151
|
Abstract
The mechanisms driving dormancy of disseminated tumor cells (DTCs) remain largely unknown. Here, we discuss experimental evidence and theoretical frameworks that support three potential scenarios contributing to tumor cell dormancy. The first scenario proposes that DTCs from invasive cancers activate stress signals in response to the dissemination process and/or a growth suppressive target organ microenvironment inducing dormancy. The second scenario asks whether therapy and/or micro-environmental stress conditions (e.g. hypoxia) acting on primary tumor cells carrying specific gene signatures prime new DTCs to enter dormancy in a matching target organ microenvironment that can also control the timing of DTC dormancy. The third and final scenario proposes that early dissemination contributes a population of DTCs that are unfit for immediate expansion and survive mostly in an arrested state well after primary tumor surgery, until genetic and/or epigenetic mechanisms activate their proliferation. We propose that DTC dormancy is ultimately a survival strategy that when targeted will eradicate dormant DTCs preventing metastasis. For these non-mutually exclusive scenarios we review experimental and clinical evidence in their support.
Collapse
|
152
|
Dangaj D, Abbott KL, Mookerjee A, Zhao A, Kirby PS, Sandaltzopoulos R, Powell DJ, Lamazière A, Siegel DL, Wolf C, Scholler N. Mannose receptor (MR) engagement by mesothelin GPI anchor polarizes tumor-associated macrophages and is blocked by anti-MR human recombinant antibody. PLoS One 2011; 6:e28386. [PMID: 22163010 PMCID: PMC3232216 DOI: 10.1371/journal.pone.0028386] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Accepted: 11/07/2011] [Indexed: 12/18/2022] Open
Abstract
Tumor-infiltrating macrophages respond to microenvironmental signals by developing a tumor-associated phenotype characterized by high expression of mannose receptor (MR, CD206). Antibody cross-linking of CD206 triggers anergy in dendritic cells and CD206 engagement by tumoral mucins activates an immune suppressive phenotype in tumor-associated macrophages (TAMs). Many tumor antigens are heavily glycosylated, such as tumoral mucins, and/or attached to tumor cells by mannose residue-containing glycolipids (GPI anchors), as for example mesothelin and the family of carcinoembryonic antigen (CEA). However, the binding to mannose receptor of soluble tumor antigen GPI anchors via mannose residues has not been systematically studied. To address this question, we analyzed the binding of tumor-released mesothelin to ascites-infiltrating macrophages from ovarian cancer patients. We also modeled functional interactions between macrophages and soluble mesothelin using an in vitro system of co-culture in transwells of healthy donor macrophages with human ovarian cancer cell lines. We found that soluble mesothelin bound to human macrophages and that the binding depended on the presence of GPI anchor and of mannose receptor. We next challenged the system with antibodies directed against the mannose receptor domain 4 (CDR4-MR). We isolated three novel anti-CDR4-MR human recombinant antibodies (scFv) using a yeast-display library of human scFv. Anti-CDR4-MR scFv #G11 could block mesothelin binding to macrophages and prevent tumor-induced phenotype polarization of CD206(low) macrophages towards TAMs. Our findings indicate that tumor-released mesothelin is linked to GPI anchor, engages macrophage mannose receptor, and contributes to macrophage polarization towards TAMs. We propose that compounds able to block tumor antigen GPI anchor/CD206 interactions, such as our novel anti-CRD4-MR scFv, could prevent tumor-induced TAM polarization and have therapeutic potential against ovarian cancer, through polarization control of tumor-infiltrating innate immune cells.
Collapse
Affiliation(s)
- Denarda Dangaj
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Karen L. Abbott
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Ananda Mookerjee
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Aizhi Zhao
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Pamela S. Kirby
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Raphael Sandaltzopoulos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Daniel J. Powell
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Antonin Lamazière
- Department of Biochemistry, School of Medicine Saint Antoine, Université Pierre et Marie Curie, Paris, France
| | - Don L. Siegel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Claude Wolf
- Department of Biochemistry, School of Medicine Saint Antoine, Université Pierre et Marie Curie, Paris, France
| | - Nathalie Scholler
- Department of Obstetrics and Gynecology, Penn Ovarian Cancer Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
153
|
Cassetta L, Cassol E, Poli G. Macrophage polarization in health and disease. ScientificWorldJournal 2011; 11:2391-402. [PMID: 22194670 PMCID: PMC3236674 DOI: 10.1100/2011/213962] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 11/09/2011] [Indexed: 02/07/2023] Open
Abstract
Macrophages are terminally differentiated cells of the mononuclear phagocyte system that also encompasses dendritic cells, circulating blood monocytes, and committed myeloid progenitor cells in the bone marrow. Both macrophages and their monocytic precursors can change their functional state in response to microenvironmental cues exhibiting a marked heterogeneity. However, there are still uncertainties regarding distinct expression patterns of surface markers that clearly define macrophage subsets, particularly in the case of human macrophages. In addition to their tissue distribution, macrophages can be functionally polarized into M1 (proinflammatory) and M2 (alternatively activated) as well as regulatory cells in response to both exogenous infections and solid tumors as well as by systems biology approaches.
Collapse
Affiliation(s)
- Luca Cassetta
- Department of Developmental and Molecular Biology, Center for the Study of Reproductive Biology and Women's Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
154
|
Shirabe K, Mano Y, Muto J, Matono R, Motomura T, Toshima T, Takeishi K, Uchiyama H, Yoshizumi T, Taketomi A, Morita M, Tsujitani S, Sakaguchi Y, Maehara Y. Role of tumor-associated macrophages in the progression of hepatocellular carcinoma. Surg Today 2011; 42:1-7. [PMID: 22116397 DOI: 10.1007/s00595-011-0058-8] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 02/16/2011] [Indexed: 12/12/2022]
Affiliation(s)
- Ken Shirabe
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Leibovici J, Itzhaki O, Huszar M, Sinai J. The tumor microenvironment: part 1. Immunotherapy 2011; 3:1367-84. [DOI: 10.2217/imt.11.111] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
For years the mutated, highly proliferating neoplastic cells were presented as the only important agent in tumors; however, during the last 3–4 decades it has become clear that the microenvironment of the cancer cells plays a determinative role in the malignant evolution of neoplasia. Cancers are in fact heterogeneous entities containing, in addition to the neoplastic cell component, cells derived of multiple lineages (fibroblasts, endothelial cells lining blood and lymphatic vessels, pericytes, adipocytes and immune system cells belonging to both innate and adaptive responses), as well as the extracellular matrix, with a large variety of soluble molecules of biological importance, constituting a complex organ-like structure. The tumor microenvironment consists in a tissue that may have a predictive significance for tumor behavior and response to therapy.
Collapse
Affiliation(s)
| | - Orit Itzhaki
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Monica Huszar
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel
| | - Judith Sinai
- Department of Pathology, Sackler Faculty of Medicine, Tel-Aviv University, 69978, Tel-Aviv, Israel
| |
Collapse
|
156
|
Sun X, Casbas-Hernandez P, Bigelow C, Makowski L, Joseph Jerry D, Smith Schneider S, Troester MA. Normal breast tissue of obese women is enriched for macrophage markers and macrophage-associated gene expression. Breast Cancer Res Treat 2011; 131:1003-12. [PMID: 22002519 DOI: 10.1007/s10549-011-1789-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 09/15/2011] [Indexed: 12/24/2022]
Abstract
Activation of inflammatory pathways is one plausible mechanism underlying the association between obesity and increased breast cancer risk. However, macrophage infiltration and local biomarkers of inflammation in breast adipose tissue have seldom been studied in association with obesity. Gene expression profiles of normal breast tissue from reduction mammoplasty patients were evaluated by whole genome microarrays to identify patterns associated with obesity status (normal-weight, body mass index (BMI) <25; overweight, BMI 25-29.9; obese, BMI ≥30). The presence of macrophage-enriched inflammatory loci with immunopositivity for CD68 protein was evaluated by immunohistochemistry (IHC). After adjusting for confounding by age, 760 genes were differentially expressed (203 up and 557 down; FDR = 0.026) between normal-weight and obese women. Gene ontology analysis suggested significant enrichment for pathways involving IL-6, IL-8, CCR5 signaling in macrophages and RXRα and PPARα activation, consistent with a pro-inflammatory state and suggestive of macrophage infiltration. Gene set enrichment analysis also demonstrated that the genomic signatures of monocytes and macrophages were over-represented in the obese group with FDR of 0.08 and 0.13, respectively. Increased macrophage infiltration was confirmed by IHC, which showed that the breast adipose tissue of obese women had higher average macrophage counts (mean = 8.96 vs. 3.56 in normal-weight women) and inflammatory foci counts (mean = 4.91 vs. 2.67 in normal-weight women). Obesity is associated with local inflammation and macrophage infiltration in normal human breast adipose tissues. Given the role of macrophages in carcinogenesis, these findings have important implications for breast cancer etiology and progression.
Collapse
Affiliation(s)
- Xuezheng Sun
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
157
|
Abstract
Most malignant brain tumours contain various numbers of cells with characteristics of activated or dysmorphic macrophages/microglia. These cells are generally considered part of the tumour stroma and are often described as TAM (tumour-associated macrophages). These types of cells are thought to either enhance or inhibit brain tumour progression. Recent evidence indicates that neoplastic cells with macrophage characteristics are found in numerous metastatic cancers of non-CNS (central nervous system) origin. Evidence is presented here suggesting that subpopulations of cells within human gliomas, specifically GBM (glioblastoma multiforme), are neoplastic macrophages/microglia. These cells are thought to arise following mitochondrial damage in fusion hybrids between neoplastic stem cells and macrophages/microglia.
Collapse
|
158
|
Ungefroren H, Sebens S, Seidl D, Lehnert H, Hass R. Interaction of tumor cells with the microenvironment. Cell Commun Signal 2011; 9:18. [PMID: 21914164 PMCID: PMC3180438 DOI: 10.1186/1478-811x-9-18] [Citation(s) in RCA: 216] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/13/2011] [Indexed: 12/18/2022] Open
Abstract
Recent advances in tumor biology have revealed that a detailed analysis of the complex interactions of tumor cells with their adjacent microenvironment (tumor stroma) is mandatory in order to understand the various mechanisms involved in tumor growth and the development of metastasis. The mutual interactions between tumor cells and cellular and non-cellular components (extracellular matrix = ECM) of the tumor microenvironment will eventually lead to a loss of tissue homeostasis and promote tumor development and progression. Thus, interactions of genetically altered tumor cells and the ECM on the one hand and reactive non-neoplastic cells on the other hand essentially control most aspects of tumorigenesis such as epithelial-mesenchymal-transition (EMT), migration, invasion (i.e. migration through connective tissue), metastasis formation, neovascularisation, apoptosis and chemotherapeutic drug resistance. In this mini-review we will focus on these issues that were recently raised by two review articles in CCS.
Collapse
Affiliation(s)
- Hendrik Ungefroren
- First Department of Medicine, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | | | | | | | | |
Collapse
|
159
|
Payne SJL, Jones L. Influence of the tumor microenvironment on angiogenesis. Future Oncol 2011; 7:395-408. [PMID: 21417903 DOI: 10.2217/fon.11.13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
It is becoming increasingly recognized that the host microenvironment is essential for regulating tumor cell behavior. The cellular stromal compartment can modulate angiogenesis either directly through enhanced secretion of pro-angiogenic factors or reduced secretion of antiangiogenic factors, or indirectly by modulating the surrounding extracellular matrix. Control of angiogenesis represents a critical step in cancer progression and is a potential therapeutic target. This article focuses on the role of the tumor microenvironment in the control of angiogenesis and how dissection of the molecular interactions may enhance prognostic and predictive power and facilitate therapeutic targeting.
Collapse
Affiliation(s)
- Sarah J L Payne
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK.
| | | |
Collapse
|
160
|
Laoui D, Van Overmeire E, Movahedi K, Van den Bossche J, Schouppe E, Mommer C, Nikolaou A, Morias Y, De Baetselier P, Van Ginderachter JA. Mononuclear phagocyte heterogeneity in cancer: different subsets and activation states reaching out at the tumor site. Immunobiology 2011; 216:1192-202. [PMID: 21803441 DOI: 10.1016/j.imbio.2011.06.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 05/25/2011] [Accepted: 06/23/2011] [Indexed: 12/22/2022]
Abstract
Mononuclear phagocytes are amongst the most versatile cells of the body, contributing to tissue genesis and homeostasis and safeguarding the balance between pro- and anti-inflammatory reactions. Accordingly, these cells are notoriously heterogeneous, functioning in distinct differentiation forms (monocytes, MDSC, macrophages, DC) and adopting different activation states in response to a changing microenvironment. Accumulating evidence exists that mononuclear phagocytes contribute to all phases of the cancer process. These cells orchestrate the inflammatory events during de novo carcinogenesis, participate in tumor immunosurveillance, and contribute to the progression of established tumors. At the tumor site, cells such as tumor-associated macrophages (TAM) are confronted with different tumor microenvironments, leading to TAM subsets with specialized functions. A better refinement of the molecular and functional heterogeneity of tumor-associated mononuclear phagocytes might pave the way for novel cancer therapies that directly target these tumor-supporting cells.
Collapse
Affiliation(s)
- Damya Laoui
- Lab of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Yang L, Wu X, Wang Y, Zhang K, Wu J, Yuan YC, Deng X, Chen L, Kim CCH, Lau S, Somlo G, Yen Y. FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene 2011; 30:4437-46. [PMID: 21532620 DOI: 10.1038/onc.2011.145] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer is genetically and clinically heterogeneous. Triple negative breast cancer (TNBC) is a subtype of breast cancer that is usually associated with poor outcome and lack of benefit from targeted therapy. We used microarray analysis to perform a pathway analysis of TNBC compared with non-triple negative breast cancer (non-TNBC). Overexpression of several Wnt pathway genes, such as frizzled homolog 7 (FZD7), low density lipoprotein receptor-related protein 6 and transcription factor 7 (TCF7) was observed in TNBC, and we directed our focus to the Wnt pathway receptor, FZD7. To validate the function of FZD7, FZD7shRNA was used to knock down FZD7 expression. Notably, reduced cell proliferation and suppressed invasiveness and colony formation were observed in TNBC MDA-MB-231 and BT-20 cells. Study of the possible mechanism indicated that these effects occurred through silencing of the canonical Wnt signaling pathway, as evidenced by loss of nuclear accumulation of β-catenin and decreased transcriptional activity of TCF7. In vivo studies revealed that FZD7shRNA significantly suppressed tumor formation, through reduced cell proliferation, in mice bearing xenografts without FZD7 expression. Our findings suggest that FZD7-involved canonical Wnt signaling pathway is essential for tumorigenesis of TNBC, and thus, FZD7 shows promise as a biomarker and a potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- L Yang
- Department of Molecular Pharmacology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Hurst DR, Welch DR. Metastasis suppressor genes at the interface between the environment and tumor cell growth. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:107-80. [PMID: 21199781 DOI: 10.1016/b978-0-12-385859-7.00003-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms and genetic programs required for cancer metastasis are sometimes overlapping, but components are clearly distinct from those promoting growth of a primary tumor. Every sequential, rate-limiting step in the sequence of events leading to metastasis requires coordinated expression of multiple genes, necessary signaling events, and favorable environmental conditions or the ability to escape negative selection pressures. Metastasis suppressors are molecules that inhibit the process of metastasis without preventing growth of the primary tumor. The cellular processes regulated by metastasis suppressors are diverse and function at every step in the metastatic cascade. As we gain knowledge into the molecular mechanisms of metastasis suppressors and cofactors with which they interact, we learn more about the process, including appreciation that some are potential targets for therapy of metastasis, the most lethal aspect of cancer. Until now, metastasis suppressors have been described largely by their function. With greater appreciation of their biochemical mechanisms of action, the importance of context is increasingly recognized especially since tumor cells exist in myriad microenvironments. In this chapter, we assemble the evidence that selected molecules are indeed suppressors of metastasis, collate the data defining the biochemical mechanisms of action, and glean insights regarding how metastasis suppressors regulate tumor cell communication to-from microenvironments.
Collapse
Affiliation(s)
- Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
163
|
Coussens LM, Pollard JW. Leukocytes in mammary development and cancer. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a003285. [PMID: 21123394 DOI: 10.1101/cshperspect.a003285] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leukocytes, of both the innate and adaptive lineages, are normal cellular components of all tissues. These important cells not only are critical for regulating normal tissue homeostasis, but also are significant paracrine regulators of all physiologic and pathologic tissue repair processes. This article summarizes recent insights regarding the trophic roles of leukocytes at each stage of mammary gland development and during cancer development, with a focus on Murids and humans.
Collapse
Affiliation(s)
- Lisa M Coussens
- Department of Pathology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
164
|
Klemm F, Bleckmann A, Siam L, Chuang H, Rietkötter E, Behme D, Schulz M, Schaffrinski M, Schindler S, Trümper L, Kramer F, Beissbarth T, Stadelmann C, Binder C, Pukrop T. β-catenin-independent WNT signaling in basal-like breast cancer and brain metastasis. Carcinogenesis 2010; 32:434-42. [DOI: 10.1093/carcin/bgq269] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
165
|
Allen M, Louise Jones J. Jekyll and Hyde: the role of the microenvironment on the progression of cancer. J Pathol 2010; 223:162-76. [PMID: 21125673 DOI: 10.1002/path.2803] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 12/13/2022]
Abstract
It is now recognized that the host microenvironment undergoes extensive change during the evolution and progression of cancer. This involves the generation of cancer-associated fibroblasts (CAFs), which, through release of growth factors and cytokines, lead to enhanced angiogenesis, increased tumour growth and invasion. It has also been demonstrated that CAFs may modulate the cancer stem cell (CSC) phenotype, which has therapeutic implications. The altered fibroblast phenotype also contributes to the development of an altered extracellular matrix (ECM), with synthesis of ECM isoforms rarely found in normal tissues, including tenascin-C isoforms and the fibronectin EDA isoform. There is also emerging evidence of how the tensile strength of the tumour-associated ECM may be modified and lead to altered signalling in tumour cells. The hypoxic environment of the tumour stimulates angiogenesis and also impacts on other aspects of cell signalling, including the c-met pathway and lysyl oxidase-mediated signalling, which can directly promote tumour cell invasion. The inflammatory infiltrate associated with many solid tumours also modulates tumour function, having both anti- and pro-tumour effects. All of these components of the microenvironment provide potential targets for therapeutic attack, with a number of molecules already in clinical trials. It is also becoming evident that characterizing the tumour microenvironment can provide important prognostic and predictive information about tumours, independent of the tumour cell phenotype.
Collapse
Affiliation(s)
- Michael Allen
- Centre for Tumour Biology, Barts Cancer Institute, Barts and the London School of Medicine and Dentistry, London, UK
| | | |
Collapse
|
166
|
Calorini L, Bianchini F. Environmental control of invasiveness and metastatic dissemination of tumor cells: the role of tumor cell-host cell interactions. Cell Commun Signal 2010; 8:24. [PMID: 20822533 PMCID: PMC2945354 DOI: 10.1186/1478-811x-8-24] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 09/07/2010] [Indexed: 12/12/2022] Open
Abstract
Recent advances in tumor biology led to the realization that, in order to understand the mechanisms involved in proliferation and invasion of tumor cells, an analysis of the complex interactions that tumor cells establish with host cells of tumor microenvironment is required. The bidirectional interactions between tumor cells and components of tumor microenvironment, in particular endothelial cells, cells of monocyte/macrophage lineage and fibroblasts/myofibroblasts, play a critical role in most of the events that characterize tumor progression and metastasis. Interactions between these "reactive" normal cells and the genetically altered tumor cells, by either cell-to-cell contacts or soluble mediators, control the most aspects of tumor formation and progression. This review addresses some of the experimental evidences documenting that tumor cells may influence host cells of their own microenvironment by triggering changes that facilitate their local as well as distant dissemination. Therefore, it focuses on macrophages and fibroblasts that, upon stimulation by tumor cells, change their state towards a tumor-promoting-like phenotype.
Collapse
Affiliation(s)
- Lido Calorini
- Dipartimento di Patologia e Oncologia Sperimentali, Università degli Studi di Firenze and Istituto Toscano Tumori (ITT), Italy.
| | | |
Collapse
|
167
|
Solinas G, Marchesi F, Garlanda C, Mantovani A, Allavena P. Inflammation-mediated promotion of invasion and metastasis. Cancer Metastasis Rev 2010; 29:243-8. [PMID: 20414701 DOI: 10.1007/s10555-010-9227-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inflammation has been suggested to represent the seventh hallmark of cancer. Myelomonocytic cells are a key component of cancer-related inflammation. Tumor-associated macrophages and their mediators affect key elements in the multistep process of invasion and metastasis, from interaction with the extracellular matrix to the construction of a pre-metastatic niche. Evidence indicating that inflammatory mediators affect genetic stability and cause persistent epigenetic alterations suggests that inflammatory components of the tumor microenvironment impacts on fundamental mechanisms responsible for the generation of metastatic variants. These results provide impetus for efforts aimed at translating cancer-related inflammation into diagnostic-prognostic markers and innovative therapeutic strategies.
Collapse
Affiliation(s)
- Graziella Solinas
- Laboratory for Immunology and Inflammation, IRCCS Istituto Clinico Humanitas, Rozzano, Milan, Italy
| | | | | | | | | |
Collapse
|
168
|
Solinas G, Schiarea S, Liguori M, Fabbri M, Pesce S, Zammataro L, Pasqualini F, Nebuloni M, Chiabrando C, Mantovani A, Allavena P. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. THE JOURNAL OF IMMUNOLOGY 2010; 185:642-52. [PMID: 20530259 DOI: 10.4049/jimmunol.1000413] [Citation(s) in RCA: 294] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tumor-associated macrophages (TAMs) are key orchestrators of the tumor microenvironment directly affecting neoplastic cell growth, neoangiogenesis, and extracellular matrix remodeling. In turn, the tumor milieu strongly influences maturation of TAMs and shapes several of their features. To address the early macrophage (M) differentiation phase in a malignant context, we mimicked a tumor microenvironment by in vitro coculturing human blood monocytes with conditioned media from different cancer cell lines. Only 2 out of 16 tumor cell lines induced M differentiation due to secreted M-CSF isoforms, including high molecular mass species. A global gene profiling of tumor-conditioned M was performed. Comparison with other datasets (polarized M1-M, M2-M, and TAMs isolated from human tumors) highlighted the upregulation of several genes also shared by TAM and M2-polarized M. The most expressed genes were selenoprotein 1, osteoactivin, osteopontin, and, interestingly, migration-stimulating factor (MSF), a poorly studied oncofoetal isoform of fibronectin. MSF (present in fetal/cancer epithelial and stromal cells but not in healthy tissues) was never identified in M. MSF production was confirmed by immunohistochemistry in human TAMs. MSF was induced by M-CSF, IL-4, and TGFbeta but not by proinflammatory stimuli. RNA and protein analysis clearly demonstrated that it is specifically associated with the M2 polarization of M. Tumor-conditioned M-derived MSFs strongly stimulated tumor cell migration, thus contributing to the motile phenotype of neoplastic cells. In conclusion, MSF is a new molecule associated with the M2 polarization of M and expressed by TAMs. Its biological function may contribute to M-mediated promotion of cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Graziella Solinas
- Department of Immunology and Inflammation, Clinical Institute Humanitas, Rozzano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 141:39-51. [PMID: 20371344 DOI: 10.1016/j.cell.2010.03.014] [Citation(s) in RCA: 3717] [Impact Index Per Article: 265.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 03/10/2010] [Accepted: 03/15/2010] [Indexed: 11/20/2022]
Abstract
There is persuasive clinical and experimental evidence that macrophages promote cancer initiation and malignant progression. During tumor initiation, they create an inflammatory environment that is mutagenic and promotes growth. As tumors progress to malignancy, macrophages stimulate angiogenesis, enhance tumor cell migration and invasion, and suppress antitumor immunity. At metastatic sites, macrophages prepare the target tissue for arrival of tumor cells, and then a different subpopulation of macrophages promotes tumor cell extravasation, survival, and subsequent growth. Specialized subpopulations of macrophages may represent important new therapeutic targets.
Collapse
|
170
|
Increased angiogenic sprouting in poor prognosis FL is associated with elevated numbers of CD163+ macrophages within the immediate sprouting microenvironment. Blood 2010; 115:5053-6. [PMID: 20375314 DOI: 10.1182/blood-2009-11-253260] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Follicular lymphoma has considerable clinical heterogeneity, and there is a need for easily quantifiable prognostic biomarkers. Microvessel density has been shown to be a useful prognostic factor based on numerical assessment of vessel numbers within histologic sections in some studies, but assessment of tumor neovascularization through angiogenic sprouting may be more relevant. We therefore examined the smallest vessels, single-staining structures measuring less than 30 microm(2) in area, seen within histologic sections, and confirmed that they were neovascular angiogenic sprouts using extended focal imaging. Tissue microarrays composing diagnostic biopsies from patients at the extremes of survival of follicular lymphoma were analyzed with respect to numbers of these sprouts. This analysis revealed higher angiogenic activity in the poor prognostic group and demonstrated an association between increased sprouting and elevated numbers of infiltrating CD163(+) macrophages within the immediate microenvironment surrounding the neovascular sprout.
Collapse
|