/inhibitor transfection. Then, exosomes were isolated from LNCAP and PC-3 cells, and the levels of exosomal miR-26a were determined. After co-culture of LNCAP (PC-3) cells with PC-3 (LNCAP) exosomes, changes in malignant behaviors were measured. Moreover, LNCAP/PC-3 exosomes were injected into xenograft tumor mice to determine effects of the exosomes on tumorigenicity of LNCAP and PC-3 cells. MiR-26a showed a potently inhibitory effect on cell proliferation, migration and invasion of LNCAP and PC-3 cells. LNCAP exosomes had a higher miR-26a level, compared with PC-3 exosomes. Overexpression of miR-26a attenuated the enhanced malignant behavior of LNCAP cells induced by PC-3 exosomes, and miR-26a inhibition could reverse the inhibitory effects of LNCAP exosomes on PC-3 cells. Exosomal miR-26a could significantly alter the expressions of epithelial-mesenchymal transition (EMT)-related factors. Moreover, LNCAP exosomes suppressed the tumorigenicity of PC-3 cells, while PC-3 exosomes could promote the tumorigenicity of LNCAP cells. Our data suggest that exosomal miR-26a derived from prostate carcinoma cells had a suppressive effect on the metastasis and tumor growth of prostate carcinoma.
Collapse
|
191
|
Immunological and vascular characteristics in cavernous sinus meningioma. J Clin Neurosci 2019; 67:198-203. [PMID: 31213381 DOI: 10.1016/j.jocn.2019.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/10/2019] [Indexed: 11/21/2022]
Abstract
OBJECTIVES It is difficult to treat cavernous sinus (CS) meningiomas because of their complex vascular and neurological structures. Recently, immunotherapy has become an attractive therapeutic modality, but the role of tumor immune microenvironment is yet to be investigated for CS meningiomas. In the current study, these molecular and histopathological characteristics were examined in CS meningiomas. METHODS The present study used twenty-eight meningioma tissues arising in two different locations (8 CS and 20 convexity meningiomas). Immunohistochemical analyses were performed with CD3, CD4, CD8, Foxp3, CD163, PDGFR-β, VEGF receptors 1 & 2 (VEGFR-1, VEGFR-2), VEGF-A and HIF-1α. Quantitative polymerase chain reaction (qPCR) was performed to assess the expression of Foxp3, VEGF-A, CD163, VEGFRs-1 & 2 and HIF-1α. RESULTS The numbers of different tumor-infiltrating immune cells, such as immunosuppressive cells, were significantly lower in CS meningiomas compared with convexity meningiomas. Analysis of the vascular characteristics showed the vessels in the CS meningiomas were covered with PDGFR-β-positive pericytes and were negative or had only very low amounts of VEGFR-1 and VEGFR-2. However, most vessels in convexity meningiomas showed high VEGFRs expression and were not covered with pericytes. Immunohistochemical and qPCR analyses revealed that the expression of HIF-1α, VEGF-A and VEGFRs-1 & 2 was lower in CS meningiomas. CONCLUSION Fewer immunocompetent cells were observed in CS meningiomas compared with convexity meningiomas. Lower expression of VEGF-A, VEGFRs-1 and 2, and the vascular structure may contribute to this specific immune microenvironment.
Collapse
|
192
|
Eiro N, Gonzalez LO, Fraile M, Cid S, Schneider J, Vizoso FJ. Breast Cancer Tumor Stroma: Cellular Components, Phenotypic Heterogeneity, Intercellular Communication, Prognostic Implications and Therapeutic Opportunities. Cancers (Basel) 2019; 11:cancers11050664. [PMID: 31086100 PMCID: PMC6562436 DOI: 10.3390/cancers11050664] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/17/2022] Open
Abstract
Although the mechanisms underlying the genesis and progression of breast cancer are better understood than ever, it is still the most frequent malignant tumor in women and one of the leading causes of cancer death. Therefore, we need to establish new approaches that lead us to better understand the prognosis of this heterogeneous systemic disease and to propose new therapeutic strategies. Cancer is not only a malignant transformation of the epithelial cells merely based on their autonomous or acquired proliferative capacity. Today, data support the concept of cancer as an ecosystem based on a cellular sociology, with diverse components and complex interactions between them. Among the different cell types that make up the stroma, which have a relevant role in the dynamics of tumor/stromal cell interactions, the main ones are cancer associated fibroblasts, endothelial cells, immune cells and mesenchymal stromal cells. Several factors expressed by the stroma of breast carcinomas are associated with the development of metastasis, such as matrix metalloproteases, their tissular inhibitors or some of their regulators like integrins, cytokines or toll-like receptors. Based on the expression of these factors, two types of breast cancer stroma can be proposed with significantly different influence on the prognosis of patients. In addition, there is evidence about the existence of bi-directional signals between cancer cells and tumor stroma cells with prognostic implications, suggesting new therapeutic strategies in breast cancer.
Collapse
Affiliation(s)
- Noemi Eiro
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Luis O Gonzalez
- Department of Anatomical Pathology, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - María Fraile
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Sandra Cid
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| | - Jose Schneider
- Department of Obstetrics and Gynecology, Universidad Rey Juan Carlos, Avda. de Atenas s/n, 28922, Alcorcón, Madrid, Spain.
| | - Francisco J Vizoso
- Research Unit, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
- Department of Surgery, Fundación Hospital de Jove, Avda. Eduardo Castro, 161, 33290 Gijón, Spain.
| |
Collapse
|
193
|
Huang WC, Kuo KT, Wang CH, Yeh CT, Wang Y. Cisplatin resistant lung cancer cells promoted M2 polarization of tumor-associated macrophages via the Src/CD155/MIF functional pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:180. [PMID: 31036057 PMCID: PMC6489343 DOI: 10.1186/s13046-019-1166-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/02/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Lung cancer often ranks one of the most prevalent malignancies in the world. One of the most challenging aspects of treating late-stage lung cancer patients is the development of drug resistance, from both conventional chemo- and targeted therapeutic agents. Tumor-associated microphages (TAMs) have been shown to promote the survival and distant metastasis of lung cancer cells. METHODS This study investigated the TAMs - modulating potential of cisplatin-resistant non-small cell lung cancer (NSCLC) cell lines, A549R and H460R by using bioinformatics approach, immunoblotting, immunofluorescence staining, migration, invasion, colony, lung sphere formation and xenograft tumorigenecity assays. RESULTS In this study, we first demonstrated the elevated expression of oncogenic and stemenss markers such as Src, Notch1, macrophage inhibitory factor (MIF) and CD155 in trained cisplatin (CDDP)-resistant A549 and H460 cells (A549R and H460R cells). When co-cultured with TAMs, A549R and H460R cells promoted the M2-polarization in TAMs. In addition, A549R and H460R cells showed an increased self-renewal ability as they formed tumor spheres at higher frequency comparing to their parental counterparts. The increased MIF secretion by the A549R and H460R cells could be suppressed by a multiple kinase inhibitor, dasatinib, which resulted in the decreased of oncogenic network of Src, CD155 and MIF expression. Similarly, dasatinib treatment reduced the M2 polarization in TAMs and suppressed self-renewal ability of the A549R and H460R cells. CONCLUSION In summary, cisplatin resistant lung cancer cells not only showed an increased self-renewal ability but also promoted M2 polarization of TAMs via the secretion of MIF. These findings were linked to the increased Src-associated signaling as dasatinib treatment significantly reversed these phenomena. Thus, kinase inhibitors such as dasatinib may be of potential for treating cisplatin-resistant lung cancer by targeting both tumor and the tumor microenvironment.
Collapse
Affiliation(s)
- Wen-Chien Huang
- MacKay Medical College, Taipei, Taiwan.,Division of Thoracic Surgery, Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Kuang-Tai Kuo
- Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.,Division of Thoracic Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Hua Wang
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan.,Department of Dermatology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan.
| | - Yongjie Wang
- Department of Thoracic Surgery, The Affiliation Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
194
|
Li W, Han Y, Zhao Z, Ji X, Wang X, Jin J, Wang Q, Guo X, Cheng Z, Lu M, Wang G, Wang Y, Liu H. Oral mucosal mesenchymal stem cell‑derived exosomes: A potential therapeutic target in oral premalignant lesions. Int J Oncol 2019; 54:1567-1578. [PMID: 30896790 PMCID: PMC6438436 DOI: 10.3892/ijo.2019.4756] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/23/2019] [Indexed: 02/07/2023] Open
Abstract
Emerging evidence indicates that mesenchymal stem cells (MSCs) serve an indispensable role in the tumor microenvironment. However, whether MSCs participate in the development of oral carcinogenesis remains unclear. The present study isolated MSCs from clinical tissues and investigated the differences of MSCs derived from normal oral mucosa (N-MSC), oral leukoplakia with dysplasia (LK-MSC) and oral carcinoma (Ca-MSC). The results revealed that the LK-MSCs exhibited reduced proliferation and migration, compared with the N-MSCs and Ca-MSCs. Furthermore, it was demonstrated that the exosomes secreted by LK-MSCs have significant roles in promoting proliferation, migration and invasion in vitro, which was similar to the Ca-MSC-derived exosomes. The promoting effect was also demonstrated in a 3D coculture model. When the secretion of exosomes was blocked, the promoting effect of LK-MSCs was reversed. Based on a microarray analysis of MSC-derived exosomes, microRNA-8485 (miR-8485) was identified to be ectopically expressed. The exosomal miR-8485 was capable of promoting the proliferation, migration and invasion of tumor cells. Therefore, the present study highlights the significance of MSC-derived exosomes and exosomal miR-8485 in premalignant lesions and carcinogenesis. Intervention with the secretion of MSC-derived-exosomes may be an innovative strategy to retard the carcinogenesis.
Collapse
Affiliation(s)
- Wenwen Li
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Ying Han
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Zhongfang Zhao
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Xiaoli Ji
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Xing Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Jianqiu Jin
- Department of Stomatology, Beijing Hospital, Beijing 100730, P.R. China
| | - Qian Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Xiang Guo
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Zhe Cheng
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Mingxing Lu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Guodong Wang
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Yixiang Wang
- Department of Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| | - Hongwei Liu
- Department of Oral Medicine, Peking University School and Hospital of Stomatology, Beijing 100081, P.R. China
| |
Collapse
|
195
|
Resveratrol as a Tumor-Suppressive Nutraceutical Modulating Tumor Microenvironment and Malignant Behaviors of Cancer. Int J Mol Sci 2019; 20:ijms20040925. [PMID: 30791624 PMCID: PMC6412705 DOI: 10.3390/ijms20040925] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022] Open
Abstract
Tumor-suppressive effects of resveratrol have been shown in various types of cancer. However, regulation of tumor microenvironment by resveratrol is still unclear. Recent findings suggest resveratrol can potentiate its tumor-suppressive effect through modulation of the signaling pathways of cellular components (fibroblasts, macrophages and T cells). Also, studies have shown that resveratrol can suppress malignant phenotypes of cancer cells acquired in response to stresses of the tumor microenvironment, such as hypoxia, oxidative stress and inflammation. We discuss the effects of resveratrol on cancer cells in stress environment of tumors as well as interactions between cancer cells and non-cancer cells in this review.
Collapse
|
196
|
Targeting Tumor Microenvironment for Cancer Therapy. Int J Mol Sci 2019; 20:ijms20040840. [PMID: 30781344 PMCID: PMC6413095 DOI: 10.3390/ijms20040840] [Citation(s) in RCA: 768] [Impact Index Per Article: 153.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Cancer development is highly associated to the physiological state of the tumor microenvironment (TME). Despite the existing heterogeneity of tumors from the same or from different anatomical locations, common features can be found in the TME maturation of epithelial-derived tumors. Genetic alterations in tumor cells result in hyperplasia, uncontrolled growth, resistance to apoptosis, and metabolic shift towards anaerobic glycolysis (Warburg effect). These events create hypoxia, oxidative stress and acidosis within the TME triggering an adjustment of the extracellular matrix (ECM), a response from neighbor stromal cells (e.g., fibroblasts) and immune cells (lymphocytes and macrophages), inducing angiogenesis and, ultimately, resulting in metastasis. Exosomes secreted by TME cells are central players in all these events. The TME profile is preponderant on prognosis and impacts efficacy of anti-cancer therapies. Hence, a big effort has been made to develop new therapeutic strategies towards a more efficient targeting of TME. These efforts focus on: (i) therapeutic strategies targeting TME components, extending from conventional therapeutics, to combined therapies and nanomedicines; and (ii) the development of models that accurately resemble the TME for bench investigations, including tumor-tissue explants, “tumor on a chip” or multicellular tumor-spheroids.
Collapse
|
197
|
Cayrol F, Sterle HA, Díaz Flaqué MC, Barreiro Arcos ML, Cremaschi GA. Non-genomic Actions of Thyroid Hormones Regulate the Growth and Angiogenesis of T Cell Lymphomas. Front Endocrinol (Lausanne) 2019; 10:63. [PMID: 30814977 PMCID: PMC6381017 DOI: 10.3389/fendo.2019.00063] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
T-cell lymphomas (TCL) are a heterogeneous group of aggressive clinical lymphoproliferative disorders with considerable clinical, morphological, immunophenotypic, and genetic variation, including ~10-15% of all lymphoid neoplasms. Several evidences indicate an important role of the non-neoplastic microenvironment in promoting both tumor growth and dissemination in T cell malignancies. Thus, dysregulation of integrin expression and activity is associated with TCL survival and proliferation. We found that thyroid hormones acting via the integrin αvβ3 receptor are crucial factors in tumor microenvironment (TME) affecting the pathophysiology of TCL cells. Specifically, TH-activated αvβ3 integrin signaling promoted TCL proliferation and induced and an angiogenic program via the up-regulation of the vascular endothelial growth factor (VEGF). This was observed both on different TCL cell lines representing the different subtypes of human hematological malignancy, and in preclinical models of TCL tumors xenotransplanted in immunodeficient mice as well. Moreover, development of solid tumors by inoculation of murine TCLs in syngeneic hyperthyroid mice, showed increased tumor growth along with increased expression of cell cycle regulators. The genomic or pharmacological inhibition of integrin αvβ3 decreased VEGF production, induced TCL cell death and decreased in vivo tumor growth and angiogenesis. Here, we review the non-genomic actions of THs on TCL regulation and their contribution to TCL development and evolution. These actions not only provide novel new insights on the endocrine modulation of TCL, but also provide a potential molecular target for its treatment.
Collapse
Affiliation(s)
- Florencia Cayrol
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Helena A Sterle
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Maria Celeste Díaz Flaqué
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Maria Laura Barreiro Arcos
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
| | - Graciela A Cremaschi
- Instituto de Investigaciones Biomédicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- Laboratorio de Radioisótopos, Cátedra de Física, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
198
|
Voltammetric immunosensor for E-cadherin promoter DNA methylation using a Fe3O4-citric acid nanocomposite and a screen-printed carbon electrode modified with poly(vinyl alcohol) and reduced graphene oxide. Mikrochim Acta 2019; 186:170. [DOI: 10.1007/s00604-019-3234-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/04/2019] [Indexed: 12/12/2022]
|
199
|
Raguraman R, Parameswaran S, Kanwar JR, Khetan V, Rishi P, Kanwar RK, Krishnakumar S. Evidence of Tumour Microenvironment and Stromal Cellular Components in Retinoblastoma. Ocul Oncol Pathol 2019; 5:85-93. [PMID: 30976585 PMCID: PMC6422135 DOI: 10.1159/000488709] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/19/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The tumour microenvironment (TME) consisting of tumour cells and multiple stromal cell types regulate tumour growth, invasion and metastasis. While the concept of TME and presence of stromal cellular components is widely established in cancers, its significance in the paediatric intraocular malignancy, retinoblastoma (RB), remains unknown. METHODS The study qualitatively identified the presence of multiple stromal cellular subtypes in RB TME by immunohistochemistry. RESULTS Results of the study identified the presence of stromal cell types such as endothelial cells, tumour-associated macrophages, fibroblasts, cancer-associated fibroblasts, retinal astrocytes and glia in RB TME. The extent of stromal marker positivity, however, did not correlate with histopathological features of RB. CONCLUSIONS The findings of the study convincingly suggest the presence of a stromal component in RB tumours. The interactions between stromal cells and tumour cells might be of profound importance in RB progression.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Larsen and Toubro Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Sowmya Parameswaran
- Radheshyam Kanoi Stem Cell Laboratory, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Jagat Rakesh Kanwar
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Vikas Khetan
- Department of Ocular Oncology, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Pukhraj Rishi
- Department of Ocular Oncology, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Rupinder Kaur Kanwar
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Subramanian Krishnakumar
- Department of Larsen and Toubro Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
- School of Medicine, Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
200
|
The Adaptive Complexity of Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2018:5837235. [PMID: 30627563 PMCID: PMC6304530 DOI: 10.1155/2018/5837235] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022]
Abstract
Cancer treatment options are expanding to the benefit of significant segments of patients. However, their therapeutic power is not equally realized for all cancer patients due to drug toxicity and disease resistance. Overcoming these therapeutic challenges would require a better understanding of the adaptive survival mechanisms of cancer. In this respect, an integrated view of the disease as a complex adaptive system is proposed as a framework to explain the dynamic coupling between the various drivers underlying tumor growth and cancer resistance to therapy. In light of this system view of cancer, the immune system is in principal the most appropriate and naturally available therapeutic instrument that can thwart the adaptive survival mechanisms of cancer. In this respect, new cancer therapies should aim at restoring immunosurveillance by priming the induction of an effective immune response through a judicious targeting of immunosuppression, inflammation, and the tumor nutritional lifeline extended by the tumor microenvironment.
Collapse
|