151
|
Maier SR, Arboe NH, Christiansen H, Krawczyk DW, Meire L, Mortensen J, Planken K, Schulz K, van der Kaaden AS, Vonnahme TR, Zwerschke N, Blicher M. Arctic benthos in the Anthropocene: Distribution and drivers of epifauna in West Greenland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175001. [PMID: 39053532 DOI: 10.1016/j.scitotenv.2024.175001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Albeit remote, Arctic benthic ecosystems are impacted by fisheries and climate change. Yet, anthropogenic impacts are poorly understood, as benthic ecosystems and their drivers have not been mapped over large areas. We disentangle spatial patterns and drivers of benthic epifauna (animals living on the seabed surface) in West Greenland, by integrating an extensive beam-trawl dataset (326 stations, 59-75°N, 30-1400 m water depth) with environmental data. We find high variability at different spatial scales: (1) Epifauna biomass decreases with increasing latitude, sea-ice cover and water depth, related to food limitation. (2) In Greenland, the Labrador Sea in the south shows higher epifauna taxon richness compared to Baffin Bay in the north. Τhe interjacent Davis Strait forms a permeable boundary for epifauna dispersal and a mixing zone for Arctic and Atlantic taxa, featuring regional biodiversity hotspots. (3) The Labrador Sea and Davis Strait provide suitable habitats for filter-feeding epifauna communities of high biomass e.g., sponges on the steep continental slope and sea cucumbers on shallow banks. In Baffin Bay, the deeper continental shelf, more gentle continental slope, lower current speed and lower phytoplankton biomass promote low-biomass epifauna communities, predominated by sea stars, anemones, or shrimp. (4) Bottom trawling reduces epifauna biomass and taxon richness throughout the study area, where sessile filter feeders are particularly vulnerable. Climate change with diminished sea ice cover in Baffin Bay may amplify food availability to epifauna, thereby increasing their biomass. While more species might expand northward due to the general permeability of Davis Strait, an extensive colonization of Baffin Bay by high-biomass filter-feeding epifauna remains unlikely, given the lack of suitable habitats. The pronounced vulnerability of diverse and biomass-rich epifauna communities to bottom trawling emphasizes the necessity for an informed and sustainable ecosystem-based management in the face of rapid climate change.
Collapse
Affiliation(s)
- Sandra R Maier
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland.
| | - Nanette Hammeken Arboe
- Department of Fish and Shellfish, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Henrik Christiansen
- Department of Fish and Shellfish, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Diana W Krawczyk
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Lorenz Meire
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland; Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Yerseke, the Netherlands
| | - John Mortensen
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Koen Planken
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland; Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Yerseke, the Netherlands
| | - Kirstin Schulz
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | | | - Tobias Reiner Vonnahme
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Nadescha Zwerschke
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Martin Blicher
- Greenland Climate Research Centre, Greenland Institute of Natural Resources, Nuuk, Greenland
| |
Collapse
|
152
|
Chen G, Zhang F, Wang Y, Liu W, Gou X. Hydrothermal environments lead to differences in the radial growth response of Pinus tabulaeformis to climate in the monsoon marginal zone, Northwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175739. [PMID: 39182773 DOI: 10.1016/j.scitotenv.2024.175739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Regional climatic differences increase the complexity of tree radial growth responses to climate change in the monsoon marginal zones and may alter the carbon sequestration capacity of forests. In this study, we collected cores of Pinus tabulaeformis trees at nine sampling sites across different regions. We analysed the relationship between tree-ring width chronology and climatic factors at different sites using dendroecological methods. We used the tree-ring index to calculate resistance, recovery, and resilience as well as to explore the capacity of radial growth to cope with drought events. The results indicate that (1) Drought was the primary factor limiting tree growth, and tree-ring climate response patterns varied across three regions. Tree growth was sensitive to both temperature and precipitation in the eastern Qilian Mountains, while it was more sensitive to temperature in the Hassan Mountains and more sensitive to precipitation in the Helan Mountains. (2) The tree-ring climate response pattern remained unstable over time, and the relative influence of current climate on tree growth increased. (3) The ecological resilience of trees to extreme events varies across three regions, which could be attributed to regional moisture conditions and the duration of drought. In the context of the management and protection of trees in the study area in the future, more attention should be paid to the elasticity of tree growth after drought events.
Collapse
Affiliation(s)
- Guoqing Chen
- Key Laboratory of Western China's Environmental Systems of the Ministry of Education, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fen Zhang
- Key Laboratory of Western China's Environmental Systems of the Ministry of Education, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730000, China.
| | - Yan Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhuo Liu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xiaohua Gou
- Key Laboratory of Western China's Environmental Systems of the Ministry of Education, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Liancheng Forest Ecosystem Field Observation and Research Station, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
153
|
Zhang Y, Li Z, Xu H, Ge W, Qian H, Li J, Sun H, Zhang H, Jiao Y. Impact of floods on the environment: A review of indicators, influencing factors, and evaluation methods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175683. [PMID: 39173752 DOI: 10.1016/j.scitotenv.2024.175683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Floods have a wide range of environmental effects. However, owing to the complex composition of the environment and the numerous factors influencing environmental flood risk, few studies have systematically analyzed the impact of floods on the environment. After reviewing the various impacts of floods on the environment, we summarized them into four indicators (water pollution, erosion and deposition, biomass impact, and biodiversity impact) and analyzed the interrelationships between the four indicators. We then summarized 14 key factors affecting the degree of impact of floods on the environment (flood depth, velocity, duration, sediment concentration, timing of flood, temperature, point source and non-point source, height, age, waterlogging tolerance of plants, migration ability of animals, survival time of animals during floods, species richness, and biomass density) and analyzed their influence mechanisms on each indicator. We then compared the principles, scope of application, accuracy, and limitations of six environmental flood impact evaluation methods and found that the multi-factor evaluation method has great application prospects. Finally, we proposed two recommendations for future research to assess and reduce environmental flood impacts. This review provides a comprehensive understanding of the impact of floods on the environment and a basis for evaluating the impact and formulating measures to mitigate the degree of impact.
Collapse
Affiliation(s)
- Yadong Zhang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China; School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zongkun Li
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China.
| | - Hongyin Xu
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China.
| | - Wei Ge
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China; Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450003, PR China
| | - Hui Qian
- Yellow River Engineering Consulting Co., Ltd., Zhengzhou 450003, PR China
| | - Jingjing Li
- Zhengzhou University of Railway Engineering, Zhengzhou 450100, China
| | - Heqiang Sun
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
| | - Hua Zhang
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
| | - Yutie Jiao
- School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
154
|
Pir R, Sulukan E, Şenol O, Atakay M, Baran A, Kankaynar M, Yıldız E, Salih B, Ceyhun SB. Co-exposure effect of different colour of LED lights and increasing temperature on zebrafish larvae (Danio rerio): Immunohistochemical, metabolomics, molecular and behaviour approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175468. [PMID: 39147052 DOI: 10.1016/j.scitotenv.2024.175468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
Although there are studies in the literature on the effects of different coloured light-emitting diodes (LEDs) on different organisms, there is limited information on how these effects change with temperature increase. In this study, the effects of blue, green, red and white LED lights on the early development process of zebrafish (Danio rerio (Hamilton, 1822)) were comprehensively investigated. In addition, to simulate global warming, it was examined how a one-degree temperature increase affects this process. For this purpose, zebrafish embryos, which were placed at 4 hpf (hours post fertilization) in an incubator whose interior was divided into four areas, were kept at three different temperatures (28, 29 and 30 °C) for 120 h. The group kept in a dark environment was chosen as the control. The temperature of the control group was also increased at the same rate as the other groups. The results showed that at the end of the exposure period, temperature and light colour caused an increase in body malformations. Histopathological damage and immunopositive signals of HSP 70 and 8-OHdG biomarkers in larval brains, increase in free oxygen radicals, apoptotic cells and lipid accumulation throughout the body, increase in locomotor activity, decrease in heart rate and blood flow, and significant changes in more than thirty metabolite levels were detected. In addition, it has been determined that many metabolic pathways are affected, especially glutathione, vitamin B6 and pyrimidine metabolism. Moreover, it has been observed that a one-degree temperature increase worsens this negative effect. It was concluded that blue light was the closest light to the control group and was less harmful than other light colours. The study revealed that blue light produced results that were most similar to those seen in the control group.
Collapse
Affiliation(s)
- Rabia Pir
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Türkiye
| | - Ekrem Sulukan
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Basic Science Department, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye
| | - Onur Şenol
- Department of Analytical Chemistry, Faculty of Pharmacy, Atatürk University, 25240 Erzurum, Türkiye
| | - Mehmet Atakay
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Türkiye
| | - Alper Baran
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Department of Veterinary Public Health, Faculty of Veterinary Medicine, Atatürk University, 25240 Erzurum, Türkiye
| | - Meryem Kankaynar
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Türkiye
| | - Emriye Yıldız
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Turkey
| | - Bekir Salih
- Department of Chemistry, Faculty of Science, Hacettepe University, 06800 Ankara, Türkiye
| | - Saltuk Buğrahan Ceyhun
- Aquatic Biotechnology Laboratory, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye; Department of Nanoscience, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Türkiye; Department of Aquaculture Engineering, Graduate School of Natural and Applied Science, Atatürk University, 25240 Erzurum, Turkey; Aquaculture Department, Fisheries Faculty, Atatürk University, 25240 Erzurum, Türkiye.
| |
Collapse
|
155
|
Jakovljević M, Đuretanović S, Kojadinović N, Nikolić M, Petrović A, Simović P, Simić V. Assessing spirlin Alburnoides bipunctatus (Bloch, 1782) as an early indicator of climate change and anthropogenic stressors using ecological modeling and machine learning. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175723. [PMID: 39181248 DOI: 10.1016/j.scitotenv.2024.175723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Combining single-species ecological modeling with advanced machine learning to investigate the long-term population dynamics of the rheophilic fish spirlin offers a powerful approach to understanding environmental changes and climate shifts in aquatic ecosystems. A new ESHIPPOClim model was developed by integrating climate change assessment into the ESHIPPO model. The model identifies spirlin as a potential early indicator of environmental changes, highlighting the interactive effects of climate change and anthropogenic stressors on fish populations and freshwater ecosystems. The ESHIPPOClim model reveals that 28.57 % of the spirlin's data indicates high resilience and ecological responsiveness, with 34.92 % showing medium-high adaptability, suggesting its substantial ability to withstand environmental stressors. With 36.51 % of the data in medium level and no data in the low category, spirlin may serve as a sentinel species, providing early warnings of environmental stressors before they severely impact other species or ecosystems. The results of uniform manifold approximation and projection (UMAP) and a decision tree show that pollution has the highest impact on the population dynamics of spirlin, followed by annual water temperature, overexploitation, and invasive species. Despite the obtained key drivers, higher abundance, dominance, and frequency values were detected in habitats with higher HIPPO stressors and climate change effects. Integrating state-of-the-art machine learning models has enhanced the predictive power of the ESHIPPOClim model, achieving approximately 90 % accuracy in identifying spirlin as an early indicator of climate change and anthropogenic stressors. The ESHIPPOClim model offers a holistic approach with broad practical applications using a simplified three-point scale, adaptable to various fish species, communities, and regions. The ecological modeling supported with advanced machine learning could serve as a foundation for rapid and cost-effective management of aquatic ecosystems, revealing the adaptability potential of fish species, which is crucial in rapidly changing environments.
Collapse
Affiliation(s)
- Marija Jakovljević
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia.
| | - Simona Đuretanović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| | - Nataša Kojadinović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| | - Marijana Nikolić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| | - Ana Petrović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| | - Predrag Simović
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| | - Vladica Simić
- Department of Biology and Ecology, Faculty of Science, University of Kragujevac, Serbia
| |
Collapse
|
156
|
Markich SJ, Hall JP, Dorsman JM, Brown PL. Toxicity of rare earth elements (REEs) to marine organisms: Using species sensitivity distributions to establish water quality guidelines for protecting marine life. ENVIRONMENTAL RESEARCH 2024; 261:119708. [PMID: 39089443 DOI: 10.1016/j.envres.2024.119708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
A lack of chronic rare earth element (REE) toxicity data for marine organisms has impeded the establishment of numerical REE water quality benchmarks (e.g., guidelines) to protect marine life and assess ecological risk. This study determined the chronic no (significant) effect concentrations (N(S)ECs) and median-effect concentrations (EC50s) of eight key REEs (yttrium (Y), lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), gadolinium (Gd), dysprosium (Dy) and lutetium (Lu)) for 30 coastal marine organisms (encompassing 22 phyla and five trophic levels from temperate and tropical habitats). Organisms with calcifying life stages were most vulnerable to REEs, which competitively inhibit calcium uptake. The most sensitive organism was a sea urchin, with N(S)ECs ranging from 0.64 μg/L for Y to 1.9 μg/L for La and Pr, and EC50s ranging from 4.3 μg/L for Y to 14.4 μg/L for Pr. Conversely, the least sensitive organism was a cyanobacterium, with N(S)ECs ranging from 121 μg/L for Y to 469 μg/L for Pr, and EC50s ranging from 889 μg/L for Y to 3000 μg/L for Pr. Median sensitivity varied 215-fold across all organisms. The two-fold difference in median toxicity (μmol/L EC50) among REEs (Y ∼ Gd > Lu ∼ Nd ∼ Dy ∼ Ce > La ∼ Pr) was attributed to offset differences in binding affinity (log K) to cell surface receptors and the percentage of free metal ion (REE3+) in the test waters. The toxicity (EC50) of the remaining REEs (samarium, europium, terbium, holmium, thulium and ytterbium) was predicted using a combination of physicochemical data and measured EC50s for the eight tested REEs, with good agreement between predicted and measured EC50s for selected organisms. Numerical REE water quality guidelines to protect marine life were established using species sensitivity distributions (e.g., for 95 % species protection, values ranged from 1.1 μg/L for Y to 3.0 μg/L for La, Pr or Lu).
Collapse
Affiliation(s)
- Scott J Markich
- Aquatic Solutions International, Long Reef, NSW, 2097, Australia; School of Natural Sciences, Macquarie University, Macquarie Park, NSW, 2109, Australia.
| | - Jeremy P Hall
- Aquatic Solutions International, Airlie Beach, QLD, 4802, Australia
| | - Jude M Dorsman
- Aquatic Solutions International, Long Reef, NSW, 2097, Australia
| | | |
Collapse
|
157
|
Li W, Luo Y, Ali T, Huang Y, Yu ZJ, Hao L, Li S. Hsp60 deletion in cholinergic neurons: Impact on neuroinflammation and memory. Int Immunopharmacol 2024; 141:113022. [PMID: 39213869 DOI: 10.1016/j.intimp.2024.113022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/25/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Cholinergic circuit defects have been linked to various neurological abnormalities, yet the precise mechanisms underlying the impact of cholinergic signaling on cognitive functions, particularly in the context of neuroinflammation-associated, remain poorly understood. Similarly, while the dopamine receptor (D2R) has been implicated in the pausing of cholinergic interneurons (CIN), its relationship with behavior remains inadequately elucidated. In this study, we aimed to investigate whether D2R plays a role in the regulation of fear and memory in the Hsp60 knockout condition, given the non-canonical involvement of Hsp60 in inflammation. Using a CRE-floxed system, we selectively generated cholinergic neurons specific to Hsp60 knockout mice and subjected them to memory tests. Our results revealed a significant increase in freezing levels during recall and contextual tests in Hsp60-deprived mice. We also observed dysregulation of neurotransmitters and D2R in the hippocampus of Hsp60 knockout mice, along with enhanced impairments in cytokine levels and synaptic protein dysregulations. These changes were accompanied by alterations in PI3K/eIF4E/Jak/ERK/CREB signaling pathways. Notably, D2R agonism via Quinpirole led to a decrease in freezing levels during recall and contextual tests, alongside an increase in IBA-1 expression and improvements in inflammatory response-linked signaling pathways, including JAK/STAT/P38/JNK impairments. Given that these pathways are well-known downstream signaling cascades of D2R, our findings suggest that D2R signaling may contribute to the neuroinflammation induced by Hsp60 deprivation, potentially exacerbating memory impairments.
Collapse
Affiliation(s)
- Weifen Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518060, China; Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Science Center. No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China; State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yanhua Luo
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Tahir Ali
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Yangmei Huang
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Zhi-Jian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Science Center. No 89, Taoyuan Road, Nanshan District, Shenzhen 518052, China.
| | - Liangliang Hao
- Hospital of Chengdu University of Traditional Chinese Medicine, No.39 Shier-Qiao Road, Chengdu, China.
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
158
|
Mora-Teddy AK, Closs GP, Matthaei CD. Microplastics and riverine macroinvertebrate communities in a multiple-stressor context: A mesocosm approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175456. [PMID: 39173751 DOI: 10.1016/j.scitotenv.2024.175456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Growing use of synthetic materials has increased the number of stressors that can degrade freshwater ecosystems. Many of these stressors are relatively new and poorly understood, such as microplastics which are now ubiquitous in freshwater systems. The effects of microplastics on freshwater biota must be investigated further in order to better manage and mitigate their impacts. Our experiment provides the first empirical evaluation of stream invertebrate community dynamics in response to microplastics of different concentrations and sizes, in combination with fine sediment, a pervasive known stressor in running waters. In a 7-week streamside experiment using 64 flow-through circular mesocosms, we investigated the effects of exposure to three simulated microplastic influxes (polyethylene microspheres at four levels between 0 and 28,800 items/event) and the addition of fine sediment (to simulate a polluted stream environment). Invertebrate drift was monitored for 48 h immediately after each microplastic influx, and benthic invertebrate communities were sampled after 28 days of microplastic and sediment manipulations. Microplastic concentration, size and fine sediment all had significant factor main effects on several invertebrate drift response metrics, whereas few microplastic main effects were seen in the benthic community. However, interactive stressor effects were common in different combinations between sediment, microplastic size and concentration, suggesting multiple-stressor relationships between microplastics and fine sediment. Microplastic ingestion was witnessed in four of 12 taxa analysed: Hydrobiosidae, Deleatidium spp., Potamopyrgus antipodarum and Archichauliodes diversus. Our findings provide insights into how microplastics affect drift and benthic community dynamics of stream invertebrates in a field-realistic experimental setting and highlight areas requiring further study. These include investigations of invertebrate drift dynamics in response to other types of microplastics, the role invertebrate size may play in determining their vulnerability to microplastic pollution, and framing more microplastic research in a field-realistic multiple-stressor context.
Collapse
|
159
|
Tan J, Wu X, Wang L, Wu N, Yang H, Ruan S, Qi Y. Easily overlooked petiole traits are key factors that affect soil carbon sequestration in plantations in karst areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175298. [PMID: 39111420 DOI: 10.1016/j.scitotenv.2024.175298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/19/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
Vegetation restoration in karst areas has shifted from expanding planting areas to the collective enhancement of various ecological functions, especially carbon sequestration. Identifying and regulating key plant functional traits involved in the carbon cycle is an effective approach to increase carbon sequestration. However, reports on the significant contribution of petiole traits to the carbon cycle are scarce. Eucalyptus globulus and Bauhinia purpurea plantations in Liujiang river basin were investigated in this study. Petiole traits, understory characteristics, and soil organic carbon have been measured. The aim is to explore key effect of petiole traits for increasing soil carbon sequestration and to provide scientific evidence for the high-quality development of plantations in karst areas. The results indicate that in Eucalyptus globulus plantations, when the understory vegetation coverage is below 50 %, petioles tend to elongate rather than thicken, leading to an increase in specific petiole length. In Bauhinia purpurea plantations, petioles consistently tend to increase diameter. However, when specific leaf area decreases, specific petiole length increases. In both plantations, an increase in specific petiole length accelerates leaf shedding. It leads to increased litter accumulation so that soil carbon content increases. In Eucalyptus globulus plantations, to enhance soil carbon sequestration as an ecological goal, it is recommended to keep the soil total nitrogen below 1.20 mg/g, to control understory vegetation coverage below 50 %, and to limit the extension of Bidens pilosa. In Bauhinia purpurea plantations, within 100 m of altitude, the soil total nitrogen can be controlled below 1.00 mg/g to increase soil organic carbon from large leaf shedding due to the increase of specific petiole length. At lower altitudes, increasing soil total nitrogen can enhance understory vegetation coverage, allowing soil organic carbon to originate from both leaf shedding and understory vegetation residues.
Collapse
Affiliation(s)
- Jin Tan
- School of Soil and Water Conservation, Beijing Forestry University, 100083 Beijing, China; College of Water Conservancy, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Xiuqin Wu
- School of Soil and Water Conservation, Beijing Forestry University, 100083 Beijing, China.
| | - Lei Wang
- School of Soil and Water Conservation, Southwest Forestry University, Kunming 650224, China
| | - Nan Wu
- School of Soil and Water Conservation, Beijing Forestry University, 100083 Beijing, China
| | - Hui Yang
- Key Laboratory of Karst Dynamics, MNR and GZAR, Institute of Karst Geology, CAGS, Guilin 541004, China
| | - Shiqiao Ruan
- Guangxi Institute of Science and Technology Development Co., Ltd, China
| | - Yuchuan Qi
- Guangxi Institute of Science and Technology Development Co., Ltd, China
| |
Collapse
|
160
|
Krivopalova A, Mikula P, Cukor J, Ševčík R, Brynychová K, Šálek M. Adaptation of farmland mammalian specialist to urban life: Escape behavior of European hare along the urban-rural gradient. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175779. [PMID: 39191323 DOI: 10.1016/j.scitotenv.2024.175779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 08/18/2024] [Accepted: 08/23/2024] [Indexed: 08/29/2024]
Abstract
The European hare Lepus europaeus is an iconic but rapidly declining farmland specialist with recently confirmed populations in urban areas. However, their behavioral responses and adaptability to urbanization and life in human-dominated areas are fully unexplored. Here, using infrared cameras, we explored escape behavior (measured as the flight initiation distance) using 965 hare observations in urban and farmland areas in the Czech Republic and Austria (Central Europe) and its association with habitat type, distance to the city center, patch size, season, hare age and initial behavior. We found that European hares adjusted their escape behavior to habitat type and escaped significantly earlier in farmland (rural) habitats than in urban habitats. However, escape distances of hares did not differ between farmland types with different degree of habitat heterogeneity. We also revealed that urban hares escaped earlier when located further from the city center or in a larger study patch. Moreover, adult hares escaped earlier than subadults and foraging individuals escaped earlier than resting hares but both only in rural areas. Our results support high behavioral adaptability of European hares to human-dominated urban areas.
Collapse
Affiliation(s)
- Aleksandra Krivopalova
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; Forestry and Game Management Research Institute, Strnady 136, 25202 Jíloviště, Czech Republic
| | - Peter Mikula
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; TUM School of Life Sciences, Ecoclimatology, Technical University of Munich, Hans-Carl-von-Carlowitz-Platz 2, 85354 Freising, Germany; Institute for Advanced Study, Technical University of Munich, Lichtenbergstraße 2a, 85748 Garching, Germany
| | - Jan Cukor
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; Forestry and Game Management Research Institute, Strnady 136, 25202 Jíloviště, Czech Republic.
| | - Richard Ševčík
- Forestry and Game Management Research Institute, Strnady 136, 25202 Jíloviště, Czech Republic
| | - Kateřina Brynychová
- Forestry and Game Management Research Institute, Strnady 136, 25202 Jíloviště, Czech Republic
| | - Martin Šálek
- Forestry and Game Management Research Institute, Strnady 136, 25202 Jíloviště, Czech Republic; Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic; Czech Academy of Sciences, Institute of Vertebrate Biology, Květná 8, 60365 Brno, Czech Republic
| |
Collapse
|
161
|
Mukai K, Mohapatra S, Matsuyama M, Ohta K, Chakraborty T. Exposure effects of benzalkonium chloride (BAC) on gonadal physiology and fertility suppression in medaka (Oryzias latipes). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124778. [PMID: 39173869 DOI: 10.1016/j.envpol.2024.124778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Benzalkonium chloride (BAC), a commonly used quaternary ammonium compound in various products like antiseptics, cosmetics, and disinfectants, has raised concerns due to its potential to contaminate aquatic environments and subsequently affect the reproductive performance of the organisms within those ecosystems. The article underscores a critical concern regarding the impact of BAC on aquatic ecosystems, particularly its effect on fish reproductive quality, using medaka (Oryzias latipes) as a model organism. Firstly, while measuring lethal dose of BAC in adult medaka, we observed a dose dependent mortality in BAC treated fish (100 and 200 ppm: 100%; 60 ppm: 51.7%; 30 ppm or less: no mortality at 24 h post treatment (hpt)) and calculated the LD50 at 96 hpt as 39.291 ppm (95% confidence interval: 28.817-53.570 ppm). Further, we assessed the molecular, cellular and histological changes through long-term exposure. Enlarged sperm pockets and reduced spermatocyte were seen in BAC exposed testis while no significant structural changes were observed in the ovaries. Following BAC exposure, drastic alterations in the gene expression and cellular localization related to sex, estrogen signaling, and autophagy were also noted from gonads and liver. Subsequently, using a short-term exposure analysis, we confirmed the sex and time responsive transcriptional kinetics and found that BAC sequentially affected the gonadal somatic cells followed by germ cell differentiation. Finally, using reproductively competent male and female medaka, we conducted progeny production and performance analysis and depicted a drastic reduction in fecundity, and fertilization and hatching rate, indicating adverse effects of BAC on reproductive success. Cumulatively, these findings emphasize the consequences of widespread use of BAC on reproductive security of aquatic animals and highlights the need for further research to comprehend the potential harm posed by such compounds to aquatic animal health and ecosystem integrity.
Collapse
Affiliation(s)
- Koki Mukai
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan; Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Nagasaki, 853-0508, Japan
| | - Sipra Mohapatra
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan; Aqua-Bioresource Innovation Center, Kyushu University, Saga, 847-8511, Japan
| | - Michiya Matsuyama
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan; Aqua-Bioresource Innovation Center, Kyushu University, Saga, 847-8511, Japan
| | - Kohei Ohta
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan; Aqua-Bioresource Innovation Center, Kyushu University, Saga, 847-8511, Japan
| | - Tapas Chakraborty
- Laboratory of Marine Biology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395, Japan; Aqua-Bioresource Innovation Center, Kyushu University, Saga, 847-8511, Japan.
| |
Collapse
|
162
|
Li R, Dai X, Zheng J, Larsen RS, Qi Y, Zhang X, Vizueta J, Boomsma JJ, Liu W, Zhang G. Juvenile hormone as a key regulator for asymmetric caste differentiation in ants. Proc Natl Acad Sci U S A 2024; 121:e2406999121. [PMID: 39495909 DOI: 10.1073/pnas.2406999121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/28/2024] [Indexed: 11/06/2024] Open
Abstract
Caste differentiation involves many functional traits that diverge during larval growth and metamorphosis to produce adults irreversibly adapted to reproductive division of labor. Investigating developmental differentiation is important for general biological understanding and has increasingly been explored for social phenotypes that diverge in parallel from similar genotypes. Here, we use Monomorium pharaonis ants to investigate the extent to which canalized worker development can be shifted toward gyne (virgin-queen) phenotypes by juvenile hormone (JH) treatment. We show that excess JH can activate gyne-biased development in workers so that wing-buds, ocelli, antennal and genital imaginal discs, flight muscles, and gyne-like fat bodies and brains emerge after pupation. However, ovary development remained unresponsive to JH treatment, indicating that JH-sensitive germline sequestration happens well before somatic differentiation. Our findings reveal important qualitative restrictions in the extent to which JH treatment can redirect larval development and that these constraints are independent of body size. Our findings corroborate that JH is a key hormone for inducing caste differentiation but show that this process can be asymmetric for higher colony-level germline versus somatic caste differentiation in superorganisms as defined a century ago by Wheeler. We quantified gene expression changes in response to JH treatment throughout development and identified a set of JH-sensitive genes responsible for the emergence of gyne-like somatic traits. Our study suggests that the gonadotropic role of JH in ovary maturation has shifted from the individual level in solitary insects to the colony level in an evolutionary-derived and highly polygynous superorganism like the pharaoh ant.
Collapse
Affiliation(s)
- Ruyan Li
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Xueqin Dai
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Jixuan Zheng
- Centre for Evolutionary and Organismal Biology, Women's Hospital, & Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rasmus Stenbak Larsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Yanmei Qi
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Xiafang Zhang
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Joel Vizueta
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| | - Weiwei Liu
- Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Guojie Zhang
- Centre for Evolutionary and Organismal Biology, Women's Hospital, & Liangzhu Laboratory, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Villum Center for Biodiversity Genomics, Department of Biology, University of Copenhagen, Copenhagen 2100, Denmark
| |
Collapse
|
163
|
Reijers VC, van Rees F, van der Heide T, Oost AP, Ruessink G, Koffijberg K, Camphuysen KCJ, Penning E, Hijner N, Govers LL. Birds influence vegetation coverage and structure on sandy biogeomorphic islands in the Dutch Wadden Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175254. [PMID: 39111441 DOI: 10.1016/j.scitotenv.2024.175254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Small uninhabited islands form important roosting and breeding habitats for many coastal birds. Previous studies have demonstrated that guano can promote ecosystem productivity and functionality on island ecosystems. Here, we assess the role of external nutrient input by coastal birds on the vegetation structure and coverage on sandy biogeomorphic islands, where island-forming processes depend on vegetation-sedimentation feedbacks. As a first step, we investigated whether breeding birds affect vegetation productivity on sandy back-barrier islands in the Wadden Sea. Using a combination of bird observations and plant stable isotope (δ15N) analyses, we demonstrate that (i) breeding birds transport large quantities of nutrients via their faecal outputs to these islands annually and that (ii) this external nitrogen source influences vegetation development on these sandy, nutrient-limited, islands. Based on these results we discuss how this avian nutrient pump could impact island development and habitat suitability for coastal birds and discuss future directions for research. In general, we conclude that avian subsidies have the potential to affect both the ecological and biogeomorphic functioning of coastal soft-sediment systems. However, the strength and scale of especially these biogeomorphic interactions are not fully understood. For the conservation of both threatened coastal birds and sandy back-barrier islands and the design of appropriate management strategies, we argue that three-way interactions between birds, vegetation and sandy island morphodynamics need to be further elucidated.
Collapse
Affiliation(s)
- Valérie C Reijers
- Department of Physical Geography, Faculty of Geosciences, Utrecht University, 3508 TC Utrecht, the Netherlands; Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands; Department of Aquatic Ecology & Environmental Biology, Institute for Water and Wetland Research, Radboud University, Faculty of Science, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands.
| | - Floris van Rees
- Department of Physical Geography, Faculty of Geosciences, Utrecht University, 3508 TC Utrecht, the Netherlands; Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Tjisse van der Heide
- Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands; Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9700 CC Groningen, the Netherlands
| | - Albert P Oost
- Staatsbosbeheer, P.O. Box 2, 3800 AA Amersfoort, the Netherlands
| | - Gerben Ruessink
- Department of Physical Geography, Faculty of Geosciences, Utrecht University, 3508 TC Utrecht, the Netherlands
| | - Kees Koffijberg
- Sovon Dutch Centre for Field Ornithology, PO Box 6521, Nijmegen, the Netherlands
| | - Kees C J Camphuysen
- Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Emma Penning
- Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands; BirdEyes, Centre for Global Ecological Change at the Faculties of Science & Engineering and Campus Fryslân, University of Groningen, Zaailand 110, 8911 BN Leeuwarden, the Netherlands
| | - Nadia Hijner
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9700 CC Groningen, the Netherlands
| | - Laura L Govers
- Department Coastal Systems, Royal Netherlands Institute for Sea Research and Utrecht University, P.O. Box 59, 1790 AB Den Burg, the Netherlands; Department of Aquatic Ecology & Environmental Biology, Institute for Water and Wetland Research, Radboud University, Faculty of Science, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands; Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, 9700 CC Groningen, the Netherlands
| |
Collapse
|
164
|
Haubrock PJ. Site characteristics determine the prevalence of extreme weather events affecting freshwater macroinvertebrate communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175436. [PMID: 39128525 DOI: 10.1016/j.scitotenv.2024.175436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Understanding the impacts of extreme weather events on freshwater ecosystems is imperative during a time when a multitude of challenges compromises these environments' health. Exploring how such events affect macroinvertebrate communities in rivers sheds light on the resilience of freshwater ecosystems, which is essential for human well-being and biodiversity conservation. In this study, long-term time series of benthic macroinvertebrate communities from four sites along three freshwater streams within the Rhine-Main-Observatory Long-Term Ecological Research site in Germany were analyzed. Each of them was sampled annually over a span of ~20 years to assess the impacts of extreme weather events (floods, droughts, and extreme heat) on macroinvertebrate communities. The findings reveal that the effects of extreme events are site-specific, suggesting that the impacts of an extreme event can vary based on several potential factors, including the life history traits of the organisms within the community and, among others, the hydrography of the site. Moreover, the analysis highlights that the cumulative impact of these events over time is more significant than the impact of a single event's magnitude, while following distinct temporal dynamics. This underscores the importance of considering both the temporal dynamics and the biological characteristics of communities when evaluating the consequences of extreme weather events on biodiversity, illustrating that the resilience of freshwater ecosystems and their biodiversity under such conditions depends on a complex interplay of factors rather than the severity of individual events.
Collapse
Affiliation(s)
- Phillip J Haubrock
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Kuwait
| |
Collapse
|
165
|
Zhao D, Cai J, Shen S, Liu Q, Lan Y. Nature-based solutions: Assessing the carbon sink potential and influencing factors of urban park plant communities in the temperate monsoon climate zone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175347. [PMID: 39117208 DOI: 10.1016/j.scitotenv.2024.175347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
As nature-based solutions, urban park plant communities play a pivotal role in regulating urban carbon cycles, alleviating global climate change, and fostering sustainable urban development. However, the factors influencing the carbon sink efficiency of plant communities in urban parks within temperate monsoon climate zones have not been fully investigated. This study used multivariate heterogeneous data to evaluate plant communities' carbon storage (CS) and annual carbon sequestration (ACS) in 25 urban parks across different biotope types in Jinan, a city located in China's temperate monsoon climate zone. The driving mechanisms affecting carbon sink efficacy were revealed using Spearman correlation, regression, principal component analyses, and structural equation modeling. Results demonstrated that: 1) Closed broadleaf multi-layer green space has significant carbon sink potential compared to other vegetation structures. 2) The carbon sink efficiency of the plant communities negatively correlated with the sky view factor and planting layout density. Three-dimensional green quantity (3DGQ), the ratio of trees and shrubs, species richness, and vertical structures positively correlated with plant communities' carbon storage and sequestration. 3) Whether increasing 3DGQ, the ratio of trees and shrubs, or the total number of individuals of all species, there is a certain threshold bottleneck in enhancing the carbon sink benefits of plant communities. 4) Plant community structure, species composition, and species diversity influenced carbon sink efficiency, collectively forming the first principal component. The 3DGQ affected carbon sink efficiency as the second principal component. Synergistic effects existed among these driving factors, jointly explained 64.3 % and 90.1 % of the CS and ACS of plant communities, respectively. Optimization design strategies for different plant communities in urban parks were proposed.
Collapse
Affiliation(s)
- Dan Zhao
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Jun Cai
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Shijia Shen
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Qianchi Liu
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| | - Yuqian Lan
- School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
166
|
Verhoest L, Drouet T, Noret N. Use of phytoextraction with Noccaea caerulescens to limit the transfer of cadmium and zinc to subsequent rocket crops. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175238. [PMID: 39098423 DOI: 10.1016/j.scitotenv.2024.175238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Soil trace metal (TM) contamination is a worldwide issue and threatens food production and security. Remediation of cadmium (Cd) and zinc (Zn) contaminated soils by phytoextraction with the Zn/Cd hyperaccumulator Noccaea caerulescens is widely studied but few studies have investigated the efficiency of this technique to reduce Cd and Zn soil-to-crop transfers to subsequent vegetable crops. The vegetable biomonitor rocket Diplotaxis tenuifolia was grown in pots on 13 moderately contaminated soils that had previously been cropped with N. caerulescens. Using mixed-effects models, we show the drivers of rocket biomass, Cd and Zn concentrations. Our models show, for our study soils, the benefit of previous N. caerulescens uptake of Cd and Zn in decreasing Cd and Zn concentrations in a subsequent rocket crop. We also show a slight positive impact of N. caerulescens biomass (and therefore uptake) on rocket growth. Our data show that exchangeable soil concentrations are major drivers of Cd and Zn rocket concentrations. Other soil variables negatively driving rocket Cd and Zn concentrations are NO3- content, organic matter content, cation exchange capacity, and soil manganese which stimulate rocket biomass and/or influence TM bioavailability. Rocket D. tenuifolia seems to be a good biomonitor for contaminated soils as it is tolerant to relatively high TM soil concentrations. We demonstrate that 40 % of rockets grown on soils below 2 mg total Cd kg-1 dry soil have foliar Cd concentrations above the European maximum allowed level confirming the need to review soil legal thresholds to protect consumers' health. In conclusion, our study suggests promising use of N. caerulescens phytoextraction for bioavailable contaminant stripping which is all the more interesting given the increasing demand for urban growing spaces.
Collapse
Affiliation(s)
- Louise Verhoest
- Laboratoire d'Écologie Végétale et Biogéochimie, CP 244, Faculté des Sciences, Université libre de Bruxelles, 50 av. F. D. Roosevelt, 1050 Brussels, Belgium.
| | - Thomas Drouet
- Laboratoire d'Écologie Végétale et Biogéochimie, CP 244, Faculté des Sciences, Université libre de Bruxelles, 50 av. F. D. Roosevelt, 1050 Brussels, Belgium
| | - Nausicaa Noret
- Laboratoire d'Écologie Végétale et Biogéochimie, CP 244, Faculté des Sciences, Université libre de Bruxelles, 50 av. F. D. Roosevelt, 1050 Brussels, Belgium
| |
Collapse
|
167
|
Yuan C, Gao J, Huang L, Jian S. Chromolaena odorata affects soil nitrogen transformations and competition in tropical coral islands by altering soil ammonia oxidizing microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175196. [PMID: 39097027 DOI: 10.1016/j.scitotenv.2024.175196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/27/2024] [Indexed: 08/05/2024]
Abstract
Invasive plants can change the community structure of soil ammonia-oxidizing microbes, affect the process of soil nitrogen (N) transformation, and gain a competitive advantage. However, the current researches on competition mechanism of Chromolaena odorata have not involved soil nitrogen transformation. In this study, we compared the microbially mediated soil transformations of invasive C. odorata and natives (Pisonia grandis and Scaevola taccada) of tropical coral islands. We assessed how differences in plant biomass and tissue N contents, soil nutrients, N transformation rates, microbial biomass and activity, and diversity and abundance of ammonia oxidizing microbes associated with these species impact their competitiveness. The results showed that C. odorata outcompeted both native species by allocating more proportionally biomass to aboveground parts in response to interspecific competition (12.92 % and 22.72 % more than P. grandis and S. taccada, respectively). Additionally, when C. odorata was planted with native plants, the available N and net mineralization rates in C. odorata rhizosphere soil were higher than in native plants rhizosphere soils. Higher abundance of ammonia-oxidizing bacteria in C. odorata rhizosphere soil confirmed this, being positively correlated with soil N mineralization rates and available N. Our findings help to understand the soil N acquisition and competition strategies of C. odorata, and contribute to improving evaluations and predictions of invasive plant dynamics and their ecological effects in tropical coral islands.
Collapse
Affiliation(s)
- Chengzhi Yuan
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Gao
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luping Huang
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuguang Jian
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones & Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; South China National Botanical Garden, Guangzhou 510650, China.
| |
Collapse
|
168
|
Wang W, Sheng Y. Interactions between Microcystis and its associated bacterial community on electron transfer and transcriptomic processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175372. [PMID: 39117231 DOI: 10.1016/j.scitotenv.2024.175372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Microcystis and bacteria always live together in the mucilage of Microcystis colonies. Extracellular electrons between Microcystis and bacteria can be translated from bioenergy to electric energy. Here, photosynthetic microbial fuel cells (PMFCs) were constructed to make clear the electron transfer mechanism between Microcystis and bacteria. A remarkable enhancement of current density with 2.5-fold change was detected in the coculture of Microcystis and bacteria than pure culture of Microcystis. Transcriptome analyses showed that photosynthesis efficiency of Microcystis was upregulated and may release more electron to improve extracellular electron transfer rate. Significant increase on oxidative phosphorylation of bacterial community was observed according to meta-transcriptome. Bacterial electrons were transferred out of cell membranes by enhancing VgrG and IcmF copies though the type II bacterial secretion system. Not only Microcystis and bacteria attached with each other tightly by filamentous, but also more gene copies relating to pilin and riboflavin production were detected from Microcystis culture. A confirmatory experiment found that riboflavin can upregulate the electron transfer and current density by adding riboflavin into cocultures. Thus, the direct contact and indirect interspecies electron transfer processes between Microcystis and bacteria were observed. Results enlarge knowledge for activities of Microcystis colonies in cyanobacterial blooms, and provide a better understanding for energy transformation.
Collapse
Affiliation(s)
- Wenjing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Yanqing Sheng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, China; Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Shandong Academy for Environmental Planning, Jinan 250101, China.
| |
Collapse
|
169
|
Wu K, Wang Y, Liu Z, Huo W, Cao J, Zhao G, Zhang FG. Prediction of potential invasion of two weeds of the genus Avena in Asia under climate change based on Maxent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175192. [PMID: 39111452 DOI: 10.1016/j.scitotenv.2024.175192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
Avena sterilis L. (A. sterilis) and Avena ludoviciana Dur. (A. ludoviciana) are extremely invasive weeds with strong competitive ability and multiple transmission routes. Both species can invade a variety of dryland crops, including wheat, corn, and beans. Asia, as the world's major food-producing continent, will experience significant losses to agricultural production if it is invaded by these weeds on a large scale. This study used the MaxEnt model and ArcGIS to map the distribution of suitable habitats of the two species in Asia under climate change conditions. The constructed model comprised four levels, with a total of 25 index-level indicator factors used to evaluate the invasion risk of the two species. The results showed that the distribution of suitable habitats for both Avena species was highly dependent on precipitation and temperature. Under climate warming conditions, although overall the total suitable area is predicted to decrease compared to the current period, there are still moderately or highly suitable areas. Asian countries need to provide early warning for areas with significant increases in moderate and highly suitable zones for these two species of weeds under the background of climate change. If there is already an invaded area or if the suitability of the original area is increased, this should be closely monitored, and control measures should be taken to prevent further spread and deterioration.
Collapse
Affiliation(s)
- Kefan Wu
- College of Life Science, Shanxi Engineering Research Center of Microbial application technologies, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Yongji Wang
- College of Life Science, Shanxi Engineering Research Center of Microbial application technologies, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Zhusong Liu
- College of Life Science, Shanxi Engineering Research Center of Microbial application technologies, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Wentao Huo
- College of Life Science, Shanxi Engineering Research Center of Microbial application technologies, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Jiaying Cao
- College of Life Science, Shanxi Engineering Research Center of Microbial application technologies, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Guanghua Zhao
- College of Life Science, Shanxi Engineering Research Center of Microbial application technologies, Shanxi Normal University, Taiyuan, Shanxi, China
| | - Fen-Guo Zhang
- College of Life Science, Shanxi Engineering Research Center of Microbial application technologies, Shanxi Normal University, Taiyuan, Shanxi, China.
| |
Collapse
|
170
|
Jiang Y, Wang Z, Girardin MP, Zhang Z, Ding X, Campbell E, Huang JG. Growth trends clustering: A novel method for detecting forest disturbances and extracting climate signals in tree rings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175174. [PMID: 39094646 DOI: 10.1016/j.scitotenv.2024.175174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Tree-ring widths contain valuable historical information related to both forest disturbances and climate variability and changes within forests. However, current methods are still unable to accurately distinguish between disturbances and climate signals in tree rings, especially in the case of climate anomalies. To address this issue, we developed a novel method, called Growth Trends Clustering (GTC) that uses the distribution characteristics of tree-ring widths within a stand to distinguish the effects of climate and other forest disturbances. GTC employed a Gaussian mixture model to fit the probability density distribution of annual ring-width index (RWI) in a stand. Discriminative criteria were established to cluster diverse sub-distributions from the Gaussian mixture model into categories of growth release, suppression, or normal trends. This approach allowed us to identify the occurrence, duration, and severity of forest disturbances based on percentage changes in the growth release or suppression categories of trees. And the effect of climate on tree growth was assessed according to the mean statistics of the growth normal categories. Using common forest disturbances such as defoliating insects and thinning as examples, we validated our method using tree-ring collections from six sites in British Columbia and Quebec, Canada. We found that the GTC method was superior to traditional time-series analysis methods (e.g., Radial Growth Averaging, Boundary Line, Absolute Increase, and Curve Intervention Detection) for detecting past forest disturbances and was able to significantly enhance climate signals. In summary, the GTC method presented in this study introduces a novel statistical approach for accurately distinguishing between forest disturbances and climate signals in tree rings. This is particularly important for understanding forest disturbance regimes under climate change and for developing future disturbance mitigation strategies.
Collapse
Affiliation(s)
- Yao Jiang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, 19(A) Yuquan Road, Shijingshan, District, Beijing 100049, China
| | - Zhou Wang
- National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China
| | - Martin P Girardin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC G1V 4C7, Canada
| | | | - Xiaogang Ding
- Guangdong Academy of Forestry, Guangzhou 510520, China
| | - Elizabeth Campbell
- Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, BC V8Z 1M5, Canada
| | - Jian-Guo Huang
- MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
171
|
Ferrario F, Mourato JM, Rodrigues MS, Dias LF. Evaluating Nature-based Solutions as urban resilience and climate adaptation tools: A meta-analysis of their benefits on heatwaves and floods. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175179. [PMID: 39097007 DOI: 10.1016/j.scitotenv.2024.175179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/11/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Extreme weather events driven by climate change threaten the resilience of urban structures and urban dwellers. Nature-based Solutions (NbS) are an effective tool to reduce urban vulnerability to climate risks and, at the same time, develop more liveable urban areas. Despite the acknowledged positive impacts of individual observed NbS, numerous questions persist unanswered. While existing research supports NbS' positive influence on urban climate adaptation, the extent of their impact remains insufficiently studied. Understanding the magnitude of NbS impact is crucial for justifying their preference over non-NbS alternatives and, consequently, for securing public investment. Via a meta-analysis, this paper aims to contribute to research and practice by providing a more systematic assessment of NbS effects, offering urban planners and decision-makers a robust justification for their incorporation in climate change adaptation, urban resilience, and enhanced liveability. The results of the meta-analytic model indicate that the effect of NbS is indeed positive. When assessing the impact on temperature and flood protection, there is a general positive effect across the studied NbS. However, when evaluating an average effect, the task appears to be more complex due to methodological issues and limitations. The need to increase the formalisation of how the impact of NbS is measured and reported also emerges as a result. Replicable protocols would positively impact the formalisation of the literature on the topic and positively affect the evidence-based support for the implementation of NbS by urban decision-makers.
Collapse
Affiliation(s)
- Francesco Ferrario
- Instituto de Ciências Sociais, Universidade de Lisboa, Av. Prof. Aníbal Bettencourt 9, 1600-189 Lisboa, Portugal.
| | - João Morais Mourato
- Instituto de Ciências Sociais, Universidade de Lisboa, Av. Prof. Aníbal Bettencourt 9, 1600-189 Lisboa, Portugal.
| | - Miguel Silva Rodrigues
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Edifício C2, 5° Piso, Sala 2.5.46 Campo Grande, 1749-016 Lisboa, Portugal.
| | - Luís Filipe Dias
- cE3c - Center for Ecology, Evolution and Environmental Changes & CHANGE - Global Change and Sustainability Institute, Faculdade de Ciências da Universidade de Lisboa, Edifício C2, 5° Piso, Sala 2.5.46 Campo Grande, 1749-016 Lisboa, Portugal.
| |
Collapse
|
172
|
Qu Q, Wang S, Hu X, Mu L. The impact of anthropogenic pressures on microbial diversity and river multifunctionality relationships on a global scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175293. [PMID: 39111414 DOI: 10.1016/j.scitotenv.2024.175293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/28/2024]
Abstract
Conserving biodiversity is crucial for maintaining essential ecosystem functions, as indicated by the positive relationships between biodiversity and ecosystem functioning. However, the impacts of declining biodiversity on ecosystem functions in response to mounting human pressures remain uncertain. This uncertainty arises from the complexity of trade-offs among human activities, climate change, river properties, and biodiversity, which have not been comprehensively addressed collectively. Here, we provide evidence that river biodiversity was significantly and positively associated with multifunctionality and contributed to key ecosystem functions such as microbially driven water purification, leaf litter decomposition and pathogen control. However, human pressure led to abrupt changes in microbial diversity and river multifunctionality relationships at a human pressure value of 0.5. In approximately 30 % (N = 58) of countries globally, the ratio of area above this threshold exceeded the global average (∼11 %), especially in Europe. Results show that human pressure affected ecosystem functions through direct effects and interactive effects. We provide more direct evidence that the nonadditive effects triggered by prevailing human pressure impact the multifunctionality of rivers globally. Under high levels of human stress, the beneficial effects of biodiversity on nutrient cycling, carbon storage, gross primary productivity, leaf litter decomposition, and pathogen control tend to diminish. Our findings highlight that considering interactions between human pressure and local abiotic and biotic factors is key for understanding the fate of river ecosystems under climate change and increasing human pressure.
Collapse
Affiliation(s)
- Qian Qu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shuting Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Li Mu
- Tianjin Key Laboratory of Agro-Environment and Product Safety, Key Laboratory for Environmental Factors Controlling Agro-Product Quality Safety (Ministry of Agriculture and Rural Affairs), Institute of Agro-Environmental Protection, Ministry of Agriculture and Rural Affairs, 300191 Tianjin, China.
| |
Collapse
|
173
|
Fedyń I, Sobociński W, Czyżowicz S, Wyka J, Ciach M. Ecosystem engineers cause biodiversity spill-over: Beavers are associated with breeding bird assemblages on both wetlands and adjacent terrestrial habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175166. [PMID: 39094639 DOI: 10.1016/j.scitotenv.2024.175166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The influence of ecosystem engineers on habitats and communities is commonly acknowledged in a site-bounded context, i.e. in places directly affected by the presence of the focal species. However, the spatial extent of the effects of such engineering is poorly understood, raising the question as to what impact they have on ecosystems situated beyond the species' direct influence. Beavers Castor spp., iconic ecosystem engineers, are capable of significantly transforming aquatic ecosystems. Their presence boosts biodiversity in adjacent aquatic and riparian habitats, but as a result of cascading processes, beavers may affect terrestrial habitats situated beyond the range of their immediate activity. Our study investigates the breeding bird assemblage along a spatial gradient from the water to the forest interior on central European watercourses modified and unmodified by beavers. The results show that beaver sites are characterized by a higher species richness and abundance of breeding birds than unmodified watercourses. Such sites also host a different species pool, as 27 % of the recorded bird species occurred exclusively on the beaver sites. The effect of the beaver's presence on the bird assemblage extended to adjacent terrestrial habitats located up to 100 m from the water's edge, where the species richness and abundance was higher and the species composition was substantially modified. We also found a positive correlation between the total area of beaver wetland and the numbers of bird species and individuals recorded. Our study adds to the general understanding of the spatial context of the ecosystem engineering concept, as the changes brought about by engineers have an influence beyond the area of their immediate occurrence. Our work also has implications for landscape planning and management, where existing beaver sites with terrestrial buffer zones may constitute a network of biodiversity hotspots.
Collapse
Affiliation(s)
- Izabela Fedyń
- Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, al. 29 Listopada 46, 31-425 Kraków, Poland
| | - Wojciech Sobociński
- Institute of Biology, University of Bialystok, ul. Ciołkowskiego 1J, 15-245 Białystok, Poland
| | - Sławomir Czyżowicz
- Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, al. 29 Listopada 46, 31-425 Kraków, Poland
| | - Jakub Wyka
- Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, al. 29 Listopada 46, 31-425 Kraków, Poland
| | - Michał Ciach
- Department of Forest Biodiversity, Faculty of Forestry, University of Agriculture, al. 29 Listopada 46, 31-425 Kraków, Poland.
| |
Collapse
|
174
|
Sun F, Gao A, Yan B, Zhang J, Wang X, Zhang H, Dai D, Zheng Y, Deng X, Wei C, Wang D. Self-adaptive photochromism. SCIENCE ADVANCES 2024; 10:eads2217. [PMID: 39504369 DOI: 10.1126/sciadv.ads2217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024]
Abstract
Organisms with active camouflage ability exhibit changeable appearance with the switching of environments. However, manmade active camouflage systems heavily rely on integrating electronic devices, which encounters problems including a complex structure, poor usability, and high cost . In the current work, we report active camouflage as an intrinsic function of materials by proposing self-adaptive photochromism (SAP). The SAP materials were fabricated using donor-acceptor Stenhouse adducts (DASAs) as the negative photochromic phases and organic dyes as the fixed phases (nonphotochromic). Incident light with a specific wavelength induces linear-to-cyclic isomerization of DASAs, which generates an absorption gap at the wavelength and accordingly switches the color. The SAP materials are in the primary black state under dark and spontaneously switch to another color upon triggering by transmitted and reflected light in the background. SAP films and coatings were fabricated by incorporating polycaprolactone and are applicable to a wide variety of surfaces.
Collapse
Affiliation(s)
- Fanxi Sun
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Ang Gao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Boyun Yan
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Jing Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xiangru Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Hanjun Zhang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dacheng Dai
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yonghao Zheng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Xu Deng
- Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chen Wei
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Dongsheng Wang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
175
|
Streicher JW, Lambert SM, Méndez de la Cruz FR, Martínez-Méndez N, García-Vázquez UO, Nieto Montes de Oca A, Wiens JJ. What Predicts Gene Flow During Speciation? The Relative Roles of Time, Space, Morphology and Climate. Mol Ecol 2024:e17580. [PMID: 39506895 DOI: 10.1111/mec.17580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/12/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024]
Abstract
The processes that restrict gene flow between populations are fundamental to speciation. Here, we develop a simple framework for studying whether divergence in morphology, climatic niche, time and space contribute to reduced gene flow among populations and species. We apply this framework to a model system involving a clade of spiny lizards (Sceloporus) occurring mostly in northeastern Mexico, which show striking variation in morphology and habitat among closely related species and populations. We developed a new time-calibrated phylogeny for the group using RADseq data from 152 individuals. This phylogeny identified 12 putative species-level clades, including at least two undescribed species. We then estimated levels of gene flow among 21 geographically adjacent pairs of species and populations. We also estimated divergence in morphological and climatic niche variables among these same pairs, along with divergence times and geographic distances. Using Bayesian generalised linear models, we found that gene flow between pairs of lineages is negatively related to divergence time and morphological divergence among them (which are uncorrelated), and not to geographic distance or climatic divergence. The framework used here can be applied to study speciation in many other organisms having genomic data but lacking direct data on reproductive isolation. We also found several other intriguing patterns in this system, including the parallel evolution of a strikingly similar montane blue-red morph from more dull-coloured desert ancestors within two different, nonsister species.
Collapse
Affiliation(s)
- Jeffrey W Streicher
- Natural History Museum, London, UK
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Shea M Lambert
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Fausto R Méndez de la Cruz
- Laboratorio de Herpetología, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Norberto Martínez-Méndez
- Laboratorio de Bioconservación y Manejo, Departamento de Zoología, Escuela Nacional de Ciencias Biológicas del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Uri Omar García-Vázquez
- Unidad Multidisciplinaria de Investigación, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Adrián Nieto Montes de Oca
- Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - John J Wiens
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
176
|
Gora C, Dudas A, Court L, Annamneedi A, Lefort G, Nakahara TS, Azzopardi N, Acquistapace A, Laine AL, Trouillet AC, Drobecq L, Pecnard E, Piégu B, Crépieux P, Chamero P, Pellissier LP. Effect of the social environment on olfaction and social skills in wild-type and a mouse model of autism. Transl Psychiatry 2024; 14:464. [PMID: 39505842 DOI: 10.1038/s41398-024-03174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Autism spectrum disorders (ASD) are complex, polygenic and heterogenous neurodevelopmental conditions. The severity of autism-associated variants is influenced by environmental factors, particularly social experiences during the critical neurodevelopmental period. While early behavioral interventions have shown efficacy in some children with autism, pharmacological support for core features - impairments in social interaction and communication, and stereotyped or restricted behaviors - is currently lacking. In this study, we examined how the social environment influences both wild-type (WT) and Shank3 knockout (KO) mice, a model reflecting core autism-like traits. Our findings revealed that chronic social isolation enhanced social interaction and olfactory neuron responses in WT animals. Furthermore, it restored impairments in social novelty preference and olfactory function, as well as self-grooming in Shank3 KO mice. Conversely, an enriched social environment heightened social interest toward novel conspecifics in WT mice, but elicited the opposite effect in Shank3 KO mice. Notably, Shank3 KO mice displayed distinct social responses when exposed to WT or Shank3 KO mice. These results offer novel insights that could favor the implementation of behavioral interventions and inclusive classroom programs for children with ASD.
Collapse
Affiliation(s)
- Caroline Gora
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, France
| | - Ana Dudas
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, France
| | - Lucas Court
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, France
| | - Anil Annamneedi
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, France
- LE STUDIUM Loire Valley Institute for Advanced Studies, Orléans, France
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu, India
| | - Gaëlle Lefort
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, France
| | | | | | | | | | | | | | | | - Benoît Piégu
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, France
| | - Pascale Crépieux
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, France
- Inria, Inria Saclay-Ile-de-France, Palaiseau, France
| | - Pablo Chamero
- INRAE, CNRS, Université de Tours, PRC, Nouzilly, France
| | | |
Collapse
|
177
|
Chen Y, Wang Z, Huang Q, Wang Y, Yan F, Xiang S, Xu L, Chen Y, Liu X, Chen G, Li M, Zhou Y. Differential proteomic profiles of exosomes in pediatric and adult adamantinomatous craniopharyngioma cyst fluid. Mol Biol Rep 2024; 51:1126. [PMID: 39505756 DOI: 10.1007/s11033-024-10073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Adamantinomatous craniopharyngiomas (ACPs), commonly seen in pediatrics and adults often present with large cystic cavities that can compress surrounding tissues, causing severe visual and endocrine symptoms. Complete resection of cystic ACP is challenging, frequently leading to postoperative recurrence. The composition of the cystic fluid is complex, and to date, there has been limited research focusing on exosomes within ACP cyst fluid. METHODS We collected cyst fluid from 12 ACP patients and confirmed the presence of exosomes. Subsequently, we conducted exosomal proteomic analysis using LC-MS/MS. The patients were divided into pediatric and adult groups for the analysis of differential protein enrichment, followed by comprehensive bioinformatics analysis, including GO analysis, KEGG analysis, and PPI network analysis, among other functional pathway and protein interaction analyses. Immunohistochemistry was used to determine the tissue expression distribution of the differential protein APOA1. RESULTS In our data analysis, 64 significantly differentially expressed proteins were identified, with 37 being overexpressed in the pediatric group and 27 in the adult group. Our results revealed that exosomal proteins in the pediatric group were predominantly enriched in modules and pathways related to high-density lipoprotein particle, apolipoprotein receptor binding, and the PPAR signaling pathway. Additionally, APOA1, as the hub protein with the highest connectivity in the differential protein interaction network, may play a critical role in β-amyloid metabolism pathways in pediatric ACP. CONCLUSION This study is the first to construct a proteomic map of ACP cyst fluid exosomes, suggesting significant differences in the tumor microenvironment's lipid metabolism between pediatrics and adults.
Collapse
Affiliation(s)
- Yiguang Chen
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Ziyu Wang
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China
| | - Qin Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, No. 1838, Guangzhou North Road, Guangzhou, 510515, Guangdong, China
| | - Yaming Wang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Feng Yan
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Sishi Xiang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Lixin Xu
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Yongjian Chen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institute, 10005, Stockholm, Sweden.
| | - Xiaohai Liu
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Ge Chen
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Mingchu Li
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Yiqiang Zhou
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
178
|
Ao N, Du J, Jin S, Suo L, Yang J. The cellular and molecular mechanisms mediating the protective effects of sodium-glucose linked transporter 2 inhibitors against metabolic dysfunction-associated fatty liver disease. Diabetes Obes Metab 2024. [PMID: 39508115 DOI: 10.1111/dom.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease (NAFLD), is a common, highly heterogeneous condition that affects about a quarter of the world's population, with no approved drug therapy. Current evidence from preclinical research and a number of small clinical trials indicates that SGLT2 inhibitors could also be effective for MAFLD. MAFLD is associated with a higher risk of chronic liver disease and multiple extrahepatic events, especially cardiovascular disease (CVD) and chronic kidney disease (CKD). MAFLD is considered a more appropriate terminology than NAFLD because it captures the complex bidirectional interplay between fatty liver and metabolic dysfunctions associated with disease progression, such as obesity and type 2 diabetes mellitus (T2DM). SGLT2 inhibitors are antidiabetic drugs that block glucose reabsorption in the kidney proximal tubule. In this article, we reviewed current clinical evidence supporting the potential use of SGLT2 inhibitors as a drug therapy for MAFLD and discussed the possible cellular and molecular mechanisms involved. We also reviewed the clinical benefits of SGLT2 inhibitors against MAFLD-related comorbidities, especially CVD, CKD and cardiovascular-kidney-metabolic syndrome (CKM). The broad beneficial effects of SGLT2 inhibitors support their use, likely in combination with other drugs, as a therapy for MAFLD.
Collapse
Affiliation(s)
- Na Ao
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Du
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shi Jin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Linna Suo
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Yang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
179
|
Xu J, Dou Z, Zuo S, Lv M, Wang Y, Hao M, Chen L, Xu H. Semi-Preparation and X-ray Single-Crystal Structures of Sophocarpine-Based Isoxazoline Derivatives and Their Pesticidal Effects and Toxicology Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24198-24206. [PMID: 39460697 DOI: 10.1021/acs.jafc.3c08101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Recently, research and development of novel pesticides from natural plant products have received much attention. To accelerate the application of sophocarpine as the agrochemical candidate, a series of novel sophocarpine-based isoxazoline derivatives were prepared by the 1,3-dipolar [2 + 3] cycloaddition reaction of sophocarpine with different chloroximes. Their structures were well characterized by high-resolution mass spectra, infrared spectra, and proton/carbon-13 nuclear magnetic resonance spectra. Eight steric configurations of compounds 5a, 5e', 5f, 5g, 5h, 5i, 5r, and 5u' were further determined by X-ray single-crystallography. Against Aphis citricola Van der Goot, compounds 5n (LD50: 0.032 μg/nymph) and 5o (LD50: 0.024 μg/nymph) exhibited greater than 3.7- and 4.9-fold potent aphicidal activity compared to sophocarpine (LD50: 0.118 μg/nymph). Against Tetranychus cinnabarinus Boisduval, derivative 5g displayed the most promising acaricidal activity with the LC50 value of 0.247 mg/mL, which was 14.2-fold that of sophocarpine. Compounds 5d and 5g also exhibited good control efficacy against T. cinnabarinus. Scanning electron microscopy images indicated that compound 5g can destroy the mite cuticle layer. These results will provide the foundation for the structural modification and use of sophocarpine derivatives as agrochemicals in the future.
Collapse
Affiliation(s)
- Jianwei Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Zihan Dou
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sihui Zuo
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Min Lv
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yanyan Wang
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Meng Hao
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lin Chen
- College of Plant Protection, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Hui Xu
- College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
- School of Marine Sciences, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
180
|
Dedukh D, Majtánová Z, Ráb P, Ezaz T, Unmack PJ. Gradual chromosomal lagging drive programmed genome elimination in hemiclonal fishes from the genus Hypseleotris. Sci Rep 2024; 14:26866. [PMID: 39501046 DOI: 10.1038/s41598-024-78278-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024] Open
Abstract
Most eukaryotes maintain the stability of their cellular genome sizes to ensure genome transmission to offspring through sexual reproduction. However, some alter their genome size by selectively eliminating parts or increasing ploidy at specific developmental stages. This phenomenon of genome elimination or whole genome duplication occurs in animal hybrids reproducing asexually. Such genome alterations occur during gonocyte development ensuring successful reproduction of these hybrids. Although multiple examples of genome alterations are known, the underlying molecular and cellular processes involved in selective genome elimination and duplication remain largely unknown. Here, we uncovered the process of selective genome elimination and genome endoreplication in hemiclonal fish hybrids from the genus Hypseleotris. Specifically, we examined parental sexual species H. bucephala and hybrid H. bucephala × H. gymnocephala (HB × HX). We observed micronuclei in the cytoplasm of gonial cells in the gonads of hybrids, but not in the parental sexual species. We also observed misaligned chromosomes during mitosis which were unable to attach to the spindle. Moreover, we found that misaligned chromosomes lag during anaphase and subsequently enclose in the micronuclei. Using whole mount immunofluorescent staining, we showed that chromatid segregation has failed in lagging chromosomes. We also performed three-dimensional comparative genomic hybridization (3D-CGH) using species-specific probes to determine the role of micronuclei in selective genome elimination. We repeatedly observed that misaligned chromosomes of the H. bucephala genome were preferentially enclosed in micronuclei of hybrids. In addition, we detected mitotic cells without a mitotic spindle as a potential cause of genome duplication. We conclude that selective genome elimination in the gonads of hybrids occurs through gradual elimination of individual chromosomes of one parental genome. Such chromosomes, unable to attach to the spindle, lag and become enclosed in micronuclei.
Collapse
Affiliation(s)
- Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic.
| | - Zuzana Majtánová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Petr Ráb
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Liběchov, Czech Republic
| | - Tariq Ezaz
- Centre for Conservation Ecology and Genomics, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia
| |
Collapse
|
181
|
Zhang-Zheng H, Deng X, Aguirre-Gutiérrez J, Stocker BD, Thomson E, Ding R, Adu-Bredu S, Duah-Gyamfi A, Gvozdevaite A, Moore S, Oliveras Menor I, Prentice IC, Malhi Y. Why models underestimate West African tropical forest primary productivity. Nat Commun 2024; 15:9574. [PMID: 39505869 DOI: 10.1038/s41467-024-53949-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Tropical forests dominate terrestrial photosynthesis, yet there are major contradictions in our understanding due to a lack of field studies, especially outside the tropical Americas. A recent field study indicated that West African forests have among the highest forests gross primary productivity (GPP) yet observed, contradicting models that rank them lower than Amazonian forests. Here, we show possible reasons for this data-model mismatch. We found that biometric GPP measurements are on average 56.3% higher than multiple global GPP products at the study sites. The underestimation of GPP largely disappears when a standard photosynthesis model is informed by local field-measured values of (a) fractional absorbed photosynthetic radiation (fAPAR), and (b) photosynthetic traits. Remote sensing products systematically underestimate fAPAR (33.9% on average at study sites) due to cloud contamination issues. The study highlights the potential widespread underestimation of tropical forests GPP and carbon cycling and hints at the ways forward for model and input data improvement.
Collapse
Affiliation(s)
- Huanyuan Zhang-Zheng
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom.
- Leverhulme Centre for Nature Recovery, University of Oxford, Oxford, UK.
| | - Xiongjie Deng
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Jesús Aguirre-Gutiérrez
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
- Leverhulme Centre for Nature Recovery, University of Oxford, Oxford, UK
| | - Benjamin D Stocker
- Institute of Geography, University of Bern, Hallerstrasse 12, 3012, Bern, Switzerland
- Oeschger Centre for Climate Change Research, University of Bern, Falkenplatz 16, 3012, Bern, Switzerland
| | - Eleanor Thomson
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Ruijie Ding
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
| | - Stephen Adu-Bredu
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, Ghana
- Department of Natural Resources Management, CSIR College of Science and Technology, Kumasi, Ghana
| | - Akwasi Duah-Gyamfi
- Forestry Research Institute of Ghana, Council for Scientific and Industrial Research, Kumasi, Ghana
| | - Agne Gvozdevaite
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Sam Moore
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| | - Imma Oliveras Menor
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
- AMAP (Botanique et Modelisation de l'Architecture des Plantes et des Végétations), CIRAD, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France
| | - I Colin Prentice
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK.
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom.
- Leverhulme Centre for Nature Recovery, University of Oxford, Oxford, UK.
| |
Collapse
|
182
|
Pritchard Cairns J, de Bragança PHN, South J. A systematic review of poeciliid fish invasions in Africa. BMC Ecol Evol 2024; 24:136. [PMID: 39506681 DOI: 10.1186/s12862-024-02321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND This review compiles and synthesises the existing information concerning non-native poeciliid introductions to Africa. The recent upsurge in research on invasive poeciliids has revealed their widespread occurrence in Africa. RESULTS Within the 87 relevant articles, 74% reported on the presence of Gambusia spp., 33% on P. reticulata, 19% on X. hellerii, 11% on X. maculatus, and 5% on other ornamental poeciliids. Overall, poeciliids have been documented as introduced to 25 different countries in Africa. With Gambusia spp. being introduced to 16 countries and P. reticulata to 19 countries. Our results are representative of the current state of research on invasive poeciliids in Africa. There was a concentration of studies in South Africa, with limited research elsewhere. Current distribution data is relatively patchy, although widespread surveys of multiple river systems in Morocco and South Africa, confirmed widespread and abundant established poeciliid populations. The ecological impacts of invasive poeciliids in Africa remain understudied but evidence indicates deleterious effects on native fish, invertebrates, and amphibians, many of which are critically endangered or endemic. CONCLUSION Current research is limited in reporting from certain countries and ecological impacts. An increased effort to monitor species composition in vulnerable waterbodies, especially in the many African countries where invasive poeciliids are reported, should be completed to reveal further established populations. Future research should prioritise quantifying the ecological impacts of invasive poeciliids in the field and identifying both vulnerable and resistant native ecosystems to guide future management decisions.
Collapse
Affiliation(s)
- Joshua Pritchard Cairns
- Water@Leeds, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Pedro Henrique Negreiros de Bragança
- South African Institute for Aquatic Biodiversity, Private Bag 1015, Makhanda, Eastern Cape, 6140, South Africa
- Department of Ichthyology, American Museum of Natural History, New York, NY, 10024-5102, USA
| | - Josie South
- Water@Leeds, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- South African Institute for Aquatic Biodiversity, Private Bag 1015, Makhanda, Eastern Cape, 6140, South Africa.
| |
Collapse
|
183
|
Manuelli L, Mondéjar Fernández J, Dollman K, Jakata K, Cavin L. The most detailed anatomical reconstruction of a Mesozoic coelacanth. PLoS One 2024; 19:e0312026. [PMID: 39504317 DOI: 10.1371/journal.pone.0312026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Although the split of coelacanths from other sarcopterygians is ancient, around 420 million years ago, the taxic diversity and the morphological disparity of the clade have remained relatively low, with a few exceptions. This supposedly slow evolutionary pace has earned the extant coelacanth Latimeria the nickname "living fossil". This status generated much interest in both extinct and extant coelacanths leading to the production of numerous anatomical studies. However, detailed descriptions of extinct taxa are made difficult due to the quality of the fossil material which generally prevents fine comparisons with the extant Latimeria. Here we describe a new genus and species of coelacanth, Graulia branchiodonta gen. et sp. nov. from the Middle Triassic of Eastern France, based on microtomographical imaging using synchrotron radiation. Through exquisite 3D preservation of the specimens, we reconstructed the skeletal anatomy of this new species at an unprecedented level of detail for an extinct coelacanth, and barely achieved for the extant Latimeria. In particular, we identified a well-developed trilobed ossified lung whose function is still uncertain. The skeletal anatomy of G. branchiodonta displays the general Bauplan of Mesozoic coelacanths and a phylogenetic analysis resolved it as a basal Mawsoniidae, shedding light on the early diversification of one of the two major lineages of Mesozoic coelacanths. However, despite its exquisite preservation, G. branchiodonta carries a weak phylogenetic signal, highlighting that the sudden radiation of coelacanths in the Early and Middle Triassic makes it currently difficult to detect synapomorphies and resolve phylogenetic interrelationships among coelacanths in the aftermath of the great Permo-Triassic biodiversity crisis.
Collapse
Affiliation(s)
- Luigi Manuelli
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
- Department of Geology and Paleontology, Natural History Museum of Geneva, Geneva, Switzerland
| | - Jorge Mondéjar Fernández
- Senckenberg Research Institute and Natural History Museum, Frankfurt am Main, Germany
- Muséum National d'Histoire Naturelle, Paris, France
| | | | | | - Lionel Cavin
- Department of Geology and Paleontology, Natural History Museum of Geneva, Geneva, Switzerland
| |
Collapse
|
184
|
da Silva FFB, Moura TDA, Siqueira-Silva T, Gutiérrez JM, Martinez PA. Predicting the drivers of Bothrops snakebite incidence across Brazil: A Spatial Analysis. Toxicon 2024; 250:108107. [PMID: 39343148 DOI: 10.1016/j.toxicon.2024.108107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/13/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Snakebite envenoming poses a significant public health challenge on a global basis, affecting millions of people annually and leading to complications that may result in fatalities. Brazil stands as one of the countries most impacted by snakebite envenoming, with snakes of the Bothrops genus being responsible for most bites. The current study aimed to identify the determinants of Bothrops snakebite incidence across different regions of Brazil. An ecological study was conducted using municipality-aggregated data, with snakebite incidence as the dependent variable. The study period comprised the years 2015-2021. We constructed Species Distribution Models (SDMs) for Bothrops species, and information was collected on precipitation, runoff, maximum and minimum temperatures, native forest, historical forest loss, agriculture, and pasture in each Brazilian municipality. These data were employed to assess the association between snakebite incidence and biotic, climatic, and landscape factors. The data were analyzed using Generalized Least Squares (GLS) regression. The SDMs demonstrated good performance. The average annual snakebite incidence during the study period ranged from zero to 428.89 per 100,000 inhabitants, depending on the municipality. Higher incidence rates were concentrated primarily in municipalities in the northern region of the country. In this study, we found that nationwide, areas with extensive native forests and those that have historically experienced significant loss of forest cover exhibited higher snakebite incidence rates. Additionally, areas with higher temperatures and precipitation levels, as well as greater climatic suitability for the species B. jararaca, showed significantly higher snakebite incidence rates in the South and Southeast of Brazil, respectively. These associations may be linked to increased snake abundance and active behavior, as well as to engagement in activities favoring human-snake contact in these areas. The findings of this study can contribute to the improvement of prevention and control strategies for this public health issue in Brazil.
Collapse
Affiliation(s)
| | | | | | - José María Gutiérrez
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | | |
Collapse
|
185
|
Devic M, Dennu L, Lozano JC, Mariac C, Vergé V, Schatt P, Bouget FY, Sabot F. An INDEL genomic approach to explore population diversity of phytoplankton. BMC Genomics 2024; 25:1045. [PMID: 39506649 DOI: 10.1186/s12864-024-10896-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Although metabarcoding and metagenomic approaches have generated large datasets on worldwide phytoplankton species diversity, the intraspecific genetic diversity underlying the genetic adaptation of marine phytoplankton to specific environmental niches remains largely unexplored. This is mainly due to the lack of biological resources and tools for monitoring the dynamics of this diversity in space and time. RESULTS To gain insight into population diversity, a novel method based on INDEL markers was developed on Bathycoccus prasinos (Mamiellophyceae), an abundant and cosmopolitan species with strong seasonal patterns. Long read sequencing was first used to characterize structural variants among the genomes of six B. prasinos strains sampled from geographically distinct regions in the world ocean. Markers derived from identified insertions/deletions were validated by PCR then used to genotype 55 B. prasinos strains isolated during the winter bloom 2018-2019 in the bay of Banyuls-sur-Mer (Mediterranean Sea, France). This led to their classification into eight multi-loci genotypes and the sequencing of strains representative of local diversity, further improving the available genetic diversity of B. prasinos. Finally, selected markers were directly tracked on environmental DNA sampled during 3 successive blooms from 2018 to 2021, showcasing a fast and cost-effective approach to follow local population dynamics. CONCLUSIONS This method, which involves (i) pre-identifying the genetic diversity of B. prasinos in environmental samples by PCR, (ii) isolating cells from selected environmental samples and (iii) identifying genotypes representative of B. prasinos diversity for sequencing, can be used to comprehensively describe the diversity and population dynamics not only in B. prasinos but also potentially in other generalist phytoplankton species.
Collapse
Affiliation(s)
- Martine Devic
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France.
| | - Louis Dennu
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France.
| | - Jean-Claude Lozano
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France
| | - Cédric Mariac
- Diversité, Adaptation Et Développement Des Plantes (DIADE) UMR 232, University of Montpellier, IRD, CIRAD, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France
| | - Valérie Vergé
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France
| | - Philippe Schatt
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France
| | - François-Yves Bouget
- Laboratoire d'Océanographie Microbienne (LOMIC), CNRS/Sorbonne University, Observatoire Océanologique, UMR 7621, Banyuls s/ Mer, 66650, France.
| | - François Sabot
- Diversité, Adaptation Et Développement Des Plantes (DIADE) UMR 232, University of Montpellier, IRD, CIRAD, 911 Avenue Agropolis, BP 64501, 34394, Montpellier Cedex 5, France.
| |
Collapse
|
186
|
Rincón-Díaz MP, Svendsen GM, Venerus LA, Villanueva-Gomila L, Lattuca ME, Vanella FA, Cuesta Núñez J, Galván DE. Traits related to distributional range shifts of marine fishes. JOURNAL OF FISH BIOLOGY 2024. [PMID: 39505826 DOI: 10.1111/jfb.15970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
In the context of global change, reviewing the relationships between marine fish traits and their range shifts is required to (1) identify ecological generalizations regarding the influence of traits on range shifts at a global scale and (2) investigate the rationale behind trait inclusion in models describing those relationships. We systematically searched for studies on marine fish assemblages that identified distributional shifts and analyzed the relationship between fish traits and these shifts. We reviewed 29 papers and identified 11 shift type characterizations and 41 traits, noting significant variation in measurement methods and model types used to describe their relationships. We identified global trait redundancies in the relationship between fish traits and latitudinal range shifts. These trends are related to the fishes' latitudinal range, trophic level, water column habitat, body size, size-at-settlement, growth rate, and larval swimming ability. The first four traits, along with fish bottom habitat, biogeographic affinity, diet, and thermal affinity, also showed significant relationships across four ways to characterize horizontal range shifts of fish species. The significance of these traits suggests their relevance in range shifting, regardless of the analyses conducted, biogeographic realm, and range shift type. However, trait redundancies require further consideration, mainly because some traits show opposing relationships in different studies, and important biogeographic research gaps limit global generalizations about the trait-range shift relationship. Half of the studies analyzed provided a rationale for 23 out of 41 traits. We also provide guidelines for future work to better understand the influence of traits on fish range shifts.
Collapse
Affiliation(s)
- Martha P Rincón-Díaz
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico CONICET - Centro Nacional Patagónico, Puerto Madryn, Chubut, Argentina
| | - Guillermo M Svendsen
- Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni, San Antonio Oeste, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Escuela Superior de Ciencias Marinas, Universidad Nacional del Comahue, San Antonio Oeste, Río Negro, Argentina
| | - Leonardo A Venerus
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico CONICET - Centro Nacional Patagónico, Puerto Madryn, Chubut, Argentina
| | - Lujan Villanueva-Gomila
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico CONICET - Centro Nacional Patagónico, Puerto Madryn, Chubut, Argentina
| | - María E Lattuca
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos, Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ushuaia, Tierra del Fuego, Argentina
| | - Fabián A Vanella
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos, Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ushuaia, Tierra del Fuego, Argentina
| | - Josefina Cuesta Núñez
- Centro de Investigación Aplicada y Transferencia Tecnológica en Recursos Marinos Almirante Storni, San Antonio Oeste, Río Negro, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - David E Galván
- Centro para el Estudio de Sistemas Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro Científico Tecnológico CONICET - Centro Nacional Patagónico, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
187
|
Bernardini I, Poggi C, Porretta D, Máca J, Perugini E, Manzi S, Gabrielli S, Pichler V, Latrofa MS, Fourie J, Lia RP, Beugnet F, Otranto D, Pombi M. Population dynamics of sympatric Phortica spp. and first record of stable presence of Phortica oldenbergi in a Thelazia callipaeda-endemic area of Italy. Parasit Vectors 2024; 17:455. [PMID: 39506857 DOI: 10.1186/s13071-024-06526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/05/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Five species of the Phortica genus (Diptera: Drosophilidae) are known in Europe and the Middle East. Among these, Phortica variegata and Phortica okadai are better known for their role as vectors of the zoonotic eyeworm Thelazia callipaeda. Other species, such as Phortica semivirgo and Phortica oldenbergi, have been studied less. Given the paucity of data about these Phortica spp. vectors, we explored the population dynamics and ecology of Phortica spp. in an area highly endemic for T. callipeada (Manziana, Rome, Central Italy). METHODS Phortica spp. flies were collected over a 3-year period (2018-2020) during their active season (April-October) with a sweep net while hovering around fermenting fruits or a human operator acting as baits. Collected flies were morphologically identified and tested for a T. callipeada infection and for the presence of Wolbachia, by polymerase chain reaction (PCR). Population dynamics of species collected was associated to environmental drivers through generalized additive models. RESULTS Of the 5564 flies collected, 90.8% were P. variegata, 9.1% were P. oldenbergi, 0.05% were P. semivirgo, and one specimen was P. okadai. Only P. variegata scored molecularly infected with T. callipeada throughout the 3-year sampling period (1.8%). Phortica oldenbergi, observed consistently during the entire sampling period, exhibited a marked preference for fruit traps, contrasting with the lachryphagous activity of P. variegata. Analysis of environmental drivers of P. oldenbergi and P. variegata population dynamics indicated temperature, wind speed, and pressure as significant factors. In addition, Wolbachia pipientis endosymbiont was detected in P. oldenbergi and P. okadai. CONCLUSIONS For the first time, this study analysed several ecological aspects of Phortica species coexisting in a T. callipeada endemic area, highlighting different behaviors in the same environment and their vectorial role. Notably, this is also the first report of the presence of P. oldenbergi in Italy and P. okadai in Europe, underscoring the importance of extensive sampling for detecting potential vectors and alien species with direct implications for vector-borne disease epidemiology.
Collapse
Affiliation(s)
- Ilaria Bernardini
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Cristiana Poggi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy
| | - Daniele Porretta
- Dipartimento di Biologia Ambientale, Sapienza Università di Roma, Rome, Italy
| | - Jan Máca
- Czech Entomological Society, Prague, Czech Republic
| | - Eleonora Perugini
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy
| | - Sara Manzi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy
| | - Simona Gabrielli
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy
| | - Verena Pichler
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy
| | - Maria Stefania Latrofa
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy
| | | | - Riccardo Paolo Lia
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy
| | | | - Domenico Otranto
- Dipartimento di Medicina Veterinaria, Università degli Studi di Bari, Valenzano, Bari, Italy
- Department of Veterinary Clinical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong, China
| | - Marco Pombi
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy.
| |
Collapse
|
188
|
Xu B, Kong L, Sun J, Zhang J, Zhang Y, Song H, Li Q, Uribe JE, Halanych KM, Cai C, Dong YW, Wang S, Li Y. Molluscan systematics: historical perspectives and the way ahead. Biol Rev Camb Philos Soc 2024. [PMID: 39505387 DOI: 10.1111/brv.13157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024]
Abstract
Mollusca, the second-most diverse animal phylum, is estimated to have over 100,000 living species with great genetic and phenotypic diversity, a rich fossil record, and a considerable evolutionary significance. Early work on molluscan systematics was grounded in morphological and anatomical studies. With the transition from oligo gene Sanger sequencing to cutting-edge genomic sequencing technologies, molecular data has been increasingly utilised, providing abundant information for reconstructing the molluscan phylogenetic tree. However, relationships among and within most major lineages of Mollusca have long been contentious, often due to limited genetic markers, insufficient taxon sampling and phylogenetic conflict. Fortunately, remarkable progress in molluscan systematics has been made in recent years, which has shed light on how major molluscan groups have evolved. In this review of molluscan systematics, we first synthesise the current understanding of the molluscan Tree of Life at higher taxonomic levels. We then discuss how micromolluscs, which have adult individuals with a body size smaller than 5 mm, offer unique insights into Mollusca's vast diversity and deep phylogeny. Despite recent advancements, our knowledge of molluscan systematics and phylogeny still needs refinement. Further advancements in molluscan systematics will arise from integrating comprehensive data sets, including genome-scale data, exceptional fossils, and digital morphological data (including internal structures). Enhanced access to these data sets, combined with increased collaboration among morphologists, palaeontologists, evolutionary developmental biologists, and molecular phylogeneticists, will significantly advance this field.
Collapse
Affiliation(s)
- Biyang Xu
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Jin Sun
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institude of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Junlong Zhang
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- Laoshan Laboratory, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Marine Biological Museum, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing, 100049, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology and Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 1111 Haibin Road, Guangzhou, 510301, China
| | - Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
- University of Chinese Academy of Sciences, 1 Yanqihu East Rd, Beijing, 100049, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Yazhou Bay Science & Technology City, Sanya, 572000, China
| | - Juan E Uribe
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 2 C. de José Gutiérrez Abascal, Madrid, 28006, Spain
- Department of Invertebrate Zoology, MRC 163, National Museum of Natural History, Smithsonian Institution, 1000 Madison Drive NW, Washington, 20013-7012, DC, USA
| | - Kenneth M Halanych
- Center for Marine Sciences, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, 28409, NC, USA
| | - Chenyang Cai
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing, 210008, China
| | - Yun-Wei Dong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shi Wang
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
- Laboratory of Tropical Marine Germplasm Resources and Breeding Engineering, Sanya Oceanographic Institution, Ocean University of China, Yazhou Bay Science & Technology City, Sanya, 572000, China
- Fang Zongxi Center for Marine Evo-Devo & MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), 1119 Haibin Road, Guangzhou, 511458, China
| | - Yuanning Li
- Institute of Marine Science and Technology, Shandong University, 72 Binhai Road, Qingdao, 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Rd, Qingdao, 266237, China
| |
Collapse
|
189
|
Fenk LA, Riquelme JL, Laurent G. Central pattern generator control of a vertebrate ultradian sleep rhythm. Nature 2024:10.1038/s41586-024-08162-w. [PMID: 39506115 DOI: 10.1038/s41586-024-08162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
The mechanisms underlying the mammalian ultradian sleep rhythm-the alternation of rapid-eye-movement (REM) and slow-wave (SW) states-are not well understood but probably depend, at least in part, on circuits in the brainstem1-6. Here, we use perturbation experiments to probe this ultradian rhythm in sleeping lizards (Pogona vitticeps)7-9 and test the hypothesis that it originates in a central pattern generator10,11-circuits that are typically susceptible to phase-dependent reset and entrainment by external stimuli12. Using light pulses, we find that Pogona's ultradian rhythm8 can be reset in a phase-dependent manner, with a critical transition from phase delay to phase advance in the middle of SW. The ultradian rhythm frequency can be decreased or increased, within limits, by entrainment with light pulses. During entrainment, Pogona REM (REMP) can be shortened but not lengthened, whereas SW can be dilated more flexibly. In awake animals, a few alternating light/dark epochs matching natural REMP and SW durations entrain a sleep-like brain rhythm, suggesting the transient activation of an ultradian rhythm generator. In sleeping animals, a light pulse delivered to a single eye causes an immediate ultradian rhythm reset, but only of the contralateral hemisphere; both sides resynchronize spontaneously, indicating that sleep is controlled by paired rhythm-generating circuits linked by functional excitation. Our results indicate that central pattern generators of a type usually known to control motor rhythms may also organize the ultradian sleep rhythm in a vertebrate.
Collapse
Affiliation(s)
- Lorenz A Fenk
- Max Planck Institute for Brain Research, Frankfurt, Germany.
- Max Planck Institute for Biological Intelligence, Martinsried, Germany.
| | | | - Gilles Laurent
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
190
|
Kim J, Choi J. Histone Methylation-Mediated Reproductive Toxicity to Consumer Product Chemicals in Caenorhabditis elegans: An Epigenetic Adverse Outcome Pathway (AOP). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19604-19616. [PMID: 39445662 DOI: 10.1021/acs.est.4c04061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The significance of histone methylation in epigenetic inheritance underscores its relevance to disease and the chronic effects of environmental chemicals. However, limited evidence of the causal relationships between chemically induced epigenetic changes and organismal-level effects hinders the application of epigenetic markers in ecotoxicological assessments. This study explored the contribution of repressive histone marks to reproductive toxicity induced by chemicals in consumer products in Caenorhabditis elegans, applying the adverse outcome pathway (AOP) framework. Triclosan (TCS) and tetrabromobisphenol A (TBBPA) exposures caused reproductive toxicity and altered histone methyltransferase (HMT) and histone demethylase (HDM) activities, increasing the level of trimethylation of H3K9 and H3K27. Notably, treatment with an H3K27-specific HMT inhibitor alleviated reproductive defects and the transcriptional response of genes related to vitellogenin, xenobiotic metabolism, and oxidative stress. Comparison of points of departure (PODs) based on calculated benchmark concentrations (BMCs) revealed the sensitivity of histone-modifying enzyme activities to these chemicals. Our findings suggest that the 'disturbance of HMT and HDM' can serve as the molecular initiating event (MIE) leading to reproductive toxicity in the epigenetic AOP for TCS and TBBPA. The study extended the biological applicability of these enzymes by identifying model species with analogous protein sequences and functions. This combined approach enhances the essentiality, empirical support, and taxonomic domain of applicability (tDOA), which are crucial considerations for ecotoxicological AOPs. Given the widespread use and environmental distribution of chemicals in consumer products, this study proposes histone-modifying enzyme activity as an effective screening tool for reproductive toxicants and emphasizes the integration of epigenetic mechanisms into a prospective ERA.
Collapse
Affiliation(s)
- Jiwan Kim
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, 163 Seoulsiripdae-ro, Dongdaemun-gu, Seoul 02504, Republic of Korea
| |
Collapse
|
191
|
Moyle DM, Deslippe JR. Invasion alters plant and mycorrhizal communities in an alpine tussock grassland. Oecologia 2024:10.1007/s00442-024-05632-w. [PMID: 39499271 DOI: 10.1007/s00442-024-05632-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 10/18/2024] [Indexed: 11/07/2024]
Abstract
Plant invasions are impacting alpine zones, altering key mutualisms that affect ecosystem functions. Plant-mycorrhizal associations are sensitive to invasion, but previous studies have been limited in the types of mycorrhizas examined. Consequently, little is known about how invaders that host rarer types of mycorrhizas may affect community and ecosystem properties. We studied invasion by an ericoid mycorrhizal host plant (Calluna vulgaris L., heather) in alpine tussock grasslands in New Zealand. We investigate the effects of increasing C. vulgaris density on the plant and soil microbial community and on mycorrhization in the dominant native species (Chionochloa rubra Z., red tussock), an arbuscular mycorrhizal host. We show that variation in plant community composition was primarily driven by invader density. High invader densities were associated with reductions in C. rubra diameter and in the cover, richness and diversity of the subordinate plant community. Belowground, we show that higher invader densities were associated with lower rates of mycorrhization in C. rubra and higher proportional abundance of the fungal lipid biomarker 18:2ω6 but had little effect on total microbial biomass, which may suggest increased ericoid mycorrhizal and fine root biomass in high C. vulgaris density stands. Our data suggest that disruption of native plant-arbuscular mycorrhizal networks may contribute to the competitive success of C. vulgaris, and that the dramatic decline of C. rubra with invasion reflects its relatively high mycorrhizal dependence. By exploring invasion of a plant with a less common mycorrhizal type, our study expands knowledge of the ecosystem consequences of biological invasions.
Collapse
Affiliation(s)
- Darby M Moyle
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand
| | - Julie R Deslippe
- School of Biological Sciences, Victoria University of Wellington, Wellington, 6012, New Zealand.
- Centre for Biodiversity and Restoration Ecology, Victoria University of Wellington, Wellington, 6012, New Zealand.
| |
Collapse
|
192
|
Behera PP, Singode A, Bhat BV, Borah N, Verma H, Supriya P, Sarma RN. Identifying genetic determinants of forage sorghum [Sorghum bicolor (Moench)] adaptation through GWAS. BMC PLANT BIOLOGY 2024; 24:1043. [PMID: 39497045 PMCID: PMC11536557 DOI: 10.1186/s12870-024-05754-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/28/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Forage sorghum is a highly valued crop in livestock feed production due to its versatility, adaptability, high productivity, and resilience under adverse environmental conditions, making it a crucial option for sustainable forage production. This study aimed to investigate ninety-five forage sorghum genotypes and identify the marker - trait associations (MTAs) in adaptive traits, including yield and flowering through genome-wide association studies (GWAS). RESULTS Using 41,854 polymorphic SNPs, a GWAS involving the GLM, MLM, and FarmCPU models was performed to analyse fourteen adaptive traits. The population structure revealed the presence of two subpopulation groups. Linkage disequilibrium (LD) plots showed varying degrees of LD decay across the chromosomes, with an average LD decay of 19.49 kbp. Twelve common significant QTNs, encoding 17 putative candidate genes, were simultaneously co-detected and studied by at least two or more GWAS methods. Three QTNs were associated to days to 50% flowering; two each to leaf-to-stem ratio and number of nodes per plant; and one each to plant height, leaf width, number of leaves per plant, stem girth, and internodal length. Six candidate genes were associated with days to 50% flowering, two each with leaf width, stem girth, leaf-to-stem ratio, and number of nodes per plant, and one each with plant height, number of leaves per plant, and internodal length. CONCLUSION FarmCPU was identified as the most suitable and effective among all the models for controlling both false positives and false negatives. Further in-depth analysis of the newly discovered QTNs may lead to the identification of new candidate genes for the trait of interest. These studies elucidate gene functions and could transform forage sorghum breeding through marker-assisted selection and transgenic approaches, accelerating the development of superior forage sorghum varieties and enhancing global food security.
Collapse
Affiliation(s)
- Partha Pratim Behera
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam, 785013, India
| | - Avinash Singode
- ICAR - Indian Institute of Millets Research, Rajendranagar, Hyderabad, Telangana, 500 030, India
| | - B Venkatesh Bhat
- ICAR - Indian Institute of Millets Research, Rajendranagar, Hyderabad, Telangana, 500 030, India
| | | | - Harendra Verma
- ICAR Research Complex for NEH Region, Nagaland Centre, Medziphema, Dimapur, Nagaland, 797 106, India
| | - Patel Supriya
- Department of Genetics and Plant Breeding, Acharya N. G. Ranga Agricultural University, Tirupati, Andhra Pradesh, 517502, India
| | - Ramendra Nath Sarma
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam, 785013, India.
| |
Collapse
|
193
|
Jia M, Wang J, Lin C, Zhang Q, Xue Y, Huang X, Ren Y, Chen C, Liu Y, Xu Y. Hydrogel Strategies for Female Reproduction Dysfunction. ACS NANO 2024; 18:30132-30152. [PMID: 39437800 DOI: 10.1021/acsnano.4c05634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Infertility is an important issue for human reproductive health, with over half of all cases of infertility associated with female factors. Dysfunction of the complex female reproductive system may cause infertility. In clinical practice, female infertility is often treated with oral medications and/or surgical procedures, and ultimately with assisted reproductive technologies. Owing to their excellent biocompatibility, low immunogenicity, and adjustable mechanical properties, hydrogels are emerging as valuable tools in the reconstruction of organ function, supplemented by tissue engineering techniques to increase their structure and functionality. Hydrogel-based female reproductive reconstruction strategies targeting the pathological mechanisms of female infertility may provide alternatives for the treatment of ovarian, endometrium/uterine, and fallopian tube dysfunction. In this review, we provide a general introduction to the basic physiology and pathology of the female reproductive system, the limitations of current infertility treatments, and the lack of translation from animal models to human reproductive physiology. We further provide an overview of the current and future potential applications of hydrogels in the treatment of female reproductive system dysfunction, highlighting the great prospects of hydrogel-based strategies in the field of translational medicine, along with the significant challenges to be overcome.
Collapse
Affiliation(s)
- Minxuan Jia
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Jiamin Wang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| | - Chubing Lin
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Qingyan Zhang
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| | - Yueguang Xue
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Xin Huang
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
- GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510535, China
- School of Biomedical Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yan Ren
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Chunying Chen
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Ying Liu
- New Cornerstone Science Laboratory, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | - Yanwen Xu
- Reproductive Medical Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- The Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
- Guangdong Provincial Clinical Research Center for Obstetrical and Gynecological Diseases, Guangzhou, Guangdong 510080, China
| |
Collapse
|
194
|
Castiñeira Latorre E, Borthagaray AI, Canavero A. Core-periphery structure of a medicinal botanical system in Uruguay. JOURNAL OF ETHNOBIOLOGY AND ETHNOMEDICINE 2024; 20:96. [PMID: 39501258 DOI: 10.1186/s13002-024-00739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 10/25/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Human evolution has granted upon an individual's cognitive mechanisms necessary for remembering experiences, vital for both survival and reproduction. These experiences manifest into cultural traits, influencing human culture, particularly in healthcare and maintenance. Studies regarding medicinal plants and treatments are integral to the study of the medical botanical system. Pharmacopeias highlight the prevalence of specific species widely used, aligning with the "consensus within diversity theory" in evolutionary ethnobiology. Within the framework of this theory, we reflect on the results we've achieved in a priority area recognized by UNESCO for its biocultural significance, both locally and regionally. METHODS This study integrated network analysis and qualitative methods to examine the botanical medical system of "Parque Regional Quebradas del Norte" in Rivera, Uruguay. RESULTS Study results demonstrate a core-periphery structure, with a strongly interconnected core resistant to fragmentation, ensuring structural stability. Additionally, the presence of peripheral nodes throughout the system was identified, enhancing the resilience of the botanical medicinal system against potential disturbances. CONCLUSION The core species renowned for their versatility and multiple medicinal uses, treating less severe ailments effectively. Additionally, core plants serve as prototypes for innovations. Their extinction poses a threat to the system's resilience. Conversely, peripheral plants, though vulnerable, offer possibilities for therapeutic innovations. In the face of environmental change, conservation efforts should prioritize species that are vulnerable to extinction, particularly within the core. Simultaneously, preserving knowledge associated with peripheral plants presents a bicultural conservation strategy, ensuring the botanical system's robustness among evolving ecological conditions.
Collapse
Affiliation(s)
- Elena Castiñeira Latorre
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional Este, Universidad de la República, Maldonado, Uruguay.
- Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay.
- Laboratorio de Etnobotánica y Botánica Aplicada, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Buenos Aires, Argentina.
| | - Ana Inés Borthagaray
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional Este, Universidad de la República, Maldonado, Uruguay
| | - Andrés Canavero
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional Este, Universidad de la República, Maldonado, Uruguay
| |
Collapse
|
195
|
El-Gepaly HMKH, Abdelhameed KMA, Shakl SYE, Saleh AA, Hafez EE. Performance of Trichogramma evanescens Westwood (Hymenoptera: Trichogrammatidae) on Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) eggs at laboratory and field conditions. Sci Rep 2024; 14:26831. [PMID: 39500974 DOI: 10.1038/s41598-024-77347-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
The fall armyworm (FAW), Spodoptera frugiperda (Smith), is a significant pest threatening crops like maize across Africa, necessitating sustainable pest management alternatives. This study evaluates the efficacy of Trichogramma evanescens as a biological control agent against FAW egg masses in Egypt under laboratory and semi-field conditions. FAW larvae were initially collected from infested maize fields and reared on castor-oil plant leaves. Meanwhile, T. evanescens was propagated using Sitotroga cerealella eggs as hosts. The host eggs, aged 18 to 24 h, were sterilized with UV light to prevent host development while maintaining suitability for parasitism. Using custom-designed parasitoid incubators and hemisphere clip-cages, experiments focused on various egg mass configurations, assessing the effects of scales and layering. Laboratory conditions were controlled at 25 ± 2ºC and 55 ± 5% relative humidity, while semi-field trials used large cages in maize fields to approximate natural conditions. The results showed that in laboratory settings, parasitism rates averaged 5.96%, 2.00%, and 1.56% for non-, average-, and dense-scale egg masses, respectively. For egg masses with varying layers, parasitism rates were 5.24% for single-layer, 3.09% for double-layer, and 1.18% for ple-layer, regardless of scale presence. In semi-field conditions, parasitism rates were 1.01% for single-layer, 1.13% for double-layer, and 0.59% for triple-layer egg masses. Correspondingly, parasitism rates for non-, average-, and dense-scale eggs were 1.85%, 0.60% and 0.27%. The study concludes that T. evanescens shows promise for integrated pest management programs; however, its effectiveness is constrained by physical and environmental variables. Optimizing the timing of parasitoid releases and selecting robust strains could enhance the effectiveness of biological control, reducing reliance on chemical pesticides in Egypt.
Collapse
Affiliation(s)
- Hosam M K H El-Gepaly
- Biological Pest Control Research Department, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Khaled M A Abdelhameed
- Apicalture Department, Plant Protection Research Institute, Agricultural Research Center, Giza, Egypt
| | - Shimaa Y E Shakl
- Department of Plant Protection, Faculty of Agricultural and Natural Resources, Aswan University, Tingar, Aswan, Egypt
| | - Ahmed A Saleh
- Animal and Fish Production Department, Faculty of Agriculture (Al-Shatby), Alexandria University, Alexandria City, 11865, Egypt.
| | - Elsayed E Hafez
- City of Scientific Research and Technology Applications, Arid Lands Cultivations Research Institute, New Borg El-Arab, 21934, Alexandria, Egypt
| |
Collapse
|
196
|
Zumkhawala-Cook A, Gallagher P, Raymann K. Diet affects reproductive development and microbiota composition in honey bees. Anim Microbiome 2024; 6:64. [PMID: 39501371 DOI: 10.1186/s42523-024-00350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Gut microbes are important to the health and fitness of many animals. Many factors have been shown to affect gut microbial communities including diet, lifestyle, and age. Most animals have very complex physiologies, lifestyles, and microbiomes, making it virtually impossible to disentangle what factors have the largest impact on microbiota composition. Honeybees are an excellent model to study host-microbe interactions due to their relatively simple gut microbiota, experimental tractability, and eusociality. Worker honey bees have distinct gut microbiota from their queen mothers despite being close genetic relatives and living in the same environment. Queens and workers differ in numerous ways including development, physiology, pheromone production, diet, and behavior. In the prolonged absence of a queen or Queen Mandibular Pheromones (QMP), some but not all workers will develop ovaries and become "queen-like". Using this inducible developmental change, we aimed to determine if diet and/or reproductive development impacts the gut microbiota of honey bee workers. RESULTS Microbiota-depleted newly emerged workers were inoculated with a mixture of queen and worker gut homogenates and reared under four conditions varying in diet and pheromone exposure. Three weeks post-emergence, workers were evaluated for ovary development and their gut microbiota communities were characterized. The proportion of workers with developed ovaries was increased in the absence of QMP but also when fed a queen diet (royal jelly). Overall, we found that diet, rather than reproductive development or pheromone exposure, led to more "queen-like" microbiota in workers. However, we revealed that diet alone cannot explain the microbiota composition of workers. CONCLUSION The hypothesis that reproductive development explains microbiota differences between queens and workers was rejected. We found evidence that diet is one of the main drivers of differences between the gut microbial community compositions of queens and workers but cannot fully explain the distinct microbiota of queens. Thus, we predict that behavioral and other physiological differences dictate microbiota composition in workers and queens. Our findings not only contribute to our understanding of the factors affecting the honey bee microbiota, which is important for bee health, but also illustrate the versatility and benefits of utilizing honeybees as a model system to study host-microbe interactions.
Collapse
Affiliation(s)
- Anjali Zumkhawala-Cook
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
- Department of Biochemistry and Molecular Biology, Kenyon College, Gambier, Ohio, USA
| | - Patrick Gallagher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Kasie Raymann
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
197
|
Lu L, Shan C, Tong D, Yu Y, Zhang W, Zhang X, Shu Y, Li W, Liu G, Shi W. Olfactory toxicity of tetrabromobisphenol A to the goldfish Carassius auratus. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135661. [PMID: 39213767 DOI: 10.1016/j.jhazmat.2024.135661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most extensively used brominated flame retardants and its increasing use in consumer products has raised concerns about its ecotoxicity. Given the ubiquity of TBBPA in aquatic environments, it is inevitable that these chemicals will enter the olfactory chambers of fish via water currents. Nevertheless, the olfactory toxicity of TBBPA to aquatic organisms and the underlying toxic mechanisms have yet to be elucidated. Therefore, we investigated the olfactory toxicity of TBBPA in the goldfish Carassius auratus, a model organism widely used in sensory biology. Results showed that exposure to TBBPA resulted in abnormal olfactory-mediated behaviors and diminished electro-olfactogram (EOG) responses, indicating reduced olfactory acuity. To uncover the underlying mechanisms of action, we examined the structural integrity of the olfactory epithelium (OE), expression levels of olfactory G protein-coupled receptors (GPCRs), enzymatic activities of ion transporters, and fluctuations in neurotransmitters. Additionally, comparative transcriptomic analysis was employed to investigate the molecular mechanisms further. Our study demonstrates for the first time that TBBPA at environmentally relevant levels can adversely affect the olfactory sensitivity of aquatic organisms by interfering with the transmission of aqueous stimuli to olfactory receptors, impeding the binding of odorants to their receptors, disrupting the olfactory signal transduction pathway, and ultimately affecting the generation of action potentials.
Collapse
Affiliation(s)
- Lingzheng Lu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Conghui Shan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Difei Tong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
198
|
Franco ME. Environmental realism in molecular ecotoxicology: key considerations to transition experimental data to ecologically relevant scenarios. ECOTOXICOLOGY (LONDON, ENGLAND) 2024:10.1007/s10646-024-02827-y. [PMID: 39499406 DOI: 10.1007/s10646-024-02827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/27/2024] [Indexed: 11/07/2024]
Abstract
Molecular ecotoxicology facilitates the mechanistic understanding of chemical-organism interactions and the establishment of frameworks to link molecular events to adverse outcomes. However, the foundation of this sub-discipline must remain focused on the necessity to generate insight at levels of biological organization beyond the individual, namely the population, community, and ecosystem levels, and to strive towards ecological relevance. As planet Earth continues to experience unprecedented levels of chemical pollution, causing significant impact to the integrity and functionality of ecosystems, research efforts in molecular ecotoxicology must prioritize experimentation that quantitatively incorporates the influence of non-chemical stressors to enhance the predictability of chemical-driven effects at the population level and beyond. Here, perspectives on the challenge to transition experimental data to environmentally relevant scenarios are offered in an attempt to highlight the critical role of molecular ecotoxicology in protecting and supporting ecosystems threatened by chemical pollution.
Collapse
Affiliation(s)
- Marco E Franco
- Department of Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology, Eawag, 8600, Dübendorf, Switzerland.
| |
Collapse
|
199
|
Norhayati AM, Matthaei CD, Ingram T. The impact of microplastics on lake communities: A mesocosm study. CHEMOSPHERE 2024; 367:143600. [PMID: 39490757 DOI: 10.1016/j.chemosphere.2024.143600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/15/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
Plastics are pervasive pollutants that are being produced at an increasing rate to meet consumer demands. After entering the environment, plastics can break down, creating smaller fragments, including secondary microplastics. Microplastic contamination in lakes has been recorded worldwide, and the ingestion of microplastics has been documented in zooplankton, macroinvertebrates, and fish. Microplastic ingestion and exposure can cause varying deleterious effects on these organism groups, but the impact of realistic microplastic concentrations on whole freshwater food webs requires further study. We addressed these knowledge gaps by conducting an 8-week experiment factorially crossing microplastic addition at a concentration of 1.5 particles/L with a fish predator (perch, Perca fluviatilus) presence in 1200-L outdoor mesocosms. Microplastic exposure had time-varying effects on zooplankton abundance, with a lower abundance of zooplankton in plastic treatments at the end of the experiment. Although microplastics had no impact on total macroinvertebrate abundance, there were effects on individual taxa. In the presence of microplastics, the cased caddisfly Triplectides spp. had a significantly lower abundance, which may have led to an increase in the snail Gyraulus spp. in week eight. Across the benthic and pelagic invertebrate communities, there were near-significant compositional differences between control and plastic treatments. These findings indicate that microplastic exposure may negatively impact freshwater invertebrate communities, even at low, field-realistic concentrations representative of the densities currently found in lakes.
Collapse
Affiliation(s)
- Amirah M Norhayati
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| | - Christoph D Matthaei
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Travis Ingram
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|
200
|
Santos VACL, Garcia ACL, Montes MA. Adaptation to different temperatures results in wing size divergence of the invading species Drosophila nasuta (Diptera: Drosophilidae) in Brazil. BULLETIN OF ENTOMOLOGICAL RESEARCH 2024:1-7. [PMID: 39494803 DOI: 10.1017/s0007485324000580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Invasive species threaten biodiversity on a global scale. The success of invasions depends on the species' adaptation to the different environmental conditions of new territories. Studies show that invasive insects present evolutionary changes in wing morphology in areas they are introduced to in response to abiotic conditions. In the last decade, the Asian Drosophila nasuta fly invaded and spread widely throughout Brazil. This insect has preferences for conserved environments and is related to the likely reduction in the abundance of native drosophilids in the Atlantic Forest. Ecological niche modelling analyses showed that rainfall and temperature are the main factors which delimit the geographic distribution of this species. Herein, we verified the existence of significant differences in the wing sizes of D. nasuta in Brazil and evaluated the influence of abiotic factors (rainfall and temperature) on the observed patterns. We conducted 11 measurements on the right-side wings of 240 D. nasuta males collected in the Amazon Forest, Caatinga, Cerrado and Atlantic Forest. Statistical analyses revealed the existence of two groups: one with larger wings, which brought together samples from locations with the lowest temperatures; and one with smaller wings, which corresponded to places with a hotter climate. One explanation for this result is the fact that large wings favour greater heat capture by flies in colder climates, increasing their survival chances in these environments. These rapid evolutionary changes in D. nasuta in this first decade of invasion in Brazil reveal the enormous adaptive potential of this species in this megadiverse country.
Collapse
Affiliation(s)
| | - Ana Cristina Lauer Garcia
- Universidade Federal de Pernambuco, Centro Acadêmico de Vitória, Vitória de Santo Antão, Pernambuco, Brazil
| | - Martín Alejandro Montes
- Universidade Federal Rural de Pernambuco, Campus Dois Irmãos, Departamento de Biologia, Recife, Pernambuco, Brazil
| |
Collapse
|