2101
|
Leung GP, Wong PY. Activation of cystic fibrosis transmembrane conductance regulator in rat epididymal epithelium by genistein. Biol Reprod 2000; 62:143-9. [PMID: 10611078 DOI: 10.1095/biolreprod62.1.143] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The effect of genistein on anion secretion via cystic fibrosis transmembrane conductance regulator (CFTR) in cultured rat cauda epididymal epithelia was studied by short-circuit current (Isc) technique. Genistein added apically stimulated a concentration-dependent rise in Isc due to Cl(-) and HCO(3)(-) secretion. The genistein-induced Isc was observed in basolaterally permeabilized monolayers, suggesting that the Isc response was mediated by the apical anion channel. The response could be blocked by the nonspecific Cl(-) channel blocker, diphenylamine-2-carboxylate (DPC), but not by the Ca(2+)-activated Cl(-) channel blocker, 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS). Genistein did not increase intracellular cAMP, but H-89, a protein kinase A inhibitor, completely abolished the Isc response to genistein. Moreover, pretreatment of the tissues with MDL-12330A, an adenylate cyclase inhibitor, markedly attenuated the Isc response to genistein, but the response was restored upon the addition of exogenous cAMP. Ca(2+), protein kinase C, tyrosine kinase, and protein phosphatase signalling pathways were not involved in the action of genistein. It is speculated that genistein stimulates anion secretion by direct interaction with CFTR. This requires a low level of phosphorylation of CFTR by basal protein kinase A activity. It is suggested that genistein may provide therapeutic benefit to male infertility associated with cystic fibrosis.
Collapse
Affiliation(s)
- G P Leung
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | | |
Collapse
|
2102
|
Bland R, Zehnder D, Hewison M. Expression of 25-hydroxyvitamin D3-1alpha-hydroxylase along the nephron: new insights into renal vitamin D metabolism. Curr Opin Nephrol Hypertens 2000; 9:17-22. [PMID: 10654820 DOI: 10.1097/00041552-200001000-00004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Renal synthesis of the active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a pivotal step in calcium and phosphate homeostasis. Production of 1,25(OH)2D3 is catalyzed by the mitchondrial cytochrome P450, 25-hydroxyvitamin D3-1alpha-hydroxylase (1alpha-HYD). As a consequence of the tight regulation of vitamin D metabolism during normal physiology, studies of the expression and regulation of 1alpha-HYD have proved remarkably difficult. However, the recent cloning of the gene for 1alpha-HYD has enabled a more comprehensive analysis of the tissue distribution of 1alpha-HYD, as well as the mechanisms involved in controlling 1,25(OH)2D3 production. In particular, an understanding of site-specific expression and regulation of 1alpha-HYD along the nephron might help to elucidate a more versatile role for 1,25(OH)2D3 in renal physiology.
Collapse
Affiliation(s)
- R Bland
- Division of Medical Sciences, The University of Birmingham, UK
| | | | | |
Collapse
|
2103
|
Abstract
Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is associated with a wide spectrum of disease. In the search for modulators of CFTR, pharmacological agents that interact directly with the CFTR Cl- channel have been identified. Some agents stimulate CFTR by interacting with the nucleotide-binding domains that control channel gating, whereas others inhibit CFTR by binding within the channel pore and preventing Cl- permeation. Knowledge of the molecular pharmacology of CFTR might lead to new treatments for diseases caused by the dysfunction of CFTR.
Collapse
Affiliation(s)
- T C Hwang
- Department of Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | |
Collapse
|
2104
|
Becq F, Mettey Y, Gray MA, Galietta LJ, Dormer RL, Merten M, Métayé T, Chappe V, Marvingt-Mounir C, Zegarra-Moran O, Tarran R, Bulteau L, Dérand R, Pereira MM, McPherson MA, Rogier C, Joffre M, Argent BE, Sarrouilhe D, Kammouni W, Figarella C, Verrier B, Gola M, Vierfond JM. Development of substituted Benzo[c]quinolizinium compounds as novel activators of the cystic fibrosis chloride channel. J Biol Chem 1999; 274:27415-25. [PMID: 10488073 DOI: 10.1074/jbc.274.39.27415] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Chloride channels play an important role in the physiology and pathophysiology of epithelia, but their pharmacology is still poorly developed. We have chemically synthesized a series of substituted benzo[c]quinolizinium (MPB) compounds. Among them, 6-hydroxy-7-chlorobenzo[c]quinolizinium (MPB-27) and 6-hydroxy-10-chlorobenzo[c]quinolizinium (MPB-07), which we show to be potent and selective activators of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. We examined the effect of MPB compounds on the activity of CFTR channels in a variety of established epithelial and nonepithelial cell systems. Using the iodide efflux technique, we show that MPB compounds activate CFTR chloride channels in Chinese hamster ovary (CHO) cells stably expressing CFTR but not in CHO cells lacking CFTR. Single and whole cell patch clamp recordings from CHO cells confirm that CFTR is the only channel activated by the drugs. Ussing chamber experiments reveal that the apical addition of MPB to human nasal epithelial cells produces a large increase of the short circuit current. This current can be totally inhibited by glibenclamide. Whole cell experiments performed on native respiratory cells isolated from wild type and CF null mice also show that MPB compounds specifically activate CFTR channels. The activation of CFTR by MPB compounds was glibenclamide-sensitive and 4, 4'-diisothiocyanostilbene-2,2'-disulfonic acid-insensitive. In the human tracheal gland cell line MM39, MPB drugs activate CFTR channels and stimulate the secretion of the antibacterial secretory leukoproteinase inhibitor. In submandibular acinar cells, MPB compounds slightly stimulate CFTR-mediated submandibular mucin secretion without changing intracellular cAMP and ATP levels. Similarly, in CHO cells MPB compounds have no effect on the intracellular levels of cAMP and ATP or on the activity of various protein phosphatases (PP1, PP2A, PP2C, or alkaline phosphatase). Our results provide evidence that substituted benzo[c]quinolizinium compounds are a novel family of activators of CFTR and of CFTR-mediated protein secretion and therefore represent a new tool to study CFTR-mediated chloride and secretory functions in epithelial tissues.
Collapse
Affiliation(s)
- F Becq
- Laboratoire de neurobiologie UPR-9024 CNRS, 31 ch. J. Aiguier F-13402 Marseille cedex 20, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2105
|
Belugin S, Akino K, Takamura N, Mine M, Romanovsky D, Fedoseev V, Kubarko A, Kosaka M, Yamashita S. Developmental and hormonal regulation of thermosensitive neuron potential activity in rat brain. Thyroid 1999; 9:837-43. [PMID: 10482378 DOI: 10.1089/thy.1999.9.837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To understand the involvement of thyroid hormone on the postnatal development of hypothalamic thermosensitive neurons, we focused on the analysis of thermosensitive neuronal activity in the preoptic and anterior hypothalamic (PO/AH) regions of developing rats with and without hypothyroidism. In euthyroid rats, the distribution of thermosensitive neurons in PO/AH showed that in 3-week-old rats (46 neurons tested), 19.5% were warm-sensitive and 80.5% were nonsensitive. In 5- to 12-week-old euthyroid rats (122 neurons), 33.6% were warm-sensitive and 66.4% were nonsensitive. In 5- to 12-week-old hypothyroid rats (108 neurons), however, 18.5% were warm-sensitive and 81.5% were nonsensitive. Temperature thresholds of warm-sensitive neurons were lower in 12-week-old euthyroid rats (36.4+/-0.2 degrees C, n = 15, p<0.01,) than in 3-week-old and in 5-week-old euthyroid rats (38.5+/-0.5 degrees C, n = 9 and 38.0+/-0.3 degrees C, n = 15, respectively). The temperature thresholds of warm-sensitive neurons in 12-week-old hypothyroid rats (39.5+/-0.3 degrees C, n = 8) were similar to that of warm-sensitive neurons of 3-week-old raats (euthyroid and hypothyroid). In contrast, there was no difference in the thresholds of warm-sensitive neurons between hypothyroid and euthyroid rats at the age of 3-5 weeks. In conclusion, monitoring the thermosensitive neuronal tissue activity demonstrated the evidence that thyroid hormone regulates the maturation of warm-sensitive hypothalamic neurons in developing rat brain by electrophysiological analysis.
Collapse
Affiliation(s)
- S Belugin
- Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
2106
|
Abstract
The aim of this review is to provide basic information on the electrophysiological changes during acute ischemia and reperfusion from the level of ion channels up to the level of multicellular preparations. After an introduction, section II provides a general description of the ion channels and electrogenic transporters present in the heart, more specifically in the plasma membrane, in intracellular organelles of the sarcoplasmic reticulum and mitochondria, and in the gap junctions. The description is restricted to activation and permeation characterisitics, while modulation is incorporated in section III. This section (ischemic syndromes) describes the biochemical (lipids, radicals, hormones, neurotransmitters, metabolites) and ion concentration changes, the mechanisms involved, and the effect on channels and cells. Section IV (electrical changes and arrhythmias) is subdivided in two parts, with first a description of the electrical changes at the cellular and multicellular level, followed by an analysis of arrhythmias during ischemia and reperfusion. The last short section suggests possible developments in the study of ischemia-related phenomena.
Collapse
Affiliation(s)
- E Carmeliet
- Centre for Experimental Surgery and Anesthesiology, University of Leuven, Leuven, Belgium
| |
Collapse
|
2107
|
Morris AP. The regulation of epithelial cell cAMP- and calcium-dependent chloride channels. ADVANCES IN PHARMACOLOGY 1999; 46:209-51. [PMID: 10332504 DOI: 10.1016/s1054-3589(08)60472-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
This chapter has focused on two types of chloride conductance found in epithelial cells. The leap from the Ussing chamber to patch-clamp studies has identified yet other conductances present which have also been electrophysiologically characterized. In the case of the swelling activated wholecell chloride current, a physiological function is apparent and a single-channel basis found, but its genetic identity remains unknown (see reviews by Frizzell and Morris, 1994; and Strange et al., 1996). The outwardly rectified chloride channel has been the subject of considerable electrophysiological interest over the past 10 years and is well characterized at the single-channel level, but its physiological function remains controversial (reviewed by Frizzell and Morris, 1994; Devidas and Guggino, 1997). Yet other conductances related to the CLC gene family also appear to be present in epithelial cells of the kidney (reviewed by Jentsch, 1996; Jentsch and Gunter, 1997) where physiological functions for some isoforms are emerging. Clearly, there remain many unknowns. Chief among these is the molecular basis of GCa2+Cl and many of other the conductances. As sequences become available it is expected that the wealth of information gained by investigation into CFTR function will provide a conceptual blueprint for similar studies in these later channel clones.
Collapse
Affiliation(s)
- A P Morris
- Department of Integrative Biology, University of Texas-Houston Health Science Center 77030, USA
| |
Collapse
|
2108
|
Less H, Shilkrut M, Rubinstein I, Berke G, Binah O. Cardiac dysfunction in murine autoimmune myocarditis. J Autoimmun 1999; 12:209-20. [PMID: 10222030 DOI: 10.1006/jaut.1998.0273] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have investigated the pathophysiological basis of cardiac dysfunction in autoimmune myocarditis and in the resulting dilated cardiomyopathy. To this end we utilized the myosin-induced autoimmune myocarditis model in BALB/c mice. Myocarditis has been found to be associated with massive ventricular lymphocyte infiltration and a 50% reduction in tail artery blood flow, reflecting the depressed cardiac function in myocarditis. Action potential characteristics of control and diseased isolated ventricular myocytes were (mean+/-SEM): resting potential: -68.1+/-1. 1,-68.3+/-0.7 mV; action potential amplitude: 96.5+/-10.4, 92.3+/-4. 4 mV; action potential duration at 80% repolarization (APD80) 38+/-5, 116+/-24* ms; * P<0.05. We utilized the whole cell voltage clamp technique to explore ion currents involved in APD prolongation and arrhythmogenic activity, and found that in diseased myocytes the transient outward current (Ito) was markedly attenuated. At a membrane potential of +40 mV, in control and in diseased myocytes, I(to) current density was 14.7+/-1.5 and 6.5+/-1.4 pA/pF, respectively, P<0.005. In contrast, the L-type Ca2+current (ICa,L) remained unchanged. To further explore the basis for cardiac impairment, we simultaneously measured [Ca2+]i transient and contraction in isolated normal and diseased myocytes. The major findings indicated that both the relaxation kinetics of [Ca2+]i transients and myocyte contraction were significantly faster in the diseased myocytes. In conclusion, substantial, potentially reversible, electrophysiological and mechanical perturbations in ventricular myocytes from mice with myosin-induced autoimmune myocarditis appear to contribute to disease-related cardiac dysfunction.
Collapse
Affiliation(s)
- H Less
- Rappaport Family Institute for Research in the Medical Sciences, Bruce Rappaport Faculty of Medicine, The Bernard Katz Minerva Center for Cell Biophysics, Technion-Israel Institute of Technology, Haifa, 31096, Israel
| | | | | | | | | |
Collapse
|
2109
|
Gadsby DC, Nairn AC. Regulation of CFTR Cl- ion channels by phosphorylation and dephosphorylation. ADVANCES IN SECOND MESSENGER AND PHOSPHOPROTEIN RESEARCH 1999; 33:79-106. [PMID: 10218115 DOI: 10.1016/s1040-7952(99)80006-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- D C Gadsby
- Laboratory of Cardiac/Membrane Physiology, Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
2110
|
Yang HT, Sakurai K, Sugawara H, Watanabe T, Norota I, Endoh M. Role of Na+/Ca2+ exchange in endothelin-1-induced increases in Ca2+ transient and contractility in rabbit ventricular myocytes: pharmacological analysis with KB-R7943. Br J Pharmacol 1999; 126:1785-95. [PMID: 10372821 PMCID: PMC1565953 DOI: 10.1038/sj.bjp.0702454] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
1. The effects of endothelin-1 (ET-1) on intracellular Ca2+ ion level and cell contraction were simultaneously investigated in rabbit ventricular cardiac myocytes loaded with indo-1/A1. The role of Na+/Ca2+ exchange in ET-1-induced positive inotropic effect (PIE) was examined by using KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulphonate), a selective inhibitor of reverse mode Na+/Ca2+ exchange. 2. ET-1 at 0.3 pM - 1 nM increased cell contraction and Ca2+ transient (CaT) with EC50 values of 2.9 pM and 1.2 pM, respectively, and the increase in amplitude of CaT was much smaller relative to the PIE: ET-1 at 1 nM increased peak cell shortening by 237%, while it increased peak CaT by 167%. For a given level of PIE, ET-1-induced increase in CaT was much smaller than that induced by elevation of [Ca2+]o and by isoprenaline. Therefore, ET-1 shifted the relationship between peak CaT and cell shortening to the left relative to the relationship for increase in [Ca2+]o, an indication that ET-1 increased myofibrillar Ca2+ sensitivity. 3. KB-R7943 at 0.1 microM and higher inhibited contraction and CaT induced by 0.1 nM ET-1 and at 0.3 microM it abolished the increase in CaT while inhibiting the PIE by 48.1%. Over concentration range of 0.1-0.3 microM, KB-R7943 neither inhibited baseline contraction and CaT nor the isoprenaline-induced response, although at 1 microM and higher it had a significant inhibitory action on these responses. 4. These results indicate that in rabbit ventricular myocytes both increases in CaT and myofibrillar Ca2+ sensitivity contribute to the ET-induced PIE, and the activation of reverse mode Na+/Ca2+ exchange may play a crucial role in increase in CaT induced by ET-1 in rabbit ventricular cardiac myocytes.
Collapse
Affiliation(s)
- H T Yang
- Department of Pharmacology, Yamagata University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
2111
|
Thouzeau C, Duchamp C, Handrich Y. Energy metabolism and body temperature of barn owls fasting in the cold. Physiol Biochem Zool 1999; 72:170-8. [PMID: 10068620 DOI: 10.1086/316659] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Energetic adaptation to fasting in the cold has been investigated in a nocturnal raptor, the barn owl (Tyto alba), during winter. Metabolic rate and body temperature (Tb) were monitored in captive birds, (1) after acute exposure to different ambient temperatures (Ta), and (2) during a prolonged fast in the cold (4 degrees C), to take into account the three characteristic phases of body fuel utilization that occur during a long-term but reversible fast. In postabsorptive birds, metabolic rate in the thermoneutral zone was 4. 1+/-0.1 W kg-1 and increased linearly below a lower critical temperature of 23 degrees C. Metabolic rate was 70% above basal at +4 degrees C Ta. Wet thermal conductance was 0.22 W kg-1 degrees C-1. During fasting in the cold, the mass-specific resting metabolic rate decreased by 16% during the first day (phase I) and remained constant thereafter. The amplitude of the daily rhythm in Tb was only moderately increased during phase II, with a slight lowering (0. 6 degrees C) in minimal diurnal Tb, but rose markedly in phase III with a larger drop (1.4 degrees C) in minimal diurnal Tb. Refeeding the birds ended phase III and reversed the observed changes. These results indicate that diurnal hypothermia may be used in long-term fasting barn owls and could be triggered by a threshold of body lipid depletion, according to the shift from lipid to protein fuel metabolism occurring at the phase II/phase III transition. The high cost of regulatory thermogenesis and the limited use of hypothermia during fasting may contribute to the high mortality of barn owls during winter.
Collapse
Affiliation(s)
- C Thouzeau
- Centre d'Ecologie et Physiologie Energétiques, associé à l'Université Louis Pasteur, Centre National de la Recherche Scientifique, 23 rue Becquerel, F-67087 Strasbourg Cedex 02, France.
| | | | | |
Collapse
|
2112
|
Abstract
Control of CTFR Channel Gating by Phosphorylation and Nucleotide Hydrolysis. Physiol. Rev. 79, Suppl.: S77-S107, 1999. - The cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel is the protein product of the gene defective in cystic fibrosis, the most common lethal genetic disease among Caucasians. Unlike any other known ion channel, CFTR belongs to the ATP-binding cassette superfamily of transporters and, like all other family members, CFTR includes two cytoplasmic nucleotide-binding domains (NBDs), both of which bind and hydrolyze ATP. It appears that in a single open-close gating cycle, an individual CFTR channel hydrolyzes one ATP molecule at the NH2-terminal NBD to open the channel, and then binds and hydrolyzes a second ATP molecule at the COOH-terminal NBD to close the channel. This complex coordinated behavior of the two NBDs is orchestrated by multiple protein kinase A-dependent phosphorylation events, at least some of which occur within the third large cytoplasmic domain, called the regulatory domain. Two or more kinds of protein phosphatases selectively dephosphorylate distinct sites. Under appropriately controlled conditions of progressive phosphorylation or dephosphorylation, three functionally different phosphoforms of a single CFTR channel can be distinguished on the basis of channel opening and closing kinetics. Recording single CFTR channel currents affords an unprecedented opportunity to reproducibly examine, and manipulate, individual ATP hydrolysis cycles in a single molecule, in its natural environment, in real time.
Collapse
Affiliation(s)
- D C Gadsby
- Laboratory of Cardiac/Membrane Physiology, and Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York, USA
| | | |
Collapse
|
2113
|
Abstract
Pharmacology of CFTR Chloride Channel Activity. Physiol. Rev. 79, Suppl.: S109-S144, 1999. - The pharmacology of cystic fibrosis transmembrane conductance regulator (CFTR) is at an early stage of development. Here we attempt to review the status of those compounds that modulate the Cl- channel activity of CFTR. Three classes of compounds, the sulfonylureas, the disulfonic stilbenes, and the arylaminobenzoates, have been shown to directly interact with CFTR to cause channel blockade. Kinetic analysis has revealed the sulfonylureas and arylaminobenzoates interact with the open state of CFTR to cause blockade. Suggestive evidence indicates the disulfonic stilbenes act by a similar mechanism but only from the intracellular side of CFTR. Site-directed mutagenesis studies indicate the involvement of specific amino acid residues in the proposed transmembrane segment 6 for disulfonic stilbene blockade and segments 6 and 12 for arylaminobenzoate blockade. Unfortunately, these compounds (sulfonylureas, disulfonic stilbenes, arylaminobenzoate) also act at a number of other cellular sites that can indirectly alter the activity of CFTR or the transepithelial secretion of Cl-. The nonspecificity of these compounds has complicated the interpretation of results from cellular-based experiments. Compounds that increase the activity of CFTR include the alkylxanthines, phosphodiesterase inhibitors, phosphatase inhibitors, isoflavones and flavones, benzimidazolones, and psoralens. Channel activation can arise from the stimulation of the cAMP signal transduction cascade, the inhibition of inactivating enzymes (phosphodiesterases, phosphatases), as well as the direct binding to CFTR. However, in contrast to the compounds that block CFTR, a detailed understanding of how the above compounds increase the activity of CFTR has not yet emerged.
Collapse
Affiliation(s)
- B D Schultz
- University of Pittsburgh School of Medicine, Pennsylvania, USA
| | | | | | | |
Collapse
|
2114
|
Ishida J, Sugiyama F, Tanimoto K, Taniguchi K, Syouji M, Takimoto E, Horiguchi H, Murakami K, Yagami KI, Fukamizu A. Rescue of angiotensinogen-knockout mice. Biochem Biophys Res Commun 1998; 252:610-6. [PMID: 9837754 DOI: 10.1006/bbrc.1998.9707] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensinogen, the precursor of angiotensins I and II, is a critical component of the renin-angiotensin system that plays an important role in regulating blood pressure and electrolyte homeostasis. Genetically altered mice lacking angiotensinogen (Agt-KO) showed an expected phenotype, such as marked hypotension, but unexpected ones including abnormal kidney morphology, reduced survival rates of newborns, and impaired blood-brain barrier function after cold injury. To examine whether disruption of the angiotensinogen gene is responsible for the observed phenotypes, we generated a line of mice heterozygous for the mouse angiotensinogen gene under the control of a mouse metallothionein-I promoter (MT-Agt) and crossmated transgenic mice with Agt-KO mice. The resulting mice (MT-Agt(+/-)/Agt(-/-):MT-Agt/KO) produced the plasma level of angiotensin I comparable to that of wild-type mice, and the mutant phenotypes were rescued. These results indicated that the resultant phenotypes due to the genetic deficiency of mouse angiotensinogen can be corrected by restoring angiotensinogen and angiotensin I in the circulation.
Collapse
Affiliation(s)
- J Ishida
- Institute of Applied Biochemistry, University of Tsukuba
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2115
|
ROLE OF THE RENIN-ANGIOTENSIN SYSTEM IN DISORDERS OF THE URINARY TRACT. J Urol 1998. [DOI: 10.1097/00005392-199811000-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2116
|
Clément A, Tamalet A, Fauroux B, Tournier G. [Mucoviscidosis: therapeutic strategies are multiplying]. Arch Pediatr 1998; 5:1246-52. [PMID: 9853065 DOI: 10.1016/s0929-693x(98)81244-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Since the cloning of the defective gene in cystic fibrosis, much has been learned on the function of CFTR and on the mechanisms regulating its expression. Based on the current understanding of the processes involved in lung disease progression, a number of approaches have been developed using gene therapy and pharmacological agents. Several of these agents have been reported to restitute a function to CFTR with specific mutations. Other molecules act on channels other than CFTR, and may be effective by bypassing CFTR itself. In the present review the various therapeutical strategies currently investigated are discussed.
Collapse
Affiliation(s)
- A Clément
- Département de pneumologie pédiatrique, hôpital Armand-Trousseau, Paris, France
| | | | | | | |
Collapse
|
2117
|
Keely SJ, Uribe JM, Barrett KE. Carbachol stimulates transactivation of epidermal growth factor receptor and mitogen-activated protein kinase in T84 cells. Implications for carbachol-stimulated chloride secretion. J Biol Chem 1998; 273:27111-7. [PMID: 9765228 DOI: 10.1074/jbc.273.42.27111] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have examined the role of tyrosine phosphorylation in regulation of calcium-dependent chloride secretion across T84 colonic epithelial cells. The calcium-mediated agonist carbachol (CCh, 100 microM) stimulated a time-dependent increase in tyrosine phosphorylation of a range of proteins (with molecular masses ranging up to 180 kDa) in T84 cells. The tyrosine kinase inhibitor, genistein (5 microM), significantly potentiated chloride secretory responses to CCh, indicating a role for CCh-stimulated tyrosine phosphorylation in negative regulation of CCh-stimulated secretory responses. Further studies revealed that CCh stimulated an increase in both phosphorylation and activity of the extracellular signal-regulated kinase (ERK) isoforms of mitogen-activated protein kinase. Chloride secretory responses to CCh were also potentiated by the mitogen-activated protein kinase inhibitor, PD98059 (20 microM). Phosphorylation of ERK in response to CCh was mimicked by the protein kinase C (PKC) activator, phorbol myristate acetate (100 nM), but was not altered by the PKC inhibitor GF 109203X (1 microM). ERK phosphorylation was also induced by epidermal growth factor (EGF) (100 ng/ml). Immunoprecipitation/Western blot studies revealed that CCh stimulated tyrosine phosphorylation of the EGF receptor (EGFr) and increased co-immunoprecipitation of the adapter proteins, Shc and Grb2, with the EGFr. An inhibitor of EGFr phosphorylation, tyrphostin AG1478 (1 microM), reversed CCh-stimulated phosphorylation of both EGFr and ERK. Tyrphostin AG1478 also potentiated chloride secretory responses to CCh. We conclude that CCh activates ERK in T84 cells via a mechanism involving transactivation of the EGFr, and that this pathway constitutes an inhibitory signaling pathway by which chloride secretory responses to CCh may be negatively regulated.
Collapse
Affiliation(s)
- S J Keely
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, California 92103, USA
| | | | | |
Collapse
|
2118
|
He Z, Raman S, Guo Y, Reenstra WW. Cystic fibrosis transmembrane conductance regulator activation by cAMP-independent mechanisms. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C958-66. [PMID: 9755049 DOI: 10.1152/ajpcell.1998.275.4.c958] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent studies have demonstrated that several compounds with diverse structures can activate wild-type cystic fibrosis transmembrane conductance regulator (CFTR) by non-receptor-mediated mechanisms. Some of these compounds have been shown to enhance cAMP-dependent activation of DeltaF508-CFTR. This study was undertaken to compare the mechanisms by which genistein, IBMX, milrinone, 8-cyclopentyl-1, 3-dipropylxanthine (CPX), the benzimidazolone NS004, and calyculin A increase CFTR activity. Our studies demonstrate that, in transfected NIH-3T3 cells, maximal enhancements of forskolin-dependent DeltaF508-CFTR activity are greatest with genistein, IBMX, and NS004. Milrinone, genistein, CPX, NS004, and calyculin A do not increase cellular cAMP. Because forskolin and calyculin A increase in vivo phosphorylation of cAMP binding response element (CREB), the inability of milrinone, genistein, CPX, and NS004 to increase CREB phosphorylation suggests that they do not stimulate protein kinase A or inhibit phosphatase activity. Our data suggest that the mechanisms by which genistein and NS004 activate CFTR differ. We also demonstrate that, in NIH-3T3 cells, IBMX-dependent enhancement of cAMP-dependent CFTR activity is not due to an increase in cellular cAMP and may involve a mechanism like that of genistein.
Collapse
Affiliation(s)
- Z He
- Department of Clinical Science, Alfred I. duPont Hospital for Children, Thomas Jefferson University, Wilmington, Delaware 19803, USA
| | | | | | | |
Collapse
|
2119
|
Abstract
There are over 600 unique mutations in the cystic fibrosis (CF) gene that can be classified in five general categories with respect to specific defect. Through basic research into the genetic and physiologic consequences of these mutations, it has become possible to design genotype-specific therapeutic strategies. New pharmaceutical agents are under development for the rescue of defective cystic fibrosis transmembrane conductance regulator mRNA or protein. Some of these compounds are undergoing study in CF patients in Phase I clinical trials. This article evaluates the current research directed at translating a basic molecular understanding of the disease into innovative new treatments.
Collapse
Affiliation(s)
- P L Zeitlin
- Department of Pediatrics, Johns Hopkins Hospital, Baltimore, Maryland, USA
| |
Collapse
|
2120
|
Sakamoto N, Uemura H, Hara Y, Saito T, Masuda Y, Nakaya H. Bradykinin B2-receptor-mediated modulation of membrane currents in guinea-pig cardiomyocytes. Br J Pharmacol 1998; 125:283-92. [PMID: 9786500 PMCID: PMC1565618 DOI: 10.1038/sj.bjp.0702060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. In order to define the electrophysiological mechanism(s) responsible for bradykinin (BK)-induced positive inotropic and chronotropic responses in isolated guinea-pig atria, effects of BK on the membrane currents were examined in isolated atrial cells using patch clamp techniques. 2. BK (0.1-1000 nM) increased the L-type Ca2+ current (I(Ca)), which was recorded from enzymatically-dissociated atrial myocytes by the nystatin-perforated patch method, in a concentration-dependent fashion, and the calculated EC50 value for increasing I(Ca) was 5.2 nM. In conventional ruptured patch experiments, BK inhibited the muscarinic acetylcholine receptor-operated K+ current (I(K.ACh)) that was activated by the muscarinic agonist carbachol (1 microM) with an EC50 value of 0.57 nM. Both the increase in I(Ca) and the decrease in I(K.ACh) were blocked by HOE140, a selective bradykinin B2 receptor antagonist. 3. The BK-induced inhibition of I(K.ACh) was significantly attenuated by staurosporine and calphostin C, protein kinase C inhibitors. In addition, the I(K.ACh) inhibition by BK was also attenuated by the tyrosine kinase inhibitor genistein or tyrphostin but not by daidzein, an inactive analogue of genistein. However, neither protein kinase C inhibitor nor tyrosine kinase inhibitor affected the BK-induced increase in I(Ca). 4. In the presence and absence of muscarinic stimulation, BK prolonged the action potential recorded from the atrial cells in the current clamp mode. 5. We conclude that BK increases I(Ca) and decreases I(K.ACh) in atrial cells, resulting in positive inotropic and chronotropic responses in atrial preparations. Protein kinase C activation, and possibly tyrosine kinase activation, may be involved in the B2-receptor-mediated I(K.ACh) inhibition.
Collapse
Affiliation(s)
- N Sakamoto
- Department of Pharmacology, Chiba University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
2121
|
Hanrahan JW, Kone Z, Mathews CJ, Luo J, Jia Y, Linsdell P. Patch-clamp studies of cystic fibrosis transmembrane conductance regulator chloride channel. Methods Enzymol 1998; 293:169-94. [PMID: 9711609 DOI: 10.1016/s0076-6879(98)93014-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- J W Hanrahan
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
2122
|
Hool LC, Middleton LM, Harvey RD. Genistein increases the sensitivity of cardiac ion channels to beta-adrenergic receptor stimulation. Circ Res 1998; 83:33-42. [PMID: 9670916 DOI: 10.1161/01.res.83.1.33] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The whole-cell patch-clamp technique was used to monitor the effects of genistein, a tyrosine kinase inhibitor, on membrane currents recorded from isolated guinea pig ventricular myocytes. Under control conditions, genistein (50 micromol/L) did not activate the latent cAMP-regulated Cl- current (ICl). However, in the presence of a subthreshold concentration (1 nmol/L) of the beta-adrenergic agonist isoproterenol (Iso), genistein caused a near-maximal activation of this current. In the absence of genistein, Iso activated ICl with an EC50 of 5 nmol/L. In the presence of genistein, Iso activated ICl with an EC50 of 0.3 nmol/L. This facilitatory effect was not observed in the presence of daidzein (50 micromol/L), an analogue of genistein that only weakly inhibits tyrosine kinase activity. Furthermore, peroxovanadate, a potent inhibitor of phosphotyrosine phosphatase activity, inhibited ICl activated by Iso alone, and it blocked the stimulatory effect of genistein in the presence of Iso. To determine whether the stimulatory effect of genistein was specific for ICl, we also studied its action on the cAMP-regulated delayed rectifier K+ current (IK) and L-type Ca2+ current (ICa-L) present in these cells. Basal IK and ICa-L were partially (approximately 30% to 40%) inhibited by genistein. However, this inhibitory effect was mimicked by daidzein, suggesting that inhibition of tyrosine kinase activity is not involved. In addition to the nonspecific inhibitory effect, genistein also caused a significant increase in the beta-adrenergic sensitivity of the unblocked cationic currents. In the absence of genistein, 1 nmol/L Iso had no effect on either IK or ICa-L. However, in the presence of genistein, 1 nmol/L Iso significantly increased the magnitude of both currents. These results suggest that tyrosine kinase activity may play an important role in regulating beta-adrenergic responsiveness of the heart.
Collapse
Affiliation(s)
- L C Hool
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio 44106-4970, USA
| | | | | |
Collapse
|
2123
|
Harvey J, Ashford ML. Role of tyrosine phosphorylation in leptin activation of ATP-sensitive K+ channels in the rat insulinoma cell line CRI-G1. J Physiol 1998; 510 ( Pt 1):47-61. [PMID: 9625866 PMCID: PMC2231029 DOI: 10.1111/j.1469-7793.1998.047bz.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/1997] [Accepted: 03/17/1998] [Indexed: 01/01/2023] Open
Abstract
1. Using whole-cell and cell-attached recording configurations, the role of phosphorylation in leptin activation of ATP-sensitive K+ (KATP) channels was examined in the rat CRI-G1 insulinoma cell line. 2. Whole-cell current clamp recordings demonstrated that, following dialysis with the non-hydrolysable ATP analogue 5'-adenylylimidodiphosphate (AMP-PNP; 3-5 mM), the leptin-induced hyperpolarization and increase in K+ conductance were completely inhibited. 3. Under current clamp conditions, application of the broad-spectrum protein kinase inhibitor H-7 (10 microM) had no effect on the resting membrane potential or slope conductance of CRI-G1 insulinoma cells and did not occlude the actions of leptin. 4. Application of the tyrosine kinase inhibitors genistein (10 microM), tyrphostin B42 (10 microM) and herbimycin A (500 nM) all resulted in activation of KATP channels. In cell-attached recordings, the presence of tyrphostin B42 (10 microM) in the pipette solution activated tolbutamide-sensitive KATP channels in CRI-G1 cells. In contrast, the inactive analogues of genistein and tyrphostin B42 were without effect. 5. The serine/threonine-specific protein phosphatase inhibitors okadaic acid (50 nM) and cyclosporin A (1 microM) did not prevent or reverse leptin activation of KATP channels. In contrast, whole-cell dialysis with the tyrosine phosphatase inhibitor orthovanadate (500 microM) prevented the actions of both leptin and tyrphostin B42. 6. In conclusion, leptin activation of KATP channels appears to require inhibition of tyrosine kinases and subsequent dephosphorylation. This process is likely to occur prior to activation of phosphoinositide 3-kinase (PI 3-kinase) as wortmannin prevented activation of KATP channels by tyrphostin B42.
Collapse
Affiliation(s)
- J Harvey
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | | |
Collapse
|
2124
|
Jiang C, Fang SL, Xiao YF, O'Connor SP, Nadler SG, Lee DW, Jefferson DM, Kaplan JM, Smith AE, Cheng SH. Partial restoration of cAMP-stimulated CFTR chloride channel activity in DeltaF508 cells by deoxyspergualin. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C171-8. [PMID: 9688848 DOI: 10.1152/ajpcell.1998.275.1.c171] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Deletion of the codon encoding phenylalanine 508 (DeltaF508) is the most common mutation in cystic fibrosis (CF) and results in a trafficking defect. Mutant DeltaF508-CF transmembrane conductance regulator (CFTR) protein retains functional activity, but the nascent protein is recognized as abnormal and, in consequence, is retained in the endoplasmic reticulum (ER) and degraded. It has been proposed that this retention in the ER is mediated, at least in part, by the cellular chaperones heat shock protein (HSP) 70 and calnexin. We have investigated the ability of deoxyspergualin (DSG), a compound known to compete effectively for binding with HSP70 and HSP90, to promote trafficking of DeltaF508-CFTR to the cell membrane. We show that DSG treatment of immortalized human CF epithelial cells (DeltaF508) and cells expressing recombinant DeltaF508-CFTR partially restored cAMP-stimulated CFTR Cl- channel activity at the plasma membrane. Although there are several possible explanations for these results, one simple interpretation is that DSG may have altered the interaction between DeltaF508-CFTR and its associated chaperones. If this is correct, agents capable of altering the normal functioning of cellular chaperones may provide yet another means of restoring CFTR Cl- channel activity to CF subjects harboring this class of mutations.
Collapse
Affiliation(s)
- C Jiang
- Genzyme Corporation, Framingham, MA 01701-9322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2125
|
Yang X, Borg LA, Simán CM, Eriksson UJ. Maternal antioxidant treatments prevent diabetes-induced alterations of mitochondrial morphology in rat embryos. Anat Rec (Hoboken) 1998; 251:303-15. [PMID: 9669757 DOI: 10.1002/(sici)1097-0185(199807)251:3<303::aid-ar5>3.0.co;2-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previous studies have suggested that production of reactive oxygen species by embryonic mitochondria may have a role in the induction of both high-amplitude mitochondrial swelling and embryonic dysmorphogenesis in diabetic pregnancy. The present study analyzed the relationships between a putative metabolite-induced production of free oxygen radicals, mitochondrial lipid peroxidation, and high-amplitude mitochondrial swelling in embryos during organogenesis. For studies in vitro, day 9 embryos of normal rats were cultured for 48 h with a high concentration of glucose in the absence or presence of alpha-cyano-4-hydroxycinnamic acid (CHC), a mitochondrial pyruvate transport inhibitor. The morphology of mitochondria in the neuroepithelium of the embryos was studied with the aid of transmission electron microscopy. For studies in vivo, normal and diabetic pregnant rats were fed a diet supplemented with the antioxidants alpha-tocopherol (vitamin E) or 2,6-di-tert-butyl-4-methylphenol (BHT), and the ultrastructure of mitochondria in the embryonic neuroepithelium and in the visceral yolk sac was investigated on gestational day 11. Exposure to a high concentration of glucose in vitro or to maternal diabetes in vivo induced high-amplitude swelling of mitochondria in the neuroepithelium of the embryos. The swelling of mitochondria was prevented by addition of CHC to the culture media or by maternal ingestion of antioxidant-supplemented food. In diabetic pregnancy, embryonic mitochondria during organogenesis produce free oxygen radicals that cause mitochondrial lipid peroxidation and swelling and furthermore embryonic dysmorphogenesis. Dietary supplementation with antioxidants to the mother may prevent embryonic malformations in diabetic pregnancy by inhibition of mitochondrial dysfunction.
Collapse
Affiliation(s)
- X Yang
- Department of Medical Cell Biology, University of Uppsala, Sweden
| | | | | | | |
Collapse
|
2126
|
de Jesus Ferreira MC, Héliès-Toussaint C, Imbert-Teboul M, Bailly C, Verbavatz JM, Bellanger AC, Chabardès D. Co-expression of a Ca2+-inhibitable adenylyl cyclase and of a Ca2+-sensing receptor in the cortical thick ascending limb cell of the rat kidney. Inhibition of hormone-dependent cAMP accumulation by extracellular Ca2+. J Biol Chem 1998; 273:15192-202. [PMID: 9614133 DOI: 10.1074/jbc.273.24.15192] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The Ca2+-sensing receptor protein and the Ca2+-inhibitable type 6 adenylyl cyclase mRNA are present in a defined segment of the rat renal tubule leading to the hypothesis of their possible functional co-expression in a same cell and thus to a possible inhibition of cAMP content by extracellular Ca2+. By using microdissected segments, we compared the properties of regulation of extracellular Ca2+-mediated activation of Ca2+ receptor to those elicited by prostaglandin E2 and angiotensin II. The three agents inhibited a common pool of hormone-stimulated cAMP content by different mechanisms as follows. (i) Extracellular Ca2+, coupled to phospholipase C activation via a pertussis toxin-insensitive G protein, induced a dose-dependent inhibition of cAMP content (1.25 mM Ca2+ eliciting 50% inhibition) resulting from both stimulation of cAMP hydrolysis and inhibition of cAMP synthesis; this latter effect was mediated by capacitive Ca2+ influx as well as release of intracellular Ca2+. (ii) Angiotensin II, coupled to the same transduction pathway, also decreased cAMP content; however, its inhibitory effect on cAMP was mainly accounted for by an increase of cAMP hydrolysis, although angiotensin II and extracellular Ca2+ can induce comparable release of intracellular Ca2+. (iii) Prostaglandin E2, coupled to pertussis toxin-sensitive G protein, inhibited the same pool of adenylyl cyclase units as extracellular Ca2+ but by a different mechanism. The functional properties of the adenylyl cyclase were similar to those described for type 6. The results establish that the co-expression of a Ca2+-inhibitable adenylyl cyclase and of a Ca2+-sensing receptor in a same cell allows an inhibition of cAMP accumulation by physiological concentrations of extracellular Ca2+.
Collapse
Affiliation(s)
- M C de Jesus Ferreira
- Service de Biologie Cellulaire, Département de Biologie Cellulaire et Moléculaire, CEA Saclay, France
| | | | | | | | | | | | | |
Collapse
|
2127
|
Pelzmann B, Schaffer P, Bernhart E, Lang P, Mächler H, Rigler B, Koidl B. L-type calcium current in human ventricular myocytes at a physiological temperature from children with tetralogy of Fallot. Cardiovasc Res 1998; 38:424-32. [PMID: 9709403 DOI: 10.1016/s0008-6363(98)00002-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE The aim was to investigate the electrophysiological properties of the L-type calcium current (ICa,L) in ventricular myocytes at a physiological temperature (36-37 degrees C) isolated from children undergoing surgical repair of tetralogy of Fallot. METHODS ICa,L was recorded with the patch-clamp technique in the single electrode whose-cell mode at a physiological calcium concentration (1.8 mmol/l) at 36-37 degrees C. RESULTS Under these conditions, maximum current density averaged -5.80 +/- 0.45 pA/pF. ICa,L showed a bell-shaped current-voltage relationship: the current activated at -37.7 +/- 1.36 mV, peaked at +9.41 +/- 1.60 mV and reversed at +57.7 +/- 2.12 mV (n = 17). At +10 mV, time to peak of ICa,L was 5.23 +/- 0.46 ms. Membrane potentials for half-maximal steady-state activation and inactivation of ICa,L were -6.02 and -20.4 mV, respectively, the slope factors were 7.16 mV for steady-state activation and 6.49 mV for steady-state inactivation. ICa,L did not completely inactivate and showed a big window current between -45 and +40 mV. The inactivation of ICa,L showed a biexponential time course with a fast time constant ranging from 9.11 to 12.9 ms and a slow time constant ranging from 60.9 to 220 ms between -30 and +30 mV. Only the slow time constant showed a pronounced voltage dependency. The recovery from inactivation of ICa,L was biphasic with a fast time constant of 60.7 ms and a slow time constant of 619 ms. beta-Adrenergic stimulation with isoprenaline (1 mumol/l) increased the ICa,L density from -5.71 +/- 1.55 to -13.8 +/- 1.96 pA/pF (142%; P < 0.05) at +10 mV. CONCLUSIONS The present study demonstrates that most of the electrophysiological properties of ICa,L in ventricular myocytes isolated from children with tetralogy of Fallot resemble those of adult ventricular cells. The existence of a big calcium window current could be involved in the occurrence of early afterdepolarizations which could lead to the high incidence of arrhythmias after surgical repair of tetralogy of Fallot.
Collapse
Affiliation(s)
- B Pelzmann
- Institut für Medizinische Physik and Biophysik, Karl-Franzens-Universität, Graz, Austria.
| | | | | | | | | | | | | |
Collapse
|
2128
|
Luo J, Pato MD, Riordan JR, Hanrahan JW. Differential regulation of single CFTR channels by PP2C, PP2A, and other phosphatases. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1397-410. [PMID: 9612228 DOI: 10.1152/ajpcell.1998.274.5.c1397] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) Cl- channel activity declines rapidly when excised from transfected Chinese hamster ovary (CHO) or human airway cells because of membrane-associated phosphatase activity. In the present study, we found that CFTR channels usually remained active in patches excised from baby hamster kidney (BHK) cells overexpressing CFTR. Those patches with stable channel activity were used to investigate the regulation of CFTR by exogenous protein phosphatases (PP). Adding PP2A, PP2C, or alkaline phosphatase to excised patches reduced CFTR channel activity by > 90% but did not abolish it completely. PP2B caused weak deactivation, whereas PP1 had no detectable effect on open probability (Po). Interestingly, the time course of deactivation by PP2C was identical to that of the spontaneous rundown observed in some patches after excision. PP2C and PP2A had distinct effects on channel gating Po declined during exposure to exogenous PP2C (and during spontaneous rundown, when it was observed) without any change in mean burst duration. By contrast, deactivation by exogenous PP2A was associated with a dramatic shortening of burst duration similar to that reported previously in patches from cardiac cells during deactivation of CFTR by endogenous phosphatases. Rundown of CFTR-mediated current across intact T84 epithelial cell monolayers was insensitive to toxic levels of the PP2A inhibitor calyculin A. These results demonstrate that exogenous PP2C is a potent regulator of CFTR activity, that its effects on single-channel gating are distinct from those of PP2A but similar to those of endogenous phosphatases in CHO, BHK, and T84 epithelial cells, and that multiple protein phosphatases may be required for complete deactivation of CFTR channels.
Collapse
Affiliation(s)
- J Luo
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
2129
|
Abstract
Chloride channels are widely expressed and play important roles in cell volume regulation, transepithelial transport, intracellular pH regulation, and membrane excitability. Most chloride channels have yet to be identified at a molecular level. The ClC gene family and the cystic fibrosis transmembrane conductance regulator (CFTR) are distinct chloride channels expressed in many cell types, and mutations in their genes are the cause of several diseases including myotonias, cystic fibrosis, and kidney stones. Because of their molecular definition and roles in disease, these channels have been studied intensively over the past several years. The focus of this review is on recent studies that have provided new insights into the mechanisms governing the opening and closing, i.e. gating, of the ClC and CFTR chloride channels.
Collapse
Affiliation(s)
- J K Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6100, USA.
| |
Collapse
|
2130
|
Kelso EJ, Spiers JP, McDermott BJ, Scholfield CN, Silke B. Stimulation of L-type Ca2+ current by the endothelin receptor A-selective antagonist, BQ-123 in ventricular cardiomyocytes isolated from the rabbit myocardium. Biochem Pharmacol 1998; 55:897-902. [PMID: 9586963 DOI: 10.1016/s0006-2952(97)00581-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BQ-123 is extensively used as an antagonist at endothelin (ET) receptors, having selectivity at the ET(A) receptor subtype. In this study, the effects of BQ-123 per se on action potentials, L-type calcium currents, and potassium currents, were examined in ventricular cardiomyocytes isolated from adult, male, New Zealand White rabbits, using the patch-clamp technique. BQ-123 (1 microM) increased (P < 0.02) the duration of the action potential to 267 +/- 36 ms from a control duration of 228 +/- 30 ms. BQ-123 did not have any effect on the inward rectifier or transient outward potassium currents, but increased (P < 0.02) the L-type Ca2+ current to -2.76 +/- 0.3 nA from a control value of -2.45 +/- 0.28 nA. The increases in both duration of the action potential and L-type Ca2+ current were reversed upon washout (233 +/- 28 ms and -2.32 +/- 0.31 nA, respectively) and were not different from the control values in the absence of BQ-123. In contrast, the endothelin receptor antagonists, BQ-788, PD155080 and PD145065 (1-10 microM) did not affect the L-type Ca2+ current. These results indicate that, unlike PD155080, BQ-788 and PD145065, the conventional ET(A) receptor-selective antagonist, BQ-123, exerts a unique positive effect on the L-type Ca2+ current in ventricular cardiomyocytes isolated from rabbit myocardium. The mechanism of action of BQ-123, therefore, is not confined to ET receptor antagonism.
Collapse
Affiliation(s)
- E J Kelso
- Department of Therapeutics and Pharmacology, The Queen's University of Belfast, Northern Ireland.
| | | | | | | | | |
Collapse
|
2131
|
Wang F, Zeltwanger S, Yang IC, Nairn AC, Hwang TC. Actions of genistein on cystic fibrosis transmembrane conductance regulator channel gating. Evidence for two binding sites with opposite effects. J Gen Physiol 1998; 111:477-90. [PMID: 9482713 PMCID: PMC2217116 DOI: 10.1085/jgp.111.3.477] [Citation(s) in RCA: 121] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/1997] [Accepted: 01/16/1998] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that genistein increased cystic fibrosis transmembrane conductance regulator (CFTR) channel activity in the presence of saturating concentrations of forskolin and calyculin A in intact cells. Possible molecular mechanisms for genistein's action include inhibition of tyrosine kinases, inhibition of serine/threonine protein phosphatases, or direct binding of genistein to CFTR. Since genistein inhibits several enzymes that hydrolyze ATP, and ATP hydrolysis is an intrinsic property of CFTR, we examined the effect of genistein on CFTR gating in excised inside-out patches from Hi-5 insect cells and NIH3T3 cells expressing recombinant CFTR. Genistein (50 microM) did not open phosphorylated CFTR channels by itself, but increased the ATP- induced CFTR channel current by approximately twofold. A similar magnitude of enhancement was observed when genistein was applied with PKI, a specific inhibitor of protein kinase A, or vanadate, a tyrosine phosphatase inhibitor, suggesting that inhibition of protein phosphatases or tyrosine kinases does not account for genistein's effects. The enhancement of channel current increased with increasing concentrations of genistein and reached a maximum at 35 microM genistein. At higher concentrations of genistein concentration, CFTR channel current decreased, resulting in a bell-shaped dose-response relationship. In the absence of genistein, both open- and closed-time histograms could be fitted with a single exponential function, yielding a mean open time (tauO) of 0.302 +/- 0.002 s, and a mean closed time (tauC) of 0.406 +/- 0.003 s. In the presence of 50 microM genistein, the open time histogram could be fitted with a double exponential function with tauO1 = 0.429 +/- 0. 003 s and tauO2 = 2.033 +/- 0.173 s. Thus, genistein induced a prolonged open state, an effect that mimics that of nonhydrolyzable ATP analogs. Closed time analysis showed that 50 microM genistein caused a prolonged closed state with a time constant of 2.410 +/- 0.035 s. We thus conclude that (a) the effects of genistein are likely caused by a direct binding of the drug to the CFTR protein, and (b) at least two binding sites are required to explain the effects of genistein: a high affinity site that decreases the closing rate and a low affinity site that reduces the opening rate.
Collapse
Affiliation(s)
- F Wang
- Department of Physiology, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
2132
|
Yang X, Borg LA, Eriksson UJ. Metabolic alteration in neural tissue of rat embryos exposed to beta-hydroxybutyrate during organogenesis. Life Sci 1998; 62:293-300. [PMID: 9450500 DOI: 10.1016/s0024-3205(97)01110-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hyperketonemia has been identified as an important factor in diabetic pregnancy affecting growth and development of the offspring. In order to assess the immediate metabolic alterations in embryos caused by excess ketone bodies, we studied rat embryonic neural tissue exposed to a high concentration of beta-hydroxybutyrate in vitro. Beta-hydroxybutyrate inhibited oxygen uptake of the neural tissue of day 9 and day 10 embryos by 12.8% and 1 1.2%, but did not affect that of day 11 and day 12 tissue. In contrast, glucose utilization of the neural tissue of day 9 and day 10 embryos was not altered. However, a 30% decrease in glucose utilization was observed in the neural tissue of day 11 and day 12 embryos exposed to beta-hydroxybutyrate. Thus, beta-hydroxybutyrate induced different metabolic alterations in the embryonic neural tissue during early and late organogenesis, which suggests different modes of teratogenic action of ketone bodies in different parts of gestation.
Collapse
Affiliation(s)
- X Yang
- Department of Medical Cell Biology, University of Uppsala, Sweden
| | | | | |
Collapse
|
2133
|
Affiliation(s)
- B J Rosenstein
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | | |
Collapse
|
2134
|
Travis SM, Berger HA, Welsh MJ. Protein phosphatase 2C dephosphorylates and inactivates cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci U S A 1997; 94:11055-60. [PMID: 9380758 PMCID: PMC23594 DOI: 10.1073/pnas.94.20.11055] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
cAMP-dependent phosphorylation activates the cystic fibrosis transmembrane conductance regulator (CFTR) in epithelia. However, the protein phosphatase (PP) that dephosphorylates and inactivates CFTR in airway and intestinal epithelia, two major sites of disease, is not certain. We found that in airway and colonic epithelia, neither okadaic acid nor FK506 prevented inactivation of CFTR when cAMP was removed. These results suggested that a phosphatase distinct from PP1, PP2A, and PP2B was responsible. Because PP2C is insensitive to these inhibitors, we tested the hypothesis that it regulates CFTR. We found that PP2Calpha is expressed in airway and T84 intestinal epithelia. To test its activity on CFTR, we generated recombinant human PP2Calpha and found that it dephosphorylated CFTR and an R domain peptide in vitro. Moreover, in cell-free patches of membrane, addition of PP2Calpha inactivated CFTR Cl- channels; reactivation required readdition of kinase. Finally, coexpression of PP2Calpha with CFTR in epithelia reduced the Cl- current and increased the rate of channel inactivation. These results suggest that PP2C may be the okadaic acid-insensitive phosphatase that regulates CFTR in human airway and T84 colonic epithelia. It has been suggested that phosphatase inhibitors could be of therapeutic value in cystic fibrosis; our data suggest that PP2C may be an important phosphatase to target.
Collapse
Affiliation(s)
- S M Travis
- Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
2135
|
Thomas GP, Sims SM, Karmazyn M. Differential effects of endothelin-1 on basal and isoprenaline-enhanced Ca2+ current in guinea-pig ventricular myocytes. J Physiol 1997; 503 ( Pt 1):55-65. [PMID: 9288674 PMCID: PMC1159886 DOI: 10.1111/j.1469-7793.1997.055bi.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. We examined the effect of endothelin-1 (ET-1) on basal and isoprenaline-enhanced L-type Ca2+ current (ICa,L) in guinea-pig ventricular myocytes under nystatin-perforated patch configuration. 2. ET-1 at concentrations of 1, 5 and 10 nM had little effect on basal ICa,L. However, ICa,L enhanced by isoprenaline (500 nM) was significantly attenuated by 5 nM ET-1 by more than 50%. This effect was reversed upon washout. ICa,L enhanced by forskolin was also decreased by ET-1. 3. The inhibitory effect of ET-1 against isoprenaline was completely blocked by the ETA receptor antagonist BQ-123 (1 microM). In myocytes incubated with pertussis toxin (PTX, 2 micrograms ml-1) for 5 h, ET-1 did not inhibit isoprenaline-enhanced ICa,L. 4. Although ET-1 has been shown to activate specific protein kinase C (PKC) isoforms, a significant inhibitory effect of ET-1 was maintained in the presence of the PKC inhibitor bisindolylmaleimide (20 nM). The nitric oxide (NO) donor SIN-1 (10 microM) attenuated but failed to prevent the ET-1 effect. 5. In summary, our results demonstrate that ET-1 is devoid of any significant effects on basal ICa,L. However, it exerts a potent inhibitory effect against isoprenaline-enhanced ICa,L. This effect is mediated through ETA receptors coupled to PTX-sensitive G-proteins and occurs in the presence of PKC inhibition and NO generation.
Collapse
Affiliation(s)
- G P Thomas
- Department of Pharmacology and Toxicology, University of Western Ontario, London, Canada
| | | | | |
Collapse
|
2136
|
Chiang CE, Chen SA, Chang MS, Lin CI, Luk HN. Genistein directly induces cardiac CFTR chloride current by a tyrosine kinase-independent and protein kinase A-independent pathway in guinea pig ventricular myocytes. Biochem Biophys Res Commun 1997; 235:74-8. [PMID: 9196038 DOI: 10.1006/bbrc.1997.6739] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
With one-suction electrode voltage-clamp technique, we demonstrated that genistein, a tyrosine kinase (TK) inhibitor, could directly activate cystic fibrosis transmembrane regulator (CFTR) chloride current in guinea pig ventricular myocytes. The activation showed concentration-dependent effect with the estimated IC50 of 39.7 microM. Tyrphostin 51, another TK inhibitor, had no effect, suggesting that genistein's effect might be unrelated to TK inhibition. After the chloride current had been activated by the maximally elevated intracellular cAMP content by saturating concentration of isoproterenol, forskolin and IBMX, genistein could further enhance the current. Pre-treatment with saturating concentration of a specific protein kinase A (PKA) inhibitor, H-89, or other protein kinase inhibitors H-8 and H-9 in the perfusate or intracellularly could not prevent the activation of the current by genistein, suggesting a PKA-independent activity. Furthermore, saturating concentration of calyculin A, a specific inhibitor of phosphotase 1 and 2A, in the perfusate or intracellularly could not block genistein's action. It is possible that genistein opens the channels directly or inhibits the dephosphorylation process of CFTR, which is not sensitive calyculin A.
Collapse
Affiliation(s)
- C E Chiang
- Division of Cardiology, Veterans General Hospital-Taipei and National Yang-Ming University School of Medicine, Taiwan, Republic of China.
| | | | | | | | | |
Collapse
|
2137
|
Simán M. Congenital malformations in experimental diabetic pregnancy: aetiology and antioxidative treatment. Minireview based on a doctoral thesis. Ups J Med Sci 1997; 102:61-98. [PMID: 9394431 DOI: 10.3109/03009739709178933] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus in pregnancy causes congenital malformations in the offspring. The aim of this work was to characterize biochemical and morphologic anomalies in the conceptus of an animal model of diabetic pregnancy. In addition, a preventive treatment against diabetes-induced dysmorphogenesis was developed. Congenital cataract was often found in the offspring of diabetic rats. The fetal lenses had increased water accumulation, sorbitol concentration and aldose reductase activity compared to control lenses. The results suggest that the cataracts form via osmotic attraction of water due to sorbitol accumulation in the fetal lens. Another set of malformations, with possible neural crest cell origin, occurred frequently in offspring of diabetic rats. These included low set ears, micrognathia, hypoplasia of the thymus, thyroid and parathyroid glands, as well as anomalies of the heart and great vessels. Furthermore, diabetes caused intrauterine death and resorptions more frequently in the late part of gestation. When the pregnant diabetic rats were treated with the antioxidants butylated hydroxytoluene, vitamin E or vitamin C, the occurrence of gross malformations was reduced from approximately 25% to less than 8%, and late resorptions from 17% to 7%. This suggests that an abnormal handling of reactive oxygen species (ROS) is involved in diabetes-induced dysmorphogenesis in vivo. Indeed, an increased concentration of lipid peroxides, indicating damage caused by ROS, was found in fetuses of diabetes rats. In addition, embryos of diabetic rats had low concentrations of the antioxidant vitamin E compared to control embryos. These biochemical alterations were normalized by vitamin E treatment of the pregnant diabetic rats. The antioxidants are likely to have prevented ROS injury in the embryos of the diabetic rats, in particular in the neural crest cells, thereby normalizing embryonic development. These results provide a rationale for developing new anti-teratogenic treatments for pregnant women with diabetes mellitus.
Collapse
Affiliation(s)
- M Simán
- Department of Medical Cell Biology, Uppsala University, Sweden.
| |
Collapse
|