151
|
Ding Y, Sun Y, Wang H, Zhao H, Yin R, Zhang M, Pan X, Zhu X. Atherosis-associated lnc_000048 activates PKR to enhance STAT1-mediated polarization of THP-1 macrophages to M1 phenotype. Neural Regen Res 2024; 19:2488-2498. [PMID: 38526285 PMCID: PMC11090429 DOI: 10.4103/nrr.nrr-d-23-01355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/12/2023] [Accepted: 01/20/2024] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00029/figure1/v/2024-03-08T184507Z/r/image-tiff Our previous study has demonstrated that lnc_000048 is upregulated in large-artery atherosclerotic stroke and promotes atherosclerosis in ApoE-/- mice. However, little is known about the role of lnc_000048 in classically activated macrophage (M1) polarization. In this study, we established THP-1-derived testing state macrophages (M0), M1 macrophages, and alternately activated macrophages (M2). Real-time fluorescence quantitative PCR was used to verify the expression of marker genes and the expression of lnc_000048 in macrophages. Flow cytometry was used to detect phenotypic proteins (CD11b, CD38, CD80). We generated cell lines with lentivirus-mediated upregulation or downregulation of lnc_000048. Flow cytometry, western blot, and real-time fluorescence quantitative PCR results showed that down-regulation of lnc_000048 reduced M1 macrophage polarization and the inflammation response, while over-expression of lnc_000048 led to the opposite effect. Western blot results indicated that lnc_000048 enhanced the activation of the STAT1 pathway and mediated the M1 macrophage polarization. Moreover, catRAPID prediction, RNA-pull down, and mass spectrometry were used to identify and screen the protein kinase RNA-activated (PKR), then catRAPID and RPIseq were used to predict the binding ability of lnc_000048 to PKR. Immunofluorescence (IF)-RNA fluorescence in situ hybridization (FISH) double labeling was performed to verify the subcellular colocalization of lnc_000048 and PKR in the cytoplasm of M1 macrophage. We speculate that lnc_000048 may form stem-loop structure-specific binding and activate PKR by inducing its phosphorylation, leading to activation of STAT1 phosphorylation and thereby enhancing STAT1 pathway-mediated polarization of THP-1 macrophages to M1 and inflammatory factor expression. Taken together, these results reveal that the lnc_000048/PKR/STAT1 axis plays a crucial role in the polarization of M1 macrophages and may be a novel therapeutic target for atherosclerosis alleviation in stroke.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yu Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hongyan Wang
- Qingdao Cadre Health Care Service Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hongqin Zhao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
152
|
Oz O, Irmak Yuzuguldu R, Yazici A, Kocatepe Cavdar D, Yilmaz C, Ozturk M, Duzel H, Gurel D. The differences between pure and mixed invasive micropapillary breast cancer: the epithelial-mesenchymal transition molecules and prognosis. Breast Cancer Res Treat 2024; 208:41-55. [PMID: 38955980 PMCID: PMC11452530 DOI: 10.1007/s10549-024-07384-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/19/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE Invasive micropapillary carcinoma (IMPC) of the breast is known for its high metastatic potential, but the definition of pure and mixed IMPC remains unclear. This retrospective cohort study aims to investigate the prognostic significance of the micropapillary component ratio and the expression of critical molecules of epithelial-mesenchymal transition (EMT), including E-cadherin (E-cad), N-cadherin (N-cad), CD44s, and β-catenin (β-cat), in distinguishing between pure and mixed IMPCs. METHODS We analyzed 100 cases of locally advanced IMPC between 2000 and 2018 and excluded patients who received neoadjuvant chemotherapy. Pure IMPC was defined as having a micropapillary component of over 90%. A comprehensive recording of prognostic parameters was conducted. The IMPC areas were analyzed using the immunohistochemical (IHC) staining method on the microarray set for pure and mixed IMPC patients. Pearson's chi-square, Fisher's exact tests, Kaplan-Meier analysis, and Cox proportional hazards analysis were employed. RESULTS The comparative survival analysis of the entire group, based on overall survival (OS) and disease-free survival (DFS), revealed no significant difference between the pure and mixed groups (P = 0.480, HR = 1.474 [0.502-4.325] and P = 0.390, HR = 1.587 [0.550-4.640], respectively). However, in the pure IMPC group, certain factors were found to be associated with a higher risk of short survival. These factors included skin involvement (P = 0.050), pT3&4 category (P = 0.006), a ratio of intraductal component (> 5%) (P = 0.032), and high-level expression of N-cad (P = 0.020). Notably, none of the risk factors identified for short OS in pure IMPC cases were observed as significant risks in mixed cases and vice versa. Furthermore, N-cad was identified as a poor prognostic marker for OS in pure IMPCs (P = 0.002). CONCLUSION The selection of a 90% ratio for classifying pure IMPCs revealed significant differences in certain molecular and prognostic parameters between pure and mixed groups. Notably, the involvement of N-cadherin in the epithelial-mesenchymal transition (EMT) process provided crucial insights for predicting OS and DFS while also distinguishing between the two groups. These findings strongly support the notion that the pure IMPC subgroup represents a distinct entity characterized by unique molecular characteristics and behavioral patterns.
Collapse
Affiliation(s)
- Ozden Oz
- Department of Pathology, Izmir Bozyaka Training and Research Hospital, University of Health Sciences, Izmir, Turkey.
| | | | - Ayse Yazici
- Department of Pathology, Faculty of Medicine, Training and Research Hospital, Izmir Katip Celebi University, Izmir, Turkey
| | - Demet Kocatepe Cavdar
- Department of Pathology, Izmir Bozyaka Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Cengiz Yilmaz
- Department of Medical Oncology, Izmir Bozyaka Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Mucteba Ozturk
- Department of General Surgery, Izmir Bozyaka Training and Research Hospital, University of Health Sciences, Izmir, Turkey
| | - Hilal Duzel
- Department of Public Health, Medical Faculty, Dokuz Eylul University, Izmir, Turkey
| | - Duygu Gurel
- Department of Pathology, Medical Faculty, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
153
|
Xu J, Liu K, Gong Z, Liu J, Lin H, Lin B, Li W, Zhu M, Li M. IL-6/STAT3 signaling pathway induces prostate apoptosis response protein-4(PAR-4) to stimulate malignant behaviors of hepatocellular carcinoma cells. Ann Hepatol 2024; 29:101538. [PMID: 39147129 DOI: 10.1016/j.aohep.2024.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION AND OBJECTIVES Prostate apoptosis response protein-4 (PAR-4) is considered a tumor suppressor. However, the role of PAR-4 in hepatocellular carcinoma (HCC) has rarely been reported. The study explores the role of PAR-4 in the malignant behaviors of HCC cells. MATERIALS AND METHODS TCGA database was applied to analyze the expression of PAR-4 in HCC. Evaluated PAR-4 relationship with clinical parameters and prognosis by tissue microarray; expression of STAT3, p-STAT3, Src and Ras was detected by Western blotting or laser confocal microscopy. Cell scratch and flow cytometry assays were used to observe IL-6 regulation of the malignant behaviors of HCC cells. The tumorigenic potential of HCC cells in vivo was evaluated in a nude mouse tumor model. RESULTS Analysis indicated that the expression of PAR-4 in HCC tissues was significantly higher than that in normal liver tissues; and PAR-4 interacted with STAT3. KEGG analysis showed that PAR-4 plays a role in the Janus kinase (JAK)/STAT signaling pathway. The positive expression rate of PAR-4 in HCC tissues was significantly higher than that in adjacent tissues. Positive correlation between IL-6 and PAR-4 expression in the HCC tissues. Exogenous IL-6 significantly promoted the proliferation and migration of HCC cells and up-regulated the expression of PAR-4 and p-STAT3 in HCC cells. Interference of the expression of PAR-4 could reduce the malignant behaviors of HCC cells and inhibit tumorigenesis in a nude mouse tumor model. CONCLUSIONS PAR-4 expression is positively correlated with HCC; PAR-4 promotes malignant behavior of HCC cells mediated by the IL-6/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Junnv Xu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China; Department of Medical Oncology, The Second Affiliated Hospital, Hainan Medical University, Haikou 570311,Hainan Province, PR China
| | - Kun Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China
| | - Zhixun Gong
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China
| | - Jinchen Liu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China
| | - Haifeng Lin
- Department of Medical Oncology, The Second Affiliated Hospital, Hainan Medical University, Haikou 570311,Hainan Province, PR China
| | - Bo Lin
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China
| | - Wei Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China
| | - Mingyue Zhu
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China.
| | - Mengsen Li
- Hainan Provincial Key Laboratory of Carcinogenesis and Intervention, Hainan Medical University, Hiakou 571199, Hainan Province, PR China; Department of Medical Oncology, The Second Affiliated Hospital, Hainan Medical University, Haikou 570311,Hainan Province, PR China; Institution of Tumor, Hainan Medical University, Hiakou 570102, Hainan Province, PR China.
| |
Collapse
|
154
|
Xia Y, Zhang B, Zhang Y. Deep survival analysis using pseudo values and its application to predict the recurrence of stage IV colorectal cancer after tumor resection. Comput Methods Biomech Biomed Engin 2024; 27:2189-2198. [PMID: 37916498 DOI: 10.1080/10255842.2023.2275246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/07/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
An improved DeepSurv model is proposed for predicting the prognosis of colorectal cancer patients at stage IV. Our model, called as PseudoDeepSurv, is optimized by a novel loss function, which is the combination of the average negative log partial likelihood and the mean-squared error derived from the pseudo-observations approach. The public BioStudies dataset including 999 patients was utilized for performance evaluation. Our PseudoDeepSurv model produced a C-index of 0.684 and 0.633 on the training and testing dataset, respectively. While for the original DeepSurv model, the corresponding values are 0.671 and 0.618, respectively.
Collapse
Affiliation(s)
- Yi Xia
- School of Electrical Engineering and Automation, Anhui University, Hefei, China
| | - Baifu Zhang
- School of Electrical Engineering and Automation, Anhui University, Hefei, China
| | - Yongliang Zhang
- Health Management Center, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
155
|
Guan Y, Zhang W, Mao Y, Li S. Nanoparticles and bone microenvironment: a comprehensive review for malignant bone tumor diagnosis and treatment. Mol Cancer 2024; 23:246. [PMID: 39487487 PMCID: PMC11529338 DOI: 10.1186/s12943-024-02161-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/17/2024] [Indexed: 11/04/2024] Open
Abstract
Malignant bone tumors, which are difficult to treat with current clinical strategies, originate from bone tissues and can be classified into primary and secondary types. Due to the specificity of the bone microenvironment, the results of traditional means of treating bone tumors are often unsatisfactory, so there is an urgent need to develop new treatments for malignant bone tumors. Recently, nanoparticle-based approaches have shown great potential in diagnosis and treatment. Nanoparticles (NPs) have gained significant attention due to their versatility, making them highly suitable for applications in bone tissue engineering, advanced imaging techniques, and targeted drug delivery. For diagnosis, NPs enhance imaging contrast and sensitivity by integrating targeting ligands, which significantly improve the specific recognition and localization of tumor cells for early detection. For treatment, NPs enable targeted drug delivery, increasing drug accumulation at tumor sites while reducing systemic toxicity. In conclusion, understanding bone microenvironment and using the unique properties of NPs holds great promise in improving disease management, enhancing treatment outcomes, and ultimately improving the quality of life for patients with malignant bone tumors. Further research and development will undoubtedly contribute to the advancement of personalized medicine in the field of bone oncology.
Collapse
Affiliation(s)
- Yujing Guan
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Wei Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province, 110016, P.R. China.
| | - Shenglong Li
- Second Ward of Bone and Soft Tissue Tumor Surgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, 110042, China.
- The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang, Liaoning, 110042, China.
- Institute of Cancer Medicine, Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning, 116024, China.
| |
Collapse
|
156
|
Wei W, Lattau SSJ, Xin W, Pan Y, Tatenhorst L, Zhang L, Graf I, Kuang Y, Zheng X, Hao Z, Popa-Wagner A, Gerner ST, Huber S, Nietert M, Klose C, Kilic E, Hermann DM, Bähr M, Huttner HB, Liu H, Fitzner D, Doeppner TR. Dynamic Brain Lipid Profiles Modulate Microglial Lipid Droplet Accumulation and Inflammation Under Ischemic Conditions in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306863. [PMID: 39252446 DOI: 10.1002/advs.202306863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 07/04/2024] [Indexed: 09/11/2024]
Abstract
Microglia are critically involved in post-stroke inflammation affecting neurological outcomes. Lipid droplet (LD) accumulation in microglia results in a dysfunctional and pro-inflammatory state in the aged brain and worsens the outcome of neuroinflammatory and neurodegenerative diseases. However, the role of LD-rich microglia (LDRM) under stroke conditions is unknown. Using in vitro and in vivo stroke models, herein accumulation patterns of microglial LD and their corresponding microglial inflammatory signaling cascades are studied. Interactions between temporal and spatial dynamics of lipid profiles and microglial phenotypes in different post-stroke brain regions are found. Hence, microglia display enhanced levels of LD accumulation and elevated perilipin 2 (PLIN2) expression patterns when exposed to hypoxia or stroke. Such LDRM exhibit high levels of TNF-α, IL-6, and IL-1β as well as a pro-inflammatory phenotype and differentially expressed lipid metabolism-related genes. These post-ischemic alterations result in distinct lipid profiles with spatial and temporal dynamics, especially with regard to cholesteryl ester and triacylglycerol levels, further exacerbating post-ischemic inflammation. The present study sheds new light on the dynamic changes of brain lipid profiles and aggregation patterns of LD in microglia exposed to ischemia, demonstrating a mutual mechanism between microglial phenotype and function, which contributes to progression of brain injury.
Collapse
Affiliation(s)
- Wei Wei
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
- Department of Neurology, The Affiliated Hospital of Southwest Jiaotong University & The Third People's Hospital of Chengdu, Chengdu, Sichuan, 610031, China
| | | | - Wenqiang Xin
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Yongli Pan
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Lars Tatenhorst
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Lin Zhang
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Irina Graf
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Yaoyun Kuang
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Xuan Zheng
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Zhongnan Hao
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Aurel Popa-Wagner
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Stefan T Gerner
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Sabine Huber
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Manuel Nietert
- Department of Medical Bioinformatics, UMG, University of Göttingen, 37075, Göttingen, Germany
| | | | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, 34720, Turkey
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147, Essen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Hagen B Huttner
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
| | - Hua Liu
- Department of Neurology, The Affiliated Hospital of Southwest Jiaotong University & The Third People's Hospital of Chengdu, Chengdu, Sichuan, 610031, China
| | - Dirk Fitzner
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medicine Göttingen (UMG), University of Göttingen, 37075, Göttingen, Germany
- Department of Neurology, University of Giessen Medical School, 35392, Giessen, Germany
- Department of Anatomy and Cell Biology, Medical University of Varna, Varna, 9002, Bulgaria
- Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University Giessen, 35037, Giessen, Germany
- Research Institute for Health Sciences and Technologies (SABITA), Medipol University, Istanbul, 34810, Turkey
| |
Collapse
|
157
|
Lin Q, Wang H, Chen W, Wei X, Chen J, Deng Y, Wei C, Lai H, Mo X, Tang W, Luo T. Isobutyric Acid Promotes Immune Evasion in Colorectal Cancer via Increased PD-L1 Expression. Cancer Med 2024; 13:e70397. [PMID: 39503247 DOI: 10.1002/cam4.70397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/04/2024] [Accepted: 10/20/2024] [Indexed: 11/08/2024] Open
Abstract
INTRODUCTION Isobutyric acid (IBA), a short-chain fatty acid, has been unequivocally demonstrated to exert significant influence on the progression of colorectal cancer (CRC). Nevertheless, a comprehensive understanding of its intricate regulatory mechanisms remains elusive. METHODS Employing advanced techniques such as western blot, RT-qPCR, and flow cytometry, we systematically investigated the impact of IBA on the expression of PD-L1 in CRC cells. Concurrently, employing RNA silencing technology and small-molecule inhibitors, we delved into the molecular intricacies underlying the regulatory axis of IBA involving ROCK1/c-Myc/PD-L1. Furthermore, through flow cytometry analysis, we examined the alterations in the tumor immune microenvironment following anti-PD-L1 antibody therapy in a murine tumor model treated with IBA. RESULTS Elevated levels of IBA were found to robustly activate PD-L1 expression in CRC cells both in vitro and in vivo, concomitantly reshaping the tumor immune microenvironment. Subsequent mechanistic investigations unveiled that IBA, through its interaction and activation of ROCK1, promotes the activation of c-Myc, thereby enhancing the transcription of PD-L1. Silencing of ROCK1 and application of ROCK1 inhibitors effectively reversed the regulatory effects of IBA on PD-L1. Additionally, IBA inhibited the activity of infiltrating CD8+ T cells, resulting in diminished antitumor immunity and attenuating the sensitivity to anti-PD-L1 therapy. CONCLUSION Our study elucidates a novel mechanism by which IBA inhibits the sensitivity of CRC to anti-PD-L1 antibody therapy. Emphasizing IBA and its downstream pathways as potential therapeutic targets for immune therapy resistance mechanisms, our findings provide a novel theoretical foundation for overcoming immune therapy resistance.
Collapse
Affiliation(s)
- Qiuhua Lin
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, Guangxi, P.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal Cancer, Nanning, Guangxi, P.R. China
| | - Han Wang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Wenbo Chen
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, Guangxi, P.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal Cancer, Nanning, Guangxi, P.R. China
| | - Xinjie Wei
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, Guangxi, P.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal Cancer, Nanning, Guangxi, P.R. China
| | - Jinglian Chen
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, Guangxi, P.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal Cancer, Nanning, Guangxi, P.R. China
| | - Ying Deng
- Department of Ultrasound, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | - Chunyin Wei
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, Guangxi, P.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal Cancer, Nanning, Guangxi, P.R. China
| | - Hao Lai
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, Guangxi, P.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal Cancer, Nanning, Guangxi, P.R. China
| | - Xianwei Mo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, Guangxi, P.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal Cancer, Nanning, Guangxi, P.R. China
| | - Weizhong Tang
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, Guangxi, P.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal Cancer, Nanning, Guangxi, P.R. China
| | - Tao Luo
- Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Guangxi Medical University, Nanning, Guangxi, P.R. China
- Guangxi Key Laboratory of Basic and Translational Research of Colorectal Cancer, Nanning, Guangxi, P.R. China
| |
Collapse
|
158
|
Wang Y, Wu Q, Liu J, Wang X, Xie J, Fu X, Li Y. WDR77 in Pan-Cancer: Revealing expression patterns, genetic insights, and functional roles across diverse tumor types, with a spotlight on colorectal cancer. Transl Oncol 2024; 49:102089. [PMID: 39182364 PMCID: PMC11388772 DOI: 10.1016/j.tranon.2024.102089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/29/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE Despite its involvement in regulating various cellular functions, the expression and role of WD repeat-containing protein 77 (WDR77) in cancer remain elusive. This study aims to explore the expression and potential roles of WDR77 across multiple cancers, with a particular focus on its relevance in colorectal cancer (CRC). METHODS We obtained WDR77 RNA-seq data, mutations, CNVs, and DNA methylation data from the TCGA, GTEx, and GEO databases to investigate its expression patterns and prognostic value. Additionally, we examined the correlation between WDR77 expression and somatic mutations, copy number variations, DNA methylation, and mRNA modifications. We utilized GSVA, GSEA algorithms, and CRISPR KO data from the Dependency Map database to explore WDR77's potential biological functions. The association between WDR77 and the tumor immune microenvironment was investigated using ESTIMATE and IOBR algorithms. Finally, we assessed WDR77 expression in CRC and its impact on cell proliferation through qRT-PCR, Western blotting, immunohistochemistry, CCK8, colony formation, and EdU assays. RESULTS WDR77 was upregulated in various tumors and correlated with poor patient prognosis. Its high expression positively correlated with pathways related to cell proliferation and negatively correlated with immune-related pathways. In CRC, WDR77 expression was associated with specific clinical features, genomic alterations, and immune microenvironment characteristics. Experimental validation confirmed upregulated WDR77 expression in CRC tissues and cells, with WDR77 knockdown significantly inhibiting CRC cell proliferation. CONCLUSION WDR77 holds potential as an oncogene and biological marker in various cancers, particularly CRC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| | - Qihui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, PR China
| | - Jiaxin Liu
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha 410078, PR China
| | - Xuan Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| | - Jialing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| | - Xiaodan Fu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008, PR China; Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| | - Yimin Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
159
|
Yu J, Li L, Tao X, Chen Y, Dong D. Metabolic interactions of host-gut microbiota: New possibilities for the precise diagnosis and therapeutic discovery of gastrointestinal cancer in the future-A review. Crit Rev Oncol Hematol 2024; 203:104480. [PMID: 39154670 DOI: 10.1016/j.critrevonc.2024.104480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024] Open
Abstract
Gastrointestinal (GI) cancer continues to pose a significant global health challenge. Recent advances in our understanding of the complex relationship between the host and gut microbiota have shed light on the critical role of metabolic interactions in the pathogenesis and progression of GI cancer. In this study, we examined how microbiota interact with the host to influence signalling pathways that impact the formation of GI tumours. Additionally, we investigated the potential therapeutic approach of manipulating GI microbiota for use in clinical settings. Revealing the complex molecular exchanges between the host and gut microbiota facilitates a deeper understanding of the underlying mechanisms that drive cancer development. Metabolic interactions hold promise for the identification of microbial signatures or metabolic pathways associated with specific stages of cancer. Hence, this study provides potential strategies for the diagnosis, treatment and management of GI cancers to improve patient outcomes.
Collapse
Affiliation(s)
- Jianing Yu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; College of Pharmacy, Dalian Medical University, China
| | - Lu Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Yanwei Chen
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
160
|
Ghosh MK, Kumar S, Begam S, Ghosh S, Basu M. GBM immunotherapy: Exploring molecular and clinical frontiers. Life Sci 2024; 356:123018. [PMID: 39214286 DOI: 10.1016/j.lfs.2024.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
GBM is the most common, aggressive, and intracranial primary brain tumor; it originates from the glial progenitor cells, has poor overall survival (OS), and has limited treatment options. In this decade, GBM immunotherapy is in trend and preferred over several conventional therapies, due to their better patient survival outcome. This review explores the clinical trials of several immunotherapeutic approaches (immune checkpoint blockers (ICBs), CAR T-cell therapy, cancer vaccines, and adoptive cell therapy) with their efficacy and safety. Despite significant progress, several challenges (viz., immunosuppressive microenvironment, heterogeneity, and blood-brain barrier (BBB)) were experienced that hamper their immunotherapeutic potential. Furthermore, these challenges were clinically studied to be resolved by multiple combinatorial approaches, discussed in the later part of the review. Thus, this review suggests the clinical use and potential of immunotherapy in GBM and provides the holistic recent knowledge and future perspectives.
Collapse
Affiliation(s)
- Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| | - Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Sabana Begam
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Sayani Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, PIN-743372, India
| |
Collapse
|
161
|
Reduzzi C, Nicolo' E, Singhal S, Venetis K, Ortega-Franco A, de Miguel-Perez D, Dipasquale A, Gouda MA, Saldanha EF, Kasi PM, Jantus-Lewintre E, Fusco N, Malapelle U, Gandara DR, Rolfo C, Serrano MJ, Cristofanilli M. Unveiling the impact of circulating tumor cells: Two decades of discovery and clinical advancements in solid tumors. Crit Rev Oncol Hematol 2024; 203:104483. [PMID: 39159706 DOI: 10.1016/j.critrevonc.2024.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Circulating tumor cells (CTCs) enumeration and molecular profiling hold promise in revolutionizing the management of solid tumors. Their understanding has evolved significantly over the past two decades, encompassing pivotal biological discoveries and clinical studies across various malignancies. While for some tumor types, such as breast, prostate, and colorectal cancer, CTCs are ready to enter clinical practice, for others, additional research is required. CTCs serve as versatile biomarkers, offering insights into tumor biology, metastatic progression, and treatment response. This review summarizes the latest advancements in CTC research and highlights future directions of investigation. Special attention is given to concurrent evaluations of CTCs and other circulating biomarkers, particularly circulating tumor DNA. Multi-analyte assessment holds the potential to unlock the full clinical capabilities of liquid biopsy. In conclusion, CTCs represent a transformative biomarker in precision oncology, offering extraordinary opportunities to translate scientific discoveries into tangible improvements in patient care.
Collapse
Affiliation(s)
- Carolina Reduzzi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Eleonora Nicolo'
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA.
| | - Surbhi Singhal
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Konstantinos Venetis
- Division of Pathology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy
| | - Ana Ortega-Franco
- Medical Oncology, The Christie NHS Foundation Trust, Manchester M20 4BX, United Kingdom
| | - Diego de Miguel-Perez
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Angelo Dipasquale
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mohamed A Gouda
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Erick F Saldanha
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, ON, Canada
| | - Pashtoon M Kasi
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
| | - Eloisa Jantus-Lewintre
- Department of Biotechnology, Universitat Politècnica de València, Unidad Mixta TRIAL (Fundación para la Investigación del Hospital General Universitario de Valencia y Centro de Investigación Príncipe Felipe) and CIBERONC, Valencia, Spain
| | - Nicola Fusco
- Division of Pathology, IEO European Institute of Oncology IRCCS, Milan 20141, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan 20121, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Napoli 80131, Italy
| | - David R Gandara
- Division of Hematology and Oncology, Department of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Christian Rolfo
- Center for Thoracic Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Maria Jose Serrano
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, Liquid biopsy and Cancer Interception group, PTS Granada, Avenida de la Ilustración 114, Granada 18016, Spain; Pathological Anatomy Unit, Molecular Pathology Laboratory,Virgen de las Nieves. University Hospital, Av. Dr. Olóriz 16, Granada 18012, Spain
| | - Massimo Cristofanilli
- Department of Medicine, Weill Cornell Medicine, Englander Institute for Precision Medicine, New York Presbyterian Hospital, New York, NY 10021, USA
| |
Collapse
|
162
|
Tan W, Zhang J, Chen L, Wang Y, Chen R, Zhang H, Liang F. Copper homeostasis and cuproptosis-related genes: Therapeutic perspectives in non-alcoholic fatty liver disease. Diabetes Obes Metab 2024; 26:4830-4845. [PMID: 39233500 DOI: 10.1111/dom.15846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 09/06/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), a metabolic-associated fatty liver disease, has become the most common chronic liver disease worldwide. Recently, the discovery of cuproptosis, a newly identified mode of cell death, further highlighted the importance of copper in maintaining metabolic homeostasis. An increasing number of studies have confirmed that liver copper metabolism is closely related to the pathogenesis of NAFLD. However, the relationship between NAFLD and copper metabolism, especially cuproptosis, remains unclear. In this review, we aim to summarize the current understanding of copper metabolism and its dysregulation, particularly the role of copper metabolism dysregulation in the pathogenesis of NAFLD. More importantly, this review emphasizes potential gene-targeted therapeutic strategies, challenges and the future of cuproptosis-related genes in the treatment of NAFLD. This review aims to provide innovative therapeutic strategies for NAFLD.
Collapse
Affiliation(s)
- Wangjing Tan
- Department of Acupuncture and Moxibustion, College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Junli Zhang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Chen
- Department of Acupuncture and Moxibustion, College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Yayuan Wang
- Department of Acupuncture and Moxibustion, College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
| | - Rui Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiming Zhang
- Department of Oncology, Integrated Traditional Chinese and Western Medicine, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxia Liang
- Department of Acupuncture and Moxibustion, College of Acupuncture-Moxibustion and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
- Hubei Provincial Collaborative Innovation Center of Preventive Treatment by Acupuncture and Moxibustion, Wuhan, China
- Hubei Shizhen Laboratory, Wuhan, China
- Acupuncture and Moxibustion Department, Affiliated Hospital of Hubei University of Chinese Medicine(Hubei Provincial Hospital of Traditional Chinese Medicine), Wuhan, China
| |
Collapse
|
163
|
Wu A, Yang H, Xiao T, Gu W, Li H, Chen P. COPZ1 regulates ferroptosis through NCOA4-mediated ferritinophagy in lung adenocarcinoma. Biochim Biophys Acta Gen Subj 2024; 1868:130706. [PMID: 39181476 DOI: 10.1016/j.bbagen.2024.130706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Ferroptosis, a type of autophagy-dependent cell death, has been implicated in the pathogenesis of lung adenocarcinoma (LUAD). This study aimed to investigate the involvement of coatomer protein complex I subunit zeta 1 (COPZ1) in ferroptosis and ferritinophagy in LUAD. METHODS Publicly available human LUAD sample data were obtained from the TCGA database to analyze the association of COPZ1 expression with LUAD grade and patient survival. Clinical samples of LUAD and para-carcinoma tissues were collected. COPZ1-deficient LUAD cell model and xenograft model were established. These models were analyzed to evaluate tumor growth, lipid peroxidation levels, mitochondrial structure, autophagy activation, and iron metabolism. RESULTS High expression of COPZ1 was indicative of malignancy and poor overall survival. Clinical LUAD tissues showed increased COPZ1 expression and decreased nuclear receptor coactivator 4 (NCOA4) expression. COPZ1 knockdown inhibited xenograft tumor growth and induced apoptosis. COPZ1 knockdown elevated the levels of ROS, Fe2+ and lipid peroxidation. COPZ1 knockdown also caused mitochondrial shrinkage. Liproxstatin-1, deferoxamine, and z-VAD-FMK reversed the effects of COPZ1 knockdown on LUAD cell proliferation and ferroptosis. Furthermore, COPZ1 was directly bound to NCOA4. COPZ1 knockdown restricted FTH1 expression and promoted NCOA4 and LC3 expression. NCOA4 knockdown reversed the regulation of iron metabolism, lipid peroxidation, and mitochondrial structure induced by COPZ1 knockdown. COPZ1 knockdown induced the translocation of ferritin to lysosomes for degradation, whereas NCOA4 knockdown disrupted this process. CONCLUSION This study provides novel evidence that COPZ1 regulates NCOA4-mediated ferritinophagy and ferroptosis. These findings provide new insights into the pathogenesis and potential treatment of LUAD.
Collapse
Affiliation(s)
- Anbang Wu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Hongmin Yang
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Tengfei Xiao
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Wangnin Gu
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - He Li
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China; College of pharmacy, Changsha Medical University, Changsha 410219, China.
| | - Pan Chen
- Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.
| |
Collapse
|
164
|
Yang X, Zhang Q, Wei L, Liu K. HIF1A/PCDH7 axis mediates fatty acid synthesis and metabolism to inhibit lung adenocarcinoma anoikis. J Biochem Mol Toxicol 2024; 38:e70001. [PMID: 39425457 DOI: 10.1002/jbt.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/19/2024] [Accepted: 10/02/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Aberrantly expressed PCDH7 participates in the malignant progression of many cancers. PCDH7 has been newly discovered as a risk factor in lung cancer, but its functional study in lung adenocarcinoma (LUAD) has not been conducted yet. This study aimed to investigate the functional role of PCDH7 in LUAD. METHODS Bioinformatics analyzed the expression of PCDH7 and HIF1A in LUAD tissues, predicted the binding sites between the two, analyzed the clinicopathological relevance of PCDH7 and examined the pathway enrichment of PCDH7. Expression of PCDH7 and HIF1A in LUAD cells was analyzed by RT-qPCR. A nude mouse transplantation tumor model was constructed to analyze the effect of PCDH7 on tumor growth in vivo. The binding relationship between PCDH7 and HIF1A was confirmed by chromatin immunoprecipitation experiments and the dual-luciferase assay. Cell viability was detected with Cell Counting Kit-8. Triglyceride content and Caspase3 activity were measured using corresponding reagent kits. FASN and ACC1 expression was determined utilizing western blot. RESULTS PCDH7 was highly expressed in LUAD and correlated with patients' overall survival time and N stage. In vitro and in vivo experiments confirmed that PCDH7 could promote LUAD growth and anoikis resistance. Moreover, overexpression of PCDH7 markedly increased the content of triglycerides in cells and promoted the expression of FASN and ACC1 proteins to inhibit LUAD cell anoikis. Cell rescue experiment confirmed that HIF1A activated PCDH7 to suppress LUAD anoikis by promoting fatty acid (FA) synthesis and metabolism. CONCLUSION Our findings demonstrated that the HIF1A/PCDH7 axis suppressed LUAD anoikis by promoting FA synthesis and metabolism. The FA synthesis pathway might be a key pathway regulated by PCDH7 in LUAD anoikis.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Thoracic and Cardiovascular Surgery, Fourth People's Hospital of Zigong City, Zigong City, Sichuan Province, China
| | - Qingfeng Zhang
- Department of Thoracic and Cardiovascular Surgery, Fourth People's Hospital of Zigong City, Zigong City, Sichuan Province, China
| | - Liyang Wei
- Department of Emergency, Fourth People's Hospital of Zigong City, Zigong City, Sichuan Province, China
| | - Kui Liu
- Department of Thoracic and Cardiovascular Surgery, Fourth People's Hospital of Zigong City, Zigong City, Sichuan Province, China
| |
Collapse
|
165
|
Zamay TN, Kolovskaya OS, Zamay GS, Kirichenko AK, Luzan NA, Zamay SS, Neverova NA, Medvedeva EN, Babkin VA, Veprintsev DV, Shchugoreva IA, Kichkailo AS. Unleashing the antitumor power of cyclophosphamide by arabinogalactan and aptamer conjugation. Eur J Pharm Biopharm 2024; 204:114531. [PMID: 39414093 DOI: 10.1016/j.ejpb.2024.114531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Cyclophosphamide (CPA) (2-oxo-2-di(β-chloroethyl)amino tetrahydro-2,1,3-phosphoxazine) is an alkylating cytostatic compound with a broad spectrum of antitumor activity. Despite its efficacy, the clinical application of CPA is hindered by the significant occurrence of adverse side effects. To address these limitations, a promising approach involves the mechanochemical treatment of CPA with arabinogalactan (AG) to facilitate the dispersion of the drug within the AG matrix. AG stands out from other polymers due to its uniformity, low molecular weight, water solubility, and ability to form drug conjugates, thereby enhancing their therapeutic potency. Moreover, AG possesses immune-modulating properties that have the potential to counteract the immunosuppressive effects induced by CPA. By means of mechanical treatment, we successfully obtained CPA-AG complexes with a CPA:AG ratio of 1:10. These complexes were further modified with As42 aptamers that specifically target Erlich ascites cells. Aptamers, a novel class of oligonucleotide ligands obtained through SELEX technology, possess high affinity and specificity for binding to various receptors. An ascitic form of Ehrlich carcinoma was chosen as an in vitro and in vivo tumor model due to its notable drug resistance. In vitro and in vivo evaluations were conducted to compare the antitumor activity of both the CPA-AG and CPA-AG-As42 complexes with pure CPA. In vitro experiments revealed that the CPA-AG complex displayed superior antitumor activity compared to pure CPA, leading to complete tumor cell death primarily through necrosis. Notably, no toxic effects were observed with the CPA-AG and CPA-AG-As42 complexes, and they significantly prolonged the lifespan of tumor-bearing mice by more than 3.5 times. Histological studies further supported the antitumor efficacy of these complexes. These results underscore the potential of utilizing CPA-AG mechanocomposites, functionalized with aptamers, for the targeted delivery of CPA to tumors.
Collapse
Affiliation(s)
- Tatiana N Zamay
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", 50 Akademgorodok, Krasnoyarsk 660036, Russia; Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia.
| | - Olga S Kolovskaya
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", 50 Akademgorodok, Krasnoyarsk 660036, Russia; Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Galina S Zamay
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", 50 Akademgorodok, Krasnoyarsk 660036, Russia; Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Andrey K Kirichenko
- Department of Pathological Anatomy, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Natalia A Luzan
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Sergey S Zamay
- Department of Molecular Electronics, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", 50 Akademgorodok, Krasnoyarsk 660036, Russia
| | | | | | - Vasilii A Babkin
- LLC INPF "Chemistry of Wood", Irkutsk 664082, Russian Federation
| | - Dmitry V Veprintsev
- Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Irina A Shchugoreva
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", 50 Akademgorodok, Krasnoyarsk 660036, Russia; Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia
| | - Anna S Kichkailo
- Laboratory for Digital Controlled Drugs and Theranostics, Federal Research Center "Krasnoyarsk Science Center of the Siberian Branch of the Russian Academy of Sciences", 50 Akademgorodok, Krasnoyarsk 660036, Russia; Laboratory for Biomolecular and Medical Technologies, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 1 Partizana Zheleznyaka, Krasnoyarsk 660022, Russia.
| |
Collapse
|
166
|
Gu Y, Liu M, Wang A, He D, Sun H, Cui X, Tian W, Zhang Y, Jin C, Wang H. Analysis of Factors Influencing Hospitalization Expenses of Patients With Gastric Cancer in Shanghai, 2014-2021: Based on Grey Relational Analysis and Structural Equation Modeling. Value Health Reg Issues 2024; 44:101029. [PMID: 39094426 DOI: 10.1016/j.vhri.2024.101029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/06/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVES This study analyzed the basic condition and the influencing factors of hospitalization costs of patients with gastric cancer in Shanghai from 2014 to 2021, so as to provide a scientific reference for promoting the reform of the medical and healthcare system. METHODS The study data were obtained from the electronic medical record system of Shanghai Hospital. The grey relational analysis was applied to analyze the correlation strength of various expenses with hospitalization costs. The structural equation modeling was constructed to analyze the influences of factors on the hospitalization expenses, as well as the relationship between each factor. RESULTS A total of 23 335 study subjects were included. The results of grey relational analysis showed that the total cost of drugs had the strongest correlation with hospitalization expenses, followed by material expenses and surgery cost, whereas those of others were lower. The results of the structural equation modeling showed that age had the greatest influence on hospitalization expenses with a path coefficient of 0.618. Other influencing factors included surgery history, length of stay, hospital level, gender, and medical insurance. CONCLUSIONS The total cost of drugs had the strongest correlation with hospitalization expenses. Factors such as gender, age, and hospital level all affect the hospitalization expenses. In the future, it is necessary to take further measures to control the cost of drugs and constantly optimize the structure of hospitalization costs. Meanwhile, the reform of the medical and healthcare system should be deepened to reasonably regulate the medical behaviors and reduce the financial burden of patients.
Collapse
Affiliation(s)
- Yichun Gu
- Shanghai Health Development Research Center, Shanghai, China
| | - Mengying Liu
- School of Pharmacy, Anhui Xinhua University, Hefei, Anhui, China
| | - Anqi Wang
- School of Public Health, Shandong Second Medical University, Weifang, Shandong, China
| | - Da He
- Shanghai Health Development Research Center, Shanghai, China
| | - Hui Sun
- Shanghai Health Development Research Center, Shanghai, China
| | - Xin Cui
- Shanghai Health Statistics Center, Shanghai, China
| | - Wenqi Tian
- Shanghai Health Statistics Center, Shanghai, China
| | - Yulin Zhang
- School of International Pharmaceutical Business, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Chunlin Jin
- Shanghai Health Development Research Center, Shanghai, China.
| | - Haiyin Wang
- Shanghai Health Development Research Center, Shanghai, China.
| |
Collapse
|
167
|
Yang F, Lv J, Ma W, Yang Y, Hu X, Yang Z. Engineering Sonosensitizer-Derived Nanotheranostics for Augmented Sonodynamic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402669. [PMID: 38970544 DOI: 10.1002/smll.202402669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Sonodynamic therapy (SDT), featuring noninvasive, deeper penetration, low cost, and repeatability, is a promising therapy approach for deep-seated tumors. However, the general or only utilization of SDT shows low efficiency and unsatisfactory treatment outcomes due to the complicated tumor microenvironment (TME) and SDT process. To circumvent the issues, three feasible approaches for enhancing SDT-based therapeutic effects, including sonosensitizer optimization, strategies for conquering hypoxia TME, and combinational therapy are summarized, with a particular focus on the combination therapy of SDT with other therapy modalities, including chemodynamic therapy, photodynamic therapy, photothermal therapy, chemotherapy, starvation therapy, gas therapy, and immunotherapy. In the end, the current challenges in SDT-based therapy on tumors are discussed and feasible approaches for enhanced therapeutic effects are provided. It is envisioned that this review will provide new insight into the strategic design of high-efficiency sonosensitizer-derived nanotheranostics, thereby augmenting SDT and accelerating the potential clinical transformation.
Collapse
Affiliation(s)
- Fuhong Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Jingqi Lv
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yanling Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Xiaoming Hu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
168
|
Lai Y, Huang C, Wu J, Yang K, Yang L. Ferroptosis in Cancer: A new perspective on T cells. Int Immunopharmacol 2024; 143:113539. [PMID: 39488034 DOI: 10.1016/j.intimp.2024.113539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/18/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
T cells occupy a pivotal position in the immune response against cancer by recognizing and eliminating cancer cells. However, the tumor microenvironment often suppresses the function of T cells, leading to immune evasion and cancer progression. Recent research has unveiled novel connections among T cells, ferroptosis, and cancer. Ferroptosis is a type of regulated cell death that relies iron and reactive oxygen species and is distinguished by the proliferation of lipid peroxides. Emerging scientific findings underscore the potential of ferroptosis to modulate the function and survival of T cells in the tumor microenvironment. Moreover, T cells or immunotherapy can also affect cancer by modulating ferroptosis in cancer cells. This review delved into the intricate crosstalk between T cells and ferroptosis in the context of cancer, highlighting the molecular mechanisms involved. We also explored the therapeutic potential of targeting ferroptosis to enhance the anticancer immune response mediated by T cells. Understanding the interplay among T cells, ferroptosis, and cancer may provide new insights into developing innovative cancer immunotherapies.
Collapse
Affiliation(s)
- Yuping Lai
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China; The Huankui academy, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Chunxia Huang
- The First Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jiaqiang Wu
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Kangping Yang
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Liang Yang
- Department of Gastroenterological Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
169
|
Glorieux C, Buc Calderon P. Targeting catalase in cancer. Redox Biol 2024; 77:103404. [PMID: 39447253 DOI: 10.1016/j.redox.2024.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Healthy cells have developed a sophisticated network of antioxidant molecules to prevent the toxic accumulation of reactive oxygen species (ROS) generated by diverse environmental stresses. On the opposite, cancer cells often exhibit high levels of ROS and an altered levels of antioxidant molecules compared to normal cells. Among them, the antioxidant enzyme catalase plays an essential role in cell defense against oxidative stress through the dismutation of hydrogen peroxide into water and molecular oxygen, and its expression is often decreased in cancer cells. The elevation of ROS in cancer cells provides them proliferative advantages, and leads to metabolic reprogramming, immune escape and metastasis. In this context, catalase is of critical importance to control these cellular processes in cancer through various mechanisms. In this review, we will discuss the major progresses and challenges in understanding the role of catalase in cancer for this last decade. This review also aims to provide important updates regarding the regulation of catalase expression, subcellular localization and discuss about the potential role of microbial catalases in tumor environment. Finally, we will describe the different catalase-based therapies and address the advantages, disadvantages, and limitations associated with modulating catalase therapeutically in cancer treatment.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 510060, Guangzhou, China.
| | - Pedro Buc Calderon
- Química y Farmacia, Facultad de Ciencias de La Salud, Universidad Arturo Prat, 1100000, Iquique, Chile; Instituto de Química Medicinal, Universidad Arturo Prat, 1100000, Iquique, Chile; Research Group in Metabolism and Nutrition, Louvain Drug Research Institute, Université Catholique de Louvain, 1200, Brussels, Belgium.
| |
Collapse
|
170
|
Liu C, Yang L, Gao T, Yuan X, Bajinka O, Wang K. A mini-review-cancer energy reprogramming on drug resistance and immune response. Transl Oncol 2024; 49:102099. [PMID: 39163759 PMCID: PMC11380382 DOI: 10.1016/j.tranon.2024.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/06/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024] Open
Abstract
With the growing interest to harness cancer metabolism and energy reprogramming, this mini review aimed to explain the metabolic programming revealing the mechanisms regarding the treatment resistance. This mini review summarized the prominent cancer metabolic reprogramming on macromolecules. In addition, metabolic reprogramming explaining immune response and treatment resistance as well as energy reprogramming mechanisms are briefly discussed. Finally, some prospects in MR for reversing cancer drug resistance are highlighted.
Collapse
Affiliation(s)
- Chengxiang Liu
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Department of Dermatology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China
| | - Liuxin Yang
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Tingting Gao
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China
| | - Xingxing Yuan
- School of Graduate Studies, Heilongjiang University of Chinese Medicine, Harbin 150040, China; Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin 150006, China.
| | - Ousman Bajinka
- School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Kuanyu Wang
- Department of General Surgery, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
171
|
Ding H, Wang J, Zhao X, Xiu S, Cai H, Ma J, Fu L, Zhou J, Shen F, Zhang H, Chen Y, Li B, Yan J. Combination of circulating tumor cells, lncRNAs and DNA methylation for the diagnosis of endometrial carcinoma. Oncol Lett 2024; 28:545. [PMID: 39310026 PMCID: PMC11413727 DOI: 10.3892/ol.2024.14678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Endometrial carcinoma (EC) is one of the most common gynecological malignant neoplasms, the prognosis of which is strongly related to the time of diagnosis, with an earlier diagnosis leading to a better prognosis. Therefore, effective diagnostic indicators and methods are needed to ensure early detection. The present study explored the following in EC: Circulating tumor cells (CTCs); the long noncoding RNAs (lncRNAs) RP4-616B8.5, RP11-389G6.3 and carboxy-terminal domain (CTD)-2377D24.6; and the methylation of cysteine dioxygenase type 1 (CDO1) and CUGBP Elav-like family member 4 (CELF4). In total, 85 patients, including 71 with EC, and 14 without EC (NO-EC) but with uterine fibroids or polyps, were included in the present study. In total, 46 patients with EC and 8 NO-EC patients underwent CTC detection. In the evaluation of the EC vs. NO-EC groups, the results showed that the CTC-positive rate of the EC group was 80.43% and that the area under the curve (AUC) value of CTCs was 0.8872 (P=0.0098). A total of 35 patients with EC and 14 NO-EC patients underwent detection of the RP4-616B8.5, RP11-389G6.3 and CTD-2377D24.6 lncRNAs. When the levels of the three lncRNAs RP4-616B8.5, RP11-389G6.3 and CTD-2377D24.6 were compared between the EC and NO-EC groups, they were higher in the EC group; the P-values were 0.0002, 0.0001 and <0.0001, respectively, and the AUC values were 0.8184, 0.8347 and 0.8265, respectively. In addition, a total of 35 patients with EC and 8 NO-EC patients underwent CDO1 and CELF4 DNA methylation analysis. The positive rates of the methylated genes CDO1 and CELF4 were 20% (7/35) and 5.71% (2/35), and the P-values of the comparisons between the EC and NO-EC groups were 0.1748 and 0.5004, respectively; the AUC values were 0.6000 and 0.5286. Furthermore, the combination of CTCs, and lncRNAs RP4-616B8.5, RP11-389G6.3 and CTD-2377D24.6 exhibited high performance in the detection of EC (AUC=0.9375).
Collapse
Affiliation(s)
- Hongmei Ding
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Juan Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Xiaoyu Zhao
- Holosensor Medical Technology Ltd., Suzhou, Jiangsu 215000, P.R. China
| | - Shi Xiu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Honghong Cai
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Jingjing Ma
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Li Fu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Fangrong Shen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, Medical College of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| | - Jing Yan
- Holosensor Medical Technology Ltd., Suzhou, Jiangsu 215000, P.R. China
- Department of Veterinary Medicine, University of Cambridge, Cambridge 02138, UK
| |
Collapse
|
172
|
Chen Z, Li Q, Li Z, Hu G. Propofol attenuates prostate cancer progression by upregulating TRHDE-AS1 expression, and METTL14 could mediate its m6A modification. Clin Exp Pharmacol Physiol 2024; 51:e13924. [PMID: 39322401 DOI: 10.1111/1440-1681.13924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
Propofol has become a microtubule-stabilizing drug for prostate cancer (PC) therapy, but propofol resistance impairs the therapeutic effect. This study aimed to explore the regulatory mechanism of propofol in the pathogenesis of PC through mechanisms involving N6-methyladenosine (m6A) modification. The changes in PC cell malignancy were evaluated by means of transwell, cell counting kit 8 (CCK-8), western blotting and tumour xenograft model assays. Long noncoding RNA TRHDE-AS1 and m6A methyltransferase METTL14 expression levels were determined via reverse transcription quantitative polymerase chain reaction (RT-qPCR). The m6A modification of TRHDE-AS1 which was mediated by METTL14 was confirmed by conducting methylated RNA immunoprecipitation (MeRIP) assay. We observed that propofol (200 μM) inhibited PC cell malignancy in vivo and in vitro, elucidating that it impaired cell proliferation, migration and tumour growth but induced apoptosis. TRHDE-AS1 expression was observed to be lower in PC cells and tissues, and propofol induced TRHDE-AS1 upregulation in PC cells. Propofol was capable of reversing the tumour-promoting effect of TRHDE-AS1 knockdown in PC cells. Additionally, METTL14 was upstream of TRHDE-AS1 to induce m6A modification of TRHDE-AS1 in PC cells. Collectively, our results show that propofol prevents PC progression by upregulating TRHDE-AS1 expression and METTL14 is involved in the m6A modification of TRHDE-AS1. These findings suggest that TRHDE-AS1 may be a potential therapeutic target for the improvement of propofol's therapeutic effect.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Anesthesiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Quanfu Li
- Department of Proctology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Zhong Li
- Department of Proctology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Guangjun Hu
- Department of Anesthesiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
173
|
Haab B, Qian L, Staal B, Jain M, Fahrmann J, Worthington C, Prosser D, Velokokhatnaya L, Lopez C, Tang R, Hurd MW, Natarajan G, Kumar S, Smith L, Hanash S, Batra SK, Maitra A, Lokshin A, Huang Y, Brand RE. A rigorous multi-laboratory study of known PDAC biomarkers identifies increased sensitivity and specificity over CA19-9 alone. Cancer Lett 2024; 604:217245. [PMID: 39276915 DOI: 10.1016/j.canlet.2024.217245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/24/2024] [Accepted: 09/08/2024] [Indexed: 09/17/2024]
Abstract
A blood test that enables surveillance for early-stage pancreatic ductal adenocarcinoma (PDAC) is an urgent need. Independent laboratories have reported PDAC biomarkers that could improve biomarker performance over CA19-9 alone, but the performance of the previously reported biomarkers in combination is not known. Therefore, we conducted a coordinated case/control study across multiple laboratories using common sets of blinded training and validation samples (132 and 295 plasma samples, respectively) from PDAC patients and non-PDAC control subjects representing conditions under which surveillance occurs. We analyzed the training set to identify candidate biomarker combination panels using biomarkers across laboratories, and we applied the fixed panels to the validation set. The panels identified in the training set, CA19-9 with CA199.STRA, LRG1, TIMP-1, TGM2, THSP2, ANG, and MUC16.STRA, achieved consistent performance in the validation set. The panel of CA19-9 with the glycan biomarker CA199.STRA improved sensitivity from 0.44 with 0.98 specificity for CA19-9 alone to 0.71 with 0.98 specificity (p < 0.001, 1000-fold bootstrap). Similarly, CA19-9 combined with the protein biomarker LRG1 and CA199.STRA improved specificity from 0.16 with 0.94 sensitivity for CA19-9 to 0.65 with 0.89 sensitivity (p < 0.001, 1000-fold bootstrap). We further validated significantly improved performance using biomarker panels that did not include CA19-9. This study establishes the effectiveness of a coordinated study of previously discovered biomarkers and identified panels of those biomarkers that significantly increased the sensitivity and specificity of early-stage PDAC detection in a rigorous validation trial.
Collapse
Affiliation(s)
- Brian Haab
- Van Andel Institute, 333 Bostwick NE, Grand Rapids, MI, 49503, USA.
| | - Lu Qian
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 19024, USA
| | - Ben Staal
- Van Andel Institute, 333 Bostwick NE, Grand Rapids, MI, 49503, USA
| | - Maneesh Jain
- University of Nebraska Medical Center, 42nd and Emile Streets, Omaha, NE, 68198, USA
| | - Johannes Fahrmann
- MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Christine Worthington
- University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA, 15213-2582, USA
| | - Denise Prosser
- University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA, 15213-2582, USA
| | | | - Camden Lopez
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 19024, USA
| | - Runlong Tang
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 19024, USA
| | - Mark W Hurd
- MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | | | - Sushil Kumar
- University of Nebraska Medical Center, 42nd and Emile Streets, Omaha, NE, 68198, USA
| | - Lynette Smith
- University of Nebraska Medical Center, 42nd and Emile Streets, Omaha, NE, 68198, USA
| | - Sam Hanash
- MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Surinder K Batra
- University of Nebraska Medical Center, 42nd and Emile Streets, Omaha, NE, 68198, USA
| | - Anirban Maitra
- MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Anna Lokshin
- University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA, 15213-2582, USA
| | - Ying Huang
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave. N., Seattle, WA, 19024, USA
| | - Randall E Brand
- University of Pittsburgh Medical Center, 200 Lothrop St., Pittsburgh, PA, 15213-2582, USA.
| |
Collapse
|
174
|
Cheng Y, Pan Z, Wu L, Zhu B, Yu Y, Zang K, Zhuang W, Liu L, Gu K, Lian J, Chen R, Bian T, Lin D, Sun S, Li W, Hang X, Jiang O, Zhong F, Wang R, Luo H, Shi H, Wei Z, Zhao L, Chen S, Sun H, Li X, Sun D, Ren T, Lei K, He M, Li G, Liu H, Li R, Hu C, Kong L, Sun M, Xie L, Gai W, Chen W, Huang Z, Ren W, Su H. Efficacy and Safety of Biosimilar SCT510 Compared with Bevacizumab for the First-Line Treatment of Advanced Non-Squamous Non-Small Cell Lung Cancer: A Randomized, Double-Blind, Phase III Study. Adv Ther 2024; 41:4032-4048. [PMID: 39230871 DOI: 10.1007/s12325-024-02965-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
INTRODUCTION SCT510 is a biosimilar to bevacizumab (Avastin) reference product (RP) that is approved for various metastatic cancers. In this study, we aimed to demonstrate the equivalence of SCT510 and bevacizumab in terms of efficacy, safety, immunogenicity and pharmacokinetics (PK) in patients with advanced non-squamous non-small cell lung cancer (NSCLC). METHODS Patients with non-squamous NSCLC were randomized equally to the SCT510 group (comprising SCT510, paclitaxel, and carboplatin) and the bevacizumab group (comprising bevacizumab, paclitaxel, and carboplatin) for 4-6 cycles, followed by maintenance monotherapy with SCT510. The primary endpoint was the objective response rate (ORR) at week 12. Secondary endpoints included 18-week ORR, disease control rate (DCR), duration of response (DoR), progression-free survival (PFS), overall survival (OS), and 1-year survival rate, as well as assessments of safety, immunogenicity, and multi-dose PK analysis. RESULTS Between March 29, 2019, and April 27, 2021, 989 patients were screened and 567 eligible patients were randomly assigned to the SCT510 group (285 patients) and the bevacizumab group (282 patients). The ORR at week 12 was 52.6% [95% confidence interval (CI) 46.66-58.55%] in the SCT510 group and 52.5% (95% CI 46.47-58.47%) in the bevacizumab group. The ORR at week 18 was 55.4% (95% CI 49.46-61.30%) for SCT510 and 55.7% (95% CI 49.68-61.62%) for bevacizumab. The ORR risk ratio (RR) at weeks 12 and 18 was 0.99 (90% CI 0.873-1.133) and 0.99 (90% CI 0.872-1.114), respectively, both within the pre-specified equivalence margin of 0.75-1.33. There were no differences between the two groups in relation to other secondary endpoints, specifically DCR, DOR, PFS, OS, and 1-year survival rate. The overall safety findings were similar between the two treatment groups, and both SCT510 and bevacizumab RP exhibited low immunogenicity. CONCLUSIONS SCT510 is similar to bevacizumab in clinical efficacy, safety, immunogenicity, and PK in patients with advanced non-squamous NSCLC. The totality of the evidence supports the clinical equivalence of SCT510 and bevacizumab. TRIAL REGISTRATION NCT03792074.
Collapse
Affiliation(s)
- Ying Cheng
- Jilin Cancer Hospital, 1066 Jinhu Road, High-Tech Zone, Changchun, Changchun, 130000, China.
| | | | - Lin Wu
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, China
| | - Bo Zhu
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Yu
- Harbin Medical University Cancer Hospital, Harbin, China
| | - Kai Zang
- Henan Cancer Hospital, Zhengzhou, China
| | - Wu Zhuang
- Fujian Cancer Hospital, Fuzhou, China
| | - Lianke Liu
- Jiang Su Province Hospital, Nanjing, China
| | - Kangsheng Gu
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | | | - Rixin Chen
- Liuzhou People's Hospital, Liuzhou, China
| | - Tao Bian
- Wuxi People's Hospital, Wuxi, China
| | - Dang Lin
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Shenghua Sun
- The Third Xiangya Hospital of Central South University, Changsha, China
| | - Wei Li
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | | | - Ou Jiang
- The Second People's Hospital of Neijiang, Neijiang, China
| | - Fukuan Zhong
- The Second People's Hospital of Lianyungang, Lianyungang, China
| | - Rui Wang
- Anhui Chest Hospital, Hefei, China
| | - Hui Luo
- Jiangxi Cancer Hospital Thoracic Oncology Radiotherapy Department, Nanchang, China
| | - Huaqiu Shi
- The First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Zonghui Wei
- Chongqing Nanchuan District People's Hospital, Chongqing, China
| | - Li Zhao
- Shengjing Hospital of China Medical University, Liaoning, China
| | | | | | - Xingya Li
- The First Affiliated Hospital of Zhengzhou University Oncology Department, Zhengzhou, China
| | - Debin Sun
- The Central Hospital of Lishui City, Lishui, China
| | - Tiejun Ren
- Luoyang Central Hospital, Luoyang, China
| | - Kaijian Lei
- The Second People's Hospital of Yibin, Yibin, China
| | - Miao He
- Deyang People's Hospital, Deyang, China
| | - Gaofeng Li
- The Third Affiliated Hospital of Kunming Medical University (Yunnan Tumor Hospital), Kunming, China
| | - Hailong Liu
- The First People's Hospital of Chenzhou, Chenzhou, China
| | - Runpu Li
- Baoding Second Central Hospital, Zhuozhou, China
| | - Chunhong Hu
- The Second Xiangya Hospital of Central South University, Changsha, China
| | - Li Kong
- Shandong Cancer Hospital, Jinan, China
| | - Meili Sun
- Jinan Central Hospital, Jinan, China
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Wenlin Gai
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Weiqiu Chen
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Zhe Huang
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Wenwen Ren
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| | - Huo Su
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing, China
| |
Collapse
|
175
|
Kim YE, Serpedin A, Periyakoil P, German D, Rameau A. Sociodemographic reporting in videomics research: a review of practices in otolaryngology - head and neck surgery. Eur Arch Otorhinolaryngol 2024; 281:6047-6056. [PMID: 38704768 DOI: 10.1007/s00405-024-08659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To assess reporting practices of sociodemographic data in Upper Aerodigestive Tract (UAT) videomics research in Otolaryngology-Head and Neck Surgery (OHNS). STUDY DESIGN Narrative review. METHODS Four online research databases were searched for peer-reviewed articles on videomics and UAT endoscopy in OHNS, published since January 1, 2017. Title and abstract search, followed by a full-text screening was performed. Dataset audit criteria were determined by the MINIMAR reporting standards for patient demographic characteristics, in addition to gender and author affiliations. RESULTS Of the 57 studies that were included, 37% reported any sociodemographic information on their dataset. Among these studies, all reported age, most reported sex (86%), two (10%) reported race, and one (5%) reported ethnicity and socioeconomic status. No studies reported gender. Most studies (84%) included at least one female author, and more than half of the studies (53%) had female first/senior authors, with no significant differences in the rate of sociodemographic reporting in studies with and without female authors (any female author: p = 0.2664; first/senior female author: p > 0.9999). Most studies based in the US reported at least one sociodemographic variable (79%), compared to those in Europe (24%) and in Asia (20%) (p = 0.0012). The rates of sociodemographic reporting in journals of different categories were as follows: clinical OHNS: 44%, clinical non-OHNS: 40%, technical: 42%, interdisciplinary: 10%. CONCLUSIONS There is prevalent underreporting of sociodemographic information in OHNS videomics research utilizing UAT endoscopy. Routine reporting of sociodemographic information should be implemented for AI-based research to help minimize algorithmic biases that have been previously demonstrated. LEVEL OF EVIDENCE: 4
Collapse
Affiliation(s)
- Yeo Eun Kim
- Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medicine, Sean Parker Institute for the Voice, 240 East 59th St, New York, NY, 10022, USA
| | - Aisha Serpedin
- Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medicine, Sean Parker Institute for the Voice, 240 East 59th St, New York, NY, 10022, USA
| | - Preethi Periyakoil
- Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medicine, Sean Parker Institute for the Voice, 240 East 59th St, New York, NY, 10022, USA
| | - Daniel German
- Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medicine, Sean Parker Institute for the Voice, 240 East 59th St, New York, NY, 10022, USA
| | - Anaïs Rameau
- Department of Otolaryngology-Head and Neck Surgery, Weill Cornell Medicine, Sean Parker Institute for the Voice, 240 East 59th St, New York, NY, 10022, USA.
| |
Collapse
|
176
|
Xu Y, Zhang B, Zhou F, Yi YP, Yang XL, Ouyang X, Hu H. Development of machine learning-based personalized predictive models for risk evaluation of hepatocellular carcinoma in hepatitis B virus-related cirrhosis patients with low levels of serum alpha-fetoprotein. Ann Hepatol 2024; 29:101540. [PMID: 39151891 DOI: 10.1016/j.aohep.2024.101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/31/2024] [Accepted: 06/05/2024] [Indexed: 08/19/2024]
Abstract
INTRODUCTION AND OBJECTIVES The increasing incidence of hepatocellular carcinoma (HCC) in China is an urgent issue, necessitating early diagnosis and treatment. This study aimed to develop personalized predictive models by combining machine learning (ML) technology with a demographic, medical history, and noninvasive biomarker data. These models can enhance the decision-making capabilities of physicians for HCC in hepatitis B virus (HBV)-related cirrhosis patients with low serum alpha-fetoprotein (AFP) levels. PATIENTS AND METHODS A total of 6,980 patients treated between January 2012 and December 2018 were included. Pre-treatment laboratory tests and clinical data were obtained. The significant risk factors for HCC were identified, and the relative risk of each variable affecting its diagnosis was calculated using ML and univariate regression analysis. The data set was then randomly partitioned into validation (20 %) and training sets (80 %) to develop the ML models. RESULTS Twelve independent risk factors for HCC were identified using Gaussian naïve Bayes, extreme gradient boosting (XGBoost), random forest, and least absolute shrinkage and selection operation regression models. Multivariate analysis revealed that male sex, age >60 years, alkaline phosphate >150 U/L, AFP >25 ng/mL, carcinoembryonic antigen >5 ng/mL, and fibrinogen >4 g/L were the risk factors, whereas hypertension, calcium <2.25 mmol/L, potassium ≤3.5 mmol/L, direct bilirubin >6.8 μmol/L, hemoglobin <110 g/L, and glutamic-pyruvic transaminase >40 U/L were the protective factors in HCC patients. Based on these factors, a nomogram was constructed, showing an area under the curve (AUC) of 0.746 (sensitivity = 0.710, specificity=0.646), which was significantly higher than AFP AUC of 0.658 (sensitivity = 0.462, specificity=0.766). Compared with several ML algorithms, the XGBoost model had an AUC of 0.832 (sensitivity = 0.745, specificity=0.766) and an independent validation AUC of 0.829 (sensitivity = 0.766, specificity = 0.737), making it the top-performing model in both sets. The external validation results have proven the accuracy of the XGBoost model. CONCLUSIONS The proposed XGBoost demonstrated a promising ability for individualized prediction of HCC in HBV-related cirrhosis patients with low-level AFP.
Collapse
Affiliation(s)
- Yuan Xu
- Medical Big Data Center, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Bei Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Fan Zhou
- Department of Hepatobiliary Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Ying-Ping Yi
- Medical Big Data Center, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xin-Lei Yang
- Medical Big Data Center, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xiao Ouyang
- Quiclinic Technology Co., Ltd., Nanchang, PR China
| | - Hui Hu
- Medical Big Data Center, the Second Affiliated Hospital of Nanchang University, Nanchang, PR China.
| |
Collapse
|
177
|
Xie J, Yang A, Liu Q, Deng X, Lv G, Ou X, Zheng S, Situ M, Yu Y, Liang J, Zou Y, Tang H, Zhao Z, Lin F, Liu W, Xiao W. Single-cell RNA sequencing elucidated the landscape of breast cancer brain metastases and identified ILF2 as a potential therapeutic target. Cell Prolif 2024; 57:e13697. [PMID: 38943472 PMCID: PMC11533045 DOI: 10.1111/cpr.13697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024] Open
Abstract
Distant metastasis remains the primary cause of morbidity in patients with breast cancer. Hence, the development of more efficacious strategies and the exploration of potential targets for patients with metastatic breast cancer are urgently needed. The data of six patients with breast cancer brain metastases (BCBrM) from two centres were collected, and a comprehensive landscape of the entire tumour ecosystem was generated through the utilisation of single-cell RNA sequencing. We utilised the Monocle2 and CellChat algorithms to investigate the interrelationships among each subcluster. In addition, multiple signatures were collected to evaluate key components of the subclusters through multi-omics methodologies. Finally, we elucidated common expression programs of malignant cells, and experiments were conducted in vitro and in vivo to determine the functions of interleukin enhancer-binding factor 2 (ILF2), which is a key gene in the metastasis module, in BCBrM progression. We found that subclusters in each major cell type exhibited diverse characteristics. Besides, our study indicated that ILF2 was specifically associated with BCBrM, and experimental validations further demonstrated that ILF2 deficiency hindered BCBrM progression. Our study offers novel perspectives on the heterogeneity of BCBrM and suggests that ILF2 could serve as a promising biomarker or therapeutic target for BCBrM.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Anli Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Qianwen Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Guangzhao Lv
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xueqi Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shaoquan Zheng
- The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Min‐Yi Situ
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yang Yu
- The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jie‐Ying Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Fuhua Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wei Liu
- Department of Breast, Guangzhou Red Cross Hospital, Medical CollegeJinan UniversityGuangzhouGuangdongChina
| | - Weikai Xiao
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
178
|
Liu X, Wang J, Yang Z, Xie Q, Diao X, Yao X, Huang S, Chen R, Zhao Y, Li T, Jiang M, Lou Z, Huang C. Upregulated DNMT3a coupling with inhibiting p62-dependent autophagy contributes to NNK tumorigenicity in human bronchial epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117157. [PMID: 39393198 DOI: 10.1016/j.ecoenv.2024.117157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
NNK, formally known as 4-(methyl nitrosamine)-1-(3-pyridyl)-1-butanoe, is a potent chemical carcinogen prevalent in cigarette smoke and is a key contributor to the development of human lung adenocarcinomas. On the other hand, autophagy plays a complex role in cancer development, acting as a "double-edged sword" whose impact varies depending on the cancer type and stage. Despite this, the relationship between autophagy and NNK-induced lung carcinogenesis remains largely unexplored. Our current study uncovers a marked reduction in p62 protein expression in both lung adenocarcinomas and lung tissues of mice exposed to cigarette smoke. Interestingly, this reduction appears to be contingent upon the activity of extrahepatic cytochrome P450 (CYP450), revealing that NNK metabolic activation by CYP450 enzyme escalates its potential to induce p62 downregulation. Further mechanistic investigations reveal that NNK suppresses autophagy by accelerating the degradation of p62 mRNA, thereby promoting the malignant transformation of human bronchial epithelial cells. This degradation process is facilitated by the hypermethylation of the Human antigen R (HuR) promoter, resulting in the transcriptional repression of HuR - a key regulator responsible for stabilizing p62 mRNA through direct binding. This hypermethylation is triggered by the activation of ribosomal protein S6, which is influenced by NNK exposure and subsequently amplifies the translation of DNA methyltransferase 3 alpha (DNMT3a). These findings provide crucial insights into the nature of p62 in both the development and potential treatment of tobacco-related lung cancer.
Collapse
Affiliation(s)
- Xuelei Liu
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Jingjing Wang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ziyi Yang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Qipeng Xie
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xinqi Diao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Xiaoyan Yao
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Shirui Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Ruifan Chen
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yunping Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China
| | - Tengda Li
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Minghua Jiang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China; Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Zhefeng Lou
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China.
| | - Chuanshu Huang
- Key Laboratory of Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325053, China.
| |
Collapse
|
179
|
Chen X, Zhang D, Ou H, Su J, Wang Y, Zhou F. Bulk and single-cell RNA sequencing analyses coupled with multiple machine learning to develop a glycosyltransferase associated signature in colorectal cancer. Transl Oncol 2024; 49:102093. [PMID: 39217850 PMCID: PMC11402624 DOI: 10.1016/j.tranon.2024.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 07/10/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study aims to identify key glycosyltransferases (GTs) in colorectal cancer (CRC) and establish a robust prognostic signature derived from GTs. METHODS Utilizing the AUCell, UCell, singscore, ssgsea, and AddModuleScore algorithms, along with correlation analysis, we redefined genes related to GTs in CRC at the single-cell RNA level. To improve risk model accuracy, univariate Cox and lasso regression were employed to discover a more clinically subset of GTs in CRC. Subsequently, the efficacy of seven machine learning algorithms for CRC prognosis was assessed, focusing on survival outcomes through nested cross-validation. The model was then validated across four independent external cohorts, exploring variations in the tumor microenvironment (TME), response to immunotherapy, mutational profiles, and pathways of each risk group. Importantly, we identified potential therapeutic agents targeting patients categorized into the high-GARS group. RESULTS In our research, we classified CRC patients into distinct subgroups, each exhibiting variations in prognosis, clinical characteristics, pathway enrichments, immune infiltration, and immune checkpoint genes expression. Additionally, we established a Glycosyltransferase-Associated Risk Signature (GARS) based on machine learning. GARS surpasses traditional clinicopathological features in both prognostic power and survival prediction accuracy, and it correlates with higher malignancy levels, providing valuable insights into CRC patients. Furthermore, we explored the association between the risk score and the efficacy of immunotherapy. CONCLUSION A prognostic model based on GTs was developed to forecast the response to immunotherapy, offering a novel approach to CRC management.
Collapse
Affiliation(s)
- Xin Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China
| | - Dan Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China
| | - Haibin Ou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China
| | - Jing Su
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China
| | - You Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China.
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, PR China; Hubei Clinical Cancer Study Center, Zhongnan Hospital, Wuhan University, PR China.
| |
Collapse
|
180
|
Zhao S, Han J, Yang Z, Chen X, Liu X, Zhou F, Sun Y, Wang Y, Liu G, Wu B, Zhang S, Huang J, Yang K. Anatomical and dosimetric variations during volumetric modulated arc therapy in patients with locally advanced nasopharyngeal carcinoma after induction therapy: Implications for adaptive radiation therapy. Clin Transl Radiat Oncol 2024; 49:100861. [PMID: 39381630 PMCID: PMC11459404 DOI: 10.1016/j.ctro.2024.100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/10/2024] Open
Abstract
Purpose To investigate anatomical and dosimetric changes during volumetric modulated arc therapy (VMAT) in patients with locally advanced nasopharyngeal carcinoma (LA-NPC) after induction therapy (IT) and explore characteristics of patients with notable variations. Materials and methods From July 2021 to June 2023, 60 LA-NPC patients undergoing VMAT after IT were retrospectively recruited. Adaptive computed tomography (aCT), reconstructed from weekly cone-beam computed tomography(CBCT), facilitates recontouring and planning transplantation. Volume, dice similarity coefficients, and dose to target volumes and organs at risk(OARs) on planning CT(pCT) and aCT were compared to identify changing patterns. Multivariate logistic regression was used to investigate risk factors. Results The volumes of PGTVnasopharynx (PGTVp), PGTVnode (PGTVn), ipsilateral and contralateral parotid glands decreased during VMAT, with reductions of 2.25 %, 6.98 %, 20.09 % and 18.00 %, respectively, at 30 fractions from baseline (P < 0.001). After 25 fractions, D99 and D95 of PGTVn decreased by 7.94 % and 4.18 % from baseline, respectively, while the Dmean of ipsilateral and contralateral parotid glands increased by 7.80 % and 6.50 %, marking the peak rates of dosimetric variations (P < 0.001). The dosimetric fluctuations in PGTVp, the brainstem, and the spinal cord remained within acceptable limits. Furthermore, an initial BMI ≥ 23.5 kg/m2 and not-achieving objective response (OR) after IT were regarded as risk factors for a remarkable PGTVn dose reduction in the later stages of VMAT. Conclusions Replanning for post-IT LA-NPC patients appears reasonable at 25F during VMAT. Patients with an initial BMI ≥ 23.5 kg/m2 and not-achieving OR after IT should be considered for adaptive radiation therapy to stabilize the delivered dose.
Collapse
Affiliation(s)
- Shuhan Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jun Han
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhiyong Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xi Chen
- School of Health, Brooks College (Sunnyvale), United States
- Department of Epidemiology and Statistics, School of Public Health, Medical College, Zhejiang University. China
| | - Xixi Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fangyuan Zhou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ye Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bian Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jing Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
181
|
Serafin PK, Popęda M, Bulak K, Zwara A, Galikowska-Bogut B, Przychodzka A, Mika A, Śledziński T, Stanisławowski M, Jendernalik K, Bolcewicz M, Laprus W, Stasiłojć G, Sądej R, Żaczek A, Kalinowski L, Koszałka P. Knock-out of CD73 delays the onset of HR-negative breast cancer by reprogramming lipid metabolism and is associated with increased tumor mutational burden. Mol Metab 2024; 89:102035. [PMID: 39304062 PMCID: PMC11462070 DOI: 10.1016/j.molmet.2024.102035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024] Open
Abstract
OBJECTIVE CD73 (ecto-5'-nucleotidase, NT5E), a cell-surface enzyme converting 5'-AMP to adenosine, is crucial for cancer progression. However, its role in the tumorigenesis process remains mostly obscure. We aimed to demonstrate CD73's role in breast cancer (BC) tumorigenesis through metabolic rewiring of fatty acid metabolism, a process recently indicated to be regulated by BC major prognostic markers, hormone receptors (HR) for estrogen (ER), and progesterone (PR). METHODS A murine model of chemically induced mammary gland tumorigenesis was applied to analyze CD73 knock-out (KO)-induced changes at the transcriptome (RNA-seq), proteome (IHC, WB), and lipidome (GC-EI-MS) levels. CD73 KO-induced changes were correlated with scRNA-seq and bulk RNA-seq data for human breast tissues and BCs from public collections and confirmed at the proteome level with IHC or WB analysis of BC tissue microarrays and cell lines. RESULTS CD73 KO delayed the onset of HR/PR-negative mammary tumors in a murine model. This delay correlated with increased expression of genes related to biosynthesis and β-oxidation of fatty acids (FAs) in the CD73 KO group at the initiation stage. STRING analysis based on RNA-seq data indicated an interplay between CD73 KO, up-regulated expression of PR-coding gene, and DEGs involved in FA metabolism, with PPARγ, a main regulator of FA synthesis, as a main connective node. In epithelial cells of mammary glands, PPARγ expression correlated with CD73 at the RNA level. With cancer progression, CD73 KO increased the levels of PUFAn3/6 (polyunsaturated omega 3/6 FAs), known ligands of PPARγ and target for lipid peroxidation, which may lead to oxidative DNA damage. It correlated with the downregulation of genes involved in cellular stress response (Mlh1, Gsta3), PR-or CD73-dependent changes in the intracellular ROS levels and expression or activation of proteins involved in DNA repair or oxidative stress response in mammary tumor or human BC cell lines, increased tumor mutational burden (TMB) and genomic instability markers in CD73 low HR-negative human BCs, and the prolonged onset of tumors in the CD73 KO HR/PR-negative group. CONCLUSIONS CD73 has a significant role in tumorigenesis driving the reprogramming of lipid metabolism through the regulatory loop with PR and PPARγ in epithelial cells of mammary glands. Low CD73 expression/CD73 KO might enhance mutational burden by disrupting this regulatory loop, delaying the onset of HR-negative tumors. Our results support combining therapy targeting the CD73-adenosine axis and tumor lipidome against HR-negative tumors, especially at their earliest developmental stage.
Collapse
Affiliation(s)
- Paweł Kamil Serafin
- Laboratory of Cell Biology and Immunology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Poland.
| | - Marta Popęda
- Department of Pathomorphology, Faculty of Medicine, Medical University of Gdańsk, Poland
| | - Kamila Bulak
- Department of Pathomorphology and Forensic Veterinary Medicine, University of Life Sciences in Lublin, Poland
| | - Agata Zwara
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Poland
| | - Barbara Galikowska-Bogut
- Laboratory of Molecular Enzymology and Oncology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Poland
| | - Anna Przychodzka
- Laboratory of Molecular Enzymology and Oncology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Poland
| | - Tomasz Śledziński
- Department of Pharmaceutical Biochemistry, Medical University of Gdańsk, Poland
| | | | - Kamila Jendernalik
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Faculty of Pharmacy, Medical University of Gdańsk, Poland
| | - Marika Bolcewicz
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Faculty of Pharmacy, Medical University of Gdańsk, Poland
| | - Wiktoria Laprus
- Laboratory of Cell Biology and Immunology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Poland
| | - Grzegorz Stasiłojć
- Laboratory of Cell Biology and Immunology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Poland
| | - Rafał Sądej
- Laboratory of Molecular Enzymology and Oncology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Poland
| | - Anna Żaczek
- Laboratory of Translational Oncology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI.pl, Faculty of Pharmacy, Medical University of Gdańsk, Poland; BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, Gdansk, Poland
| | - Patrycja Koszałka
- Laboratory of Cell Biology and Immunology, Institute of Medical Biotechnology and Experimental Oncology, Intercollegiate Faculty of Biotechnology University of Gdańsk and Medical University of Gdańsk, Medical University of Gdańsk, Poland.
| |
Collapse
|
182
|
Liang R, Zhu L, Huang Y, Chen J, Tang Q. Mitochondria: fundamental characteristics, challenges, and impact on aging. Biogerontology 2024; 25:923-941. [PMID: 39196438 DOI: 10.1007/s10522-024-10132-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024]
Abstract
As one of the most vital organelles within biological cells, mitochondria hold an irreplaceable status and play crucial roles in various diseases. Research and therapies targeting mitochondria have achieved significant progress in numerous conditions. Throughout an organism's lifespan, mitochondrial dynamics persist continuously, and due to their inherent characteristics and various external factors, mitochondria are highly susceptible to damage. This susceptibility is particularly evident during aging, where the decline in biological function is closely intertwined with mitochondrial dysfunction. Despite being an ancient and enigmatic organelle, much remains unknown about mitochondria. Here, we will explore the past and present knowledge of mitochondria, providing a comprehensive review of their intrinsic properties and interactions with nuclear DNA, as well as the challenges and impacts they face during the aging process.
Collapse
Affiliation(s)
- Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Luwen Zhu
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yongyin Huang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China.
| |
Collapse
|
183
|
Ma J, Deng Y, Zhang M, Zhang Q. Spatial tertiary lymphoid structures imply response to anti-PD-1 plus anlotinib in advanced non-small cell lung cancer. Immunology 2024; 173:536-551. [PMID: 39078223 DOI: 10.1111/imm.13841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 07/11/2024] [Indexed: 07/31/2024] Open
Abstract
Despite breakthroughs of immunotherapy synergistically combined with blockade of vascular endothelial growth factor receptor, several patients with advanced non-small cell lung cancer (NSCLC) experience non-response or followed relapse. Organized lymphoid aggregates, termed tertiary lymphoid structures (TLSs), are found to be associated with improved response to immunotherapy. Here, we explore the landscapes of TLSs in tumour tissues from a real-world retrospective study. Our investigation showed that with a median follow-up of 11.2 months, the ORR was 28.6% (18/63, 95% CI 17.9-41.3) and the median PFS was 6.1 (95% CI 5.5-6.6) months in NSCLC patients treated with PD-1 blockade combined with anlotinib. By multiplex immunofluorescence (mIF) analysis, spatially, more TLSs and high CD20+ B-cell ratio in TLSs were associated with higher ORR. High density of intratumoral CD8+ T cells showed better ORR and PFS. The numbers of CD8+ T cells with a distance within 20 μm and 20-50 μm between tumour cells were higher in responders than non-responders. But responders had significantly higher TLSs within 20 μm rather than within 20-50 μm of tumour cells than non-responders. The inflamed immunophenotyping occupied higher proportions in responders and was associated with better PFS. Besides, tumour cells in non-responders were found more temporal cell-in-cell structures than responders, which could protect inner cells from T-cell attacks. Taken together, landscape of TLSs and proximity architecture may imply superior responses to PD-1 blockade combined with anlotinib for patients with advanced non-small cell lung cancer.
Collapse
Affiliation(s)
- Jianli Ma
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, People's Republic of China
| | - Yuwei Deng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, People's Republic of China
| | - Minghui Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, People's Republic of China
| | - Qingyuan Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, People's Republic of China
| |
Collapse
|
184
|
Zhang AD, Shi QL, Zhang HT, Duan WH, Li Y, Ruan L, Han YF, Liu ZK, Li HF, Xiao JS, Shi GF, Wan X, Wang RZ. Pairwise machine learning-based automatic diagnostic platform utilizing CT images and clinical information for predicting radiotherapy locoregional recurrence in elderly esophageal cancer patients. Abdom Radiol (NY) 2024; 49:4151-4161. [PMID: 38831075 PMCID: PMC11519085 DOI: 10.1007/s00261-024-04377-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 06/05/2024]
Abstract
OBJECTIVE To investigate the feasibility and accuracy of predicting locoregional recurrence (LR) in elderly patients with esophageal squamous cell cancer (ESCC) who underwent radical radiotherapy using a pairwise machine learning algorithm. METHODS The 130 datasets enrolled were randomly divided into a training set and a testing set in a 7:3 ratio. Clinical factors were included and radiomics features were extracted from pretreatment CT scans using pyradiomics-based software, and a pairwise naive Bayes (NB) model was developed. The performance of the model was evaluated using receiver operating characteristic (ROC) curves and decision curve analysis (DCA). To facilitate practical application, we attempted to construct an automated esophageal cancer diagnosis system based on trained models. RESULTS To the follow-up date, 64 patients (49.23%) had experienced LR. Ten radiomics features and two clinical factors were selected for modeling. The model demonstrated good prediction performance, with area under the ROC curve of 0.903 (0.829-0.958) for the training cohort and 0.944 (0.849-1.000) for the testing cohort. The corresponding accuracies were 0.852 and 0.914, respectively. Calibration curves showed good agreement, and DCA curve confirmed the clinical validity of the model. The model accurately predicted LR in elderly patients, with a positive predictive value of 85.71% for the testing cohort. CONCLUSIONS The pairwise NB model, based on pre-treatment enhanced chest CT-based radiomics and clinical factors, can accurately predict LR in elderly patients with ESCC. The esophageal cancer automated diagnostic system embedded with the pairwise NB model holds significant potential for application in clinical practice.
Collapse
Affiliation(s)
- An-du Zhang
- Department of Radiotherapy, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, 12 Jiankang Road, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Qing-Lei Shi
- School of Medicine, Chinese University of Hong Kong (Shenzhen), No. 2001, Longxiang Avenue, Longgang District, Shenzhen, 518172, People's Republic of China
- Medical Big Data Laboratory, Shenzhen Research Institute of Big Data, Daoyuan Building, No. 2001, Longxiang Avenue, Longgang District, Shenzhen, 518172, People's Republic of China
| | - Hong-Tao Zhang
- Department of Oncology, Hebei General Hospital, NO. 348 Heping West Road, Xinhua District, Shijiazhuang, Hebei, 050051, People's Republic of China
| | - Wen-Han Duan
- School of Computer Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Yang Li
- Department of Radiotherapy, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, 12 Jiankang Road, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Li Ruan
- School of Computer Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Yi-Fan Han
- School of Computer Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, People's Republic of China
| | - Zhi-Kun Liu
- Department of Radiotherapy, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, 12 Jiankang Road, Shijiazhuang, Hebei, 050011, People's Republic of China
| | - Hao-Feng Li
- Medical Big Data Laboratory, Shenzhen Research Institute of Big Data, Daoyuan Building, No. 2001, Longxiang Avenue, Longgang District, Shenzhen, 518172, People's Republic of China
| | - Jia-Shun Xiao
- Medical Big Data Laboratory, Shenzhen Research Institute of Big Data, Daoyuan Building, No. 2001, Longxiang Avenue, Longgang District, Shenzhen, 518172, People's Republic of China
| | - Gao-Feng Shi
- Department of Radiotherapy, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, 12 Jiankang Road, Shijiazhuang, Hebei, 050011, People's Republic of China.
| | - Xiang Wan
- Medical Big Data Laboratory, Shenzhen Research Institute of Big Data, Daoyuan Building, No. 2001, Longxiang Avenue, Longgang District, Shenzhen, 518172, People's Republic of China.
| | - Ren-Zhi Wang
- School of Medicine, Chinese University of Hong Kong (Shenzhen), No. 2001, Longxiang Avenue, Longgang District, Shenzhen, 518172, People's Republic of China.
| |
Collapse
|
185
|
Peng X, Li S, Zeng A, Song L. Regulatory function of glycolysis-related lncRNAs in tumor progression: Mechanism, facts, and perspectives. Biochem Pharmacol 2024; 229:116511. [PMID: 39222714 DOI: 10.1016/j.bcp.2024.116511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Altered metabolism is a hallmark of cancer, and reprogramming of energy metabolism, known as the "Warburg effect", has long been associated with cancer. Cancer cells use the process of glycolysis to quickly manufacture energy from glucose, pyruvic acid, and lactate, which in turn accelerates the growth of cancer and glycolysis becomes a key target for anti-cancer therapies. Recent groundbreaking discoveries regarding long noncoding RNAs (lncRNAs) have opened a new chapter in the mechanism of cancer occurrence. It is widely recognized that lncRNAs regulate energy metabolism through glycolysis in cancer cells. LncRNAs have been demonstrated to engage in several cancer processes such as proliferation, apoptosis, migration, invasion, and chemoresistance, whereas glycolysis is enhanced or inhibited by the dysregulation of lncRNAs. As a result, cancer survival and development are influenced by different signaling pathways. In this review, we summarize the roles of lncRNAs in a variety of cancers and describe the mechanisms underlying their role in glycolysis. Additionally, the predictive potential of glycolysis and lncRNAs in cancer therapy is discussed.
Collapse
Affiliation(s)
- Xinyi Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, PR China
| | - Shuhao Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, PR China
| | - Anqi Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, Sichuan Academy of Chinese Medicine Sciences, Sichuan Institute for Translational Chinese Medicine, Chengdu, Sichuan 610041, P.R. China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province 611137, PR China.
| |
Collapse
|
186
|
Gu Y, Sun M, Fang H, Shao F, Lin C, Liu H, Li H, He H, Li R, Wang J, Zhang H, Xu J. Impact of clonal TP53 mutations with loss of heterozygosity on adjuvant chemotherapy and immunotherapy in gastric cancer. Br J Cancer 2024; 131:1320-1327. [PMID: 39217196 PMCID: PMC11473753 DOI: 10.1038/s41416-024-02825-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND This study aimed to reveal the effect of TP53 status on clinical outcomes and underlying mechanism in gastric cancer (GC) patients. METHODS TP53 status was divided into three groups according to genome sequencing, namely clonal mutations with LOH (C-LOH), clonal diploid or subclonal mutations (CD-SC), and wild type (WT). The p53 protein activity was divided into over-expression (OE), Null and WT according to immunohistochemical staining. Four cohorts, including the TCGA, SMC, ZSHS and FUSCC cohort, were analyzed for association between TP53 mutation status and clinical outcomes and the underlying mechanism. RESULTS In TCGA cohort, TP53 CD-SC were associated with superior overall survival compared to TP53 C-LOH cases. GC patients could benefit from ACT only in TP53 CD-SC/ p53 OE and TP53/ p53 WT subgroups, and TP53 C-LOH subgroup demonstrated the worst response to pembrolizumab among three subgroups. Genomic and immunophenotypic deconvolution revealed that TP53 C-LOH, CD-SC and WT differed for genomic and immune-related features. CONCLUSIONS TP53 C-LOH GCs with genomic instability and immune evasion phenotype have poor clinical outcomes in patients treated with ACT or immunotherapy.
Collapse
Affiliation(s)
- Yun Gu
- Department of General Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mengyao Sun
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hanji Fang
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fei Shao
- Department of Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Lin
- Department of Emergency Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Liu
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - He Li
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hongyong He
- Department of Emergency Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruochen Li
- Department of Emergency Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieti Wang
- Department of Endoscopy, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Heng Zhang
- Department of Gastrointestinal Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiejie Xu
- NHC Key Laboratory of Glycoconjugate Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
187
|
Varošanec AM, Marković L, Sonicki Z. A Novel Time-Aware Deep Learning Model Predicting Myopia in Children and Adolescents. OPHTHALMOLOGY SCIENCE 2024; 4:100563. [PMID: 39165695 PMCID: PMC11334700 DOI: 10.1016/j.xops.2024.100563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 08/22/2024]
Abstract
Objective To quantitatively predict children's and adolescents' spherical equivalent (SE) by leveraging their variable-length historical vision records. Design Retrospective analysis. Participants Eight hundred ninety-five myopic children and adolescents aged 4 to 18 years, with a complete ophthalmic examination and retinoscopy in cycloplegia prior to spectacle correction, were enrolled in the period from January 1, 2008 to July 1, 2023 at the University Hospital "Sveti Duh," Zagreb, Croatia. Methods A novel modification of time-aware long short-term memory (LSTM) was used to quantitatively predict children's and adolescents' SE within 7 years after diagnosis. Main Outcome Measures The utilization of extended gate time-aware LSTM involved capturing temporal features within irregularly sampled time series data. This approach aligned more closely with the characteristics of fact-based data, increasing its applicability and contributing to the early identification of myopia progression. Results The testing set exhibited a mean absolute prediction error (MAE) of 0.10 ± 0.15 diopter (D) for SE. Lower MAE values were associated with longer sequence lengths, shorter prediction durations, older age groups, and low myopia, while higher MAE values were observed with shorter sequence lengths, longer prediction durations, younger age groups, and in premyopic or high myopic individuals, ranging from as low as 0.03 ± 0.04 D to as high as 0.45 ± 0.24 D. Conclusions Extended gate time-aware LSTM capturing temporal features in irregularly sampled time series data can be used to quantitatively predict children's and adolescents' SE within 7 years with an overall error of 0.10 ± 0.15 D. This value is substantially lower than the threshold for prediction to be considered clinically acceptable, such as a criterion of 0.75 D. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Affiliation(s)
- Ana Maria Varošanec
- University Eye Department, University Hospital “Sveti Duh”, Reference Center of The Ministry of Health of The Republic of Croatia for Pediatric Ophthalmology and Strabismus, Reference Center of The Ministry of Health of The Republic of Croatia for Inherited Retinal Dystrophies, Zagreb, Croatia
- Faculty of Dental Medicine and Health Osijek, University Josip Juraj Strossmayer in Osijek, Croatia
| | - Leon Marković
- University Eye Department, University Hospital “Sveti Duh”, Reference Center of The Ministry of Health of The Republic of Croatia for Pediatric Ophthalmology and Strabismus, Reference Center of The Ministry of Health of The Republic of Croatia for Inherited Retinal Dystrophies, Zagreb, Croatia
- Faculty of Dental Medicine and Health Osijek, University Josip Juraj Strossmayer in Osijek, Croatia
| | - Zdenko Sonicki
- Department of Medical Statistics, Epidemiology and Medical Informatics, Andrija Štampar School of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
188
|
Dong Y, Chen Y, Wang Y, Zhao X, Zi R, Hao J, Ding Q, Jiang H, Wang X, Lu F, Liang H, Wei Z, Li J. Cancer-associated fibroblasts derived fibronectin extra domain A promotes sorafenib resistance in hepatocellular carcinoma cells by activating SHMT1. Genes Dis 2024; 11:101330. [PMID: 39286657 PMCID: PMC11402957 DOI: 10.1016/j.gendis.2024.101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 09/19/2024] Open
Abstract
Resistance to sorafenib, an effective first-line treatment for advanced hepatocellular carcinoma (HCC), greatly compromised the prognosis of patients. The extracellular matrix is one of the most abundant components of the tumor microenvironment. Beyond acting as a physical barrier, it remains unclear whether cell interactions and signal transduction mediated by the extracellular matrix contribute to sorafenib resistance. With the analysis of primary HCC organoid RNA-seq data combined with in vivo and in vitro experiments validation, we discovered that fibronectin extra domain A (FN-EDA) derived from cancer-associated fibroblasts played a critical role in sorafenib resistance. Mechanistically, FN-EDA stimulates the up-regulation of the key one-carbon metabolism enzyme SHMT1 in HCC cells via the TLR4/NF-κB signaling pathway, thereby countering the oxidative stress induced by sorafenib. Moreover, we reinforced the clinical significance of our discoveries by conducting in vivo assays with an immunodeficiency subcutaneous xenograft tumor model, which was established using primary cancer-associated fibroblasts derived from clinical HCC tissues, and through the analysis of HCC samples obtained from The Cancer Genome Atlas (TCGA) database. Our findings suggest that targeting the FN-EDA/SHMT1 pathway could be a potential strategy to improve sorafenib responsiveness in HCC patients.
Collapse
Affiliation(s)
- Yan Dong
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yanrong Chen
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yijie Wang
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Ruiyang Zi
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jie Hao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Qiong Ding
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Haoran Jiang
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xuesong Wang
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Fanghao Lu
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Houjie Liang
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Zhihao Wei
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| |
Collapse
|
189
|
Hou B, Guo T, Gao J, Cao Y, Lu H, Ma T, Zhang Y, Zhao H. The value of the radiological diameter-to-thickness ratio in patients with HER2-positive resectable advanced gastric cancer: implications for long survival and stage migration. Abdom Radiol (NY) 2024; 49:3797-3810. [PMID: 38907839 DOI: 10.1007/s00261-024-04420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 06/24/2024]
Abstract
PURPOSE To investigate the clinical significance and stage migration effect of radiological diameter-to-thickness (DT) ratio in HER2-positive resectable advanced gastric cancer (HER2-p RAGC). METHODS 369 HER2-p RAGC patients were retrospectively enrolled and information on clinical pathological characteristics, radiological DT ratio, and outcomes [i.e., overall survival (OS) and progression-free survival (PFS)] was collected. Pearson's Chi-square and Student's t-test were employed to compare baseline characteristics. Clinical outcomes were estimated using Kaplan-Meier analysis and Log-rank test. Univariate and multivariate Cox regression models were utilized to analyze independent prognostic factors. RESULTS HER2-p RAGC patients were stratified into two groups using a DT ratio cutoff value of 4.0 (p < 0.05). Patients with a DT ratio < 4.0 exhibited significantly longer OS (58.0 vs. 31.0 months) and PFS (43.0 vs. 24.0 months) than those with a DT ratio ≥ 4.0. DT ratio significantly predicted prognosis for N0 and II stage patients (p < 0.05). Patients with gastric body and antrum cancers demonstrated longer OS and PFS in the DT ratio < 4.0 group (p = 0.046, 0.017, 0.036 and 0.028). Multivariate Cox proportional hazard model identified age, pathological T category, pathological N category, pathological TNM category and DT ratio as independent prognostic factors. Notably, pStage II patients with a DT ratio ≥ 4.0 exhibited a similar prognosis to pStage III patients with a DT ratio < 4.0 (p = 0.418 for OS, 0.867 for PFS). CONCLUSION Radiological DT ratio could evaluate the prognosis and detect higher malignant cases in HER2-p RAGC patients. Moreover, DT ratio might guide clinicians make postoperative strategies. TRIAL REGISTRATION Retrospectively registered.
Collapse
Affiliation(s)
- Bin Hou
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Tiantian Guo
- Department of CT, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Jianbo Gao
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
- Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor & Henan International Joint Laboratory of Medical Imaging & Henan Engineering Laboratory of Tumor Imaging & Henan Key Laboratory of CT Imaging & Zhengzhou Key Laboratory of Medical Imaging Technology and Diagnosis, Zhengzhou, 450052, Henan Province, China
| | - Yanfei Cao
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Hao Lu
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
- Henan Key Laboratory of Image Diagnosis and Treatment for Digestive System Tumor & Henan International Joint Laboratory of Medical Imaging & Henan Engineering Laboratory of Tumor Imaging & Henan Key Laboratory of CT Imaging & Zhengzhou Key Laboratory of Medical Imaging Technology and Diagnosis, Zhengzhou, 450052, Henan Province, China
| | - Tian Ma
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Yan Zhang
- Department of CT, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Xi'an, 710068, Shaanxi Province, China
| | - Huiping Zhao
- Department of CT, Shaanxi Provincial People's Hospital, No. 256, Youyi West Road, Xi'an, 710068, Shaanxi Province, China.
| |
Collapse
|
190
|
Wlosik J, Granjeaud S, Gorvel L, Olive D, Chretien AS. A beginner's guide to supervised analysis for mass cytometry data in cancer biology. Cytometry A 2024. [PMID: 39486897 DOI: 10.1002/cyto.a.24901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/16/2024] [Accepted: 10/01/2024] [Indexed: 11/04/2024]
Abstract
Mass cytometry enables deep profiling of biological samples at single-cell resolution. This technology is more than relevant in cancer research due to high cellular heterogeneity and complexity. Downstream analysis of high-dimensional datasets increasingly relies on machine learning (ML) to extract clinically relevant information, including supervised algorithms for classification and regression purposes. In cancer research, they are used to develop predictive models that will guide clinical decision making. However, the development of supervised algorithms faces major challenges, such as sufficient validation, before being translated into the clinics. In this work, we provide a framework for the analysis of mass cytometry data with a specific focus on supervised algorithms and practical examples of their applications. We also raise awareness on key issues regarding good practices for researchers curious to implement supervised ML on their mass cytometry data. Finally, we discuss the challenges of supervised ML application to cancer research.
Collapse
Affiliation(s)
- Julia Wlosik
- Team 'Immunity and Cancer', Marseille Cancer Research Center, Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, Aix-Marseille University UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Samuel Granjeaud
- Systems Biology Platform, Marseille Cancer Research Center, Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, Aix-Marseille University UM105, Marseille, France
| | - Laurent Gorvel
- Team 'Immunity and Cancer', Marseille Cancer Research Center, Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, Aix-Marseille University UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Daniel Olive
- Team 'Immunity and Cancer', Marseille Cancer Research Center, Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, Aix-Marseille University UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| | - Anne-Sophie Chretien
- Team 'Immunity and Cancer', Marseille Cancer Research Center, Inserm U1068, CNRS UMR7258, Paoli-Calmettes Institute, Aix-Marseille University UM105, Marseille, France
- Immunomonitoring Department, Paoli-Calmettes Institute, Marseille, France
| |
Collapse
|
191
|
Han P, Wei S, Wang H, Cai Y. Licochalcone A decreases cancer cell proliferation and enhances ferroptosis in acute myeloid leukemia through suppressing the IGF2BP3/MDM2 cascade. Ann Hematol 2024; 103:4511-4524. [PMID: 39264435 DOI: 10.1007/s00277-024-06003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Licochalcone A (Lico A), a naturally bioactive flavonoid, has shown antitumor activity in several types of cancers. However, few studies have focused on its effect on acute myeloid leukemia (AML). Cell viability and colony formation potential were detected by CCK-8 assay and colony formation assay, respectively. Cell cycle distribution and apoptosis were assessed by flow cytometry. Ferroptosis was assessed by measuring reactive oxygen species (ROS), lipid ROS, malondialdehyde (MDA), and glutathione (GSH). Protein expression levels were determined by immunoblotting and immunohistochemistry (IHC), and mRNA expression was detected by real-time qPCR. The m6A modification of MDM2 mRNA was verified by methylated RNA immunoprecipitation (MeRIP) assay, and the interaction of IGF2BP3 and MDM2 mRNA was analyzed by RIP assay. Actinomycin D was used to evaluate mRNA stability. The efficacy of Lico A in vivo was examined by a murine xenograft model. Lico A suppressed cell proliferation and induced ferroptosis in MOLM-13 and U-937 in vitro, and slowed the growth of xenograft tumors in vivo. IGF2BP3 was highly expressed in human AML specimens and cells, and Lico A suppressed IGF2BP3 expression in AML cells. Lico A exerted the anti-proliferative and pro-ferroptosis effects by downregulating IGF2BP3. Moreover, IGF2BP3 enhanced the stability and expression of MDM2 mRNA through an m6A-dependent manner. Downregulation of IGF2BP3 impeded AML cell proliferation and enhanced ferroptosis via repressing MDM2. Furthermore, Lico A could affect the MDM2/p53 pathway by downregulating IGF2BP3 expression. Lico A exerts the anti-proliferative and pro-ferroptosis activity in AML cells by affecting the IGF2BP3/MDM2/p53 pathway, providing new evidence for Lico A as a promising agent for the treatment of AML.
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins c-mdm2/metabolism
- Proto-Oncogene Proteins c-mdm2/genetics
- Ferroptosis/drug effects
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/genetics
- Chalcones/pharmacology
- Chalcones/therapeutic use
- Cell Proliferation/drug effects
- Animals
- Mice
- Xenograft Model Antitumor Assays
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Cell Line, Tumor
- Female
- Male
- Signal Transduction/drug effects
- Mice, Nude
Collapse
Affiliation(s)
- Pingping Han
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China.
| | - Suhua Wei
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Huaiyu Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yun Cai
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
192
|
Fan H, Liang X, Tang Y. Neuroscience in peripheral cancers: tumors hijacking nerves and neuroimmune crosstalk. MedComm (Beijing) 2024; 5:e784. [PMID: 39492832 PMCID: PMC11527832 DOI: 10.1002/mco2.784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 11/05/2024] Open
Abstract
Cancer neuroscience is an emerging field that investigates the intricate relationship between the nervous system and cancer, gaining increasing recognition for its importance. The central nervous system governs the development of the nervous system and directly affects brain tumors, and the peripheral nervous system (PNS) shapes the tumor microenvironment (TME) of peripheral tumors. Both systems are crucial in cancer initiation and progression, with recent studies revealing a more intricate role of the PNS within the TME. Tumors not only invade nerves but also persuade them through remodeling to further promote malignancy, creating a bidirectional interaction between nerves and cancers. Notably, immune cells also contribute to this communication, forming a triangular relationship that influences protumor inflammation and the effectiveness of immunotherapy. This review delves into the intricate mechanisms connecting the PNS and tumors, focusing on how various immune cell types influence nerve‒tumor interactions, emphasizing the clinical relevance of nerve‒tumor and nerve‒immune dynamics. By deepening our understanding of the interplay between nerves, cancer, and immune cells, this review has the potential to reshape tumor biology insights, inspire innovative therapies, and improve clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Hua‐Yang Fan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin‐Hua Liang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial SurgeryWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Ya‐Ling Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Oral PathologyWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
193
|
Yin R, Dou Z, Wang Y, Zhang Q, Guo Y, Wang Y, Chen Y, Zhang C, Li H, Jian X, Qi L, Ma W. Preoperative CECT-Based Multitask Model Predicts Peritoneal Recurrence and Disease-Free Survival in Advanced Ovarian Cancer: A Multicenter Study. Acad Radiol 2024; 31:4488-4498. [PMID: 38693025 DOI: 10.1016/j.acra.2024.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/13/2024] [Accepted: 04/14/2024] [Indexed: 05/03/2024]
Abstract
RATIONALE AND OBJECTIVES Peritoneal recurrence is the predominant pattern of recurrence in advanced ovarian cancer (AOC) and portends a dismal prognosis. Accurate prediction of peritoneal recurrence and disease-free survival (DFS) is crucial to identify patients who might benefit from intensive treatment. We aimed to develop a predictive model for peritoneal recurrence and prognosis in AOC. METHODS In this retrospective multi-institution study of 515 patients, an end-to-end multi-task convolutional neural network (MCNN) comprising a segmentation convolutional neural network (CNN) and a classification CNN was developed and tested using preoperative CT images, and MCNN-score was generated to indicate the peritoneal recurrence and DFS status in patients with AOC. We evaluated the accuracy of the model for automatic segmentation and predict prognosis. RESULTS The MCNN achieved promising segmentation performances with a mean Dice coefficient of 84.3% (range: 78.8%-87.0%). The MCNN was able to predict peritoneal recurrence in the training (AUC 0.87; 95% CI 0.82-0.90), internal test (0.88; 0.85-0.92), and external test set (0.82; 0.78-0.86). Similarly, MCNN demonstrated consistently high accuracy in predicting recurrence, with an AUC of 0.85; 95% CI 0.82-0.88, 0.83; 95% CI 0.80-0.86, and 0.85; 95% CI 0.83-0.88. For patients with a high MCNN-score of recurrence, it was associated with poorer DFS with P < 0.0001 and hazard ratios of 0.1964 (95% CI: 0.1439-0.2680), 0.3249 (95% CI: 0.1896-0.5565), and 0.3458 (95% CI: 0.2582-0.4632). CONCLUSION The MCNN approach demonstrated high performance in predicting peritoneal recurrence and DFS in patients with AOC.
Collapse
Affiliation(s)
- Rui Yin
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China; School of Biomedical Engineering & Technology, Tianjin Medical University, Tianjin 300203, China
| | - Zhaoxiang Dou
- Department of Breast Imaging, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yanyan Wang
- Department of CT and MRI, Shanxi Tumor Hospital, Taiyuan 030013, China
| | - Qian Zhang
- Department of Radiology, Baoding No. 1 Central Hospital, Baoding 071030, China
| | - Yijun Guo
- Department of Breast Imaging, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Yigeng Wang
- Department of Radiology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Ying Chen
- Department of Gynecologic Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Chao Zhang
- Department of Bone Cancer, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Huiyang Li
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiqi Jian
- School of Biomedical Engineering & Technology, Tianjin Medical University, Tianjin 300203, China
| | - Lisha Qi
- Department of Pathology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Wenjuan Ma
- Department of Breast Imaging, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China.
| |
Collapse
|
194
|
Zhang H, Gao H, Liu S, Ren X, Que L, Gu X, Rong S, Ma H, Ruan J, Miao M, Qi X, Chang D, Pan H. Dual electrochemical signal "signal-on-off" sensor based on CHA-Td-HCR and CRISPR-Cas12a for MUC1 detection. Talanta 2024; 279:126665. [PMID: 39116728 DOI: 10.1016/j.talanta.2024.126665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Mucin 1 (MUC1) is frequently overexpressed in various cancers and is essential for early cancer detection. Current methods to detect MUC1 are expensive, time-consuming, and require skilled personnel. Therefore, developing a simple, sensitive, highly selective MUC1 detection sensor is necessary. In this study, we proposed a novel "signal-on-off" strategy that, in the presence of MUC1, synergistically integrates catalytic hairpin assembly (CHA) with DNA tetrahedron (Td)-based nonlinear hybridization chain reaction (HCR) to enhance the immobilization of electrochemically active methylene blue (MB) on magnetic nanoparticles (MNP), marking the MB signal "on". Concurrently, the activation of CRISPR-Cas12a by isothermal amplification products triggers the cleavage of single-stranded DNA (ssDNA) at the electrode surface, resulting in a reduction of MgAl-LDH@Fc-AuFe-MIL-101 (containing ferrocene, Fc) on the electrode, presenting the "signal-off" state. Both MB and MgAl-LDH@Fc-AuFe-MIL-101 electrochemical signals were measured and analyzed. Assay parameters were optimized, and sensitivity, stability, and linear range were assessed. Across a concentration spectrum of MUC1 spanning from 10 fg/mL to 100 ng/mL, the MB and MgAl-LDH@Fc-AuFe-MIL-101 signals were calibrated with each other, demonstrating a "signal-on-off" dual electrochemical signaling pattern. This allows for the precise and quantitative detection of MUC1 in clinical samples, offering significant potential for medical diagnosis.
Collapse
Affiliation(s)
- Hehua Zhang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; College of International Education, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Hongmin Gao
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Simin Liu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xinshui Ren
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; Graduate School of Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Longbin Que
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xin Gu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shengzhong Rong
- Public Health School, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Hongkun Ma
- Public Health School, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Junbin Ruan
- Faculty of Foreign Languages, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Meng Miao
- The College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xue Qi
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Dong Chang
- Department of Clinical Laboratory, The Affiliated Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Hongzhi Pan
- The Affiliated Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
195
|
Han S, Xu Q, Du Y, Tang C, Cui H, Xia X, Zheng R, Sun Y, Shang H. Single-cell spatial transcriptomics in cardiovascular development, disease, and medicine. Genes Dis 2024; 11:101163. [PMID: 39224111 PMCID: PMC11367031 DOI: 10.1016/j.gendis.2023.101163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/17/2023] [Accepted: 10/29/2023] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) impose a significant burden worldwide. Despite the elucidation of the etiology and underlying molecular mechanisms of CVDs by numerous studies and recent discovery of effective drugs, their morbidity, disability, and mortality are still high. Therefore, precise risk stratification and effective targeted therapies for CVDs are warranted. Recent improvements in single-cell RNA sequencing and spatial transcriptomics have improved our understanding of the mechanisms and cells involved in cardiovascular phylogeny and CVDs. Single-cell RNA sequencing can facilitate the study of the human heart at remarkably high resolution and cellular and molecular heterogeneity. However, this technique does not provide spatial information, which is essential for understanding homeostasis and disease. Spatial transcriptomics can elucidate intracellular interactions, transcription factor distribution, cell spatial localization, and molecular profiles of mRNA and identify cell populations causing the disease and their underlying mechanisms, including cell crosstalk. Herein, we introduce the main methods of RNA-seq and spatial transcriptomics analysis and highlight the latest advances in cardiovascular research. We conclude that single-cell RNA sequencing interprets disease progression in multiple dimensions, levels, perspectives, and dynamics by combining spatial and temporal characterization of the clinical phenome with multidisciplinary techniques such as spatial transcriptomics. This aligns with the dynamic evolution of CVDs (e.g., "angina-myocardial infarction-heart failure" in coronary artery disease). The study of pathways for disease onset and mechanisms (e.g., age, sex, comorbidities) in different patient subgroups should improve disease diagnosis and risk stratification. This can facilitate precise individualized treatment of CVDs.
Collapse
Affiliation(s)
- Songjie Han
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Qianqian Xu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yawen Du
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chuwei Tang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Herong Cui
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaofeng Xia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yang Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| |
Collapse
|
196
|
Wang S, Zheng Z. Advances in Oral Exfoliative Cytology: From Cancer Diagnosis to Systemic Disease Detection. Diagn Cytopathol 2024; 52:697-706. [PMID: 39219248 DOI: 10.1002/dc.25400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/04/2024]
Abstract
Oral exfoliative cytology has emerged as a valuable tool in the early detection of oral cancer and other systemic diseases. This review comprehensively examines the current applications and recent advancements in oral exfoliative cytology techniques. We analyzed published literature from the past decade, focusing on methodological improvements, diagnostic accuracy, and emerging applications. Key findings include: (1) Enhanced cell collection and preparation methods have significantly improved sample quality and diagnostic reliability. (2) Integration of molecular markers and DNA analysis with traditional cytomorphological assessment has increased diagnostic sensitivity and specificity for oral cancer detection. (3) Novel applications in systemic disease detection, including diabetes and iron overload disorders, demonstrate the expanding utility of this technique. (4) Computer-assisted analysis and deep learning algorithms show promise in improving diagnostic accuracy and efficiency. Despite these advancements, challenges remain in standardization and widespread clinical implementation. This review provides a critical evaluation of oral exfoliative cytology's current status and future potential in oral and systemic disease diagnosis.
Collapse
Affiliation(s)
- Shan Wang
- Department of Oral Pathology, School of Stomatology, Hainan Medical University, Haikou, China
- Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ze Zheng
- Department of Orthodontics, School of Stomatology, Harbin Medical University, Harbin, China
| |
Collapse
|
197
|
Ma Y, Huang Y, Hu F, Shu K. Lipid metabolic rewiring in glioma‑associated microglia/macrophages (Review). Int J Mol Med 2024; 54:102. [PMID: 39301636 PMCID: PMC11414527 DOI: 10.3892/ijmm.2024.5426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Gliomas are the most prevailing brain malignancy in both children and adults. Microglia, which are resident in the central nervous system (CNS), are distributed throughout the brain and serve an important role in the immunity of the CNS. Microglial cells exhibit varying phenotypic and metabolic properties during different stages of glioma development, making them a highly dynamic cell population. In particular, glioma‑associated microglia/macrophages (GAMs) can alter their metabolic characteristics and influence malignancies in response to the signals they receive. The significance of macrophage metabolic reprogramming in tumor growth is becoming increasingly acknowledged in recent years. However, to the best of our knowledge, there is currently a scarcity of data from investigations into the lipid metabolic profiles of microglia/macrophages in the glioma setting. Therefore, the present review aims to provide a thorough review of the role that lipid metabolism serves in tumor‑associated macrophages. In addition, it outlines potential targets for therapy based on lipid metabolism. The present review aims to serve as a reference source for future investigations into GAMs.
Collapse
Affiliation(s)
- Yixuan Ma
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Feng Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
198
|
Kawabata K, Takahashi T, Tanaka K, Kurokawa Y, Yamamoto K, Saito T, Momose K, Yamashita K, Makino T, Yokouchi T, Kawai K, Serada S, Fujimoto M, Nakajima K, Naka T, Eguchi H, Doki Y. Lipolysis-stimulated lipoprotein receptor promote lipid uptake and fatty acid oxidation in gastric cancer. Gastric Cancer 2024; 27:1258-1272. [PMID: 39294388 DOI: 10.1007/s10120-024-01552-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/02/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Lipolysis-stimulated lipoprotein receptor (LSR), a lipid receptor, is associated with cancer progression. However, detailed effects on intracellular metabolism are unclear. We aimed to elucidate the mechanism of LSR-mediated lipid metabolism in gastric cancer. METHODS We investigated lipid metabolic changes induced by lipoprotein administration in gastric cancer cells and evaluated the significance of LSR expression and lipid droplets formation in gastric cancer patients. The efficacy of inhibiting β-oxidation in gastric cancer cells was also examined in vitro and vivo. RESULTS In gastric cancer cells, LSR promoted cellular uptake of lipoprotein and cell proliferation. Furthermore, the inhibition of LSR in gastric cancer cells expressing high levels of LSR counteracted both effects. Immunohistochemical analysis of human gastric cancer tissues showed that the increase in lipid droplets via LSR is a factor that influences prognosis. Lipidomics analysis of LSR-high-expressing gastric cancer cells revealed an increase in β-oxidation. Based on these results, we used etomoxir, a β-oxidation inhibitor, and found that it inhibited cell proliferation as well as the suppression of LSR. Similarly, in a mouse xenograft model of LSR-highly expressing gastric cancer cells, the tumor growth effect of high-fat diet feeding was counteracted by etomoxir, consistent with the Ki-67 labeling index. CONCLUSIONS We demonstrated that lipids are taken up into gastric cancer cells via LSR and cause an increase in β-oxidation, resulting in the promotion of cancer progression. Controlling LSR-mediated lipid metabolism may be a novel therapeutic strategy for gastric cancer.
Collapse
Affiliation(s)
- Kota Kawabata
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita Suita, Japan
| | - Tsuyoshi Takahashi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita Suita, Japan.
| | - Koji Tanaka
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita Suita, Japan
| | - Yukinori Kurokawa
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita Suita, Japan
| | - Kazuyoshi Yamamoto
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita Suita, Japan
| | - Takuro Saito
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita Suita, Japan
| | - Kota Momose
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita Suita, Japan
| | - Kotaro Yamashita
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita Suita, Japan
| | - Tomoki Makino
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita Suita, Japan
| | - Takashi Yokouchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita Suita, Japan
| | - Kunihiko Kawai
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita Suita, Japan
| | - Satoshi Serada
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Minoru Fujimoto
- Division of Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Kiyokazu Nakajima
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita Suita, Japan
| | - Tetsuji Naka
- Institute for Biomedical Sciences Molecular Pathophysiology, Iwate Medical University School of Medicine, Yahaba, Japan
- Division of Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita Suita, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita Suita, Japan
| |
Collapse
|
199
|
Xiong J, Ouyang W, Yang M, Gao Z, Zhou H, Lou H, Guo Y, Xu Z, Zheng L, Liu Y, Wang Z, Sun P, Niyazi H, Wang J, Chen Y, Zhang B, Li L, Kang X, Guo W. Efficacy and Safety of Iparomlimab, an Anti-PD-1 Antibody, in Patients with Advanced Solid Tumors: A Phase 1c Study. Adv Ther 2024; 41:4153-4171. [PMID: 39276185 DOI: 10.1007/s12325-024-02981-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024]
Abstract
INTRODUCTION Iparomlimab (QL1604) is a humanized immunoglobulin G4 mAb against programmed cell death protein 1 (PD-1). Here, we report the preliminary efficacy, safety, pharmacokinetics, and immunogenicity of iparomlimab in patients with advanced solid tumors. METHODS In this open-label, phase 1c study, patients with advanced or metastatic solid tumors, either failed or had no standard therapies available, were enrolled and received intravenous iparomlimab at 3 mg/kg once every 3 weeks. The primary efficacy endpoint was the objective response rate (ORR) assessed by the investigator per Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. RESULTS Between July 20, 2020, and September 6, 2021, 71 patients were enrolled and received at least one dose of iparomlimab. The ORR was 9.9% (7/71) and disease control rate was 36.6% (26/71). Median duration of response of all responders was 10.7 months [95% confidence interval (CI), 1.4-not estimable]. Additionally, the median time to progression, progression-free survival, and overall survival were 1.4 months (95% CI, 1.4-2.8), 1.4 months (95% CI, 1.4-2.7), and 9.7 months (95% CI, 7.2-15.3), respectively. A total of 52 (73.2%) patients experienced treatment-related adverse events (TRAEs) (grade ≥ 3, 19.7%). The most common TRAE (≥ 10%) was anemia (18.3%). A total of 20 (28.2%) experienced immune-related adverse events (grade ≥ 3, 7.0%). TRAEs leading to discontinuation of study drug occurred in 4 (5.6%) patients, including immune-mediated myocarditis (2 patients), Guillain-Barré syndrome (1 patient), and diarrhea (1 patient). CONCLUSIONS Iparomlimab showed preliminary clinical activity and had a manageable safety profile in patients with advanced solid tumors. These results support further investigation of iparomlimab as monotherapy or in combination therapy in advanced solid tumors. TRIAL REGISTRATION ClinicalTrials.gov identifier, NCT05801094. Retrospectively registered in 2023-03-24.
Collapse
Affiliation(s)
- Jianping Xiong
- Department of Medical Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiwei Ouyang
- Phase I Ward, Guizhou Cancer Hospital, Guiyang, China
| | - Mengxiang Yang
- Department of Oncology, Liaocheng People's Hospital, Liaocheng, China
| | - Zhenyuan Gao
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huan Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Hanmei Lou
- Phase I Ward, Zhejiang Cancer Hospital, Hangzhou, China
| | - Yabing Guo
- Liver Cancer Center/Phase I Clinical Research Laboratory, Nanfang Hospital, Guangzhou, China
| | - Zhongyuan Xu
- Liver Cancer Center/Phase I Clinical Research Laboratory, Nanfang Hospital, Guangzhou, China
| | - Ling Zheng
- Phase I Ward, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, China
| | - Ying Liu
- The Third Ward of Digestive Diseases, Henan Cancer Hospital, Zhengzhou, China
| | - Zhongfeng Wang
- Henan Cancer Hospital, The First Hospital of Jilin University, Changchun, China
| | - Ping Sun
- Department of Medical Oncology, Yantai Yuhuangding Hospital, Yantai, China
| | - Huerxidan Niyazi
- Department of Oncology/Phase I Ward, The First Affiliated Hospital of Xinjiang Medical University, Wulumuqi, China
| | - Jianhua Wang
- Department of Oncology/Phase I Ward, The First Affiliated Hospital of Xinjiang Medical University, Wulumuqi, China
| | - Yan Chen
- Clinical Research and Development Center, Qilu Pharmaceutical Co., Ltd, Jinan, China
| | - Baihui Zhang
- Clinical Research and Development Center, Qilu Pharmaceutical Co., Ltd, Jinan, China
| | - Lingyan Li
- Clinical Research and Development Center, Qilu Pharmaceutical Co., Ltd, Jinan, China
| | - Xiaoyan Kang
- Clinical Research and Development Center, Qilu Pharmaceutical Co., Ltd, Jinan, China
| | - Weijian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
| |
Collapse
|
200
|
Cui Y, Pu M, Gong Y, Li R, Wang X, Ye J, Huang H, Liao D, Yang Y, Yin A, Li J, Deng Y, Tian Z, Pu R. METTL3-driven m6A modification of lncRNA FAM230B suppresses ferroptosis by modulating miR-27a-5p/BTF3 axis in gastric cancer. Biochim Biophys Acta Gen Subj 2024; 1868:130714. [PMID: 39278369 DOI: 10.1016/j.bbagen.2024.130714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/30/2024] [Accepted: 09/11/2024] [Indexed: 09/18/2024]
Abstract
Our previous research revealed the apoptosis-inhibiting effect of lncRNA FAM230B in gastric cancer (GC). While its role on ferroptosis of GC remain unexplored. In this study, the m6A level and RNA stability regulation of METTL3 on FAM230B was detected by m6A quantification, stability assays, MeRIP, and their interaction was confirmed by RIP, and RNA pull-down assays. The level of ferroptosis was detected by flow cytometry, MDA and GSH level assessments, and electron microscopy. Gene expression was detected by quantitative real-time PCR, western blot, and immunofluorescence. The miR-27a-5p and BTF3 interaction was predicted with TargetScan and confirmed by dual-luciferase assay. Here, elevated levels of METTL3 and FAM230B were observed in GC tissues and cell lines. METTL3 was confirmed to bind with FAM230B RNA. Furthermore, silencing METTL3 reduced FAM230B m6A levels and stability, leading to decreased FAM230B and increased miR-27a-5p expressions. FAM230B knockdown favored ferroptosis and increased BTF3 expression, while its overexpression mitigated erastin-induced ferroptosis in GC cells. Additionally, BTF3 overexpression was found to negate miR-27a-5p's ferroptosis-promoting effects in GC cells. Collectively, our study demonstrates that the m6A modification of FAM230B by METTL3 plays a crucial role in promoting GC progression by reducing ferroptosis, through the modulation of the miR-27a-5p/BTF3 axis.
Collapse
Affiliation(s)
- Yejia Cui
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Meicen Pu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, China
| | - Yanting Gong
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Runchao Li
- Department of Hand and Foot Surgery, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Xiaokang Wang
- Department of Thoracic Surgery, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Jinjun Ye
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Haohai Huang
- Department of Clinical Pharmacy, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Dan Liao
- Department of Gynaecology, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Yufeng Yang
- Department of Pathology, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Aiping Yin
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Jiale Li
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Yuling Deng
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Zhen Tian
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China
| | - Rong Pu
- Department of Clinical Laboratory, The Affiliated Dongguan Songshan Lake Central Hospital, Guangdong Medical University, China.
| |
Collapse
|