151
|
Xu X, Ge C, Wang S, Gao L, Wang C, Dai F, Wang Y, Xie S. Polyamine-modified naphthalimide derivative 9C inhibits colorectal cancer through ROS-mediated ER stress, migration and invasion. Toxicol In Vitro 2025; 103:105974. [PMID: 39586364 DOI: 10.1016/j.tiv.2024.105974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Mounting evidence over the past decades has demonstrated the therapeutic potential of targeting endoplasmic reticulum (ER) stress signaling in cancer. Naphthalimdes exert their anti-cancer activities in a variety of ways. However, the effects of naphthalimides on ER stress are rarely reported. In this study, based on RNA-sequencing analysis, we observed that 9C, a naphthalimide derivative, could trigger ER stress to activate death receptor signaling and autophagy. Pretreatment of ER stress inhibitor, such as salubrinal, and autophagy inhibitor, such as 3-methyladenine (3-MA), partially reversed 9C-induced inhibition of cell growth. Furthermore, our results unveiled a reactive oxygen species (ROS)-dependent inhibitory effect of 9C. In addition, 9C inhibited colorectal cancer (CRC) cells migration and invasion. Removal of ROS using N-acetyl-L-cysteine (NAC) attenuated the expression of ATF4, CHOP, death receptors, E-cadherin, and the apoptosis and autophagy related proteins. Taken together, our results suggested that ROS-mediated ER stress, migration, and invasion is responsible for the therapeutic potential of naphthalimides including 9C in CRC.
Collapse
Affiliation(s)
- Xiaojuan Xu
- School of Pharmacy, Henan University, Kaifeng 475004, Henan, China
| | - Chaochao Ge
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475004, Henan, China; School of Pharmacy, Heze University, Heze 274015, Shandong, China
| | - Senzhen Wang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475004, Henan, China; School of Life Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Lei Gao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475004, Henan, China
| | - Chaojie Wang
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475004, Henan, China
| | - Fujun Dai
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng 475004, Henan, China.
| | - Yuxia Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, China.
| | - Songqiang Xie
- School of Pharmacy, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
152
|
Zhai K, Liu G, Cao C, Wang X. Jujuboside B inhibits proliferation and induces apoptosis and ferroptosis in colorectal cancer cells with potential involvement of the MAPK signaling pathway. Oncol Lett 2025; 29:162. [PMID: 39911154 PMCID: PMC11795164 DOI: 10.3892/ol.2025.14908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 01/07/2025] [Indexed: 02/07/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and life-threatening malignancies worldwide. Jujuboside B (JUB) is a bioactive compound derived from the seeds of Ziziphus jujuba, known for its potential anticancer properties. The present study aimed to investigate the association of JUB with inhibiting the proliferation, apoptosis and ferroptosis of human CRC cells with mitogen-activated protein kinase (MAPK) pathway regulation. First, the human CRC HCT116 cell line was treated with different concentrations of JUB. Subsequently, cell viability was evaluated using MTT assay and colony formation was assessed using a colony formation assay. Flow cytometry was used to detect cell apoptosis and the levels of reactive oxygen species. Western blotting was utilized to assess the expression levels of apoptosis-related proteins, ferroptosis regulators and MAPK pathway-related proteins. In addition, biochemical assay kits were used to evaluate the levels of malondialdehyde, glutathione, total iron and ferrous iron. The results demonstrated that cell viability and colony formation were markedly decreased after JUB treatment, whilst the level of apoptosis was notably increased in a concentration-dependent manner. Using electron microscopy, cells treated with JUB exhibited typical apoptotic bodies, as well as mitochondrial swelling and cristae disruption, further demonstrating JUB-induced cell apoptosis. Western blot analysis indicated that JUB treatment markedly reduced the expression of B-cell lymphoma-2 (Bcl-2) but notably increased the expression of Bcl-2 associated X-protein and cleaved caspase-3. Additionally, JUB induced ferroptosis and inhibited the MAPK signaling pathway in CRC cells. Collectively, the findings of the present study suggest that JUB has the potential to inhibit CRC cell proliferation and induce apoptosis through regulating the MAPK pathway. Therefore, JUB may be a promising therapeutic agent for the treatment of CRC.
Collapse
Affiliation(s)
- Ke Zhai
- Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Guodong Liu
- Department of Gastroenterology, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Ce Cao
- Department of Gastrointestinal Surgery, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| | - Xiaolong Wang
- Department of Gastrointestinal Surgery, Zibo Central Hospital, Zibo, Shandong 255036, P.R. China
| |
Collapse
|
153
|
Li Z, Deng L, Cheng M, Ye X, Yang N, Fan Z, Sun L. Emerging role of bile acids in colorectal liver metastasis: From molecular mechanism to clinical significance (Review). Int J Oncol 2025; 66:24. [PMID: 39981904 PMCID: PMC11844338 DOI: 10.3892/ijo.2025.5730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/20/2025] [Indexed: 02/22/2025] Open
Abstract
Liver metastasis is the leading cause of colorectal cancer (CRC)‑related mortality. Microbiota dysbiosis serves a role in the pathogenesis of colorectal liver metastases. Bile acids (BAs), cholesterol metabolites synthesized by intestinal bacteria, contribute to the metastatic cascade of CRC, encompassing colorectal invasion, migration, angiogenesis, anoikis resistance and the establishment of a hepatic pre‑metastatic niche. BAs impact inflammation and modulate the immune landscape within the tumor microenvironment by activating signaling pathways, which are used by tumor cells to facilitate metastasis. Given the widespread distribution of BA‑activated receptors in both tumor and immune cells, strategies aimed at restoring BA homeostasis and blocking metastasis‑associated signaling are of importance in cancer therapy. The present study summarizes the specific role of BAs in each step of colorectal liver metastasis, elucidating the association between BA and CRC progression to highlight the potential of BAs as predictive biomarkers for colorectal liver metastasis and their therapeutic potential in developing novel treatment strategies.
Collapse
Affiliation(s)
- Zhaoyu Li
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing 100044, P.R. China
| | - Lingjun Deng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Mengting Cheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Xiandong Ye
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Nanyan Yang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China, P.R. China
| | - Zaiwen Fan
- Department of Oncology, Air Force Medical Center of People's Liberation Army, Air Force Medical University, Beijing 100010, P.R. China
| | - Li Sun
- Department of Oncology, Air Force Medical Center of People's Liberation Army, Air Force Medical University, Beijing 100010, P.R. China
| |
Collapse
|
154
|
Guo T, Wang Y, Wang D, Ge R, Du Z, Zhang Z, Qin Y, Liu X, Deng Y, Song Y. Sialic acid-modified docetaxel cationic liposomes: double targeting of tumor-associated macrophages and tumor endothelial cells. J Liposome Res 2025; 35:29-43. [PMID: 39138909 DOI: 10.1080/08982104.2024.2388140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/26/2024] [Accepted: 07/30/2024] [Indexed: 08/15/2024]
Abstract
Taxane drugs are clinically used for the treatment of many types of cancers due to their excellent antitumor effects. However, the surfactants contained in the injections currently used in the clinic may have serious toxic side effects on the organism, making it necessary to develop new dosage forms. Cationic liposomes have been widely used in antitumor research because of their advantage of preferentially targeting tumor neovascularization, but antitumor by targeting tumor vasculature alone does not necessarily provide good results. Malignant tumors represent complex ecosystems, tumor-associated macrophages (TAMs) and tumor endothelial cells (TECs) in the tumor microenvironment play crucial roles in tumor growth. Therefore, given the ability to achieve active targeting of TAMs and TECs by using sialic acid (SA) as a targeting material, the potential of cationic nanoformulations to preferentially target neovascularization at the tumor site, and the excellent antitumor effects of the taxane drugs docetaxel (DOC), in the present study, sialic acid-cholesterol coupling (SA-CH) was selected as a targeting material to prepare a DOC cationic liposome (DOC-SAL) for tumor therapy. The results of the study showed that DOC-SAL had the strongest drug accumulation in tumor tissues compared with the common DOC formulations, and was able to effectively reduce the colonization of TAMs, inhibit the proliferation of tumor cells, and have the best tumor-suppressing effect. In addition, DOC-SAL was able to improve the internal microenvironment of tumors by modulating cytokines. In summary, this drug delivery system has good anti-tumor effects and provides a new option for tumor therapy.
Collapse
Affiliation(s)
- Tiantian Guo
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dazhi Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Ruirui Ge
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhouchunxiao Du
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhirong Zhang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yushi Qin
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
155
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
156
|
Jin N, Qian YY, Jiao XF, Wang Z, Li X, Pan W, Jiang JK, Huang P, Wang SY, Jin P, Gao QL, Liu D, Xia Y. Niraparib restricts intraperitoneal metastases of ovarian cancer by eliciting CD36-dependent ferroptosis. Redox Biol 2025; 80:103528. [PMID: 39922130 PMCID: PMC11851289 DOI: 10.1016/j.redox.2025.103528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/01/2025] [Indexed: 02/10/2025] Open
Abstract
Ovarian cancer (OC) is prone to peritoneum or omentum dissemination, thus giving rise to the formidable challenge of unresectable surgery and a dismal survival rate. Although niraparib holds a pivotal role in the maintenance treatment of OC, its effect on suppressing metastases during primary intervention remains enigmatic. Recently, we initiated a prospective clinical study (NCT04507841) in order to evaluate the therapeutic efficacy of neoadjuvant niraparib monotherapy for advanced OC with homologous recombination deficiency. An analysis of patient tumor burden before and after the niraparib challenge showed a remarkable vulnerability of OC intraperitoneal metastases to niraparib exposure. This killing capacity of niraparib was closely associated with the accumulation of fatty acids within the abdomen, which was confirmed by the increased susceptibility of tumor cells to niraparib treatment in the presence of fatty acids. In the context of abundant fatty acids, niraparib elevated intracellular levels of fatty acids and lipid peroxidation, leading to subsequent tumor cell ferroptosis in a p53 and BRCA-independent manner. Notably, under niraparib exposure, a critical fatty acid transporter CD36 was dramatically upregulated in tumors, facilitating excessive uptake of fatty acids. Pharmacological inhibition of either ferroptosis or CD36 impaired the anti-tumor activity of niraparib both in vitro and in murine intraperitoneal ID8 tumor models. Our findings demonstrate ferroptosis as a novel mechanism underlying the regression of OC metastases induced by niraparib, thereby offering tantalizing prospects for the frontline application of this agent in the management of OC.
Collapse
Affiliation(s)
- Ning Jin
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yi-yu Qian
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiao-fei Jiao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhen Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Clinical Medicine Research Centre of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, China
| | - Xin Li
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wen Pan
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jin-kai Jiang
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pu Huang
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Si-yuan Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ping Jin
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qing-lei Gao
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Liu
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Xia
- Cancer Biology Research Center (Key Laboratory of Chinese Ministry of Education), Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, 430030, China
- Department of Gynecology and Obstetrics, Tongji Hospital Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
157
|
Tang Y, Fan S, Peng R, Liu H, Su B, Tu D, Wang S, Jin X, Jiang G, Jin S, Zhang C, Cao J, Bai D. TRIM29 reverses lenvatinib resistance in liver cancer cells by ubiquitinating and degrading YBX1 to inhibit the PI3K/AKT pathway. Transl Oncol 2025; 53:102294. [PMID: 39874728 PMCID: PMC11810836 DOI: 10.1016/j.tranon.2025.102294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/12/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025] Open
Abstract
Sorafenib and lenvatinib are frontline treatments for advanced hepatocellular carcinoma (HCC). While lenvatinib surpasses sorafenib in efficacy and tolerability, resistance remains a significant clinical challenge. Recent research highlights the potential of TRIM family proteins in modulating lenvatinib resistance in HCC, necessitating a deeper understanding of their specific mechanisms. In this study, we screened TRIM family genes differentially expressed in lenvatinib-resistant cells using the GEO database, verifying their expression through qRT-PCR and identifying TRIM29 as a key target. Clinical samples were analyzed to assess TRIM29 expression, clinical significance, and its correlation with lenvatinib treatment efficacy. Stable TRIM29 overexpression in SK-Hep1 and LM3 cells was confirmed by Western blotting. The impact of TRIM29 on lenvatinib sensitivity in liver cancer cells was evaluated using colony formation assays, CCK8, flow cytometry, and in vivo experiments. Transcriptome sequencing, mass spectrometry, and co-immunoprecipitation (CO-IP) were employed to elucidate TRIM29's regulatory mechanisms. Results from the GEO database indicated significant upregulation of TRIM29, TRIM50, TRIM31, and TRIM9 in HUH7-resistant cells, with qRT-PCR confirming TRIM29 as markedly upregulated. In 112 liver cancer patients clinical samples, TRIM29 expression was significantly higher in patients with stable disease or partial response to lenvatinib compared to those with disease progression. High TRIM29 expression was associated with longer overall survival and recurrence-free periods in HCC patients. Mechanistic studies revealed that TRIM29 enhances lenvatinib sensitivity by degrading YBX1 through ubiquitination, thereby inhibiting the PI3K/AKT signaling pathway and reversing resistance. These findings suggest that TRIM29 is a promising therapeutic target for overcoming lenvatinib resistance in HCC. CONCLUSION: TRIM29 degrades YBX1 through ubiquitination, thereby inhibiting the PI3K/AKT signaling pathway and reversing lenvatinib resistance in HCC. TRIM29 can serve as an independent prognostic indicator of survival and recurrence in HCC patients, and it may provide new avenues for developing innovative treatment strategies for HCC.
Collapse
Affiliation(s)
- Yuhong Tang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China
| | - Songong Fan
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China
| | - Rui Peng
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China
| | - Huanxiang Liu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China
| | - Bingbing Su
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China
| | - Daoyuan Tu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China
| | - Shunyi Wang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China
| | - Xin Jin
- Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, China
| | - Guoqing Jiang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China; Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, China
| | - Shengjie Jin
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China; Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, China
| | - Chi Zhang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China; Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, China.
| | - Jun Cao
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China; Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, China.
| | - Dousheng Bai
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, China; Department of Hepatobiliary Surgery, Northern Jiangsu People's Hospital, China.
| |
Collapse
|
158
|
He R, Jie P, Hou W, Long Y, Zhou G, Wu S, Liu W, Lei W, Wen W, Wen Y. Real-time artificial intelligence-assisted detection and segmentation of nasopharyngeal carcinoma using multimodal endoscopic data: a multi-center, prospective study. EClinicalMedicine 2025; 81:103120. [PMID: 40026832 PMCID: PMC11871492 DOI: 10.1016/j.eclinm.2025.103120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/16/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a common malignancy in southern China, and often underdiagnosed due to reliance on physician expertise. Artificial intelligence (AI) can enhance diagnostic accuracy and efficiency using large datasets and advanced algorithms. Methods Nasal endoscopy videos with white light imaging (WLI) and narrow-band imaging (NBI) modes from 707 patients treated at one center in China from June 2020 to December 2022 were prospectively collected. A total of 8816 frames were obtained through standardized data procedures. Nasopharyngeal Carcinoma Diagnosis Segmentation Network Framework (NPC-SDNet) was developed and internally tested based on these frames. Two hundred frames were randomly selected to compare the diagnostic performance between NPC-SDNet and rhinologists. Two external testing sets with 2818 images from other hospitals validated the robustness and generalizability of the model. This study was registered at clinicaltrials.gov (NCT04547673). Findings The diagnostic accuracy, precision, recall, and specificity of NPC-SDNet using WLI were 95.0% (95% CI: 94.1%-96.2%), 93.5% (95% CI: 90.2%-95.2%), 97.2% (95% CI: 96.2%-98.3%), and 93.5% (95% CI: 91.7%-94.0%), respectively, and using NBI were 95.8% (95% CI: 94.0%-96,8%), 93.1% (95% CI: 91.0%-95.6%), 96.0% (95% CI: 95.7%-96.8%), and 97.2% (95% CI: 97.1%-97.4%), respectively. Segmentation performance was also robust, with mean Intersection over Union scores of 83.4% (95% CI: 81.8%-85.6%; NBI) and 83.7% (95% CI: 85.1%-90.1%; WLI). In head-to-head comparisons with rhinologists, NPC-SDNet achieved a diagnostic accuracy of 94.0% (95% CI: 91.5%-95.8%) and processed 1000 frames per minute, outperforming clinicians (68.9%-88.2%) across different expertise levels. External validation further supported the reliability of NPC-SDNet, with area under the receiver operating characteristic curve (AUC) values of 0.998 and 0.977 in NBI images, 0.977 and 0.970 in WLI images. Interpretation NPC-SDNet demonstrates excellent real-time diagnostic and segmentation accuracy, offering a promising tool for enhancing the precision of NPC diagnosis. Funding This work was supported by National Key R&D Program of China (2020YFC1316903), the National Natural Science Foundation of China (NSFC) grants (81900918, 82020108009), Natural Science Foundation of Guangdong Province (2022A1515010002), Key-Area Research and Development of Guangdong Province (2023B1111040004, 2020B1111190001), and Key Clinical Technique of Guangzhou (2023P-ZD06).
Collapse
Affiliation(s)
- Rui He
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Pengyu Jie
- The School of Intelligent Engineering, Sun Yat-Sen University-Shenzhen Campus, Shenzhen, 518107, PR China
| | - Weijian Hou
- Department of Otolaryngology Head and Neck Surgery, Kiang Wu Hospital, 999078, Macau, PR China
| | - Yudong Long
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Guanqun Zhou
- Department of Radiation Oncology, Sun Yat-sen University Cancer Centre, Guangzhou, PR China
| | - Shumei Wu
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Wanquan Liu
- The School of Intelligent Engineering, Sun Yat-Sen University-Shenzhen Campus, Shenzhen, 518107, PR China
| | - Wenbin Lei
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Weiping Wen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| | - Yihui Wen
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, PR China
- Otorhinolaryngology Institute, Sun Yat-sen University, Guangzhou, Guangdong, PR China
| |
Collapse
|
159
|
Zhong F, Zeng Y, Liu J, Guo Q, Liu C, Liu W. Salvia Miltiorrhiza Injection Inhibited the Proliferation of AML Cells by Inducing Apoptosis through the p38MAPK Pathway. Cell Biochem Biophys 2025; 83:1263-1275. [PMID: 39342535 DOI: 10.1007/s12013-024-01560-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 10/01/2024]
Abstract
The purpose of this study was to explore the antitumor effect and mechanism of Salvia miltiorrhiza injection (SMI) on acute myeloid leukemia (AML) cells in vitro and in vivo. Bioinformatics was used to detect c-Myc mRNA expression in AML patients in the Oncomine database. qRT‒PCR and western blotting were used to detect the mRNA and protein expression of c-Myc and HOXA5 in clinical samples. Different concentrations (6.25, 12.5, 25, 50 and 100 μg/mL) of SMI were added to KG1a and HL60 cells for 24, 48 and 72 h to determine the IC50 value of SMI. A CCK-8 assay was used to detect the effects of different concentrations of SMI and different treatment times on the proliferation of KG1a and HL60 cells. The indicated concentrations of SMI and SB203580 were used to treat KG1a and HL60 cells. The cell cycle distribution was determined by flow cytometry. The percentage of apoptotic cells was detected by Hoechst 33258 staining and flow cytometry. qRT‒PCR was performed to detect the mRNA expression of p38, c-Myc and HOXA5 in KG1a and HL60 cells. Western blotting was used to detect the protein expression of p38, p-p38, c-Myc, HOXA5, cCaspase 3 and cPARP in KG1a and HL60 cells. AutoDock software was used to analyze the molecular docking of the three main active components of SMI with c-Myc. AutoDock analysis revealed that the binding effect of molecular leisure was evaluated by binding energy, and a binding energy <-5 kcal/mol was considered good. SMI decreased the mRNA and protein expression of c-Myc and HOXA5. SMI significantly inhibited the proliferative activity of KG1a and HL60 cells and induced their apoptosis. However, SMI had no significant effect on the cell cycle distribution of KG1a and HL60 cells. With increasing SMI concentrations, the p-p38/p38 ratio increased, while the protein expression of c-Myc and HOXA5 decreased, and the protein expression of cCaspase and cPARP increased. However, SB203580 intervention in addition to SMI reversed these changes. Tanshinone IIA, cryptanshinone and salvianolic acid B can bind to multiple sites of c-Myc. In summary, SMI could be used for the treatment of acute leukemia, and its mechanism may be related to activation of the p38MAPK signaling pathway.
Collapse
Affiliation(s)
- Fangfang Zhong
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, Sichuan, China
| | - Yan Zeng
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, Sichuan, China
| | - Jing Liu
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, Sichuan, China
| | - Qulian Guo
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, Sichuan, China
| | - Chunyan Liu
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, Sichuan, China
| | - Wenjun Liu
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
160
|
Saito S, Cao DY, Bernstein EA, Shibata T, Jones AE, Rios A, Hoshi AO, Stotland AB, Nishi EE, Van Eyk JE, Divakaruni A, Khan Z, Bernstein KE. Peroxisome proliferator-activated receptor alpha is an essential factor in enhanced macrophage immune function induced by angiotensin-converting enzyme. Cell Mol Immunol 2025; 22:243-259. [PMID: 39910334 PMCID: PMC11868401 DOI: 10.1038/s41423-025-01257-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 01/12/2025] [Indexed: 02/07/2025] Open
Abstract
Increased expression of angiotensin-converting enzyme (ACE) by myeloid lineage cells strongly increases the immune activity of these cells, as observed in ACE10/10 mice, which exhibit a marked increase in antitumor and antibactericidal immunity. We report that peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor that regulates genes critical for lipid metabolism, is a key molecule in the enhanced macrophage function induced by ACE. Here, we used a Cre-LoxP approach with LysM-Cre to create a modified ACE10/10 mouse line in which macrophages continue to generate abundant ACE but in which monocyte and macrophage PPARα expression is selectively suppressed. These mice, termed A10-PPARα-Cre, have significantly increased growth of B16-F10 tumors compared with ACE10/10 mice with Cre expression. PPARα depletion impaired cytokine production and antigen-presenting activity in ACE-expressing macrophages, resulting in reduced tumor antigen-specific CD8+ T-cell generation. Additionally, the elevated bactericidal resistance typical of ACE10/10 mice was significantly reduced in A10-PPARα-Cre mice, such that these mice resembled WT mice in their resistance to methicillin-resistant Staphylococcus aureus (MRSA) infection. THP-1 cells expressing increased ACE (termed THP-1-ACE) constitute a human macrophage model with increased PPARα that shows enhanced cytotoxicity against tumor cells and better phagocytosis and killing of MRSA. RNA silencing of PPARα in THP-1-ACE cells reduced both tumor cell death and bacterial phagocytosis and clearance. In contrast, the in vivo administration of pemafibrate, a specific agonist of PPARα, to WT and A10-PPARα-Cre mice reduced B16-F10 tumor growth by 24.5% and 25.8%, respectively, but pemafibrate reduced tumors by 57.8% in ACE10/10 mice. With pemafibrate, the number of antitumor CD8+ T cells was significantly lower in A10-PPARα-Cre mice than in ACE10/10 mice. We conclude that PPARα is important in the immune system of myeloid cells, including wild-type cells, and that its increased expression by ACE-expressing macrophages in ACE10/10 mice is indispensable for ACE-dependent functional upregulation of macrophages in both mice and human cells.
Collapse
Affiliation(s)
- Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Tomohiro Shibata
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amy Rios
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aoi O Hoshi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Graduate School of Comprehensive Human Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Aleksandr B Stotland
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Erika E Nishi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Physiology, São Paulo School of Medicine, Universidade Federal de São Paulo, Sao Paulo, Brazil
| | - Jennifer E Van Eyk
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ajit Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zakir Khan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
161
|
Du Y, Gu B, Shi L, She Y, Zhao Q, Gao S. Data-Driven Molecular Typing: A New Frontier in Esophageal Cancer Management. Cancer Med 2025; 14:e70730. [PMID: 40018789 PMCID: PMC11868787 DOI: 10.1002/cam4.70730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/09/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is a predominant and highly lethal form of esophageal cancer, with a five-year survival rate below 20%. Despite advancements, most patients are diagnosed at advanced stages, limiting effective treatment options. Multi-omics integration, encompassing somatic genomic alterations, inherited genetic mutations, transcriptomics, proteomics, metabolomics, and single-cell sequencing, has enabled the identification of distinct molecular subtypes of ESCC. METHOD This article systematically reviewed the current status of molecular subtyping of ESCC based on big data, summarized unique subtypes with differing treatment responses and prognostic outcomes. RESULT Key findings included subtype-specific genetic mutations, signaling pathway alterations, and metabolomic profiles, which offer novel biomarkers and therapeutic targets. Furthermore, this review discusses the link between molecular subtypes and immunotherapy efficacy, chemotherapy response, and drug development. CONCLUSION These insights highlight the potential of omics-based molecular typing to transform ESCC management and facilitate personalized treatment strategies.
Collapse
Affiliation(s)
- Yue Du
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and TechnologyCancer HospitalLuoyangHenanChina
| | - Bianli Gu
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and TechnologyCancer HospitalLuoyangHenanChina
| | - Linlin Shi
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and TechnologyCancer HospitalLuoyangHenanChina
| | - Yong She
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Qi Zhao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐Sen University Cancer CenterGuangzhouGuangdongChina
| | - Shegan Gao
- Henan Key Laboratory of Microbiome and Esophageal Cancer Prevention and Treatment, Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital (College of Clinical Medicine) of Henan University of Science and TechnologyCancer HospitalLuoyangHenanChina
| |
Collapse
|
162
|
Miyaguchi J, Shiga K, Katagiri K, Saito D, Tsuchida K, Kusaka T, Ohashi Y, Kusaka I, Takai Y. Efficacy of boron neutron capture therapy (BNCT) for patients with oral cancer. Oral Oncol 2025; 163:107228. [PMID: 40023983 DOI: 10.1016/j.oraloncology.2025.107228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/20/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Although BNCT is a novel therapy for head and neck cancers, its efficacy in patients with oral cancer remains unclear. PATIENTS AND METHODS Nine patients with oral cancer underwent BNCT at Southern Tohoku BNCT Research Center. We reviewed the charts and diagnostic images of these patients and analyzed their responses and adverse events associated with the therapy. RESULTS All patients underwent surgery and/or radiotherapy as initial treatment for head and neck cancer. No patients had distant metastases at the time of BNCT. The median observation period was 16 months. Grade 3 and 4 adverse events were observed in six patients who recovered within one month. Treatment responses were complete in seven patients and partial in two. Overall survival, disease-specific survival, and local control rates of the patients at one year were 76.2, 76.2, and 87.5 %, respectively. CONCLUSION Our study suggested that BNCT is a relatively safe and effective treatment for patients with recurrent and/or advanced oral cancer.
Collapse
Affiliation(s)
- Jun Miyaguchi
- Department of Head and Neck Surgery, Iwate Medial University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan; Head and Neck Cancer Center, Iwate Medical University Hospital, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan
| | - Kiyoto Shiga
- Department of Head and Neck Surgery, Iwate Medial University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan; Head and Neck Cancer Center, Iwate Medical University Hospital, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan.
| | - Katsunori Katagiri
- Department of Head and Neck Surgery, Iwate Medial University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan; Head and Neck Cancer Center, Iwate Medical University Hospital, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan
| | - Daisuke Saito
- Department of Head and Neck Surgery, Iwate Medial University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan; Head and Neck Cancer Center, Iwate Medical University Hospital, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan
| | - Kodai Tsuchida
- Department of Head and Neck Surgery, Iwate Medial University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan; Head and Neck Cancer Center, Iwate Medical University Hospital, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan
| | - Takahiro Kusaka
- Department of Head and Neck Surgery, Iwate Medial University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan; Head and Neck Cancer Center, Iwate Medical University Hospital, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan
| | - Yu Ohashi
- Department of Head and Neck Surgery, Iwate Medial University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan; Division of Oral and Maxillofacial Surgery, Department of Oral and Maxillofacial Reconstructive Surgery, Iwate Medical University 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan
| | - Iori Kusaka
- Department of Head and Neck Surgery, Iwate Medial University School of Medicine, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan; Head and Neck Cancer Center, Iwate Medical University Hospital, 2-1-1 Idaidori, Yahaba, Iwate 028-3695, Japan
| | - Yoshihiro Takai
- Department of Radiation Therapy, Southern TOHOKU BNCT Research Center, 7-10 Yatsuyamada, Koriyama, Fukushima 963-8052, Japan
| |
Collapse
|
163
|
Tang L, Peng S, Zhuang X, He Y, Song Y, Nie H, Zheng C, Pan Z, Lam AK, He M, Shi X, Li B, Xu WW. Tumor Metastasis: Mechanistic Insights and Therapeutic Intervention. MEDCOMM – ONCOLOGY 2025; 4. [DOI: 10.1002/mog2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/04/2025]
Abstract
ABSTRACTMetastasis remains a leading cause of cancer‐related deaths, defined by a complex, multi‐step process in which tumor cells spread and form secondary growths in distant tissues. Despite substantial progress in understanding metastasis, the molecular mechanisms driving this process and the development of effective therapies remain incompletely understood. Elucidating the molecular pathways governing metastasis is essential for the discovery of innovative therapeutic targets. The rapid advancements in sequencing technologies and the expansion of biological databases have significantly deepened our understanding of the molecular drivers of metastasis and associated drug resistance. This review focuses on the molecular drivers of metastasis, particularly the roles of genetic mutations, epigenetic changes, and post‐translational modifications in metastasis progression. We also examine how the tumor microenvironment influences metastatic behavior and explore emerging therapeutic strategies, including targeted therapies and immunotherapies. Finally, we discuss future research directions, stressing the importance of novel treatment approaches and personalized strategies to overcome metastasis and improve patient outcomes. By integrating contemporary insights into the molecular basis of metastasis and therapeutic innovation, this review provides a comprehensive framework to guide future research and clinical advancements in metastatic cancer.
Collapse
Affiliation(s)
- Lin Tang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Shao‐Cong Peng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Xiao‐Wan Zhuang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Yan He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Yu‐Xiang Song
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Hao Nie
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Can‐Can Zheng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Zhen‐Yu Pan
- Department of Radiation Oncology, The Affiliated Huizhou Hospital Guangzhou Medical University Huizhou China
| | - Alfred King‐Yin Lam
- Cancer Molecular Pathology and Griffith Medical School Griffith University Gold Coast Queensland Australia
| | - Ming‐Liang He
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - Xing‐Yuan Shi
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Bin Li
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Wen Wen Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| |
Collapse
|
164
|
Pan Z, Wang Z, Zhou Y, Ji X, Yu L, Yin X, Song K, Yu N, Ha Y, Li N, Zhu X, Wang Y, Huang J. Preliminary Exploration of the Osteogenic Differentiation Mechanism of Bone Marrow Mesenchymal Stem Cells Regulated by SYVN1. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2025; 25:150-159. [PMID: 40024238 PMCID: PMC11880844 DOI: 10.22540/jmni-25-150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 03/04/2025]
Abstract
OBJECTIVES The osteogenic differentiation ability of bone marrow mesenchymal stem cells (BMSCs) is an important aspect of studying osteoporosis (OP). This study aims to explore the role of SYVN1 in regulating the osteogenic differentiation of BMSCs and to suggest its potential as a treatment for OP. METHODS BMSCs were differentiated using osteogenic induction. The expression of SYVN1 at different osteogenic induction time points was analyzed by Western blot (WB). The expression levels of osteogenic markers, including RUNX2, ALP, and OCN, were measured by RT-qPCR. EdU staining and colony formation assays were performed to evaluate the impact of SYVN1 on the proliferative ability of BMSCs. The effect of SYVN1 on osteogenic differentiation of BMSCs was assessed by alizarin red staining. The association of SYVN1 with the AMPK/mTOR pathway was confirmed through WB analysis. RESULTS The expression of SYVN1 decreased as BMSCs differentiation progressed. Overexpression of SYVN1 inhibited the osteogenic differentiation and proliferation of BMSCs, whereas silencing SYVN1 had the opposite effect. Furthermore, SYVN1 overexpression reduced the p-AMPK/AMPK ratio and increased the p-mTOR/mTOR ratio, effects that were reversed by the AMPK activator A-769662. CONCLUSION SYVN1 overexpression inhibits the osteogenic differentiation and proliferation of BMSCs, potentially through modulation of the AMPK/mTOR pathway.
Collapse
Affiliation(s)
- Zhimin Pan
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
- Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zheng Wang
- Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuanguo Zhou
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Xinran Ji
- Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Lei Yu
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Xin Yin
- Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Kai Song
- Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ning Yu
- Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Nan Li
- Department of Spine Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| | - Xing Zhu
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Yangbin Wang
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| | - Jiang Huang
- Department of Orthopaedics, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, China
| |
Collapse
|
165
|
Lin D, Lv W, Qian M, Jiang G, Lin X, Gantulga D, Wang Y. Engineering cell membrane-camouflaged COF-based nanosatellite for enhanced tumor-targeted photothermal chemoimmunotherapy. Biomaterials 2025; 314:122869. [PMID: 39427431 DOI: 10.1016/j.biomaterials.2024.122869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/22/2024]
Abstract
Dendritic cells (DCs) activation is crucial for regulating the antitumor immune response. However, the tumor's immunosuppressive environment significantly impedes antigen presentation and DCs maturation, thereby limiting the effectiveness of cancer immunotherapy. To address this challenge, we developed tumor cell membrane-coated covalent organic framework (COF) nanoparticles, loaded with mannose-modified gold nanoparticles and doxorubicin (Dox). This created a cell membrane-camouflaged COF-based nanosatellite designed to enhance tumor-targeted chemoimmunotherapy. The nanosatellite exhibits distinct photothermal properties and releases Dox in a pH-sensitive manner, targeting tumor cells to induce immunogenic cell death (ICD) and expose a wealth of antigens. Crucially, the COF structure is selectively degraded to release mannose-modified gold nanoparticles in the acidic environment. These nanoparticles capture antigens from the ICD and efficiently transport them to lymph nodes rich in DCs, facilitated by mannose receptor mediation. As a result, antigens are effectively presented to DCs, activating the immune response, significantly hindering tumor growth and lung metastasis in mice, and extending survival. This study pioneered innovative nano-preparations aimed at enhancing tumor immunotherapy.
Collapse
Affiliation(s)
- Dan Lin
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China; College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Wenxin Lv
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Min Qian
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Guangwei Jiang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery, Ministry of Education, Fudan University, Shanghai, 201203, China
| | - Xiaojun Lin
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Darambazar Gantulga
- Department of Biology, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210, Mongolia
| | - Yi Wang
- Center for Advanced Low-dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
166
|
Liu G, Liu Q, He Y, Wei L, Liang D, Xie S, Zhang N, Geng N, Zhang L, Huang Y, Liu F. RNA analysis of patients with benign and malignant pulmonary nodules. Oncol Lett 2025; 29:132. [PMID: 39822942 PMCID: PMC11737297 DOI: 10.3892/ol.2025.14878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 06/12/2024] [Indexed: 01/19/2025] Open
Abstract
Pulmonary nodules are the main manifestations of early lung cancer. Non-small cell lung cancer is the most common histological type of lung cancer, and the main histological classification of non-small cell lung cancer is lung adenocarcinoma. The present study aimed to analyze the differentially expressed genes between patients with benign and malignant pulmonary nodules, and to identify potential therapeutic targets for lung adenocarcinoma. Sequencing data for benign and malignant pulmonary nodule samples and samples with no nodules were obtained from the National Center for Biotechnology Information Gene Expression Omnibus GSE135304 dataset. Differential gene analysis showed that S100 calcium binding protein P (S100P), ribonuclease A family member 2 (RNASE2), cytochrome c oxidase subunit 7C and mast cell expressed membrane protein 1 (C19orf59) were significantly upregulated among the blood samples collected from patients with malignant pulmonary nodules. Results from Kaplan-Meier plotter datasets showed that S100P, RNASE2 and C19orf59 were associated with the prognosis of lung cancer. RNASE2 expression was positively associated with nodule size and negatively associated with lung cancer prognosis. Moreover, RNASE2 was highly expressed in lung adenocarcinoma tissues compared with that in normal tissues. CCK-8 and Transwell assays indicated that overexpressed RNASE2 promoted the proliferation, migration and invasion of lung adenocarcinoma cells. In lung adenocarcinoma cells, RNASE2 was identified as a downstream target of microRNA (miR)-185-5p and was regulated by it. Inhibited cell proliferation, migration and invasion were observed following overexpression of miR-185-5p. Overexpression of RNASE2 reversed the inhibitory effect of miR-185-5p overexpression. In conclusion, in blood samples from patients with malignant pulmonary nodules and lung adenocarcinoma tissues, RNASE2 was found to be upregulated. High RNASE2 expression was associated with poor overall survival. miR-185-5p inhibited the proliferation, migration and invasion of lung adenocarcinoma cells by downregulating RNASE2 expression. These findings have implications for guiding therapeutic strategies.
Collapse
Affiliation(s)
- Guangjie Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Qingyi Liu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Yutong He
- Department of Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Lai Wei
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Di Liang
- Department of Cancer Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Shaonan Xie
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Ning Zhang
- Department of Computed Tomography and Magnetic Resonance Imaging, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Nan Geng
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Liwen Zhang
- Hebei Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yajie Huang
- Department of Medical Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| | - Fang Liu
- Department of Hospital Quality and Control, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050001, P.R. China
| |
Collapse
|
167
|
Du Y, Yang Y, Zheng B, Zhang Q, Zhou S, Zhao L. Finding a needle in a haystack: functional screening for novel targets in cancer immunology and immunotherapies. Oncogene 2025; 44:409-426. [PMID: 39863748 PMCID: PMC11810799 DOI: 10.1038/s41388-025-03273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Genome-wide functional genetic screening has been widely used in the biomedicine field, which makes it possible to find a needle in a haystack at the genetic level. In cancer research, gene mutations are closely related to tumor development, metastasis, and recurrence, and the use of state-of-the-art powerful screening technologies, such as clustered regularly interspaced short palindromic repeat (CRISPR), to search for the most critical genes or coding products provides us with a new possibility to further refine the cancer mapping and provide new possibilities for the treatment of cancer patients. The use of CRISPR screening for the most critical genes or coding products has further refined the cancer atlas and provided new possibilities for the treatment of cancer patients. Immunotherapy, as a highly promising cancer treatment method, has been widely validated in the clinic, but it could only meet the needs of a small proportion of cancer patients. Finding new immunotherapy targets is the key to the future of tumor immunotherapy. Here, we revisit the application of functional screening in cancer immunology from different perspectives, from the selection of diverse in vitro and in vivo screening models to the screening of potential immune checkpoints and potentiating genes for CAR-T cells. The data will offer fresh therapeutic clues for cancer patients.
Collapse
Affiliation(s)
- Yi Du
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Yang Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| |
Collapse
|
168
|
Tang S, Zhang Y, Song L, Hui K, Jiang X. High CXCL8 expression predicting poor prognosis in triple-negative breast cancer. Anticancer Drugs 2025; 36:246-252. [PMID: 39761194 PMCID: PMC11781556 DOI: 10.1097/cad.0000000000001678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/08/2024] [Indexed: 02/01/2025]
Abstract
Triple-negative breast cancer (TNBC) is highly prone to early relapse and metastasis following standard treatment. CXCL8 is a key factor in tumor invasion and metastasis, but its role in TNBC prognosis and clinicopathological correlations remains poorly understood. This study investigated CXCL8 expression and its clinical significance in TNBC to develop a prognostic nomogram for guiding intensive treatment and follow-up strategies. Public datasets from the gene expression omnibus public datasets platform were analyzed to assess CXCL8 expression. Additionally, paraffin-embedded TNBC specimens collected from our hospital were examined using immunohistochemistry to explore the relationship between CXCL8 expression and clinicopathological features. Survival analysis was performed to evaluate whether CXCL8 serves as an unfavorable prognostic biomarker for TNBC patients. Univariate Cox regression analysis was conducted to identify prognostic factors. Based on these findings, a nomogram was developed to predict TNBC progression risk. CXCL8 expression was significantly higher in TNBC tissues than in adjacent normal tissues ( P < 0.05). Among 122 TNBC patients, 46 were CXCL8-positive and 76 were CXCL8-negative. CXCL8 expression was significantly associated with N stage ( P < 0.05). Progression-free survival (PFS) was markedly shorter in the CXCL8-positive group compared with the CXCL8-negative group ( P < 0.001). Univariate Cox regression identified N1-3, M1, and CXCL8 positivity as significant risk factors for disease progression. A nomogram incorporating these variables (N, M, and CXCL8) was constructed to predict PFS. Time-dependent receiver operating characteristic curve analysis at 12-, 36-, and 48-month demonstrated strong predictive performance, with area under the curve values of 0.857, 0.839, and 0.795, respectively. CXCL8 is highly expressed in TNBC and promotes lymphatic metastasis, serving as an unfavorable prognostic factor. The developed nomogram offers a valuable tool for guiding personalized treatment and follow-up strategies in TNBC patients.
Collapse
Affiliation(s)
- Sumin Tang
- Department of Thyroid and Breast Tumor Surgery
| | - Yuqing Zhang
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The First People’s Hospital of Lianyungang
| | - Liying Song
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The First People’s Hospital of Lianyungang
| | - Kaiyuan Hui
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The First People’s Hospital of Lianyungang
| | - Xiaodong Jiang
- Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu Province, China
| |
Collapse
|
169
|
Häyrinen M, Teppo HR, Väkevä L, Ranki A, Barton HJ, Porvari K, Kiiskilä J, Kuusisto MEL, Kuitunen H, Lemma S, Sahi H, Haapasaari KM, Kuittinen O. Tumor RNA Sequencing Identifies a Group of Patients with Mycosis Fungoides with Failure of Skin-Directed Therapies. J Invest Dermatol 2025; 145:700-703.e5. [PMID: 39245139 DOI: 10.1016/j.jid.2024.06.1292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 09/10/2024]
Affiliation(s)
- Marjaana Häyrinen
- Institute of Clinical Medicine, Faculty of Health Medicine, University of Eastern Finland, Kuopio, Finland
| | - Hanna-Riikka Teppo
- Translational Medicine Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland; Department of Pathology, Oulu University Hospital, Oulu, Finland.
| | - Liisa Väkevä
- Department of Skin and Allergic Diseases, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Annamari Ranki
- Department of Skin and Allergic Diseases, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | | | - Katja Porvari
- Translational Medicine Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Jenni Kiiskilä
- Institute of Clinical Medicine, Faculty of Health Medicine, University of Eastern Finland, Kuopio, Finland
| | - Milla E L Kuusisto
- Translational Medicine Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland; Department of Internal Medicine, Länsi-Pohja Central Hospital, Kemi, Finland
| | - Hanne Kuitunen
- Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
| | - Siria Lemma
- Department of Oncology and Radiotherapy, Oulu University Hospital, Oulu, Finland
| | - Helka Sahi
- Department of Skin and Allergic Diseases, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Kirsi-Maria Haapasaari
- Translational Medicine Research Unit, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland; Department of Pathology, Oulu University Hospital, Oulu, Finland
| | - Outi Kuittinen
- Institute of Clinical Medicine, Faculty of Health Medicine, University of Eastern Finland, Kuopio, Finland; Cancer Center, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
170
|
Chen J, Ma N, Chen B, Huang Y, Li J, Li J, Chen Z, Wang P, Ran B, Yang J, Bai J, Ning S, Ai J, Wei Q, Liu L, Cao D. Synergistic effects of immunotherapy and adjunctive therapies in prostate cancer management. Crit Rev Oncol Hematol 2025; 207:104604. [PMID: 39732304 DOI: 10.1016/j.critrevonc.2024.104604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024] Open
Abstract
In recent years, cancer immunotherapy has received widespread attention due to significant tumor clearance in some malignancies. Various immunotherapy approaches, including vaccines, immune checkpoint inhibitors, oncolytic virotherapy, bispecific T cell engagers, and adoptive T cell transfer, have completed or are undergoing clinical trials for prostate cancer. Despite immune checkpoint blockade's extraordinary effectiveness in treating a variety of cancers, targeted prostate cancer treatment using the immune system is still in its infancy. Multiple factors including the heterogeneity of prostate cancer, the cold tumor microenvironment, and a low level of neoantigens, contribute to the poor immunotherapy response. Significant effort is being devoted to improving immune-based prostate cancer therapy. Recently, several key discoveries demonstrate that prostate cancer immunotherapy agents may be used to promise better prognosis for patients as part of combination strategies with other agents targeting tumor-associated immune mechanism of resistance. Here, this review comprehensively examines the recent advancements in immunotherapy for prostate cancer, exploring its potential synergistic effects when combined with other treatment modalities to enhance clinical efficacy.
Collapse
Affiliation(s)
- Jie Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Ma
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, 3rd section, South Renmin Road, Chengdu 610041, China
| | - Bo Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yin Huang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zeyu Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Puze Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Biao Ran
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiahao Yang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jingxing Bai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shu Ning
- Department of Urologic Surgery, University of California Davis, Davis, CA, USA
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Liangren Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dehong Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
171
|
Tang T, Yang T, Xue H, Liu X, Yu J, Liang C, Li D, Xiang C, Zheng J, Wei L, Ma B. Breast cancer stem cell-derived exosomal lnc-PDGFD induces fibroblast-niche formation and promotes lung metastasis. Oncogene 2025; 44:601-617. [PMID: 39633064 PMCID: PMC11850284 DOI: 10.1038/s41388-024-03237-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/07/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype with high metastatic potential and lack of therapeutic targets. Breast cancer stem cells (BCSCs) are enriched in TNBC and contribute to its metastatic propensity. Accumulating evidence suggests that cancer-derived exosomes are key drivers of premetastatic niche formation in distal organs. However, the function and underlying mechanism of BCSC-derived exosomes in TNBC metastasis remain elusive. Here, we demonstrated that BCSC-derived exosomes exhibit a greater capacity to activate fibroblasts and promote TNBC cell metastasis to the lung than non-BCSC-derived exosomes. Additionally, we found that upregulation of exosomal long non-coding RNA platelet derived growth factor D (lnc-PDGFD) expression in BCSCs is responsible for fibroblast activation through YBX1/NF-kB signaling in the lung. Activated fibroblasts further promote tumor progression by secreting IL-11. Taken together, BCSC-derived exosomes enriched with lnc-PDGFD could activate fibroblasts, thereby facilitating lung metastasis in TNBC patients. These results provide new insights into the mechanism of TNBC metastasis to the lung.
Collapse
Affiliation(s)
- Tingting Tang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Tao Yang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Huijie Xue
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiao Liu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Jie Yu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Chen Liang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Dameng Li
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Chenxi Xiang
- Department of Pathology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Liang Wei
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Bo Ma
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
172
|
Qiang H, Wang Y, Zhang Y, Li J, Zhang L, Du H, Ling X, Cao S, Zhou Y, Zhong R, Zhong H. Efficacy of first-line chemotherapy combined with immunotherapy or anti-angiogenic therapy in advanced KRAS-mutant non-small cell lung cancer. Transl Oncol 2025; 53:102317. [PMID: 39904280 PMCID: PMC11846584 DOI: 10.1016/j.tranon.2025.102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/25/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Approximately 30 % non-small cell lung cancer (NSCLC) patients carry KRAS mutations in western countries. First-line chemotherapy combined with immunotherapy has been the standard therapeutic regimen for KRAS-mutant NSCLC patients. This population could also benefit from chemotherapy combined with anti-angiogenic therapy. However, few studies has reported on head-to-head efficacy comparisons between these two treatment strategies. METHODS We selected stage IV KRAS-mutated NSCLC patients diagnosed from 2017 to 2022. Their clinical baseline characteristics, first-line treatment strategy, whether combined TP53 or STK11 mutation, PD-L1 expression level, etc. were evaluated. The correlation between these factors and progression-free survival (PFS) and overall survival (OS) were analyzed. RESULTS A total of 273 patients received first-line systematic therapy. The most common mutation was KRAS G12C (34.3 %). First-line chemotherapy combined with immunotherapy brought significant survival benefits (mPFS: 11.0 months vs. 4.0 months, P = 0.0003; mOS: 17.0 months vs. 9.0 months, P = 0.0002) compared with first-line chemotherapy combined with anti-angiogenic therapy. Among the 203 patients who received first-line chemotherapy combined with immunotherapy, PD-L1 positive NSCLC patients responded better than PD-L1 negative patients (mPFS: 11.0 months vs. 4.0 months, P = 0.0004; mOS: 21.0 months vs. 11.0 months, P = 0.0005). ECOG PS score of 0-1 (HR=0.201, P = 0.001) and first-line chemotherapy combined with immunotherapy (HR=0.333, P = 0.009) were independent predictors of OS. CONCLUSIONS Compared with first-line chemotherapy combined with anti-angiogenic therapy, first-line chemotherapy combined with immunotherapy has brought significant survival benefit to advanced KRAS mutant NSCLC patients, especially for PD-L1 positive patients.
Collapse
Affiliation(s)
- Huiping Qiang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yue Wang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yao Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jingwen Li
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lincheng Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Huawei Du
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Xuxinyi Ling
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Shuhui Cao
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Runbo Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Hua Zhong
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
173
|
Yan P, Xu Z, Hui X, Chu X, Chen Y, Yang C, Xu S, Cui H, Zhang L, Zhang W, Wang L, Zou Y, Ren Y, Liao J, Zhang Q, Yang K, Zhang L, Liu Y, Li J, Yang C, Yao Y, Liu Z, Jiang X, Zhang B. The reporting quality and methodological quality of dynamic prediction models for cancer prognosis. BMC Med Res Methodol 2025; 25:58. [PMID: 40025462 PMCID: PMC11872325 DOI: 10.1186/s12874-025-02516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND To evaluate the reporting quality and methodological quality of dynamic prediction model (DPM) studies on cancer prognosis. METHODS Extensive search for DPM studies on cancer prognosis was conducted in MEDLINE, EMBASE, and the Cochrane Library databases. The Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) and the Prediction model Risk of Bias Assessment Tool (PROBAST) were used to assess reporting quality and methodological quality, respectively. RESULTS A total of 34 DPM studies were identified since the first publication in 2005, the main modeling methods for DPMs included the landmark model and the joint model. Regarding the reporting quality, the median overall TRIPOD adherence score was 75%. The TRIPOD items were poorly reported, especially the title (23.53%), model specification, including presentation (55.88%) and interpretation (50%) of the DPM usage, and implications for clinical use and future research (29.41%). Concerning methodological quality, most studies were of low quality (n = 30) or unclear (n = 3), mainly due to statistical analysis issues. CONCLUSIONS The Landmark model and joint model show potential in DPM. The suboptimal reporting and methodological qualities of current DPM studies should be improved to facilitate clinical application.
Collapse
Affiliation(s)
- Peijing Yan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Clinical Research Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Zhengxing Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Southwest Medical University, Luzhou, Sichuan, China
| | - Xu Hui
- Evidence Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Xiajing Chu
- Department of Health Research Methods, Evidence & Impact, McMaster University, Hamilton, ON, Canada
| | - Yizhuo Chen
- The Second Clinical Medical Hospital, Lanzhou University, Lanzhou, Gansu, China
| | - Chao Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shixi Xu
- Department of Preventive Medicine, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huijie Cui
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenqiang Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liqun Wang
- Department of Hygienic Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanqiu Zou
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Ren
- Chinese Evidence-based Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaqiang Liao
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qin Zhang
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kehu Yang
- Evidence Based Social Science Research Center, School of Public Health, Lanzhou University, Lanzhou, Gansu, China
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Evidence Based Medicine and Knowledge Translation of Gansu Province, Lanzhou, Gansu, China
| | - Ling Zhang
- Department of Iatrical Polymer Material and Artificial Apparatus, School of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan, China
| | - Yunjie Liu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqin Yao
- Department of Hygienic Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenmi Liu
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China.
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China.
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China.
| | - Ben Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
- West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, South Renmin Road, Wuhou District, Chengdu, 610041, China.
| |
Collapse
|
174
|
Newman AAC, Dalman JM, Moore KJ. Cardiovascular Disease and Cancer: A Dangerous Liaison. Arterioscler Thromb Vasc Biol 2025; 45:359-371. [PMID: 39781742 PMCID: PMC11864891 DOI: 10.1161/atvbaha.124.319863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
The field of cardio-oncology has traditionally focused on the impact of cancer and its therapies on cardiovascular health. Mounting clinical and preclinical evidence, however, indicates that the reverse may also be true: cardiovascular disease can itself influence tumor growth and metastasis. Numerous epidemiological studies have reported that individuals with prevalent cardiovascular disease have an increased incidence of cancer. In parallel, studies using preclinical mouse models of myocardial infarction, heart failure, and cardiac remodeling support the notion that cardiovascular disorders accelerate the growth of solid tumors and metastases. These findings have ushered in a new and burgeoning field termed reverse cardio-oncology that investigates the impact of cardiovascular disease pathophysiology on cancer emergence and progression. Recent studies have begun to illuminate the mechanisms driving this relationship, including shared risk factors, reprogramming of immune responses, changes in gene expression, and the release of cardiac factors that result in selective advantages for tumor cells or their local milieu, thus exacerbating cancer pathology. Here, we review the evidence supporting the relationship between cardiovascular disease and cancer, the mechanistic pathways enabling this connection, and the implications of these findings for patient care.
Collapse
Affiliation(s)
- Alexandra A C Newman
- Cardiovascular Research Center, New York University Langone Health, New York, NY 10016, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jessie M Dalman
- Cardiovascular Research Center, New York University Langone Health, New York, NY 10016, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- University of Michigan Medical School, Ann Arbor, MI 48104, USA
| | - Kathryn J Moore
- Cardiovascular Research Center, New York University Langone Health, New York, NY 10016, USA
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
175
|
Gupta A, Bhardwaj S, Ghorai S, Ahmed R, Agarwal S, Mukherjee G, Desai KV. Potential applications of gene expression profiles obtained from circulating extracellular vesicles in breast cancer. THE JOURNAL OF LIQUID BIOPSY 2025; 7:100287. [PMID: 40027231 PMCID: PMC11863812 DOI: 10.1016/j.jlb.2025.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 03/05/2025]
Abstract
Background Liquid biopsy-based biomarkers offer several advantages since they are minimally invasive, can be useful in longitudinal monitoring of the disease and have higher patient compliance. We describe a protocol using minimal volumes of archival and prospective serum/plasma samples to define the RNA contents of EVs and discuss its benefits and limitations. Methods RNA-seq analysis of matched tumor biopsy, circulating EVs from breast cancer patients (EV-C, n = 26) and healthy donors (EV-H, n = 4) was performed and differentially expressed genes were validated by RT-PCR in a separate series of samples (EV-C, n = 32 and EV-H, n = 22). A total of 84 samples were studied. Results RNA-seq data from 500 μl serum samples yielded more than 17000 genes, of which 320 were DEGs (adjusted p value ≤ 0.05) between EV-C and EV-H samples. Pathways for Myc V1, reactive oxygen species, angiogenesis, allograft rejection and Interferon regulated genes were over-represented in EV-C samples. Computational deconvolution algorithms for cell signatures identified immune cells such as Th1 and memory T-cells, endothelial cells, and osteoblasts from the stromal compartment as significant. Top 6 genes were validated by qRT-PCR in all samples (n = 84) and they consistently and correctly classified cancer and healthy groups. An independent set of 374 and 640 DEGs could segregate ER positive/ER negative and non-metastatic versus metastatic samples, respectively. EVs from metastatic samples had higher variability in gene expression patterns whereas those from non-metastatic samples showed a better correlation. Conclusion By using low serum amounts successfully for EV transcriptomics, we demonstrate that a minimally invasive technique could be converted to a microinvasive format. These data lay the foundation for EV RNA based biomarker discovery for segregating breast cancers.
Collapse
Affiliation(s)
- Aritra Gupta
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India
- Regional Centre for Biotechnology, PhD Program, India
| | - Siddharth Bhardwaj
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India
| | - Sayan Ghorai
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India
- Regional Centre for Biotechnology, PhD Program, India
| | - Rosina Ahmed
- Tata Medical Centre, 14 MAR (DH Block), New Town, Rajarhat, Kolkata, 700160, India
| | - Sanjit Agarwal
- Tata Medical Centre, 14 MAR (DH Block), New Town, Rajarhat, Kolkata, 700160, India
| | - Geetashree Mukherjee
- Tata Medical Centre, 14 MAR (DH Block), New Town, Rajarhat, Kolkata, 700160, India
| | - Kartiki V. Desai
- Biotechnology Research Innovation Council-National Institute of Biomedical Genomics (BRIC-NIBMG), Kalyani, India
| |
Collapse
|
176
|
Xu W, Xu J, Liu J, Wang N, Zhou L, Guo J. Liver Metastasis in Cancer: Molecular Mechanisms and Management. MedComm (Beijing) 2025; 6:e70119. [PMID: 40027151 PMCID: PMC11868442 DOI: 10.1002/mco2.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 03/05/2025] Open
Abstract
Liver metastasis is a leading cause of mortality from malignant tumors and significantly impairs the efficacy of therapeutic interventions. In recent years, both preclinical and clinical research have made significant progress in understanding the molecular mechanisms and therapeutic strategies of liver metastasis. Metastatic tumor cells from different primary sites undergo highly similar biological processes, ultimately achieving ectopic colonization and growth in the liver. In this review, we begin by introducing the inherent metastatic-friendly features of the liver. We then explore the panorama of liver metastasis and conclude the three continuous, yet distinct phases based on the liver's response to metastasis. This includes metastatic sensing stage, metastatic stress stage, and metastasis support stage. We discuss the intricate interactions between metastatic tumor cells and various resident and recruited cells. In addition, we emphasize the critical role of spatial remodeling of immune cells in liver metastasis. Finally, we review the recent advancements and the challenges faced in the clinical management of liver metastasis. Future precise antimetastatic treatments should fully consider individual heterogeneity and implement different targeted interventions based on stages of liver metastasis.
Collapse
Affiliation(s)
- Wenchao Xu
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingChina
- National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijingChina
- State Key Laboratory of ComplexSevere, and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jia Xu
- State Key Laboratory of Fine ChemicalsDepartment of Pharmaceutical SciencesSchool of Chemical EngineeringDalian University of TechnologyDalianChina
| | - Jianzhou Liu
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingChina
- National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijingChina
- State Key Laboratory of ComplexSevere, and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Nanzhou Wang
- Department of Colorectal SurgeryState Key Laboratory of Oncology in South ChinaSun Yat‐sen University Cancer CenterGuangdong Provincial Clinical Research Center for CancerGuangzhouChina
| | - Li Zhou
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingChina
- National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijingChina
- State Key Laboratory of ComplexSevere, and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Junchao Guo
- Department of General SurgeryPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
- Key Laboratory of Research in Pancreatic TumorChinese Academy of Medical SciencesBeijingChina
- National Infrastructures for Translational MedicinePeking Union Medical College HospitalBeijingChina
- State Key Laboratory of ComplexSevere, and Rare DiseasesPeking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
177
|
Shen Q, Liu J, Zeng L, Ren Y, Liao J, Chen S, Tang Y, Zhang Z, Jiang M, Liao H, Wang L, Xu X, Chen J. Pancreas-targeted lipid nanoparticles for relatively non-invasive interleukin-12 mRNA therapy in orthotopic pancreatic ductal adenocarcinoma. J Control Release 2025:113588. [PMID: 40032009 DOI: 10.1016/j.jconrel.2025.113588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/14/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents 90 % of pancreatic cancers and shows limited response to immune therapy owing to the highly immunosuppressive tumor microenvironment (TME). Cytokine-encoded mRNA therapy demonstrates great promise in converting "cold" tumors into "hot" ones, while it is typically administered through intratumoral injection and applicable only to superficial tumors, which limites their application in PDAC. In this study, we introduce a lipid nanoparticle (LNP) delivery system capable of targeting pancreatic tissue via intraperitoneal (I·P.) injection. This system not only efficiently delivers mRNA to pancreatic tissues but also selectively targets immune cells in PDAC. A single I.P. injection of LNP encapsulating interleukin-12 (IL-12) mRNA activates both myeloid and lymphoid cells in PDAC, reprogramming the immunosuppressive TME. Remarkably, I.P. injection of LNP encapsulating IL-12 mRNA (LNP/mIL-12) induces eradication of orthotopic PDAC in some cases. Our work represents the first relatively non-invasive method to deliver IL-12 mRNA for targeted treatment of orthotopic PDAC, offering a novel approach for PDAC immunotherapy.
Collapse
Affiliation(s)
- Qian Shen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Jia Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China; Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China
| | - Ling Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Yupeng Ren
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering 2 Taoyuan Street, Xiangtan 411201, PR China
| | - Jing Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Sijie Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Yingsen Tang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Zixi Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Meng Jiang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China
| | - Hangping Liao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, School of Materials Science and Engineering 2 Taoyuan Street, Xiangtan 411201, PR China
| | - Lingyun Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China.
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China.
| | - Jinjin Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Guangzhou Key Laboratory of Medical Nanomaterials, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, PR China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan 528200, PR China.
| |
Collapse
|
178
|
He L, Wan M, Yang X, Meng H. Distant metastasis of oral squamous cell carcinoma: immune escape mechanism and new perspectives on treatment. Discov Oncol 2025; 16:257. [PMID: 40024975 PMCID: PMC11872995 DOI: 10.1007/s12672-025-01997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is frequently observed as the predominant malignancy affecting the oral cavity, with distant metastasis greatly affecting the treatment and long-term outlook for individuals with OSCC. Immune checkpoint inhibitors are a highly promising cancer treatment strategy currently available, but they are only successful for a small fraction of individuals with OSCC. Due to the insufficient understanding of the immune escape mechanisms in OSCC, coupled with disappointing treatment outcomes for patients with highly heterogeneous metastatic diseases, there is an urgent need for further exploration of immune target therapy strategies. This review discusses the mechanisms by which OSCC cells evade immune surveillance and attack, focusing on four aspects: metastasis-initiating cells, increased immune suppression, immune escape of dormant cells, and immune stromal crosstalk during metastasis. Additionally, we explore new areas in immune therapy for OSCC. In summary, our investigation offers fresh perspectives on the relationship between the tumor microenvironment and immune molecules, highlighting the importance of overcoming immune evasion for the development of novel therapies to manage OSCC metastasis and enhance patient outcomes.
Collapse
Affiliation(s)
- Lin He
- Department of Stomatology, Heilongjiang Provincial Hospital, Harbin, 150081, China
| | - Meixuan Wan
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xinxin Yang
- Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
179
|
Maita H, Nakagawa S. Balancing RNA processing and innate immune response: Possible roles for SMN condensates in snRNP biogenesis. Biochim Biophys Acta Gen Subj 2025; 1869:130764. [PMID: 39826814 DOI: 10.1016/j.bbagen.2025.130764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Biomolecular condensates like U-bodies are specialized cellular structures formed through multivalent interactions among intrinsically disordered regions. U-bodies sequester small nuclear ribonucleoprotein complexes (snRNPs) in the cytoplasm, and their formation in mammalian cells depends on stress conditions. Because of their location adjacent to P-bodies, U-bodies have been considered potential sites for snRNP storage or turnover. SMN, a chaperone for snRNP biogenesis, forms condensates through its Tudor domain. In fly models, defects in SMN trigger innate immune responses similar to those observed with excess cytoplasmic snRNA during viral infection in mammalian cells. Additionally, spinal muscular atrophy (SMA), caused by SMN deficiency, is associated with inflammation. Therefore, SMN may help prevent innate immune aberrant activation due to defective snRNP biogenesis by forming U-bodies to sequester these molecules. Further studies on U-body functions may provide therapeutic insights for diseases related to RNA metabolism.
Collapse
Affiliation(s)
- Hiroshi Maita
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| | - Shinichi Nakagawa
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0812, Japan; Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
180
|
Song Q, Sui J, Yang Y, Zhang H, Ya L, Yang L. Fructose-1,6-bisphosphatase 1 in cancer: Dual roles, mechanistic insights, and therapeutic potential - A comprehensive review. Int J Biol Macromol 2025; 293:139273. [PMID: 39753180 DOI: 10.1016/j.ijbiomac.2024.139273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Fructose-1,6-bisphosphatase 1 (FBP1) is a key gluconeogenic enzyme that plays complex and context-dependent roles in cancer biology. This review comprehensively examines FBP1's dual functions as both a tumor suppressor and an oncogene across various cancer types. In many cancers, such as hepatocellular carcinoma, clear cell renal cell carcinoma, and lung cancer, downregulation of FBP1 contributes to tumor progression through metabolic reprogramming, promoting glycolysis, and altering the tumor microenvironment. Conversely, in certain contexts like breast and prostate cancers, FBP1 overexpression is associated with tumor promotion, indicating its oncogenic potential. The review explores FBP1's interactions with immune cells within the tumor microenvironment, influencing immune surveillance and tumor immune escape mechanisms. Additionally, FBP1 emerges as a promising diagnostic and prognostic biomarker, with expression levels correlating with patient outcomes in multiple cancers. Future therapeutic strategies targeting FBP1 are discussed, including inhibitors, activators, epigenetic modulation, and combination therapies, while addressing the challenges posed by its dual nature. Understanding the multifaceted roles of FBP1 offers valuable insights into cancer metabolism and opens avenues for personalized therapeutic interventions.
Collapse
Affiliation(s)
- Qinghang Song
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Jiazhen Sui
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Yuxuan Yang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Huhu Zhang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Li Ya
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Lina Yang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
181
|
Li D, Andaloori L, Crowe M, Lin S, Hong J, Zaidi N, Ho M. Development of CAR-T Therapies and Personalized Vaccines for the Treatment of Cholangiocarcinoma: Current Progress, Mechanisms of Action, and Challenges. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:453-469. [PMID: 39675505 DOI: 10.1016/j.ajpath.2024.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/15/2024] [Accepted: 10/24/2024] [Indexed: 12/17/2024]
Abstract
Cholangiocarcinoma (CCA) is a highly fatal malignancy with an increasing prevalence, a high mortality rate, poor overall survival, and limited responsiveness to conventional chemoradiotherapy. Targeted therapies addressing specific gene mutations have expanded treatment options for some patient populations. The introduction of chimeric antigen receptor-modified T-cell (CAR-T) immunotherapy and personalized vaccines have opened up a new avenue for managing various cancers. Considerable efforts have been dedicated to preclinical research and ongoing clinical trials of immunotherapeutic approaches including CAR-T therapy, vaccines, and antibody-based therapies such as antibody drug conjugates. However, the potential of CAR-T therapy and vaccines in treating advanced unresectable/metastatic cholangiocarcinoma remains largely unexplored. This article offers an overview of the current landscape of antibody-based immunotherapy, particularly CAR-T therapy and vaccines in the context of cholangiocarcinoma treatment. It outlines a framework for selecting CAR-T and vaccine targets and delves into the biology of promising targetable antigens, as well as potential future therapeutic targets.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lalitya Andaloori
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Matthew Crowe
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Shaoli Lin
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Jessica Hong
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland.
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
182
|
Zhang H, Wu J, Hu H, Tang H, Tan K, Hu M, Zhu G. UBC9: a novel therapeutic target in papillary thyroid carcinoma. J Endocrinol Invest 2025:10.1007/s40618-024-02523-y. [PMID: 40025314 DOI: 10.1007/s40618-024-02523-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/24/2024] [Indexed: 03/04/2025]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Despite the favorable prognosis in some patients, there remains a risk of lymph node metastasis and death in some patients. Therefore, new therapeutic strategies are required to improve PTC outcomes. METHODS In this study, we performed differential expression analysis using data from patients with PTC collected from the Cancer Genome Atlas program database, and prognostic analysis of differential genes. To understand the effects of ubiquitin-conjugating enzyme 9 (UBC9) on drug therapy, immunotherapy, immune relevance, and gene mutations in tumor cells of patients with PTC, we performed cancer drug susceptibility genomics, computed tumor immune dysfunction and exclusion, tertiary lymphoid tissues, cytolytic activity, immune infiltration, immune modulators, genomic signature differences, and gene ontology and Kyoto encyclopedia of genes and genomes enrichment analysis. Moreover, we investigated the function of UBC9 in tumor cells using a knockdown assay. RESULTS UBC9 expression level was significantly elevated in the tumor tissues of patients with PTC, and in vitro experiments demonstrated that UBC9 knockdown inhibited tumor proliferation and migration and promoted apoptosis. UBC9 is closely linked to immunity in PTC, and UBC9 may be a potential therapeutic target. CONCLUSIONS Our study demonstrated that UBC9 is a novel therapeutic target for PTC and may be a potential strategy for its treatment.
Collapse
Affiliation(s)
- Hui Zhang
- Department of pathology, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, 234000, China
| | - Jingjing Wu
- Department of pathology, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, 234000, China
| | - Huaiyuan Hu
- Department of pathology, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, 234000, China
| | - Heng Tang
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, 234000, China
| | - Kemeng Tan
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, 234000, China
| | - Mengxue Hu
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, 234000, China
| | - Genbao Zhu
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- Longhu Laboratory of Advanced Immunology, Zhengzhou, 450046, China.
- General Clinical Research Center, Anhui Wanbei Coal-Electricity Group General Hospital, Suzhou, 234000, China.
| |
Collapse
|
183
|
Lu Z, Yu J, Lu T, Deng S, Zheng X, Ji B, Wu X, Yu Y. CD155 promotes the advancement of hepatocellular carcinoma by suppressing the p53-mediated ferroptosis via interacting with CD96. J Mol Med (Berl) 2025; 103:285-299. [PMID: 39878917 DOI: 10.1007/s00109-025-02515-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
This work researched the influence and mechanism of CD155 on hepatocellular carcinoma advancement. CD155 expression and its effect on survival of hepatocellular carcinoma patients were analyzed based on the GEPIA2 database. String software predicted the interacting between CD155 and CD96, which was further verified by co-immunoprecipitation experiment. The function of CD155 and CD96 on the proliferation, migration, and invasion of hepatocellular carcinoma cells (HCC) was explored by colony formation, wound healing, and transwell assays. To research the effect of CD155 and CD96 on ferroptosis, ferroptosis-related factors in HCC were investigated. CD155 and p53 were both silenced in HCC to explore whether CD155 regulates hepatocellular carcinoma progression by acting on p53. Xenograft tumor study was conducted to examine the impact of CD155 on the in vivo growth of HCC. It was discovered that, CD155 up-regulation predicted poor survival of hepatocellular carcinoma patients. CD155 could be interacted with CD96. The proliferation, migration, and invasion of HCC were heightened by CD155. However, ferroptosis was suppressed by CD155, as CD155 decreased p53 and iron but increased SLC7A11, GPX4 and GSH in HCC. In fact, CD96 silencing abolished these effects of CD155. The suppressed malignant behaviors and the enhanced ferroptosis in HCC induced by CD155 silencing were abrogated by p53 silencing. In vivo, CD155 silencing suppressed growth and enhanced ferroptosis of hepatocellular carcinoma, which were counteracted by p53 silencing. Thus, CD155 might facilitate hepatocellular carcinoma advancement through blocking the p53-mediated ferroptosis via interacting with CD96. CD155 might be a promising target for treating hepatocellular carcinoma. KEY MESSAGES: CD155 was up-regulated in hepatocellular carcinoma, predicting poor survival. CD155 protein could be interacted with CD96 protein. Proliferation and invasion of liver cancer cells were facilitated by CD155. Proliferation and invasion of liver cancer cells were decreased by CD96 loss. CD155 promoted liver cancer by suppressing p53-mediated ferroptosis via CD96.
Collapse
Affiliation(s)
- Zhenhui Lu
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Hepatobiliary Pancreatic Surgery, Shenzhen, China
- Hepatic-biliary-pancreatic Surgery, The Second Affiliated Hospital of Shenzhen University (People's Hospital of Shenzhen Baoan District), Shenzhen City, 518101, China
| | - Jingzhe Yu
- Department of Pediatric Surgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Tuoyu Lu
- School of Pharmacy, Xi'an Jiaotong University Medical Science Center, Xi'an, China
| | - Siyuan Deng
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Hepatobiliary Pancreatic Surgery, Shenzhen, China
| | - Xuzhen Zheng
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Hepatobiliary Pancreatic Surgery, Shenzhen, China
| | - Baiyu Ji
- Shenzhen Qianhai Shekou Free Trade Zone Hospital, Hepatobiliary Pancreatic Surgery, Shenzhen, China
| | - Xiangyang Wu
- Baoji Central Hospital, Shaanxi Province, Baoji, China
| | - Yingzi Yu
- Hospital Sensory Department, Shenzhen Qianhai Shekou Free Trade Zone Hospital, 36 Gongye Qi Road, Nanshan District, Shenzhen, 518067, China.
| |
Collapse
|
184
|
Zhen J, Sun L, Ji L, Zhou S, Cui Y, Li Z. EDN1 facilitates cisplatin resistance of non-small cell lung cancer cells by regulating the TNF signaling pathway. World J Surg Oncol 2025; 23:71. [PMID: 40025550 PMCID: PMC11871734 DOI: 10.1186/s12957-025-03692-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/28/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Cisplatin (DDP) is a commonly utilized chemotherapeutic agent. Nevertheless, the development of resistance to DDP significantly diminishes the effectiveness of DDP-based chemotherapy in patients with non-small cell lung cancer (NSCLC). In this study, we investigated the impact of endothelin 1 (EDN1) on the resistance to DDP in NSCLC. METHODS The proliferation, invasion, and migration of NSCLC cells were detected by cell counting kit-8 and Transwell migration and invasion assays. ELISA was performed to analyze the inflammatory cytokines concentrations. The related protein levels of tumor necrosis factor (TNF) signaling pathway were analyzed by Western blot. Besides, a xenograft tumor mice model was established to explore the role of EDN1 in vivo. RESULTS The results showed that DDP-resistance upregulated EDN1 expression, cell viability, invasion, migration, and inflammation in NSCLC cells, while the results were reversed after EDN1 inhibition. EDN1 affected DDP-resistance of NSCLC by regulating TNF signaling pathway. Overexpression of TNF receptor-1 (TNFR1) reversed the decreased cell viability, invasion, migration, and inflammation induced by silencing EDN1 in A549/DDP cells. Moreover, silencing EDN1 inhibited tumor growth and the protein levels of EDN1 and TNFR1. CONCLUSION EDN1 promoted DDP resistance in NSCLC cells through the modulation of the TNF signaling pathway, suggesting a potential therapeutic intervention strategy for NSCLC.
Collapse
MESH Headings
- Humans
- Cisplatin/pharmacology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Drug Resistance, Neoplasm/drug effects
- Animals
- Endothelin-1/metabolism
- Endothelin-1/genetics
- Mice
- Signal Transduction/drug effects
- Xenograft Model Antitumor Assays
- Cell Proliferation/drug effects
- Cell Movement/drug effects
- Tumor Necrosis Factor-alpha/metabolism
- Antineoplastic Agents/pharmacology
- Mice, Nude
- Apoptosis/drug effects
- Tumor Cells, Cultured
- Gene Expression Regulation, Neoplastic/drug effects
- Mice, Inbred BALB C
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
Collapse
Affiliation(s)
- Jie Zhen
- Department of Thoracic Surgery, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Qidong, China
| | - Long Sun
- Department of Pathology, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Qidong, China
| | - Li Ji
- Department of Blood Transfusion, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Qidong, China
| | - Shaochong Zhou
- Department of Thoracic Surgery, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Qidong, China
| | - Yijin Cui
- Department of Neurology, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, Qidong, China
| | - Zhenwei Li
- Department of Operating Room, Qidong People's Hospital, Qidong Liver Cancer Institute, Affiliated Qidong Hospital of Nantong University, No.753, Jianghai Middle Road, Qidong, Jiangsu, 226200, China.
| |
Collapse
|
185
|
Whittle JR, Kriel J, Fatunla OE, Lu T, Moffet JJD, Spiteri M, Best SA, Freytag S. Spatial omics shed light on the tumour organisation of glioblastoma. Semin Cell Dev Biol 2025; 167:1-9. [PMID: 39787997 DOI: 10.1016/j.semcdb.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/23/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
The glioblastoma tumour microenvironment is characterised by immense heterogeneity, with malignant and non-malignant cells that interact in a complex ecosystem. Emerging evidence suggests that the tumour microenvironment is key in facilitating rapid proliferation, invasion, migration and cancer cell survival, crucial for treatment resistance. Spatial omics technologies have enabled the molecular characterisation of regions or individual cells within their spatial context, providing previously unattainable insights into the complex organisation of the glioblastoma tumour microenvironment. Understanding this organisation is crucial for the development of new therapeutics and novel diagnostic tools that guide patient care. This review explores spatial omics technologies and how they have contributed to the development of a model outlining the architecture of the glioblastoma tumour microenvironment.
Collapse
Affiliation(s)
- James R Whittle
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia; Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jurgen Kriel
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Oluwaseun E Fatunla
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Tianyao Lu
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Joel J D Moffet
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Montana Spiteri
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Sarah A Best
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| | - Saskia Freytag
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
186
|
Blanchard Z, Brown EA, Ghazaryan A, Welm AL. PDX models for functional precision oncology and discovery science. Nat Rev Cancer 2025; 25:153-166. [PMID: 39681638 DOI: 10.1038/s41568-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
Precision oncology relies on detailed molecular analysis of how diverse tumours respond to various therapies, with the aim to optimize treatment outcomes for individual patients. Patient-derived xenograft (PDX) models have been key to preclinical validation of precision oncology approaches, enabling the analysis of each tumour's unique genomic landscape and testing therapies that are predicted to be effective based on specific mutations, gene expression patterns or signalling abnormalities. To extend these standard precision oncology approaches, the field has strived to complement the otherwise static and often descriptive measurements with functional assays, termed functional precision oncology (FPO). By utilizing diverse PDX and PDX-derived models, FPO has gained traction as an effective preclinical and clinical tool to more precisely recapitulate patient biology using in vivo and ex vivo functional assays. Here, we explore advances and limitations of PDX and PDX-derived models for precision oncology and FPO. We also examine the future of PDX models for precision oncology in the age of artificial intelligence. Integrating these two disciplines could be the key to fast, accurate and cost-effective treatment prediction, revolutionizing oncology and providing patients with cancer with the most effective, personalized treatments.
Collapse
Affiliation(s)
- Zannel Blanchard
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Elisabeth A Brown
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Arevik Ghazaryan
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Alana L Welm
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, UT, USA.
| |
Collapse
|
187
|
Zhang M, Guan X, Dong Z, Yang C, Xiong C, Cheng W, Shang A, Liu Y, Guo X, Zhang B, Zhang B, Jin S, Qi W, Alexandrovna BT, Jiang Y, Du Z, Xu C. Targeting Zfp36 to combat cardiac hypertrophy: Insights into ferroptosis pathways. Clin Transl Med 2025; 15:e70247. [PMID: 40000392 PMCID: PMC11859123 DOI: 10.1002/ctm2.70247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/11/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Cardiac hypertrophy is a precursor to heart failure and represents a significant global cause of mortality, thereby necessitating timely and effective therapeutic interventions. Zinc finger protein 36 (Zfp36) is recognised as a critical regulator of ferroptosis; however, its role and underlying mechanisms in cardiac hypertrophy remain largely unexplored. This study aims to investigate the regulatory function of Zfp36 in ferroptosis within the context of cardiac hypertrophy. METHODS AND RESULTS Single-cell sequencing analysis demonstrated a reduction in Zfp36 expression associated with cardiac hypertrophy. Zfp36 was observed to mitigate ferroptosis and reduce hypertrophic phenotypes in cardiomyocytes subjected to Angiotensin II (Ang II) and in myocardial tissues induced by transverse aortic constriction. The ferroptosis inhibitor Ferrostatin-1 was shown to alleviate hypertrophy when co-incubated with si-Zfp36 and Ang II. Mechanistically, Zfp36 binds to the 3' untranslated region (3'UTR) of Ythdc2 mRNA, facilitating its degradation. Ythdc2 subsequently binds to SLC7A11 mRNA, enhancing its decay, which leads to a reduction in glutathione (GSH) levels, thereby exacerbating ferroptosis and cardiac hypertrophy. Furthermore, overexpression of Ythdc2 reversed the protective effects conferred by Zfp36, while silencing of Ythdc2 counteracted the effects of Zfp36 knockdown. CONCLUSIONS This study elucidates the role of Zfp36 in cardiac hypertrophy, specifically detailing its modulatory mechanism via the Ythdc2/SLC7A11/GSH ferroptosis pathway. These insights lay the groundwork for innovative approaches to understanding the pathological mechanisms underlying cardiac hypertrophy and enhancing clinical interventions. KEY POINTS Zfp36 was initially demonstrated to attenuate cardiac hypertrophy through the inhibition of ferroptosis in cardiomyocytes, providing a new target for therapeutic strategies targeting ferroptosis. Zfp36 facilitated the degradation of Ythdc2 mRNA by binding to it, subsequently inhibiting Ythdc2-mediated degradation of SLC7A11 mRNA, and maintaining GSH levels. This elucidates a previously unrecognized regulatory pathway in the context of cardiac hypertrophy.
Collapse
Affiliation(s)
- Mingyu Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (State Key Labratoray ‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinChina
| | - Xiaoxiang Guan
- Department of Clinical Pharmacythe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zheng Dong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (State Key Labratoray ‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinChina
| | - Chenxu Yang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (State Key Labratoray ‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinChina
| | - Chao Xiong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (State Key Labratoray ‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinChina
| | - Wenzheng Cheng
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (State Key Labratoray ‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinChina
| | - Aijing Shang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (State Key Labratoray ‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinChina
| | - Yaru Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (State Key Labratoray ‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinChina
| | - Xiaofei Guo
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (State Key Labratoray ‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinChina
| | - Bowen Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (State Key Labratoray ‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinChina
| | - Bo Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (State Key Labratoray ‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinChina
| | - Saidi Jin
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (State Key Labratoray ‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinChina
| | - Wenyi Qi
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (State Key Labratoray ‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinChina
| | | | - Yuan Jiang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (State Key Labratoray ‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinChina
- Department of Biopharmaceutical Sciences, College of PharmacyHarbin Medical UniversityHarbinChina
| | - Zhimin Du
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (State Key Labratoray ‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinChina
- State Key Laboratory of Quality Research in Chinese MedicinesMacau University of Science and TechnologyMacauChina
| | - Chaoqian Xu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD)Department of Pharmacology (State Key Labratoray ‐Province Key Laboratories of Biomedicine‐Pharmaceutics of ChinaKey Laboratory of Cardiovascular Research, Ministry of Education)College of PharmacyHarbin Medical UniversityHarbinChina
- Department of Clinical Pharmacythe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Joint International Research Laboratory of Cardiovascular Medicine ResearchMinistry of EducationHarbinChina
| |
Collapse
|
188
|
Jacobs EJ, Rubinsky B, Davalos RV. Pulsed field ablation in medicine: irreversible electroporation and electropermeabilization theory and applications. Radiol Oncol 2025; 59:1-22. [PMID: 40014783 PMCID: PMC11867574 DOI: 10.2478/raon-2025-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/07/2024] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Focal ablation techniques are integral in the surgical intervention of diseased tissue, where it is necessary to minimize damage to the surrounding parenchyma and critical structures. Irreversible electroporation (IRE) and high-frequency IRE (H-FIRE), colloquially called pulsed-field ablation (PFA), utilize high-amplitude, low-energy pulsed electric fields (PEFs) to nonthermally ablate soft tissue. PEFs induce cell death through permeabilization of the cellular membrane, leading to loss of homeostasis. The unique nonthermal nature of PFA allows for selective cell death while minimally affecting surrounding proteinaceous structures, permitting treatment near sensitive anatomy where thermal ablation or surgical resection is contraindicated. Further, PFA is being used to treat tissue when tumor margins are not expected after surgical resection, termed margin accentuation. This review explores both the theoretical foundations of PFA, detailing how PEFs induce cell membrane destabilization and selective tissue ablation, the outcomes following treatment, and its clinical implications across oncology and cardiology. CONCLUSIONS Clinical experience is still progressing, but reports have demonstrated that PFA reduces complications often seen with thermal ablation techniques. Mounting oncology data also support that PFA produces a robust immune response that may prevent local recurrences and attenuate metastatic disease. Despite promising outcomes, challenges such as optimizing field delivery and addressing variations in tissue response require further investigation. Future directions include refining PFA protocols and expanding its application to other therapeutic areas like benign tissue hyperplasia and chronic bronchitis.
Collapse
Affiliation(s)
- Edward J Jacobs
- Wallace H Coulter School of Biomedical Engineering, Georgia Institute of Technology & Emory Medical School, Atlanta, Georgia, USA
| | - Boris Rubinsky
- Department of Bioengineering and Department of Mechanical Engineering, University of California, Berkeley, Berkeley, California, USA
| | - Rafael V Davalos
- Wallace H Coulter School of Biomedical Engineering, Georgia Institute of Technology & Emory Medical School, Atlanta, Georgia, USA
| |
Collapse
|
189
|
Su Y, Mei L, Wu Y, Li C, Jiang T, Zhao Y, Feng X, Sun T, Li Y, Wang Z, Ji Y. Xenotropic and polytropic retrovirus receptor 1 (XPR1) promotes progression of papillary thyroid carcinoma via the BRAF-ERK1/2-P53 signaling pathway. J Endocrinol Invest 2025; 48:633-652. [PMID: 39487939 DOI: 10.1007/s40618-024-02481-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. Xenotropic and polytropic retrovirus receptor 1 (XPR1), identified as a cellular receptor, plays roles in many pathophysiological processes. However, the underlying function and molecular mechanisms of XPR1 in PTC remain unclear. Therefore, this study aimed to elucidate the role of XPR1 in the process of PTC and the potential mechanisms. METHODS RNA-sequencing was performed for gene differential expression analysis in PTC patients' tissues. Immunohistochemical assay, real-time PCR, and western blotting assay were used to determine the expression of XPR1, BRAF, and P53 in PTC tissues. The function of XPR1 on the progression of PTC was explored using in vitro and in vivo experiments. The molecular mechanism of XPR1 was investigated using gene silencing, ELISA, immunofluorescence, western blotting, and real-time PCR assays. RESULTS We found that XPR1 was markedly upregulated in PTC tissues compared to adjacent noncancerous tissues, suggesting that high expression of XPR1 could be correlated with poor patient disease-free survival in PTC. In addition, the expression of BRAF and P53 in PTC tissues was substantially higher than in adjacent noncancerous tissues. Silencing of XPR1 reduced the proliferation, migration, and invasion capacities of TPC-1 cells in vitro and effectively inhibited the tumorigenecity of PTC in vivo. More importantly, silencing of XPR1 in TPC-1 cells significantly decreased the expression of XPR1, BRAF, and P53 both in vitro and in vivo. Interestingly, we demonstrated that XPR1 may positively activate the BRAF-ERK-P53 signaling pathway, further promoting PTC progression. CONCLUSION The findings reveal a crucial role of XPR1 in PTC progression and prognosis via the BRAF-ERK1/2-P53 signaling pathway, providing potential therapeutic targets for treating PTC.
Collapse
MESH Headings
- Humans
- Proto-Oncogene Proteins B-raf/genetics
- Proto-Oncogene Proteins B-raf/metabolism
- Thyroid Cancer, Papillary/metabolism
- Thyroid Cancer, Papillary/pathology
- Thyroid Cancer, Papillary/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/genetics
- Tumor Suppressor Protein p53/metabolism
- Mice
- Disease Progression
- Animals
- Xenotropic and Polytropic Retrovirus Receptor
- Cell Proliferation
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Male
- Prognosis
- MAP Kinase Signaling System/physiology
- Female
- Gene Expression Regulation, Neoplastic
- Signal Transduction/physiology
- Cell Movement
- Middle Aged
- Mice, Nude
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Apoptosis
- Cell Line, Tumor
Collapse
Affiliation(s)
- Yuanhao Su
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Lin Mei
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, Shaanxi, China
| | - Yongke Wu
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Cheng Li
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Tiantian Jiang
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yiyuan Zhao
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Xin Feng
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Tingkai Sun
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Yunhao Li
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Zhidong Wang
- Department of Geriatric General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| | - Yuanyuan Ji
- Scientific Research Center and Precision Medical Institute, The Second Affiliated Hospital, Xi'an Jiaotong University, 157 West 5th Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
190
|
Chen Z, Guo Y, Zhang Z, Li C, Zhang L, Liu Y, Sun G, Xiao F, Feng R, Zhang C. mRNA m5C Alteration in Azacitidine Demethylation Treatment of Acute Myeloid Leukemia. Mol Carcinog 2025; 64:502-512. [PMID: 39688413 DOI: 10.1002/mc.23864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024]
Abstract
The DNA demethylating therapy with azacitidine (AZA) is a promising therapeutic strategy for elderly patients with acute myeloid leukemia (AML). AZA primarily inhibits DNA methylation, promotes cell differentiation and apoptosis in AML. However, as a cytosine nucleoside analog, AZA also has the potential to be incorporated into RNA molecules. To assess the impact of AZA on RNA m5C methylation during demethylating therapy, we conducted Nanopore direct-RNA sequencing on samples from three AML patients pre and after demethylating therapy, as well as on HL-60 cells pretreated with AZA. We performed an integrated analysis of the transcriptome and the m5C methylome, contrasting the states of complete remission with those of active disease (AML). Our results revealed an extensive demethylation effect at the RNA level attributable to AZA and found that mRNA m5C modification may play a pivotal role in the progression of AML. Additionally, S100P was identified as a biomarker with significant prognostic implications. We also conducted a conjoint analysis of the transcriptome and the m5C methylome of the full-length transcripts, uncovering several dysregulated mRNA isoforms. Collectively, our findings indicate that mRNA m5C methylation is implicated during AML progression, and AZA exhibits an overall suppressive effect on this process.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Azacitidine/pharmacology
- Antimetabolites, Antineoplastic/pharmacology
- Antimetabolites, Antineoplastic/therapeutic use
- RNA, Messenger/genetics
- HL-60 Cells
- DNA Methylation/drug effects
- Demethylation
- Aged
- Male
- Female
- Prognosis
- Transcriptome
- Gene Expression Regulation, Leukemic/drug effects
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
Collapse
Affiliation(s)
- Ziwei Chen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Yingyu Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zaifeng Zhang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Center of Laboratory Medicine, National Clinical Research Center of Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College/National Center for Cardiovascular Diseases, Beijing, China
| | - Chang Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Lili Zhang
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ye Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Gaoyuan Sun
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Xiao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
- Clinical Biobank, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ru Feng
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Chunli Zhang
- Department of Hematology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
191
|
Abebe Z, Wassie MM, Mekonnen TC, Reynolds AC, Melaku YA. Difference in Gastrointestinal Cancer Risk and Mortality by Dietary Pattern Analysis: A Systematic Review and Meta-Analysis. Nutr Rev 2025; 83:e991-e1013. [PMID: 39018497 DOI: 10.1093/nutrit/nuae090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/19/2024] Open
Abstract
CONTEXT Several studies have demonstrated that dietary patterns identified by a posteriori and hybrid methods are associated with gastrointestinal (GI) cancer risk and mortality. These studies applied different methods for analyzing dietary data and reported inconsistent findings. OBJECTIVE This systematic review and meta-analysis were aimed to determine the association between dietary patterns, derived using principal component analysis (PCA) and reduced rank regression (RRR), and GI cancer risk and GI cancer-caused mortality. DATA SOURCE Articles published up to June 2023 in English were eligible for inclusion. The Medline, SCOPUS, Cochrane Library, CINHAL, PsycINFO, ProQuest, and Web of Sciences databases were used to identify prospective studies. The Preferred Reporting Item for Systematic Review and Meta-analysis Protocol 2020 was used to report results. DATA EXTRACTION A total of 28 studies were eligible for inclusion. Varied approaches to deriving dietary patterns were used, including PCA (n = 22), RRR (n = 2), combined PCA and RRR (n = 1), cluster analysis (CA; n = 2) and combined PCA and CA (n = 1). DATA ANALYSIS Two dietary patterns, "healthy" and "unhealthy," were derived using PCA and RRR. The healthy dietary pattern was characterized by a higher intake of fruits, whole grains, legumes, vegetables, milk, and other dairy products, whereas the unhealthy dietary pattern was characterized by a higher intake of red and processed meat, alcohol, and both refined and sugar-sweetened beverages. The findings indicated that the PCA-derived healthy dietary pattern was associated with an 8% reduced risk (relative risk [RR], 0.92; 95% CI, 0.87-0.98), and the unhealthy dietary pattern was associated with a 14% increased risk (RR, 1.14; 95% CI, 1.07-1.22) of GI cancers. Similarly, the RRR-derived healthy dietary pattern (RR, 0.83; 95% CI, 0.61-1.12) may be associated with reduced risk of GI cancers. In contrast, the RRR-derived unhealthy dietary pattern (RR, 0.93; 95% CI, 0.57-1.52) had no association with a reduced risk of GI cancers. Similarly, evidence suggested that PCA-derived healthy dietary patterns may reduce the risk of death from GI cancers, whereas PCA-derived unhealthy dietary patterns may increase the risk. CONCLUSION Findings from prospective studies on the association of PCA-derived dietary patterns and the risk of GI cancers support the evidence of healthy and unhealthy dietary patterns as either protective or risk-increasing factors for GI cancers and for survivorship, respectively. The findings also suggest that the RRR-derived healthy dietary pattern reduces the risk of GI cancers (albeit with low precision), but no association was found for the RRR-derived unhealthy dietary pattern. Prospective studies are required to further clarify disparities in the association between PCA- and RRR-derived dietary patterns and the risk of GI cancers. Systematic review registration: PROSPERO registration no. CRD42022321644.
Collapse
Affiliation(s)
- Zegeye Abebe
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
- Department of Human Nutrition, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, P. O. Box 196, Gondar, Ethiopia
| | - Molla Mesele Wassie
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Tefera Chane Mekonnen
- Adelaide Medical School, The University of Adelaide, South Australian Health and Medical Research Institute, North Terrace, South Australia, Australia
| | - Amy C Reynolds
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
| | - Yohannes Adama Melaku
- Flinders Health and Medical Research Institute, Flinders University, Adelaide, South Australia, Australia
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Australia
| |
Collapse
|
192
|
Yue T, Sun Y, Dai Y, Jin F. Mechanisms for resistance to BCMA-targeted immunotherapies in multiple myeloma. Blood Rev 2025; 70:101256. [PMID: 39818472 DOI: 10.1016/j.blre.2025.101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Multiple myeloma (MM) remains incurable and patients eventually face the relapse/refractory dilemma. B cell maturation antigen (BCMA)-targeted immunotherapeutic approaches have shown great effectiveness in patients with relapsed/refractory MM, mainly including chimeric antigen receptor T cells (CAR-T), bispecific T cell engagers (TCEs), and antibody-drug conjugates (ADCs). However, their impact on long-term survival remains to be determined. Nonetheless, resistance to these novel therapies is still inevitable, raising a challenge that we have never met in both laboratory research and clinical practice. In this scenario, the investigation aiming to enhance and prolong the anti-MM activity of BCMA-targeted therapies has been expanding rapidly. Despite considerable uncertainty in our understanding of the mechanisms for their resistance, they have mainly been attributed to antigen-dependency, T cell-driven factors, and (immune) tumor microenvironment. In this review, we summarize the current understanding of the mechanisms for resistance to BCMA-targeted immunotherapies and discuss potential strategies for overcoming it.
Collapse
Affiliation(s)
- Tingting Yue
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China; Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China
| | - Yue Sun
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Yun Dai
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, Jilin, China.
| | - Fengyan Jin
- Department of Hematology, First Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
193
|
Guo D, Cai S, Deng L, Xu W, Fu S, Lin Y, Jiang T, Li Q, Shen Z, Zhang J, Luo P, Tang B, Wang L. Ferroptosis in Pulmonary Disease and Lung Cancer: Molecular Mechanisms, Crosstalk Regulation, and Therapeutic Strategies. MedComm (Beijing) 2025; 6:e70116. [PMID: 39991627 PMCID: PMC11847630 DOI: 10.1002/mco2.70116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 02/25/2025] Open
Abstract
Ferroptosis is a distinct form of iron-dependent programmed cell death characterized primarily by intracellular iron accumulation and lipid peroxidation. Multiple cellular processes, including amino acid metabolism, iron metabolism, lipid metabolism, various signaling pathways, and autophagy, have been demonstrated to influence the induction and progression of ferroptosis. Recent investigations have elucidated that ferroptosis plays a crucial role in the pathogenesis of various pulmonary disorders, including lung injury, chronic obstructive pulmonary disease, pulmonary fibrosis, and asthma. Ferroptosis is increasingly recognized as a promising novel strategy for cancer treatment. Various immune cells within the tumor microenvironment, including CD8+ T cells, macrophages, regulatory T cells, natural killer cells, and dendritic cells, have been shown to induce ferroptosis in tumor cells and modulate the process through the regulation of iron and lipid metabolism pathways. Conversely, ferroptosis can reciprocally alter the metabolic environment, leading to the activation or inhibition of immune cell functions, thereby modulating immune responses. This paper reviews the molecular mechanism of ferroptosis and describes the tumor immune microenvironment, discusses the connection between ferroptosis and the tumor microenvironment in lung cancer and pulmonary diseases, and discusses the development prospect of their interaction in the treatment of lung cancer and pulmonary diseases.
Collapse
Affiliation(s)
- Dandan Guo
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Songhua Cai
- Department of Thoracic SurgeryNational Cancer CenterNational Clinical Research Center for CancerCancer Hospital & Shenzhen HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeShenzhenGuangdongChina
| | - Lvdan Deng
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Wangting Xu
- Department of RespiratoryFirst Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiangChina
| | - Sentao Fu
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Yaling Lin
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Tong Jiang
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Qing Li
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Zhijun Shen
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| | - Jian Zhang
- The Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Peng Luo
- The Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Bufu Tang
- Department of Radiation OncologyZhongshan HospitalFudan UniversityShanghaiShanghaiChina
| | - Ling Wang
- The Department of OncologyFirst Affiliated Hospital of Dalian Medical UniversityDalianLiaoningChina
| |
Collapse
|
194
|
Zhou Y, Zhou R, Wang N, Zhao T, Qiu P, Gao C, Chang M, Lin N, Zhang X, Li JZ, Wang Q. Inhibition of STRA6 suppresses NSCLC growth via blocking STAT3/SREBP-1c axis-mediated lipogenesis. Mol Cell Biochem 2025; 480:1715-1730. [PMID: 39168951 DOI: 10.1007/s11010-024-05085-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024]
Abstract
Dysregulation in lipid metabolism is among the most prominent metabolic alterations in cancer. Stimulated by retinoic acid 6 (STRA6), a vitamin A transporter has shown to be involved in the pathogenesis of cancers. Nevertheless, the function of STRA6 in non-small cell lung cancer (NSCLC) progression remains undefined. We obtained cancer and adjacent tissues from NSCLC patients and conducted functional experiments on STRA6 on NSCLC cell lines and mice. High STRA6 expression is correlated with poor prognosis in patients with NSCLC. Results from in vitro and in vivo animal studies showed that STRA6 knockdown suppressed the proliferation, migration, and invasion of NSCLC cells in vitro and tumor growth in vivo through regulation of lipid synthesis. Mechanistically, STRA6 activated a Janus kinase 2/signal transducer and activator of transcription 3 (JAK2-STAT3) signaling cascade which inducing the expression of STAT3 target gene. By inducing the expression of the target gene of STAT3, sterol regulatory element binding protein 1 (SREBP-1), STRA6 promotes SREBP-1-mediated adipogenesis and provides energy for NSCLC cell growth. Our study uncovers a novel STRA6/STAT3/SREBP-1 regulatory axis that enhances NSCLC metastasis by reprogramming of lipid metabolism. These results demonstrate the potential use of STRA6 as a biomarker for diagnosing NSCLC, which may therefore potentially serve as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Thoracic Surgery, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Rong Zhou
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Ning Wang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Tingfeng Zhao
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Pan Qiu
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Chenzi Gao
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Meijia Chang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Ning Lin
- NHC Contraceptives Adverse Reaction Surveillance Center, Jiangsu Health Development Research Center, Nanjing, 210036, Jiangsu, China
| | - Xu Zhang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| | - John Zhong Li
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| | - Qian Wang
- Jiangsu Province Key Lab of Human Functional Genomics, Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
195
|
Meng C, Cao S, Li L, Xia L, Chu X, Jiang L, Wang X, Wang H, Huang S, Duan Q, Sun Z, He Q, Hui X, Yang D, Zhang H, Li Z, Liu X, Tian Y, Sun Y, Li Y, Jiang H, Niu Z, Zhang J, Zhou Y. Short-term outcomes of preoperative computed tomography angiography versus standard assessment in patients with BMI ≥ 25.0 kg/m 2 undergoing laparoscopic gastrectomy: the GISSG20-01 randomized clinical trial. Gastric Cancer 2025; 28:283-293. [PMID: 39786664 DOI: 10.1007/s10120-024-01580-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Laparoscopic gastrectomy lacks hand-direct tactile sense and has a limited surgical field compared to laparotomy. Apart from textbook classification, there are anatomical variations in the gastric arteries. Laparoscopic gastrectomy presents technical difficulties and necessitates a more comprehensive comprehension of regional anatomy than open surgical procedures. We aimed to compare efficacy and safety of preoperative computed tomography angiography (CTA) associated with surgical decision-making for laparoscopic gastrectomy. METHODS The GISSG 20-01 study was a multicenter, open-label, randomized clinical trial. The enrollment criteria mainly included histologically confirmed gastric cancer patients with BMI ≥ 25 kg/m2. Eligible patients were randomly assigned to the CTA group or the non-CTA group in a 1:1 ratio. The primary endpoint was the volume of intraoperative blood loss. RESULTS Between November 2020 and December 2021, 382 patients were enrolled and randomly assigned. After exclusion of 25 patients, 357 patients were included in the modified intention-to-treat population (179 in the CTA group and 178 in the non-CTA group). The mean intraoperative blood loss (CTA vs non-CTA; 74.2 vs 95.0 mL, P = 0.005) and operation time (215.4 vs 231.2 min, P = 0.004) was significantly lower in the CTA group. Total number of retrieved lymph nodes was similar in two groups (32.2 vs 30.2, P = 0.070). The CTA group had a significantly lower surgery task load index sore than the non-CTA group (36.6 vs 41.7, P < 0.001). There was no significant difference in postoperative complications rate of 14.5% in the CTA group and 22.5% in the non-CTA group (difference, - 8.0% [95% CI, - 16.0 to 0.1]; P = 0.053). CONCLUSION Preoperative CTA associated with surgical decision-making could relieve surgery burden and lead to a better surgical performance compared with non-CTA support, which including decreased blood loss volume, vessel damage and operation time. TRIAL REGISTRATION NCT04636099.
Collapse
Affiliation(s)
- Cheng Meng
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, China
- Gastrointestinal Tumor Translational Medicine Research Institute of Qingdao University, Qingdao, China
| | - Shougen Cao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, China
- Gastrointestinal Tumor Translational Medicine Research Institute of Qingdao University, Qingdao, China
| | - Leping Li
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Jinan, China
| | - Lijian Xia
- Department of Gastrointestinal Surgery, Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Xianqun Chu
- Department of Gastrointestinal Surgery, Jining No.1 People's Hospital, Jining, China
| | - Lixin Jiang
- Department of Gastrointestinal Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - XinJian Wang
- Department of Gastrointestinal Surgery, Weihai Central Hospital, Weihai, China
| | - Hao Wang
- Department of Gastrointestinal Surgery, Dongying People's Hospital, Dongying, China
| | - Shusheng Huang
- Department of Gastrointestinal Surgery, People's Hospital of Jimo Qingdao, Qingdao, China
| | - Quanhong Duan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zuocheng Sun
- Department of Oncological Surgery, Weifang People's Hospital, Weifang, China
| | - Qingsi He
- Department of Gastrointestinal Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Xizeng Hui
- Department of Gastrointestinal Surgery, Rizhao People's Hospital, Rizhao, China
| | - Daogui Yang
- Department of Gastrointestinal Surgery, Liaocheng People's Hospital, Liaocheng, China
| | - Huanhu Zhang
- Department of Gastrointestinal Surgery, Weihai Municipal Hospital, Weihai, China
| | - Zequn Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, China
- Gastrointestinal Tumor Translational Medicine Research Institute of Qingdao University, Qingdao, China
| | - Xiaodong Liu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, China
- Gastrointestinal Tumor Translational Medicine Research Institute of Qingdao University, Qingdao, China
| | - Yulong Tian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, China
- Gastrointestinal Tumor Translational Medicine Research Institute of Qingdao University, Qingdao, China
| | - Yuqi Sun
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, China
- Gastrointestinal Tumor Translational Medicine Research Institute of Qingdao University, Qingdao, China
| | - Yu Li
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, China
- Gastrointestinal Tumor Translational Medicine Research Institute of Qingdao University, Qingdao, China
| | - Haitao Jiang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, China
- Gastrointestinal Tumor Translational Medicine Research Institute of Qingdao University, Qingdao, China
| | - Zhaojian Niu
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, China
- Gastrointestinal Tumor Translational Medicine Research Institute of Qingdao University, Qingdao, China
| | - Jian Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, China
- Gastrointestinal Tumor Translational Medicine Research Institute of Qingdao University, Qingdao, China
| | - Yanbing Zhou
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, China.
- Gastrointestinal Tumor Translational Medicine Research Institute of Qingdao University, Qingdao, China.
| |
Collapse
|
196
|
Xiao L, Shen Z, Pan Z, Qiu Y, Huang D, Liu Y, Liu C, Zhang X. High-dimensional deconstruction of HNSC reveals clinically distinct cellular states and ecosystems that are associated with prognosis and therapy response. J Transl Med 2025; 23:254. [PMID: 40025504 PMCID: PMC11872339 DOI: 10.1186/s12967-025-06299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 02/23/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Characterizing the variety of cell types in the tumor microenvironment (TME) and their organization into cellular communities is vital for elucidating the biological diversity of cancer and informing therapeutic strategies. METHODS Here, we employed a machine learning-based algorithm framework, EcoTyper, to analyze single-cell transcriptomes from 139 patients with head and neck squamous cell carcinoma (HNSC)and gene expression profiles from 983 additional HNSC patients, aiming to delineate the fundamental cell states and ecosystems integral to HNSC. RESULTS A diverse landscape of 66 cell states and 9 ecosystems within the HNSC microenvironment was identified, revealing classical cell types while also expanding upon previous immune classifications. Survival analysis revealed that specific cell states and ecotypes (ecosystems) are associated with patient prognosis, underscoring their potential as indicators of clinical outcomes. Moreover, distinct cell states and ecotypes exhibited varying responses to immunotherapy and chemotherapy, with several showing promise as predictive biomarkers for treatment efficacy. CONCLUSION Our large-scale integrative transcriptome analysis provides high-resolution insights into the cellular states and ecosystems of HNSC, facilitating the discovery of novel biomarkers and supporting the development of precision therapies.
Collapse
Affiliation(s)
- Lei Xiao
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Zhe Shen
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Zhaoyu Pan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Donghai Huang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China
| | - Chao Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China.
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China.
- Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Changsha, 410008, Hunan, China.
- Clinical Research Center for Pharyngolaryngeal Diseases and Voice Disorders in Hunan Province, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, 410008, Hunan, China.
| |
Collapse
|
197
|
Li J, Zhang M, Sun Q, Li X, Du F, Cheng Y, Li S, Zhang J. CENPF interaction with PLA2G4A promotes glioma growth by modulating mTORC1 and NF-κB pathways. Cancer Cell Int 2025; 25:73. [PMID: 40025532 PMCID: PMC11871623 DOI: 10.1186/s12935-025-03700-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 02/17/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glioma is the most common primary malignant tumor of the central nervous system, and due to the limited effectiveness of traditional single-target therapies, there is an urgent need for new therapeutic targets. Centromere protein F (CENPF) belongs to the centromere protein family and is mainly involved in the regulation of the cell cycle. CENPF has recently been found to play a key role in tumorigenesis and tumor progression, but its role in gliomas has not been well studied. METHODS The expression level and clinical information of CENPF were obtained by analyzing the TCGA, CGGA and GEO databases. Immunohistochemistry and western blot analysis were used to quantitatively detect the expression of CENPF in glioma tissues and cell lines. Gene set enrichment analysis (GSEA) of TCGA and GSE16011 datasets was used to explore the molecular mechanism of the CENPF. CENPF-interacting proteins were detected by molecular docking and co-immunoprecipitation (Co-IP). After silencing CENPF, CCK-8 assay, Transwell assay and flow cytometry were used to detect changes in cell proliferation, invasion, cell cycle and apoptosis, and Western blot was used to detect changes in signaling pathway protein levels. RESULTS Bioinformatics analysis showed that CENPF was generally highly expressed in gliomas and was associated with poor prognosis. This result was confirmed in glioma samples from our hospital. Multivariate Cox regression analysis showed that CENPF was an independent prognostic marker for gliomas. Western blot analysis in vitro showed that CENPF was overexpressed in the U251 and LN229 cell lines; therefore, these two cell lines were selected for subsequent experiments. GSEA analysis showed that CENPF was mainly involved in the G2/M phase-mediated cell cycle and P53 signaling pathway. Flow cytometry analysis confirmed that silencing CENPF induced G2/M phase arrest and increased apoptosis in glioma cells. Subsequent experiments confirmed that CENPF influences the epithelial-mesenchymal transition (EMT) process through the mTORC1 signaling pathway. Molecular docking and Co-IP assay revealed that CENPF exerts its effects by interacting with PLA2G4A promoting the downstream signaling pathway. Finally, we found that silencing CENPF combined with a PLA2G4A inhibitor (AACOCF3) induced glioma cell apoptosis and exhibited anti-glioma effects. CONCLUSIONS This study found that CENPF plays a key role in promoting tumorigenesis through its interaction with PLA2G4A. This study provides a theoretical foundation for advancing multi-targeted therapies in glioma and for developing strategies to overcome tumor drug resistance.
Collapse
Affiliation(s)
- Junhong Li
- Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China
| | - Moxuan Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Qiang Sun
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Xinglan Li
- Linyi People's Hospital, Shandong Second Medical University, Linyi, Shandong Province, 276000, China
| | - Fei Du
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Yanhao Cheng
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong Province, 276000, China
| | - Shuzhi Li
- Department of Neurosurgery, Gaomi Traditional Chinese Medicine Hospital, Weifang, Shandong Province, 261500, China.
| | - Jian Zhang
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong Province, 276000, China.
| |
Collapse
|
198
|
Zhang X, Zhang L, Tian J, Li Y, Wu M, Zhang L, Qin X, Gong L. The application and prospects of drug delivery systems in idiopathic pulmonary fibrosis. BIOMATERIALS ADVANCES 2025; 168:214123. [PMID: 39615374 DOI: 10.1016/j.bioadv.2024.214123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease primarily affecting elderly individuals aged >65 years and has a poor prognosis. No effective treatment is currently available for IPF. The two antipulmonary fibrosis drugs nintedanib and pirfenidone approved by the FDA in the United States have somewhat decelerated IPF progression. However, the side effects of these drugs can lead to poor patient tolerance and compliance with the medications. Researchers have recently developed various methods for IPF treatment, such as gene silencing and pathway inhibitors, which hold great promise in IPF treatment. Nevertheless, the nonselectivity and nonspecificity of drugs often affect their efficacies. Drug delivery systems (DDS) are crucial for delivering drugs to specific target tissues or cells, thereby minimizing potential side effects, enhancing drug bioavailability, and reducing lung deposition. This review comprehensively summarizes the current state of DDS and various delivery strategies for IPF treatment (e.g., nano-delivery, hydrogel delivery, and biological carrier delivery) to completely expound the delivery mechanisms of different drug delivery carriers. Subsequently, the advantages and disadvantages of different DDS are fully discussed. Finally, the challenges and difficulties associated with the use of different DDS are addressed so as to accelerate their rapid clinical translation.
Collapse
Affiliation(s)
- Xi Zhang
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China; Department of Clinical Medicine, The Fifth Clinical Institution, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Ling Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Jiahua Tian
- Department of Clinical Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunfei Li
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Manli Wu
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Longju Zhang
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China
| | - Xiaofei Qin
- School of Biological Engineering, Zunyi Medical University, Guangdong 519000, China.
| | - Ling Gong
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), GuiZhou 563000, China.
| |
Collapse
|
199
|
Sun L, Lu B, Li C, Xu G. Hsa_circ_0000515 sequesters microRNA-296-5p and elevates RNF44 expression to encourage the NSCLC progression. J Cell Commun Signal 2025; 19:e70005. [PMID: 39995883 PMCID: PMC11850089 DOI: 10.1002/ccs3.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/21/2024] [Accepted: 02/09/2025] [Indexed: 02/26/2025] Open
Abstract
Circular RNAs (circRNAs) are RNA molecules frequently involved in tumorigenesis. This research study focuses on the relevance of hsa_circ_515 (circ_515) to non-small cell lung cancer (NSCLC) progression and the downstream targets involved. Differentially expressed circRNAs in NSCLC were screened using a GSE158695 dataset. Circ_515 was overexpressed and indicated poor outcomes in patients with NSCLC. Knockdown of circ_515 repressed proliferation and invasiveness, while potentiated cell cycle arrest and apoptosis of NSCLC cells, and upregulation of circ_515 led to converse trends. The candidate downstream transcripts of circ_515 were explored using integrated bioinformatic analyses. Ectopic expression of miR-296-5p reduced the malignance of NSCLC cells. Circ_515 sequestered miR-296-5p and blocked its suppressive role in RING finger protein 44 (RNF44) expression. Downregulation of RNF44 counteracted the oncogenic effects of circ_515. In vivo, the anti-tumor effects of circ_515 knockdown were reversed by miR-296-5p, while the tumor-promoting effects of circ_515 upregulation were abolished by RNF44 knockdown. All in all, our findings demonstrate that circ_515 sequesters miR-296-5p and elevates RNF44 expression to encourage the NSCLC progression. This study might provide new thoughts on NSCLC management.
Collapse
Affiliation(s)
- Lixin Sun
- Department of Thoracic SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Bei Lu
- Department of Thoracic SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Chongyuan Li
- Department of Thoracic SurgeryThe Fourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Guangquan Xu
- Department of Thoracic SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
200
|
Gao H, Qu L, Li M, Guan X, Zhang S, Deng X, Wang J, Xing F. Unlocking the potential of chimeric antigen receptor T cell engineering immunotherapy: Long road to achieve precise targeted therapy for hepatobiliary pancreatic cancers. Int J Biol Macromol 2025; 297:139829. [PMID: 39814310 DOI: 10.1016/j.ijbiomac.2025.139829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Innovative therapeutic strategies are urgently needed to address the ongoing global health concern of hepatobiliary pancreatic malignancies. This review summarizes the latest and most comprehensive research of chimeric antigen receptor (CAR-T) cell engineering immunotherapy for treating hepatobiliary pancreatic cancers. Commencing with an exploration of the distinct anatomical location and the immunosuppressive, hypoxic tumor microenvironment (TME), this review critically assesses the limitations of current CAR-T therapy in hepatobiliary pancreatic cancers and proposes corresponding solutions. Various studies aim at enhancing CAR-T cell efficacy in these cancers through improving T cell persistence, enhancing antigen specificity and reducing tumor heterogeneity, also modulating the immunosuppressive and hypoxic TME. Additionally, the review examines the application of emerging nanoparticles and biotechnologies utilized in CAR-T therapy for these cancers. The results suggest that constructing optimized CAR-T cells to overcome physical barrier, manipulating the TME to relieve immunosuppression and hypoxia, designing CAR-T combination therapies, and selecting the most suitable delivery strategies, all together could collectively enhance the safety of CAR-T engineering and advance the effectiveness of adaptive cell therapy for hepatobiliary pancreatic cancers.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lianyue Qu
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Mu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Deng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|