1951
|
Ahmed S, Saini S, Arora S, Singh J. Chromodomain protein Swi6-mediated role of DNA polymerase alpha in establishment of silencing in fission Yeast. J Biol Chem 2001; 276:47814-21. [PMID: 11581276 DOI: 10.1074/jbc.m109186200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although DNA replication has been thought to play an important role in the silencing of mating type loci in Saccharomyces cerevisiae, recent studies indicate that silencing can be decoupled from replication. In Schizosaccharomyces pombe, mating type silencing is brought about by the trans-acting proteins, namely Swi6, Clr1-Clr4, and Rhp6, in cooperation with the cis-acting silencers. The latter contain an autonomous replication sequence, suggesting that DNA replication may be critical for silencing in S. pombe. To investigate the connection between DNA replication and silencing in S. pombe, we analyzed several temperature-sensitive mutants of DNA polymerase alpha. We find that one such mutant, swi7H4, exhibits silencing defects at mat, centromere, and telomere loci. This effect is independent of the checkpoint and replication defects of the mutant. Interestingly, the extent of the silencing defect in the swi7H4 mutant at the silent mat2 locus is further enhanced in absence of the cis-acting, centromere-proximal silencer. The chromodomain protein Swi6, which is required for silencing and is localized to mat and other heterochromatin loci, interacts with DNA polymerase alpha in vivo and in vitro in wild type cells. However, it does not interact with the mutant pol alpha and is delocalized away from the silent mat loci in the mutant. Our results demonstrate a role of DNA polymerase alpha in the establishment of silencing. We propose a recruitment model for the coupling of DNA replication with the establishment of silencing by the chromodomain protein Swi6, which may be applicable to higher eukaryotes.
Collapse
Affiliation(s)
- S Ahmed
- Department of Pharmacology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
1952
|
Roguev A, Schaft D, Shevchenko A, Pijnappel W, Wilm M, Aasland R, Stewart A. The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 2001; 20:7137-48. [PMID: 11742990 PMCID: PMC125774 DOI: 10.1093/emboj/20.24.7137] [Citation(s) in RCA: 484] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The SET domain proteins, SUV39 and G9a have recently been shown to be histone methyltransferases specific for lysines 9 and 27 (G9a only) of histone 3 (H3). The SET domains of the Saccharomyces cerevisiae Set1 and Drosophila trithorax proteins are closely related to each other but distinct from SUV39 and G9a. We characterized the complex associated with Set1 and Set1C and found that it is comprised of eight members, one of which, Bre2, is homologous to the trithorax-group (trxG) protein, Ash2. Set1C requires Set1 for complex integrity and mutation of Set1 and Set1C components shortens telomeres. One Set1C member, Swd2/Cpf10 is also present in cleavage polyadenylation factor (CPF). Set1C methylates lysine 4 of H3, thus adding a new specificity and a new subclass of SET domain proteins known to methyltransferases. Since methylation of H3 lysine 4 is widespread in eukaryotes, we screened the databases and found other Set1 homologues. We propose that eukaryotic Set1Cs are H3 lysine 4 methyltransferases and are related to trxG action through association with Ash2 homologues.
Collapse
Affiliation(s)
- Assen Roguev
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany and
Department of Molecular Biology, University of Bergen, Thormoehlensgt. 55, N-5020 Bergen, Norway Present address: Technische Universitaet Dresden, c/o MPI-CBG, Pfotenhauerstrasse 108, D-01307 Dresden, Germany Present address: Max-Planck-Institute for Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany Corresponding author e-mail:
| | - Daniel Schaft
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany and
Department of Molecular Biology, University of Bergen, Thormoehlensgt. 55, N-5020 Bergen, Norway Present address: Technische Universitaet Dresden, c/o MPI-CBG, Pfotenhauerstrasse 108, D-01307 Dresden, Germany Present address: Max-Planck-Institute for Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany Corresponding author e-mail:
| | - Anna Shevchenko
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany and
Department of Molecular Biology, University of Bergen, Thormoehlensgt. 55, N-5020 Bergen, Norway Present address: Technische Universitaet Dresden, c/o MPI-CBG, Pfotenhauerstrasse 108, D-01307 Dresden, Germany Present address: Max-Planck-Institute for Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany Corresponding author e-mail:
| | - W.W.M.Pim Pijnappel
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany and
Department of Molecular Biology, University of Bergen, Thormoehlensgt. 55, N-5020 Bergen, Norway Present address: Technische Universitaet Dresden, c/o MPI-CBG, Pfotenhauerstrasse 108, D-01307 Dresden, Germany Present address: Max-Planck-Institute for Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany Corresponding author e-mail:
| | | | - Rein Aasland
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany and
Department of Molecular Biology, University of Bergen, Thormoehlensgt. 55, N-5020 Bergen, Norway Present address: Technische Universitaet Dresden, c/o MPI-CBG, Pfotenhauerstrasse 108, D-01307 Dresden, Germany Present address: Max-Planck-Institute for Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany Corresponding author e-mail:
| | - A.Francis Stewart
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany and
Department of Molecular Biology, University of Bergen, Thormoehlensgt. 55, N-5020 Bergen, Norway Present address: Technische Universitaet Dresden, c/o MPI-CBG, Pfotenhauerstrasse 108, D-01307 Dresden, Germany Present address: Max-Planck-Institute for Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany Corresponding author e-mail:
| |
Collapse
|
1953
|
Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SY, Winston F, Allis CD. Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 2001; 15:3286-95. [PMID: 11751634 PMCID: PMC312847 DOI: 10.1101/gad.940201] [Citation(s) in RCA: 484] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Histone methylation is known to be associated with both transcriptionally active and repressive chromatin states. Recent studies have identified SET domain-containing proteins such as SUV39H1 and Clr4 as mediators of H3 lysine 9 (Lys9) methylation and heterochromatin formation. Interestingly, H3 Lys9 methylation is not observed from bulk histones isolated from asynchronous populations of Saccharomyces cerevisiae or Tetrahymena thermophila. In contrast, H3 lysine 4 (Lys4) methylation is a predominant modification in these smaller eukaryotes. To identify the responsible methyltransferase(s) and to gain insight into the function of H3 Lys4 methylation, we have developed a histone H3 Lys4 methyl-specific antiserum. With this antiserum, we show that deletion of SET1, but not of other putative SET domain-containing genes, in S. cerevisiae, results in the complete abolishment of H3 Lys4 methylation in vivo. Furthermore, loss of H3 Lys4 methylation in a set1 Delta strain can be rescued by SET1. Analysis of histone H3 mutations at Lys4 revealed a slow-growth defect similar to a set1 Delta strain. Chromatin immunoprecipitation assays show that H3 Lys4 methylation is present at the rDNA locus and that Set1-mediated H3 Lys4 methylation is required for repression of RNA polymerase II transcription within rDNA. Taken together, these data suggest that Set1-mediated H3 Lys4 methylation is required for normal cell growth and transcriptional silencing.
Collapse
Affiliation(s)
- S D Briggs
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | | | |
Collapse
|
1954
|
Heard E, Rougeulle C, Arnaud D, Avner P, Allis CD, Spector DL. Methylation of histone H3 at Lys-9 is an early mark on the X chromosome during X inactivation. Cell 2001; 107:727-38. [PMID: 11747809 DOI: 10.1016/s0092-8674(01)00598-0] [Citation(s) in RCA: 369] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Coating of the X chromosome by Xist RNA is an essential trigger for X inactivation. However, little is known about the early chromatin remodeling events that transform this signal into transcriptional silencing. Here we report that methylation of histone H3 lysine 9 on the inactive X chromosome occurs immediately after Xist RNA coating and before transcriptional inactivation of X-linked genes. X-chromosomal H3 Lys-9 methylation occurs during the same window of time as H3 Lys-9 hypoacetylation and H3 Lys-4 hypomethylation. Histone H3 modifications thus represent the earliest known chromatin changes during X inactivation. We also identify a unique "hotspot" of H3 Lys-9 methylation 5' to Xist, and we propose that this acts as a nucleation center for Xist RNA-dependent spread of inactivation along the X chromosome via H3 Lys-9 methylation.
Collapse
Affiliation(s)
- E Heard
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| | | | | | | | | | | |
Collapse
|
1955
|
Affiliation(s)
- A Bird
- Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, UK.
| |
Collapse
|
1956
|
Wang H, Cao R, Xia L, Erdjument-Bromage H, Borchers C, Tempst P, Zhang Y. Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell 2001; 8:1207-17. [PMID: 11779497 DOI: 10.1016/s1097-2765(01)00405-1] [Citation(s) in RCA: 417] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Methylation of histone H3 at lysine 9 by SUV39H1 and subsequent recruitment of the heterochromatin protein HP1 has recently been linked to gene silencing. In addition to lysine 9, histone H3 methylation also occurs at lysines 4, 27, and 36. Here, we report the purification, molecular identification, and functional characterization of an H3-lysine 4-specific methyltransferase (H3-K4-HMTase), SET7. We demonstrate that SET7 methylates H3-K4 in vitro and in vivo. In addition, we found that methylation of H3-K4 and H3-K9 inhibit each other. Furthermore, H3-K4 and H3-K9 methylation by SET7 and SUV39H1, respectively, have differential effects on subsequent histone acetylation by p300. Thus, our study provides a molecular explanation to the differential effects of H3-K4 and H3-K9 methylation on transcription.
Collapse
Affiliation(s)
- H Wang
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
1957
|
Xin Z, Allis CD, Wagstaff J. Parent-specific complementary patterns of histone H3 lysine 9 and H3 lysine 4 methylation at the Prader-Willi syndrome imprinting center. Am J Hum Genet 2001; 69:1389-94. [PMID: 11592036 PMCID: PMC1235550 DOI: 10.1086/324469] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2001] [Accepted: 09/19/2001] [Indexed: 12/29/2022] Open
Abstract
The Prader-Willi syndrome (PWS)/Angelman syndrome (AS) region, on human chromosome 15q11-q13, exemplifies coordinate control of imprinted gene expression over a large chromosomal domain. Establishment of the paternal state of the region requires the PWS imprinting center (PWS-IC); establishment of the maternal state requires the AS-IC. Cytosine methylation of the PWS-IC, which occurs during oogenesis in mice, occurs only after fertilization in humans, so this modification cannot be the gametic imprint for the PWS/AS region in humans. Here, we demonstrate that the PWS-IC shows parent-specific complementary patterns of H3 lysine 9 (Lys9) and H3 lysine 4 (Lys4) methylation. H3 Lys9 is methylated on the maternal copy of the PWS-IC, and H3 Lys4 is methylated on the paternal copy. We suggest that H3 Lys9 methylation is a candidate maternal gametic imprint for this region, and we show how changes in chromatin packaging during the life cycle of mammals provide a means of erasing such an imprint in the male germline.
Collapse
Affiliation(s)
- Zhenghan Xin
- Departments of Biochemistry and Molecular Genetics and Pediatrics, University of Virginia Health System, Charlottesville
| | - C. David Allis
- Departments of Biochemistry and Molecular Genetics and Pediatrics, University of Virginia Health System, Charlottesville
| | - Joseph Wagstaff
- Departments of Biochemistry and Molecular Genetics and Pediatrics, University of Virginia Health System, Charlottesville
| |
Collapse
|
1958
|
Ausió J, Abbott DW, Wang X, Moore SC. Histone variants and histone modifications: A structural perspective. Biochem Cell Biol 2001. [DOI: 10.1139/o01-147] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this review, we briefly analyze the current state of knowledge on histone variants and their posttranslational modifications. We place special emphasis on the description of the structural component(s) defining and determining their functional role. The information available indicates that this histone "variability" may operate at different levels: short-range "local" or long-range "global", with different functional implications. Recent work on this topic emphasizes an earlier notion that suggests that, in many instances, the functional response to histone variability is possibly the result of a synergistic structural effect.Key words: histone variants, posttranslational modifications, chromatin.
Collapse
|
1959
|
Muyrers-Chen I, Paro R. Epigenetics: unforeseen regulators in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1552:15-26. [PMID: 11781112 DOI: 10.1016/s0304-419x(01)00032-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The past several years have seen a tremendous advance in the understanding of the basic mechanisms of epigenetic regulation. A large number of studies have not only linked epigenetics with cell cycle regulation but also partially unravelled how epigenetics may regulate gene expression. The aim of this review is to provide an overview of the latest findings and current ideas on epigenetics with a focus on emphasizing the emerging influence epigenetics has on the onset and progression of cancer.
Collapse
Affiliation(s)
- I Muyrers-Chen
- ZMBH, University of Heidelberg, INF 282, D-69120 Heidelberg, Germany
| | | |
Collapse
|
1960
|
Makowski AM, Dutnall RN, Annunziato AT. Effects of acetylation of histone H4 at lysines 8 and 16 on activity of the Hat1 histone acetyltransferase. J Biol Chem 2001; 276:43499-502. [PMID: 11585814 DOI: 10.1074/jbc.c100549200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During nucleosome assembly in vivo, newly synthesized histone H4 is specifically diacetylated on lysines 5 and 12 within the H4 NH(2)-terminal tail domain. The highly conserved "K5/K12" deposition pattern of acetylation is thought to be generated by the Hat1 histone acetyltransferase, which in vivo is found in the HAT-B complex. In the following report, the activity and substrate specificity of the human HAT-B complex and of recombinant yeast Hat1p have been examined, using synthetic H4 NH(2)-terminal peptides as substrates. As expected, the unacetylated H4 peptide was a good substrate for acetylation by yeast Hat1p and human HAT-B, while the K5/K12-diacetylated peptide was not significantly acetylated. Notably, an H4 peptide previously diacetylated on lysines 8 and 16 was a very poor substrate for acetylation by either yeast Hat1p or human HAT-B. Treating the K8/K16-diacetylated peptide with histone deacetylase prior to the HAT-B reaction raised acetylation at K5/K12 to 70-80% of control levels. These results present strong support for the model of H4-Hat1p interaction proposed by Dutnall et al. (Dutnall, R. N., Tafrov, S. T., Sternglanz, R., and Ramakrishnan, V. (1998) Cell 94, 427-438) and provide evidence for the first time that site-specific acetylation of histones can regulate the acetylation of other substrate sites.
Collapse
Affiliation(s)
- A M Makowski
- Department of Biology, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | |
Collapse
|
1961
|
|
1962
|
Pijnappel WW, Schaft D, Roguev A, Shevchenko A, Tekotte H, Wilm M, Rigaut G, Séraphin B, Aasland R, Stewart AF. The S. cerevisiae SET3 complex includes two histone deacetylases, Hos2 and Hst1, and is a meiotic-specific repressor of the sporulation gene program. Genes Dev 2001; 15:2991-3004. [PMID: 11711434 PMCID: PMC312828 DOI: 10.1101/gad.207401] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Set3 is one of two proteins in the yeast Saccharomyces cerevisiae that, like Drosophila Trithorax, contains both SET and PHD domains. We found that Set3 forms a single complex, Set3C, with Snt1, YIL112w, Sif2, Cpr1, and two putative histone deacetylases, Hos2 and NAD-dependent Hst1. Set3C includes NAD-dependent and independent deacetylase activities when assayed in vitro. Homology searches suggest that Set3C is the yeast analog of the mammalian HDAC3/SMRT complex. Set3C represses genes in early/middle of the yeast sporulation program, including the key meiotic regulators ime2 and ndt80. Whereas Hos2 is only found in Set3C, Hst1 is also present in a complex with Sum1, supporting previous characterizations of Hst1 and Sum1 as repressors of middle sporulation genes during vegetative growth. However, Hst1 is not required for meiotic repression by Set3C, thus implying that Set3C (-Hst1) and not Hst1-Sum1, is the meiotic-specific repressor of early/middle sporulation genes.
Collapse
Affiliation(s)
- W W Pijnappel
- Gene Expression Program, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
1963
|
Tamaru H, Selker EU. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature 2001; 414:277-83. [PMID: 11713521 DOI: 10.1038/35104508] [Citation(s) in RCA: 742] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA methylation is involved in epigenetic processes such as X-chromosome inactivation, imprinting and silencing of transposons. We have demonstrated previously that dim-2 encodes a DNA methyltransferase that is responsible for all known cytosine methylation in Neurospora crassa. Here we report that another Neurospora gene, dim-5, is required for DNA methylation, as well as for normal growth and full fertility. We mapped dim-5 and identified it by transformation with a candidate gene. The mutant has a nonsense mutation in a SET domain of a gene related to histone methyltransferases that are involved in heterochromatin formation in other organisms. Transformation of a wild-type strain with a segment of dim-5 reactivated a silenced hph gene, apparently by 'quelling' of dim-5. We demonstrate that recombinant DIM-5 protein specifically methylates histone H3 and that replacement of lysine 9 in histone H3 with either a leucine or an arginine phenocopies the dim-5 mutation. We conclude that DNA methylation depends on histone methylation.
Collapse
Affiliation(s)
- H Tamaru
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA
| | | |
Collapse
|
1964
|
Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt JF, Shilatifard A. COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci U S A 2001; 98:12902-7. [PMID: 11687631 PMCID: PMC60797 DOI: 10.1073/pnas.231473398] [Citation(s) in RCA: 477] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The trithorax genes encode an evolutionarily conserved family of proteins that function to maintain specific patterns of gene expression throughout cellular development. Members of this protein family contain a highly conserved 130- to 140-amino acid motif termed the SET domain. We report the purification and molecular identification of the subunits of a protein complex in the yeast Saccharomyces cerevisiae that includes the trithorax-related protein Set1. This protein complex, which we have named COMPASS (Complex Proteins Associated with Set1), consists of seven polypeptides ranging from 130 to 25 kDa. The same seven proteins were identified in COMPASS purified either by conventional biochemical chromatography or tandem-affinity tagging of the individual subunits of the complex. Null mutants missing any one of the six nonessential subunits of COMPASS grow more slowly than wild-type cells under normal conditions and demonstrate growth sensitivity to hydroxyurea. Furthermore, gene expression profiles of strains missing either of two nonessential subunits of COMPASS are altered in similar ways, suggesting these proteins have similar roles in gene expression in vivo. Molecular characterization of trithorax complexes will facilitate defining the role of this class of proteins in the regulation of gene expression and how their misregulation results in the development of human cancer.
Collapse
Affiliation(s)
- T Miller
- Department of Biochemistry, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | |
Collapse
|
1965
|
Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 2001; 107:323-37. [PMID: 11701123 DOI: 10.1016/s0092-8674(01)00542-6] [Citation(s) in RCA: 1293] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Histone H3 lysine 9 methylation has been proposed to provide a major "switch" for the functional organization of chromosomal subdomains. Here, we show that the murine Suv39h histone methyltransferases (HMTases) govern H3-K9 methylation at pericentric heterochromatin and induce a specialized histone methylation pattern that differs from the broad H3-K9 methylation present at other chromosomal regions. Suv39h-deficient mice display severely impaired viability and chromosomal instabilities that are associated with an increased tumor risk and perturbed chromosome interactions during male meiosis. These in vivo data assign a crucial role for pericentric H3-K9 methylation in protecting genome stability, and define the Suv39h HMTases as important epigenetic regulators for mammalian development.
Collapse
Affiliation(s)
- A H Peters
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter, Dr. Bohrgasse 7, A-1030, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1966
|
Shen WH. NtSET1, a member of a newly identified subgroup of plant SET-domain-containing proteins, is chromatin-associated and its ectopic overexpression inhibits tobacco plant growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2001; 28:371-83. [PMID: 11737775 DOI: 10.1046/j.1365-313x.2001.01135.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The SET- and chromo-domains are recognized as signature motifs for proteins that contribute to epigenetic control of gene expression through effects on the regional organization of chromatin structure. This paper reports the identification of a novel subgroup of SET-domain-containing proteins in tobacco and Arabidopsis, which show highest homologies with the Drosophila position-effect-variegation repressor protein SU(VAR)3-9 and the yeast centromer silencing protein CLR4. The tobacco SET-domain-containing protein (NtSET1) was fused to the green fluorescence protein (GFP) that serves as a visual marker for localization of the recombinant protein in living cells. Whereas control GFP protein alone was uniformly dispersed within the nucleus and cytoplasm, the NtSET1-GFP fusion protein showed a non-uniform localization to multiple nuclear regions in interphase tobacco TBY2 cells. During mitosis, the NtSET1-GFP associated with condensed chromosomes with a non-random distribution. The NtSET1 thus appears to have distinct target regions in the plant chromatin. Overexpression of the NtSET1-GFP in transgenic tobacco inhibited plant growth, implicating the possible involvement of the NtSET1 in transcriptional repression of growth control genes through the formation of higher-order chromatin domains.
Collapse
Affiliation(s)
- W H Shen
- Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67084 Strasbourg Cédex, France.
| |
Collapse
|
1967
|
Morales V, Giamarchi C, Chailleux C, Moro F, Marsaud V, Le Ricousse S, Richard-Foy H. Chromatin structure and dynamics: functional implications. Biochimie 2001; 83:1029-39. [PMID: 11879731 DOI: 10.1016/s0300-9084(01)01347-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In eucaryotes, DNA packaging into nucleosomes and its organization in a chromatin fiber generate constraints for all processes involving DNA, such as DNA-replication, -repair, -recombination, and -transcription. Transient changes in chromatin structure allow overcoming these constraints with different requirements in regions where processes described above are initiated. Mechanisms involved in chromatin dynamics are complex. Multiprotein complexes which can contain histone-acetyltransferase, -deacetylase, -methyltransferase or -kinase activities are targeted by regulatory factors to precise regions of the genome. These enzymes have been shown to modify histone-tails within specific nucleosomes. Post-translational modifications of histone-tails constitute a code that is thought to contribute to the nucleosome or to the chromatin fiber remodeling, either directly, or through the recruitment of other proteins. Other multiprotein complexes, such as ATP-dependent remodeling complexes, play an essential role in chromatin fiber dynamics allowing nucleosome sliding and redistribution on the DNA. We will focus here on the chromatin structure and its consequences for DNA damaging, replication, repair, and transcription and we will discuss the mechanisms of chromatin remodeling.
Collapse
Affiliation(s)
- V Morales
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099, CNRS, 118, route de Narbonne, 31062 Toulouse cedex 4, France
| | | | | | | | | | | | | |
Collapse
|
1968
|
Abstract
In the November 15 issue of Nature, report that disruption of histone methylation in the fungus Neurospora crassa results in the elimination of DNA methylation. This demonstrates that chromatin structure can pattern DNA methylation and suggests that different epigenetic layers engage in complex crosstalk.
Collapse
Affiliation(s)
- I Ben-Porath
- Department of Cellular Biochemistry, Hebrew University, 91120, Jerusalem, Israel
| | | |
Collapse
|
1969
|
Baumbusch LO, Thorstensen T, Krauss V, Fischer A, Naumann K, Assalkhou R, Schulz I, Reuter G, Aalen RB. The Arabidopsis thaliana genome contains at least 29 active genes encoding SET domain proteins that can be assigned to four evolutionarily conserved classes. Nucleic Acids Res 2001; 29:4319-4333. [PMID: 11691919 PMCID: PMC60187 DOI: 10.1093/nar/29.21.4319] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2001] [Revised: 09/07/2001] [Accepted: 09/07/2001] [Indexed: 11/13/2022] Open
Abstract
SET domains are conserved amino acid motifs present in chromosomal proteins that function in epigenetic control of gene expression. These proteins can be divided into four classes as typified by their Drosophila members E(Z), TRX, ASH1 and SU(VAR)3-9. Homologs of all four classes have been identified in yeast and mammals, but not in plants. A BLASTP screening of the Arabidopsis genome identified 37 genes: three E(z) homologs, five trx homologs, four ash1 homologs and 15 genes similar to Su(var)3-9. Seven genes were assigned as trx-related and three as ash1-related. Only four genes have been described previously. Our classification is based on the characteristics of the SET domains, cysteine-rich regions and additional conserved domains, including a novel YGD domain. RT-PCR analysis, cDNA cloning and matching ESTs show that at least 29 of the genes are active in diverse tissues. The high number of SET domain genes, possibly involved in epigenetic control of gene activity during plant development, can partly be explained by extensive genome duplication in Arabidopsis. Additionally, the lack of introns in the coding region of eight SU(VAR)3-9 class genes indicates evolution of new genes by retrotransposition. The identification of putative nuclear localization signals and AT-hooks in many of the proteins supports an anticipated nuclear localization, which was demonstrated for selected proteins.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Amino Acid Motifs
- Amino Acid Sequence
- Arabidopsis/chemistry
- Arabidopsis/genetics
- Arabidopsis/growth & development
- Arabidopsis Proteins/chemistry
- Arabidopsis Proteins/classification
- Arabidopsis Proteins/genetics
- Conserved Sequence
- Cysteine/metabolism
- Databases, Protein
- Evolution, Molecular
- Gene Duplication
- Gene Expression Profiling
- Gene Expression Regulation, Plant
- Genes, Duplicate/genetics
- Genes, Plant/genetics
- Genome, Plant
- Histone-Lysine N-Methyltransferase/chemistry
- Histone-Lysine N-Methyltransferase/classification
- Histone-Lysine N-Methyltransferase/genetics
- Introns/genetics
- Molecular Sequence Data
- Nuclear Localization Signals
- Open Reading Frames/genetics
- Protein Binding
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Plant/genetics
- RNA, Plant/metabolism
- Retroelements/genetics
- Sequence Alignment
Collapse
Affiliation(s)
- L O Baumbusch
- Division of Molecular Biology, Department of Biology, University of Oslo, PO Box 1031 Blindern, N-0315 Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
1970
|
Xu L, Strome S. Depletion of a novel SET-domain protein enhances the sterility of mes-3 and mes-4 mutants of Caenorhabditis elegans. Genetics 2001; 159:1019-29. [PMID: 11729150 PMCID: PMC1461883 DOI: 10.1093/genetics/159.3.1019] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Four maternal-effect sterile genes, mes-2, mes-3, mes-4, and mes-6, are essential for germline development in Caenorhabditis elegans. Homozygous mes progeny from heterozygous mothers are themselves fertile but produce sterile progeny with underproliferated and degenerated germlines. All four mes genes encode chromatin-associated proteins, two of which resemble known regulators of gene expression. To identify additional components in the MES pathway, we used RNA-mediated interference (RNAi) to test candidate genes for enhancement of the Mes mutant phenotype. Enhancement in this assay was induction of sterility a generation earlier, in the otherwise fertile homozygous progeny of heterozygous mothers, which previous results had suggested represent a sensitized genetic background. We tested seven genes predicted to encode regulators of chromatin organization for RNAi-induced enhancement of mes-3 sterility and identified one enhancer, called set-2 after the SET domain encoded by the gene. Depletion of SET-2 also enhances the sterile phenotype of mes-4 but not of mes-2 or mes-6. set-2 encodes two alternatively spliced transcripts, set-2(l) and set-2(s), both of which are enriched in the germline of adults. In the adult germline, SET-2(L) protein is localized in mitotic and mid-late-stage meiotic nuclei but is undetectable in early pachytene nuclei. SET-2(L) protein is localized in all nuclei of embryos. The localization of SET-2(L) does not depend on any of the four MES proteins, and none of the MES proteins depend on SET-2 for their normal localization. Our results suggest that SET-2 participates along with the MES proteins in promoting normal germline development.
Collapse
MESH Headings
- Alleles
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Blotting, Southern
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans Proteins/genetics
- Caenorhabditis elegans Proteins/physiology
- Cell Nucleus/metabolism
- Chromatin/metabolism
- DNA, Complementary/metabolism
- Enhancer Elements, Genetic
- Female
- Genotype
- Germ-Line Mutation
- Helminth Proteins/genetics
- Helminth Proteins/physiology
- In Situ Hybridization
- Indoles/pharmacology
- Male
- Microscopy, Fluorescence
- Models, Genetic
- Molecular Sequence Data
- Mutation
- Nuclear Proteins/genetics
- Phenotype
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- L Xu
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | |
Collapse
|
1971
|
Le Baccon P, Leroux D, Dascalescu C, Duley S, Marais D, Esmenjaud E, Sotto JJ, Callanan M. Novel evidence of a role for chromosome 1 pericentric heterochromatin in the pathogenesis of B-cell lymphoma and multiple myeloma. Genes Chromosomes Cancer 2001; 32:250-64. [PMID: 11579465 DOI: 10.1002/gcc.1189] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
1q rearrangement is a remarkably frequent secondary chromosomal change in both non-Hodgkin's lymphoma (NHL) and multiple myeloma (MM), where it is associated with tumor progression. To gain insight into 1q rearrangement-associated disease mechanisms, we used fluorescence in situ hybridization (FISH) to search for recurring 1q breaks in 35 lymphoma samples (31 NHL patients and 4 lymphoma-derived cell lines) as well as 22 MM patients with cytogenetically determined 1q abnormalities. Strikingly, dual-color FISH analysis with chromosome 1 centromere and 1q12-specific probes identified constitutive heterochromatin band 1q12 as the single most frequent breakpoint site in both NHL and MM (39% and 89% of 1q breaks, respectively). These rearrangements consistently generated aberrant heterochromatin/euchromatin junctions and gain of 1q12 material. A further 30% of NHL 1q breaks specifically involved two other novel, closely spaced sites (clusters I and II) within a 2.5 Mb region of proximal 1q21 (D1S3620 to D1S3623). A possible association between these sites and NHL subtype was evident; the cluster I rearrangement was frequent in follicular and diffuse large cell lymphoma, whereas the cluster II rearrangement was more frequently observed in diffuse small-cell lymphoma (2/2 marginal zone lymphomas, 1/2 atypical chronic lymphocytic leukemias, and 1 lymphoplasmacytic lymphoma in this series). Candidate oncogenes bordering this interval (BCL9 and AF1Q) were not rearranged in any patient except one (AF1Q). This study provides the first evidence of involvement of 1q12 constitutive heterochromatin in the pathogenesis of NHL and MM and indicates proximal 1q21 to be of specific pathological significance in NHL.
Collapse
Affiliation(s)
- P Le Baccon
- The Lymphoma Research Group, Institut Albert Bonniot, Université Joseph Fourier, Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
1972
|
Loyola A, LeRoy G, Wang YH, Reinberg D. Reconstitution of recombinant chromatin establishes a requirement for histone-tail modifications during chromatin assembly and transcription. Genes Dev 2001; 15:2837-51. [PMID: 11691835 PMCID: PMC312801 DOI: 10.1101/gad.937401] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The human ISWI-containing factor RSF (remodeling and spacing factor) was found to mediate nucleosome deposition and, in the presence of ATP, generate regularly spaced nucleosome arrays. Using this system, recombinant chromatin was reconstituted with bacterially produced histones. Acetylation of the histone tails was found to play an important role in establishing regularly spaced nucleosome arrays. Recombinant chromatin lacking histone acetylation was impaired in directing transcription. Histone-tail modifications were found to regulate transcription from the recombinant chromatin. Acetylation of the histone tails by p300 was found to increase transcription. Methylation of the histone H3 tail by Suv39H1 was found to repress transcription in an HP1-dependent manner. The effects of histone-tail modifications were observed in nuclear extracts. A highly reconstituted RNA polymerase II transcription system was refractory to the effect imposed by acetylation and methylation.
Collapse
Affiliation(s)
- A Loyola
- Howard Hughes Medical Institute, Department of Biochemistry, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
1973
|
Polioudaki H, Kourmouli N, Drosou V, Bakou A, Theodoropoulos PA, Singh PB, Giannakouros T, Georgatos SD. Histones H3/H4 form a tight complex with the inner nuclear membrane protein LBR and heterochromatin protein 1. EMBO Rep 2001; 2:920-5. [PMID: 11571267 PMCID: PMC1084077 DOI: 10.1093/embo-reports/kve199] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have recently shown that heterochromatin protein 1 (HP1) interacts with the nuclear envelope in an acetylation-dependent manner. Using purified components and in vitro assays, we now demonstrate that HP1 forms a quaternary complex with the inner nuclear membrane protein LBR and a sub-set of core histones. This complex involves histone H3/H4 oligomers, which mediate binding of LBR to HP1 and cross-link these two proteins that do not interact directly with each other. Consistent with previous observations, HP1 and LBR binding to core histones is strongly inhibited when H3/H4 are modified by recombinant CREB-binding protein, revealing a new mechanism for anchoring domains of under-acetylated chromatin to the inner nuclear membrane.
Collapse
Affiliation(s)
- H Polioudaki
- Department of Basic Sciences, The University of Crete, School of Medicine, 71 110 Heraklion, Crete, Greece
| | | | | | | | | | | | | | | |
Collapse
|
1974
|
Czermin B, Schotta G, Hülsmann BB, Brehm A, Becker PB, Reuter G, Imhof A. Physical and functional association of SU(VAR)3-9 and HDAC1 in Drosophila. EMBO Rep 2001; 2:915-9. [PMID: 11571273 PMCID: PMC1084088 DOI: 10.1093/embo-reports/kve210] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Modification of histones can have a dramatic impact on chromatin structure and function. Acetylation of lysines within the N-terminal tail of the histone octamer marks transcriptionally active regions of the genome whereas deacetylation seems to play a role in transcriptional silencing. Recently, the methylation of the histone tails has also been shown to be important for transcriptional regulation and chromosome structure. Here we show by immunoaffinity purification that two activities important for chromatin-mediated gene silencing, the histone methyltransferase SU(VAR)3-9 and the histone deacetylase HDAC1, associate in vivo. The two activities cooperate to methylate pre-acetylated histones. Both enzymes are modifiers of position effect variegation and interact genetically in flies. We suggest a model in which the concerted histone deacetylation and methylation by a SU(VAR)3-9/HDAC1-containing complex leads to a permanent silencing of transcription in particular areas of the genome.
Collapse
Affiliation(s)
- B Czermin
- Adolf-Butenandt Institut, Molekularbiologie, Ludwig-Maximilians Universität, Schillerstrasse 44, D-80336 München, Germany
| | | | | | | | | | | | | |
Collapse
|
1975
|
Abstract
Epigenetic mechanisms are heritable traits that are mediated by changes in a genetic locus that do not involve a modification at the nucleotide level. As eukaryotic DNA is organised in chromatin units, epigenetic modifications can be mediated by chromatin remodelling. Although there are a number of well-characterised chromatin remodelling factors to which we can allocate a defined molecular function, we need to understand chromatin remodelling processes as the combined effects of such factors in higher order complexes.
Collapse
Affiliation(s)
- P Meyer
- Leeds Institute for Plant Biotechnology and Agriculture (LIBA), Centre for Plant Sciences, University of Leeds, LS2 9JT, Leeds, UK.
| |
Collapse
|
1976
|
Vandel L, Nicolas E, Vaute O, Ferreira R, Ait-Si-Ali S, Trouche D. Transcriptional repression by the retinoblastoma protein through the recruitment of a histone methyltransferase. Mol Cell Biol 2001; 21:6484-94. [PMID: 11533237 PMCID: PMC99795 DOI: 10.1128/mcb.21.19.6484-6494.2001] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The E2F transcription factor controls the cell cycle-dependent expression of many S-phase-specific genes. Transcriptional repression of these genes in G(0) and at the beginning of G(1) by the retinoblasma protein Rb is crucial for the proper control of cell proliferation. Rb has been proposed to function, at least in part, through the recruitment of histone deacetylases. However, recent results indicate that other chromatin-modifying enzymes are likely to be involved. Here, we show that Rb also interacts with a histone methyltransferase, which specifically methylates K9 of histone H3. The results of coimmunoprecipitation experiments of endogenous or transfected proteins indicate that this histone methyltransferase is the recently described heterochromatin-associated protein Suv39H1. Interestingly, phosphorylation of Rb in vitro as well as in vivo abolished the Rb-Suv39H1 interaction. We also found that Suv39H1 and Rb cooperate to repress E2F activity and that Suv39H1 could be recruited to E2F1 through its interaction with Rb. Taken together, these data indicate that Suv39H1 is involved in transcriptional repression by Rb and suggest an unexpected link between E2F regulation and heterochromatin.
Collapse
Affiliation(s)
- L Vandel
- Laboratoire de Biologie Moléculaire Eucaryote, UMR 5099 CNRS, and Ligue Nationale Contre le Cancer, 31062 Toulouse, France
| | | | | | | | | | | |
Collapse
|
1977
|
Hwang KK, Eissenberg JC, Worman HJ. Transcriptional repression of euchromatic genes by Drosophila heterochromatin protein 1 and histone modifiers. Proc Natl Acad Sci U S A 2001; 98:11423-7. [PMID: 11562500 PMCID: PMC58745 DOI: 10.1073/pnas.211303598] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Drosophila, heterochromatin protein 1 (HP1) suppresses the expression of euchromatic genes that are artificially translocated adjacent to heterochromatin by expanding heterochromatin structure into neighboring euchromatin. The purpose of this study was to determine whether HP1 functions as a transcriptional repressor in the absence of chromosome rearrangements. Here, we show that Drosophila HP1 normally represses the expression of four euchromatic genes in a dosage-dependent manner. Three genes regulated by HP1 map to cytological region 31 of chromosome 2, which is immunostained by anti-HP1 antibodies in the salivary gland. The repressive effect of HP1 is decreased by mutation in Su(var)3-9, whose mammalian orthologue encodes a histone H3 methyltransferase and mutation in Su(var)2-1, which is correlated with histone H4 deacetylation. These data provide genetic evidence that an HP1-family protein represses the expression of euchromatic genes in a metazoan, and that histone modifiers cooperate with HP1 in euchromatic gene repression.
Collapse
Affiliation(s)
- K K Hwang
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | |
Collapse
|
1978
|
Jacobs SA, Taverna SD, Zhang Y, Briggs SD, Li J, Eissenberg JC, Allis C, Khorasanizadeh S. Specificity of the HP1 chromo domain for the methylated N-terminus of histone H3. EMBO J 2001; 20:5232-41. [PMID: 11566886 PMCID: PMC125272 DOI: 10.1093/emboj/20.18.5232] [Citation(s) in RCA: 331] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent studies show that heterochromatin-associated protein-1 (HP1) recognizes a 'histone code' involving methylated Lys9 (methyl-K9) in histone H3. Using in situ immunofluorescence, we demonstrate that methyl-K9 H3 and HP1 co-localize to the heterochromatic regions of Drosophila polytene chromosomes. NMR spectra show that methyl-K9 binding of HP1 occurs via its chromo (chromosome organization modifier) domain. This interaction requires methyl-K9 to reside within the proper context of H3 sequence. NMR studies indicate that the methylated H3 tail binds in a groove of HP1 consisting of conserved residues. Using fluorescence anisotropy and isothermal titration calorimetry, we determined that this interaction occurs with a K(D) of approximately 100 microM, with the binding enthalpically driven. A V26M mutation in HP1, which disrupts its gene silencing function, severely destabilizes the H3-binding interface, and abolishes methyl-K9 H3 tail binding. Finally, we note that sequence diversity in chromo domains may lead to diverse functions in eukaryotic gene regulation. For example, the chromo domain of the yeast histone acetyltransferase Esa1 does not interact with methyl- K9 H3, but instead shows preference for unmodified H3 tail.
Collapse
Affiliation(s)
| | | | | | | | | | - Joel C. Eissenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908 and
Edward A.Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St Louis, MO 63104, USA Corresponding author e-mail:
S.A.Jacobs and S.D.Taverna contributed equally to this work
| | | | - Sepideh Khorasanizadeh
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908 and
Edward A.Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St Louis, MO 63104, USA Corresponding author e-mail:
S.A.Jacobs and S.D.Taverna contributed equally to this work
| |
Collapse
|
1979
|
Zhang Y, Reinberg D. Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes Dev 2001; 15:2343-60. [PMID: 11562345 DOI: 10.1101/gad.927301] [Citation(s) in RCA: 1105] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Y Zhang
- Department of Biochemistry and Biophysics, Curriculum in Genetics and Molecular Biology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599-7295, USA.
| | | |
Collapse
|
1980
|
Abstract
The chromo domain motif is found in proteins from fungi, protists, plants, fish, insects, amphibians, birds, and mammals. The chromo domain peptide fold may have its origins as a chromosomal protein in a common ancestor of archea and eukaryota, making it a particularly ancient protein structural module. Chromo domains have been found in single or multiple copies in proteins with diverse structures and activities, most or all of which are connected with chromosome structure/function. In this review, our current knowledge of chromo domain properties is summarized and a variety of contexts in which chromo domains participate in aspects of chromatin metabolism are discussed.
Collapse
Affiliation(s)
- J C Eissenberg
- Edward A. Doisy Department of Biochemistry, and Molecular Biology, Saint Louis University School of Medicine, 1402 South Grand Boulevard, St. Louis, MO 63104-1079, USA.
| |
Collapse
|
1981
|
|
1982
|
Abstract
The assembly of DNA into regions of inaccessible chromatin, called silent chromatin, is involved in the regulation of gene expression and maintenance of chromosome stability in eukaryotes. Recent studies on Sir2-containing silencing complexes in budding yeast and HP1- and Swi6-containing silencing complexes in metazoans and fission yeast suggest a common mechanism for the assembly of these domains, which involves the physical coupling of histone modifying enzymes to histone binding proteins.
Collapse
Affiliation(s)
- D Moazed
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
1983
|
Katsani KR, Arredondo JJ, Kal AJ, Verrijzer CP. A homeotic mutation in the trithorax SET domain impedes histone binding. Genes Dev 2001; 15:2197-202. [PMID: 11544176 PMCID: PMC312775 DOI: 10.1101/gad.201901] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Trithorax (TRX) is a Drosophila SET domain protein that is required for the correct expression of homeotic genes. Here, we show that the TRX SET domain efficiently binds to core histones and nucleosomes. The primary target for the SET domain is histone H3 and binding requires the N-terminal histone tails. The previously described trx(Z11) mutation changes a strictly conserved glycine in the SET domain to serine and causes homeotic transformations in the fly. We found that this mutation selectively interferes with histone binding, suggesting that histones represent a critical target during developmental gene regulation by TRX.
Collapse
Affiliation(s)
- K R Katsani
- Department of Molecular and Cell Biology, MGC Center for Biomedical Genetics, Leiden University Medical Center, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
1984
|
Steele-Perkins G, Fang W, Yang XH, Van Gele M, Carling T, Gu J, Buyse IM, Fletcher JA, Liu J, Bronson R, Chadwick RB, de la Chapelle A, Zhang X, Speleman F, Huang S. Tumor formation and inactivation of RIZ1, an Rb-binding member of a nuclear protein-methyltransferase superfamily. Genes Dev 2001; 15:2250-62. [PMID: 11544182 PMCID: PMC312773 DOI: 10.1101/gad.870101] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The retinoblastoma protein-interacting zinc finger gene RIZ (PRDM2) is a member, by sequence homology, of a nuclear protein-methyltransferase (MTase) superfamily involved in chromatin-mediated gene expression. The gene produces two protein products, RIZ1 that contains a conserved MTase domain and RIZ2 that lacks the domain. RIZ1 gene expression is frequently silenced in human cancers, and the gene is also a common target of frameshift mutation in microsatellite-unstable cancers. We now report studies of mice with a targeted mutation in the RIZ1 locus. The mutation inactivates RIZ1 but not RIZ2. These RIZ1 mutant mice were viable and fertile but showed a high incidence of diffuse large B-cell lymphomas (DLBL) and a broad spectrum of unusual tumors. RIZ1 deficiency also accelerated tumorigenesis in p53 heterozygous mutant mice. Finally, several missense mutations of RIZ1 were found in human tumor tissues and cell lines; one of these was particularly common in human DLBL tumors. These missense mutations, as well as the previously described frameshift mutation, all mapped to the MTase functional domains. All abolished the capacity of RIZ1 to enhance estrogen receptor activation of transcription. These data suggest a direct link between tumor formation and the MTase domain of RIZ1 and describe for the first time a tumor susceptibility gene among methyltransferases.
Collapse
|
1985
|
Czvitkovich S, Sauer S, Peters AH, Deiner E, Wolf A, Laible G, Opravil S, Beug H, Jenuwein T. Over-expression of the SUV39H1 histone methyltransferase induces altered proliferation and differentiation in transgenic mice. Mech Dev 2001; 107:141-53. [PMID: 11520670 DOI: 10.1016/s0925-4773(01)00464-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of multi-cellular organisms is regulated by the ordered definition of gene expression programmes that govern cell proliferation and differentiation. Although differential gene activity is mainly controlled by transcription factors, it is also dependent upon the underlying chromatin structure, which can stabilize transcriptional "on" or "off" states. We have recently isolated human (SUV39H1) and mouse (Suv39h1) histone methyltransferases (HMTases) and shown that they are important regulators for the organization of repressive chromatin domains. To investigate whether a SUV39H1-induced modulation of heterochromatin would affect mammalian development, we generated transgenic mice that over-express the SUV39H1 HMTase early during embryogenesis. SUV39H1 transgenic mice are growth retarded, display a weak penetrance of skeletal transformations and are largely characterized by impaired erythroid differentiation, consistent with highest transgene expression in foetal liver. Ex vivo transgenic foetal liver cultures initially contain reduced numbers of cells in G1 but progress to immortalized erythroblasts that are compromised in executing an erythroid differentiation programme. The outgrowing SUV39H1-immortalized erythroblasts can maintain a diploid karyotype despite deregulation of several tumour suppressor proteins and dispersed distribution of the heterochromatin component HP1. Together, these data provide evidence for a role of the SUV39H1 HMTase during the mammalian development and indicate a possible function for higher-order chromatin in contributing to the balance between proliferation and differentiation potentials of progenitor cells.
Collapse
Affiliation(s)
- S Czvitkovich
- Research Institute of Molecular Pathology (IMP), The Vienna Biocenter, Dr Bohrgasse 7, A-1030 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
1986
|
Zhong S, Jansen C, She QB, Goto H, Inagaki M, Bode AM, Ma WY, Dong Z. Ultraviolet B-induced phosphorylation of histone H3 at serine 28 is mediated by MSK1. J Biol Chem 2001; 276:33213-9. [PMID: 11441012 DOI: 10.1074/jbc.m103973200] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-terminal tail phosphorylation of histone H3 plays an important role in gene expression, chromatin remodeling, and chromosome condensation. Phosphorylation of histone H3 at serine 10 was shown to be mediated by RSK2, mitogen- and stress-activated protein kinase-1 (MSK1), and mitogen-activated protein kinases depending on the specific stimulation or stress. Our previous study showed that mitogen-activated protein kinases MAP kinases are involved in ultraviolet B-induced phosphorylation of histone H3 at serine 28 (Zhong, S., Zhong, Z., Jansen, J., Goto, H., Inagaki, M., and Dong, Z., J. Biol. Chem. 276, 12932-12937). However, downstream effectors of MAP kinases remain to be identified. Here, we report that H89, a selective inhibitor of the nucleosomal response, totally inhibits ultraviolet B-induced phosphorylation of histone H3 at serine 28. H89 blocks MSK1 activity but does not inhibit ultraviolet B-induced activation of MAP kinases p70/85(S6K), p90(RSK), Akt, and protein kinase A. Furthermore, MSK1 markedly phosphorylated serine 28 of histone H3 and chromatin in vitro. Transfection experiments showed that an N-terminal mutant MSK1 or a C-terminal mutant MSK1 markedly blocked MSK1 activity. Compared with wild-type MSK1, cells transfected with N-terminal or C-terminal mutant MSK1 strongly blocked ultraviolet B-induced phosphorylation of histone H3 at serine 28 in vivo. These data illustrate that MSK1 mediates ultraviolet B-induced phosphorylation of histone H3 at serine 28.
Collapse
Affiliation(s)
- S Zhong
- Hormel Institute, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | |
Collapse
|
1987
|
Angrand PO, Apiou F, Stewart AF, Dutrillaux B, Losson R, Chambon P. NSD3, a new SET domain-containing gene, maps to 8p12 and is amplified in human breast cancer cell lines. Genomics 2001; 74:79-88. [PMID: 11374904 DOI: 10.1006/geno.2001.6524] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We describe the isolation and characterization of NSD3, the third member of a gene family including Nsd1 and NSD2. Murine Nsd1 was isolated in a search for proteins that interact with the ligand-binding domain of retinoic acid receptor alpha. NSD2 (also known as WHSC1 and MMSET) is located in the Wolf-Hirschhorn syndrome (WHS) critical region on 4p16.3 and is involved in multiple myeloma with t(4;14) translocations. The proteins Nsd1, NSD2, and NSD3 are highly similar within a block of about 700 amino acids. This block contains several conserved domains, such as the SET domain and the PHD finger, present in proteins involved in development and/or chromatin reorganization. The NSD3 gene consists of an 8.5-kb transcript composed of 23 coding exons and spans >90 kb of genomic DNA. NSD3 maps to chromosome band 8p12 and is amplified in several tumor cell lines and primary breast carcinomas.
Collapse
MESH Headings
- Alternative Splicing
- Amino Acid Sequence
- Binding Sites
- Blotting, Northern
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carrier Proteins/genetics
- Chromosome Mapping
- Chromosomes, Human, Pair 8/genetics
- Cloning, Molecular
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Exons
- Female
- Gene Amplification
- Gene Expression
- Genes/genetics
- Histone-Lysine N-Methyltransferase
- Humans
- In Situ Hybridization, Fluorescence
- Introns
- Molecular Sequence Data
- Nuclear Proteins/genetics
- Poly A/genetics
- Protein Isoforms/genetics
- RNA/genetics
- RNA/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
- Tissue Distribution
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- P O Angrand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Illkirch Cedex, C.U. de Strasbourg, F-67404, France.
| | | | | | | | | | | |
Collapse
|
1988
|
Lo WS, Duggan L, Emre NC, Belotserkovskya R, Lane WS, Shiekhattar R, Berger SL. Snf1--a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 2001; 293:1142-6. [PMID: 11498592 DOI: 10.1126/science.1062322] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Modification of histones is an important element in the regulation of gene expression. Previous work suggested a link between acetylation and phosphorylation, but questioned its mechanistic basis. We have purified a histone H3 serine-10 kinase complex from Saccharomyces cerevisiae and have identified its catalytic subunit as Snf1. The Snf1/AMPK family of kinases function in conserved signal transduction pathways. Our results show that Snf1 and the acetyltransferase Gcn5 function in an obligate sequence to enhance INO1 transcription by modifying histone H3 serine-10 and lysine-14. Thus, phosphorylation and acetylation are targeted to the same histone by promoter-specific regulation by a kinase/acetyltransferase pair, supporting models of gene regulation wherein transcription is controlled by coordinated patterns of histone modification.
Collapse
Affiliation(s)
- W S Lo
- Molecular Genetics Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
1989
|
Abstract
Chromatin, the physiological template of all eukaryotic genetic information, is subject to a diverse array of posttranslational modifications that largely impinge on histone amino termini, thereby regulating access to the underlying DNA. Distinct histone amino-terminal modifications can generate synergistic or antagonistic interaction affinities for chromatin-associated proteins, which in turn dictate dynamic transitions between transcriptionally active or transcriptionally silent chromatin states. The combinatorial nature of histone amino-terminal modifications thus reveals a "histone code" that considerably extends the information potential of the genetic code. We propose that this epigenetic marking system represents a fundamental regulatory mechanism that has an impact on most, if not all, chromatin-templated processes, with far-reaching consequences for cell fate decisions and both normal and pathological development.
Collapse
Affiliation(s)
- T Jenuwein
- Research Institute of Molecular Pathology (IMP) at the Vienna Biocenter, Dr. Bohrgasse 7, A-1030 Vienna, Austria.
| | | |
Collapse
|
1990
|
Wang H, Huang ZQ, Xia L, Feng Q, Erdjument-Bromage H, Strahl BD, Briggs SD, Allis CD, Wong J, Tempst P, Zhang Y. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 2001; 293:853-7. [PMID: 11387442 DOI: 10.1126/science.1060781] [Citation(s) in RCA: 588] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Acetylation of core histone tails plays a fundamental role in transcription regulation. In addition to acetylation, other posttranslational modifications, such as phosphorylation and methylation, occur in core histone tails. Here, we report the purification, molecular identification, and functional characterization of a histone H4-specific methyltransferase PRMT1, a protein arginine methyltransferase. PRMT1 specifically methylates arginine 3 (Arg 3) of H4 in vitro and in vivo. Methylation of Arg 3 by PRMT1 facilitates subsequent acetylation of H4 tails by p300. However, acetylation of H4 inhibits its methylation by PRMT1. Most important, a mutation in the S-adenosyl-l-methionine-binding site of PRMT1 substantially crippled its nuclear receptor coactivator activity. Our finding reveals Arg 3 of H4 as a novel methylation site by PRMT1 and indicates that Arg 3 methylation plays an important role in transcriptional regulation.
Collapse
Affiliation(s)
- H Wang
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1991
|
|
1992
|
Nielsen SJ, Schneider R, Bauer UM, Bannister AJ, Morrison A, O'Carroll D, Firestein R, Cleary M, Jenuwein T, Herrera RE, Kouzarides T. Rb targets histone H3 methylation and HP1 to promoters. Nature 2001; 412:561-5. [PMID: 11484059 DOI: 10.1038/35087620] [Citation(s) in RCA: 661] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In eukaryotic cells the histone methylase SUV39H1 and the methyl-lysine binding protein HP1 functionally interact to repress transcription at heterochromatic sites. Lysine 9 of histone H3 is methylated by SUV39H1 (ref. 2), creating a binding site for the chromo domain of HP1 (refs 3, 4). Here we show that SUV39H1 and HP1 are both involved in the repressive functions of the retinoblastoma (Rb) protein. Rb associates with SUV39H1 and HP1 in vivo by means of its pocket domain. SUV39H1 cooperates with Rb to repress the cyclin E promoter, and in fibroblasts that are disrupted for SUV39, the activity of the cyclin E and cyclin A2 genes are specifically elevated. Chromatin immunoprecipitations show that Rb is necessary to direct methylation of histone H3, and is necessary for binding of HP1 to the cyclin E promoter. These results indicate that the SUV39H1-HP1 complex is not only involved in heterochromatic silencing but also has a role in repression of euchromatic genes by Rb and perhaps other co-repressor proteins.
Collapse
Affiliation(s)
- S J Nielsen
- Wellcome/CRC Institute and Department of Pathology, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
1993
|
Sullivan BA, Blower MD, Karpen GH. Determining centromere identity: cyclical stories and forking paths. Nat Rev Genet 2001; 2:584-96. [PMID: 11483983 DOI: 10.1038/35084512] [Citation(s) in RCA: 209] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The centromere is the genetic locus required for chromosome segregation. It is the site of spindle attachment to the chromosomes and is crucial for the transfer of genetic information between cell and organismal generations. Although the centromere was first recognized more than 120 years ago, little is known about what determines its site(s) of activity, and how it contributes to kinetochore formation and spindle attachment. Recent work in this field has supported the hypothesis that most eukaryotic centromeres are determined epigenetically rather than by primary DNA sequence. Here, we review recent studies that have elucidated the organization and functions of centromeric chromatin, and evaluate present-day models for how centromere identity and propagation are determined.
Collapse
Affiliation(s)
- B A Sullivan
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California 92037, USA
| | | | | |
Collapse
|
1994
|
Gregory RI, Randall TE, Johnson CA, Khosla S, Hatada I, O'Neill LP, Turner BM, Feil R. DNA methylation is linked to deacetylation of histone H3, but not H4, on the imprinted genes Snrpn and U2af1-rs1. Mol Cell Biol 2001; 21:5426-36. [PMID: 11463825 PMCID: PMC87265 DOI: 10.1128/mcb.21.16.5426-5436.2001] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The relationship between DNA methylation and histone acetylation at the imprinted mouse genes U2af1-rs1 and Snrpn is explored by chromatin immunoprecipitation (ChIP) and resolution of parental alleles using single-strand conformational polymorphisms. The U2af1-rs1 gene lies within a differentially methylated region (DMR), while Snrpn has a 5' DMR (DMR1) with sequences homologous to the imprinting control center of the Prader-Willi/Angelman region. For both DMR1 of Snrpn and the 5' untranslated region (5'-UTR) and 3'-UTR of U2af1-rs1, the methylated and nonexpressed maternal allele was underacetylated, relative to the paternal allele, at all H3 lysines tested (K14, K9, and K18). For H4, underacetylation of the maternal allele was exclusively (U2af1-rs1) or predominantly (Snrpn) at lysine 5. Essentially the same patterns of differential acetylation were found in embryonic stem (ES) cells, embryo fibroblasts, and adult liver from F1 mice and in ES cells from mice that were dipaternal or dimaternal for U2af1-rs1. In contrast, in a region within Snrpn that has biallelic methylation in the cells and tissues analyzed, the paternal (expressed) allele showed relatively increased acetylation of H4 but not of H3. The methyl-CpG-binding-domain (MBD) protein MeCP2 was found, by ChIP, to be associated exclusively with the maternal U2af1-rs1 allele. To ask whether DNA methylation is associated with histone deacetylation, we produced mice with transgene-induced methylation at the paternal allele of U2af1-rs1. In these mice, H3 was underacetylated across both the parental U2af1-rs1 alleles whereas H4 acetylation was unaltered. Collectively, these data are consistent with the hypothesis that CpG methylation leads to deacetylation of histone H3, but not H4, through a process that involves selective binding of MBD proteins.
Collapse
Affiliation(s)
- R I Gregory
- Programme in Developmental Genetics, The Babraham Institute, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
1995
|
Suka N, Suka Y, Carmen AA, Wu J, Grunstein M. Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol Cell 2001; 8:473-9. [PMID: 11545749 DOI: 10.1016/s1097-2765(01)00301-x] [Citation(s) in RCA: 358] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have developed a highly specific antibody set for acetylation sites in yeast histones H4 (K5, K8, K12, and K16); H3 (K9, K14, K18, K23, and K27); H2A (K7); and H2B (K11 and K16). Since ELISA does not assure antibody specificity in chromatin immunoprecipitation, we have employed additional screens against the respective histone mutations. We now show that telomeric and silent mating locus heterochromatin is hypoacetylated at all histone sites. At the INO1 promoter, RPD3 is required for strongly deacetylating all sites except H4 K16, ESA1 for acetylating H2A, H2B, and H4 sites except H4 K16, and GCN5 for acetylating H2B and H3 sites except H3 K14. These data uncover the in vivo usage of acetylation sites in heterochromatin and euchromatin.
Collapse
Affiliation(s)
- N Suka
- Department of Biological Chemistry, UCLA School of Medicine and, The Molecular Biology Institute, University of California, Los Angeles 90095, USA
| | | | | | | | | |
Collapse
|
1996
|
Abstract
Recent data indicate that the eukaryotic centromere and pericentromeric regions are organized into definable functional and structural domains. Studies in different organisms point to a model of conserved pattern of organization for these domains.
Collapse
Affiliation(s)
- K H Choo
- The Murdoch Childrens Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
1997
|
Abstract
Imprinted maternal-allele-specific expression of the mouse insulin-like growth-factor type 2 receptor (Igf2r) gene depends on a 3.7-kb element named region 2, located in the second intron of the gene. Region 2 carries a maternal-allele-specific methylation imprint and contains an imprinted CpG island promoter (Air) that expresses a noncoding antisense RNA from the paternal inherited allele only. Here, we use transgenes to test the minimal requirements for imprinting of Air and to test if the action of region 2 is restricted to Igf2r. Transgenes up to 9 kb with Air as a single promoter are expressed but not imprinted. When coupled to the Igf2r CpG island promoter on a 44-kb transgene, Air was imprinted in one of three lines. However, Air on a 4.6-kb fragment is also imprinted in 2 of 14 lines when inserted in an intron of an adenine phosphoribosyltransferase (Aprt) transgene, and in one line, the imprinted methylation and expression of Air have been transferred onto the Aprt CpG island promoter. These data suggest that a dual CpG island promoter setting may facilitate Air imprinting as a short transgene and also show that Air can transfer imprinting onto other genes. However, for reliable Air imprinting, elements are necessary that are located outside a 44-kb region spanning the Air-Igf2r promoters.
Collapse
Affiliation(s)
- F Sleutels
- Department of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | |
Collapse
|
1998
|
Schramke V, Neecke H, Brevet V, Corda Y, Lucchini G, Longhese MP, Gilson E, Géli V. The set1Delta mutation unveils a novel signaling pathway relayed by the Rad53-dependent hyperphosphorylation of replication protein A that leads to transcriptional activation of repair genes. Genes Dev 2001; 15:1845-58. [PMID: 11459833 PMCID: PMC312739 DOI: 10.1101/gad.193901] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
SET domain proteins are present in chromosomal proteins involved in epigenetic control of transcription. The yeast SET domain protein Set1p regulates chromatin structure, DNA repair, and telomeric functions. We investigated the mechanism by which the absence of Set1p increases DNA repair capacities of checkpoint mutants. We show that deletion of SET1 induces a response relayed by the signaling kinase Rad53p that leads to the MEC1/TEL1-independent hyperphosphorylation of replication protein A middle subunit (Rfa2p). Consequently, the binding of Rfa2p to upstream repressing sequences (URS) of repair genes is decreased, thereby leading to their derepression. Our results correlate the set1Delta-dependent phosphorylation of Rfa2p with the transcriptional induction of repair genes. Moreover, we show that the deletion of the amino-terminal region of Rfa2p suppresses the sensitivity to ultraviolet radiation of a mec3Delta checkpoint mutant, abolishes the URS-mediated repression, and increases the expression of repair genes. This work provides an additional link for the role of Rfa2p in the regulation of the repair capacity of the cell and reveals a role for the phosphorylation of Rfa2p and unveils unsuspected connections between chromatin, signaling pathways, telomeres, and DNA repair.
Collapse
Affiliation(s)
- V Schramke
- Laboratoire D'Ingéniérie des Systèmes Macromoléculaires, Institut de Biologie Structurale et Microbiologie (IBSM), Centre National de la Recherche Scientifique (CNRS), 13402, Marseille, Cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
1999
|
Abstract
Specific changes in chromatin structure are associated with transcriptional regulation. These chromatin alterations include both covalent modifications of the amino termini of histones as well as ATP-dependent non-covalent remodeling of nucleosomes. Certain protein domains, such as the bromodomains, are commonly associated with both of these classes of enzymes that alter chromatin. This review discusses recent advances in understanding the structure and function of bromodomains. Most significantly, a role of bromodomains has been revealed in binding to acetylated lysine residues in histone tails. Interactions between bromodomains and modified histones may be an important mechanism underlying chromatin structural changes and gene regulation.
Collapse
Affiliation(s)
- R Marmorstein
- Structural Biology Program, The Wistar Institute, Philadelphia, PA, USA
| | | |
Collapse
|
2000
|
Tachibana M, Sugimoto K, Fukushima T, Shinkai Y. Set domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J Biol Chem 2001; 276:25309-17. [PMID: 11316813 DOI: 10.1074/jbc.m101914200] [Citation(s) in RCA: 618] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The covalent modification of histone tails has regulatory roles in various nuclear processes, such as control of transcription and mitotic chromosome condensation. Among the different groups of enzymes known to catalyze the covalent modification, the most recent additions are the histone methyltransferases (HMTases), whose functions are now being characterized. Here we show that a SET domain-containing protein, G9a, is a novel mammalian lysine-preferring HMTase. Like Suv39 h1, the first identified lysine-preferring mammalian HMTase, G9a transfers methyl groups to the lysine residues of histone H3, but with a 10-20-fold higher activity. It was reported that lysines 4, 9, and 27 in H3 are methylated in mammalian cells. G9a was able to add methyl groups to lysine 27 as well as 9 in H3, compared with Suv39 h1, which was only able to methylate lysine 9. Our data clearly demonstrated that G9a has an enzymatic nature distinct from Suv39 h1 and its homologue h2. Finally, fluorescent protein-labeled G9a was shown to be localized in the nucleus but not in the repressive chromatin domains of centromeric loci, in which Suv39 h1 family proteins were localized. This finding indicates that G9a may contribute to the organization of the higher order chromatin structure of non-centromeric loci.
Collapse
Affiliation(s)
- M Tachibana
- Department of Cell Biology, Institute for Virus Research, Kyoto University, Shogoin Kawara-cho, Kyoto 606-8507, Japan
| | | | | | | |
Collapse
|