2101
|
Acetylation site specificities of lysine deacetylase inhibitors in human cells. Nat Biotechnol 2015; 33:415-23. [PMID: 25751058 DOI: 10.1038/nbt.3130] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 12/11/2014] [Indexed: 12/19/2022]
Abstract
Lysine deacetylases inhibitors (KDACIs) are used in basic research, and many are being investigated in clinical trials for treatment of cancer and other diseases. However, their specificities in cells are incompletely characterized. Here we used quantitative mass spectrometry (MS) to obtain acetylation signatures for 19 different KDACIs, covering all 18 human lysine deacetylases. Most KDACIs increased acetylation of a small, specific subset of the acetylome, including sites on histones and other chromatin-associated proteins. Inhibitor treatment combined with genetic deletion showed that the effects of the pan-sirtuin inhibitor nicotinamide are primarily mediated by SIRT1 inhibition. Furthermore, we confirmed that the effects of tubacin and bufexamac on cytoplasmic proteins result from inhibition of HDAC6. Bufexamac also triggered an HDAC6-independent, hypoxia-like response by stabilizing HIF1-α, providing a possible mechanistic explanation of its adverse, pro-inflammatory effects. Our results offer a systems view of KDACI specificities, providing a framework for studying function of acetylation and deacetylases.
Collapse
|
2102
|
Maserti B, Podda A, Giorgetti L, Del Carratore R, Chevret D, Migheli Q. Proteome changes during yeast-like and pseudohyphal growth in the biofilm-forming yeast Pichia fermentans. Amino Acids 2015; 47:1091-106. [PMID: 25743163 DOI: 10.1007/s00726-015-1933-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 02/03/2015] [Indexed: 12/25/2022]
Abstract
The Pichia fermentans strain DISAABA 726 is a biofilm-forming yeast that has been proposed as biocontrol agent to control brown rot on apple. How ever, when inoculated on peach, strain 726 shows yeast-like to pseudohyphal transition coupled to a pathogenic behaviour. To identify the proteins potentially involved in such transition process, a comparative proteome analysis of P. fermentans 726 developed on peach (filamentous growth) vs apple (yeast-like growth) was carried out using two-dimensional gel electrophoresis coupled with mass spectrometry analysis. The proteome comparison was also performed between the two different cell morphologies induced in a liquid medium amended with urea (yeast-like cells) or methionine (filamentous cells) to exclude fruit tissue impact on the transition. Seventy-three protein spots showed significant variations in abundance (±twofold, p < 0.01, confidence intervals 99 %) between pseudohyphal vs yeast-like morphology produced on fruits. Among them, 30 proteins changed their levels when the two morphologies were developed in liquid medium. The identified proteins belong to several pathways and functions, such as glycolysis, amino acid synthesis, chaperones, and signalling transduction. The possible role of a group of proteins belonging to the carbohydrate pathway in the metabolic re-organisation during P. fermentans dimorphic transition is discussed.
Collapse
Affiliation(s)
- Biancaelena Maserti
- CNR-IPSP, Consiglio Nazionale delle Ricerche-Dipartimento di Scienze Bio-Agroalimentari, Istituto per la Protezione Sostenibile delle Piante, Area della Ricerca CNR, Via Madonna del Piano 10, 50019, Sesto Fiorentino, Florence, Italy,
| | | | | | | | | | | |
Collapse
|
2103
|
Analysis of the Candida albicans Phosphoproteome. EUKARYOTIC CELL 2015; 14:474-85. [PMID: 25750214 DOI: 10.1128/ec.00011-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/04/2015] [Indexed: 01/19/2023]
Abstract
Candida albicans is an important human fungal pathogen in both immunocompetent and immunocompromised individuals. C. albicans regulation has been studied in many contexts, including morphological transitions, mating competence, biofilm formation, stress resistance, and cell wall synthesis. Analysis of kinase- and phosphatase-deficient mutants has made it clear that protein phosphorylation plays an important role in the regulation of these pathways. In this study, to further our understanding of phosphorylation in C. albicans regulation, we performed a deep analysis of the phosphoproteome in C. albicans. We identified 19,590 unique peptides that corresponded to 15,906 unique phosphosites on 2,896 proteins. The ratios of serine, threonine, and tyrosine phosphosites were 80.01%, 18.11%, and 1.81%, respectively. The majority of proteins (2,111) contained at least two detected phosphorylation sites. Consistent with findings in other fungi, cytoskeletal proteins were among the most highly phosphorylated proteins, and there were differences in Gene Ontology (GO) terms for proteins with serine and threonine versus tyrosine phosphorylation sites. This large-scale analysis identified phosphosites in protein components of Mediator, an important transcriptional coregulatory protein complex. A targeted analysis of the phosphosites in Mediator complex proteins confirmed the large-scale studies, and further in vitro assays identified a subset of these phosphorylations that were catalyzed by Cdk8 (Ssn3), a kinase within the Mediator complex. These data represent the deepest single analysis of a fungal phosphoproteome and lay the groundwork for future analyses of the C. albicans phosphoproteome and specific phosphoproteins.
Collapse
|
2104
|
Zanker D, Otto W, Chen W, von Bergen M, Tomm JM. Compartment resolved reference proteome map from highly purified naïve, activated, effector, and memory CD8+
murine immune cells. Proteomics 2015; 15:1808-12. [DOI: 10.1002/pmic.201400405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/21/2014] [Accepted: 01/19/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Damien Zanker
- T Cell Laboratory; School of Molecular Science; La Trobe University; Bundoora Australia
| | - Wolfgang Otto
- Department of Proteomics; Helmholtz Centre for Environmental Research; Leipzig Germany
| | - Weisan Chen
- T Cell Laboratory; School of Molecular Science; La Trobe University; Bundoora Australia
| | - Martin von Bergen
- Department of Proteomics; Helmholtz Centre for Environmental Research; Leipzig Germany
- Department of Metabolomics; Helmholtz Centre for Environmental Research; Leipzig Germany
- Department of Biotechnology and Environmental Engineering; University of Aalborg; Aalborg Denmark
| | - Janina M. Tomm
- Department of Proteomics; Helmholtz Centre for Environmental Research; Leipzig Germany
| |
Collapse
|
2105
|
Proteomic analyses reveal that loss of TDP-43 affects RNA processing and intracellular transport. Neuroscience 2015; 293:157-70. [PMID: 25743254 DOI: 10.1016/j.neuroscience.2015.02.046] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/12/2022]
Abstract
Transactive response DNA-binding protein 43 (TDP-43) is a predominantly nuclear, ubiquitously expressed RNA and DNA-binding protein. It recognizes and binds to UG repeats and is involved in pre-mRNA splicing, mRNA stability and microRNA metabolism. TDP-43 is essential in early embryonic development but accumulates in cytoplasmic aggregates in amyotrophic lateral sclerosis (ALS) and tau-negative frontotemporal lobar degeneration (FTLD). It is not known yet whether cytoplasmic aggregates of TDP-43 are toxic or protective but they are often associated with a loss of TDP-43 from the nucleus and neurodegeneration may be caused by a loss of normal TDP-43 function or a gain of toxic function. Here we present a proteomic study to analyze the effect of loss of TDP-43 on the proteome. MS data are available via ProteomeXchange with identifier PXD001668. Our results indicate that TDP-43 is an important regulator of RNA metabolism and intracellular transport. We show that Ran-binding protein 1 (RanBP1), DNA methyltransferase 3 alpha (Dnmt3a) and chromogranin B (CgB) are downregulated upon TDP-43 knockdown. Subsequently, transportin 1 level is increased as a result of RanBP1 depletion. Improper regulation of these proteins and the subsequent disruption of cellular processes may play a role in the pathogenesis of the TDP-43 proteinopathies ALS and FTLD.
Collapse
|
2106
|
Tsou CC, Avtonomov D, Larsen B, Tucholska M, Choi H, Gingras AC, Nesvizhskii AI. DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat Methods 2015; 12:258-64, 7 p following 264. [PMID: 25599550 PMCID: PMC4399776 DOI: 10.1038/nmeth.3255] [Citation(s) in RCA: 471] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/17/2014] [Indexed: 12/26/2022]
Abstract
As a result of recent improvements in mass spectrometry (MS), there is increased interest in data-independent acquisition (DIA) strategies in which all peptides are systematically fragmented using wide mass-isolation windows ('multiplex fragmentation'). DIA-Umpire (http://diaumpire.sourceforge.net/), a comprehensive computational workflow and open-source software for DIA data, detects precursor and fragment chromatographic features and assembles them into pseudo-tandem MS spectra. These spectra can be identified with conventional database-searching and protein-inference tools, allowing sensitive, untargeted analysis of DIA data without the need for a spectral library. Quantification is done with both precursor- and fragment-ion intensities. Furthermore, DIA-Umpire enables targeted extraction of quantitative information based on peptides initially identified in only a subset of the samples, resulting in more consistent quantification across multiple samples. We demonstrated the performance of the method with control samples of varying complexity and publicly available glycoproteomics and affinity purification-MS data.
Collapse
Affiliation(s)
- Chih-Chiang Tsou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Dmitry Avtonomov
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Brett Larsen
- Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
| | | | - Hyungwon Choi
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alexey I. Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2107
|
Lee DCH, Jones AR, Hubbard SJ. Computational phosphoproteomics: from identification to localization. Proteomics 2015; 15:950-63. [PMID: 25475148 PMCID: PMC4384807 DOI: 10.1002/pmic.201400372] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 10/31/2014] [Accepted: 11/26/2014] [Indexed: 01/08/2023]
Abstract
Analysis of the phosphoproteome by MS has become a key technology for the characterization of dynamic regulatory processes in the cell, since kinase and phosphatase action underlie many major biological functions. However, the addition of a phosphate group to a suitable side chain often confounds informatic analysis by generating product ion spectra that are more difficult to interpret (and consequently identify) relative to unmodified peptides. Collectively, these challenges have motivated bioinformaticians to create novel software tools and pipelines to assist in the identification of phosphopeptides in proteomic mixtures, and help pinpoint or "localize" the most likely site of modification in cases where there is ambiguity. Here we review the challenges to be met and the informatics solutions available to address them for phosphoproteomic analysis, as well as highlighting the difficulties associated with using them and the implications for data standards.
Collapse
Affiliation(s)
- Dave C H Lee
- Faculty of Life Sciences, University of ManchesterManchester, UK
| | - Andrew R Jones
- Institute of Integrative Biology, University of LiverpoolLiverpool, UK
| | - Simon J Hubbard
- Faculty of Life Sciences, University of ManchesterManchester, UK
| |
Collapse
|
2108
|
Increased acute immune response during the meningo-encephalitic stage of Trypanosoma brucei rhodesiense sleeping sickness compared to Trypanosoma brucei gambiense. TRANSLATIONAL PROTEOMICS 2015. [DOI: 10.1016/j.trprot.2014.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
2109
|
Sanggaard KW, Dyrlund TF, Thomsen LR, Nielsen TA, Brøndum L, Wang T, Thøgersen IB, Enghild JJ. Characterization of the gila monster (Heloderma suspectum suspectum) venom proteome. J Proteomics 2015; 117:1-11. [DOI: 10.1016/j.jprot.2015.01.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 12/23/2022]
|
2110
|
Nesvizhskii AI. Proteogenomics: concepts, applications and computational strategies. Nat Methods 2015; 11:1114-25. [PMID: 25357241 DOI: 10.1038/nmeth.3144] [Citation(s) in RCA: 547] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/22/2014] [Indexed: 12/19/2022]
Abstract
Proteogenomics is an area of research at the interface of proteomics and genomics. In this approach, customized protein sequence databases generated using genomic and transcriptomic information are used to help identify novel peptides (not present in reference protein sequence databases) from mass spectrometry-based proteomic data; in turn, the proteomic data can be used to provide protein-level evidence of gene expression and to help refine gene models. In recent years, owing to the emergence of new sequencing technologies such as RNA-seq and dramatic improvements in the depth and throughput of mass spectrometry-based proteomics, the pace of proteogenomic research has greatly accelerated. Here I review the current state of proteogenomic methods and applications, including computational strategies for building and using customized protein sequence databases. I also draw attention to the challenge of false positive identifications in proteogenomics and provide guidelines for analyzing the data and reporting the results of proteogenomic studies.
Collapse
Affiliation(s)
- Alexey I Nesvizhskii
- 1] Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA. [2] Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2111
|
Liu P, Zhang H, Yu B, Xiong L, Xia Y. Proteomic identification of early salicylate- and flg22-responsive redox-sensitive proteins in Arabidopsis. Sci Rep 2015; 5:8625. [PMID: 25720653 PMCID: PMC4342551 DOI: 10.1038/srep08625] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/27/2015] [Indexed: 12/04/2022] Open
Abstract
Accumulation of reactive oxygen species (ROS) is one of the early defense responses against pathogen infection in plants. The mechanism about the initial and direct regulation of the defense signaling pathway by ROS remains elusive. Perturbation of cellular redox homeostasis by ROS is believed to alter functions of redox-sensitive proteins through their oxidative modifications. Here we report an OxiTRAQ-based proteomic study in identifying proteins whose cysteines underwent oxidative modifications in Arabidopsis cells during the early response to salicylate or flg22, two defense pathway elicitors that are known to disturb cellular redox homeostasis. Among the salicylate- and/or flg22-responsive redox-sensitive proteins are those involved in transcriptional regulation, chromatin remodeling, RNA processing, post-translational modifications, and nucleocytoplasmic shuttling. The identification of the salicylate-/flg22-responsive redox-sensitive proteins provides a foundation from which further study can be conducted toward understanding biological significance of their oxidative modifications during the plant defense response.
Collapse
Affiliation(s)
- Pei Liu
- 1] Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong [2] Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Huoming Zhang
- Biosciences Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Boying Yu
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Liming Xiong
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Yiji Xia
- 1] Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong [2] Partner State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
2112
|
González-Prieto R, Cuijpers SAG, Luijsterburg MS, van Attikum H, Vertegaal ACO. SUMOylation and PARylation cooperate to recruit and stabilize SLX4 at DNA damage sites. EMBO Rep 2015; 16:512-9. [PMID: 25722289 PMCID: PMC4388617 DOI: 10.15252/embr.201440017] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/09/2015] [Indexed: 01/21/2023] Open
Abstract
SUMOylation plays important roles in the DNA damage response. However, whether it is important for interstrand crosslink repair remains unknown. We report that the SLX4 nuclease scaffold protein is regulated by SUMOylation. We have identified three SUMO interaction motifs (SIMs) in SLX4, mutating all of which abrogated the binding of SLX4 to SUMO-2 and covalent SLX4 SUMOylation. An SLX4 mutant lacking functional SIMs is not recruited to PML nuclear bodies nor stabilized at laser-induced DNA damage sites. Additionally, we elucidated a novel role for PARylation in the recruitment of SLX4 to sites of DNA damage. Combined, our results uncover how SLX4 is regulated by post-translational modifications.
Collapse
Affiliation(s)
- Román González-Prieto
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sabine A G Cuijpers
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Alfred C O Vertegaal
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
2113
|
Kettenbach AN, Deng L, Wu Y, Baldissard S, Adamo ME, Gerber SA, Moseley JB. Quantitative phosphoproteomics reveals pathways for coordination of cell growth and division by the conserved fission yeast kinase pom1. Mol Cell Proteomics 2015; 14:1275-87. [PMID: 25720772 DOI: 10.1074/mcp.m114.045245] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Indexed: 11/06/2022] Open
Abstract
Complex phosphorylation-dependent signaling networks underlie the coordination of cellular growth and division. In the fission yeast Schizosaccharomyces pombe, the Dual specificity tyrosine-(Y)-phosphorylation regulated kinase (DYRK) family protein kinase Pom1 regulates cell cycle progression through the mitotic inducer Cdr2 and controls cell polarity through unknown targets. Here, we sought to determine the phosphorylation targets of Pom1 kinase activity by SILAC-based phosphoproteomics. We defined a set of high-confidence Pom1 targets that were enriched for cytoskeletal and cell growth functions. Cdr2 was the only cell cycle target of Pom1 kinase activity that we identified in cells. Mutation of Pom1-dependent phosphorylation sites in the C terminus of Cdr2 inhibited mitotic entry but did not impair Cdr2 localization. In addition, we found that Pom1 phosphorylated multiple substrates that function in polarized cell growth, including Tea4, Mod5, Pal1, the Rho GAP Rga7, and the Arf GEF Syt22. Purified Pom1 phosphorylated these cell polarity targets in vitro, confirming that they are direct substrates of Pom1 kinase activity and likely contribute to regulation of polarized growth by Pom1. Our study demonstrates that Pom1 acts in a linear pathway to control cell cycle progression while regulating a complex network of cell growth targets.
Collapse
Affiliation(s)
- Arminja N Kettenbach
- ‡Department of Biochemistry, ¶Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | | | | | - Mark E Adamo
- ¶Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | - Scott A Gerber
- ‡Department of Biochemistry, §Department of Genetics, The Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA; ¶Norris Cotton Cancer Center, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | |
Collapse
|
2114
|
Mathias RA, Greco TM, Oberstein A, Budayeva HG, Chakrabarti R, Rowland EA, Kang Y, Shenk T, Cristea IM. Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity. Cell 2015; 159:1615-25. [PMID: 25525879 DOI: 10.1016/j.cell.2014.11.046] [Citation(s) in RCA: 326] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/12/2014] [Accepted: 11/21/2014] [Indexed: 12/20/2022]
Abstract
Sirtuins (SIRTs) are critical enzymes that govern genome regulation, metabolism, and aging. Despite conserved deacetylase domains, mitochondrial SIRT4 and SIRT5 have little to no deacetylase activity, and a robust catalytic activity for SIRT4 has been elusive. Here, we establish SIRT4 as a cellular lipoamidase that regulates the pyruvate dehydrogenase complex (PDH). Importantly, SIRT4 catalytic efficiency for lipoyl- and biotinyl-lysine modifications is superior to its deacetylation activity. PDH, which converts pyruvate to acetyl-CoA, has been known to be primarily regulated by phosphorylation of its E1 component. We determine that SIRT4 enzymatically hydrolyzes the lipoamide cofactors from the E2 component dihydrolipoyllysine acetyltransferase (DLAT), diminishing PDH activity. We demonstrate SIRT4-mediated regulation of DLAT lipoyl levels and PDH activity in cells and in vivo, in mouse liver. Furthermore, metabolic flux switching via glutamine stimulation induces SIRT4 lipoamidase activity to inhibit PDH, highlighting SIRT4 as a guardian of cellular metabolism.
Collapse
Affiliation(s)
- Rommel A Mathias
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA; Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086, Australia
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Adam Oberstein
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Hanna G Budayeva
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Rumela Chakrabarti
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Elizabeth A Rowland
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Thomas Shenk
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
2115
|
Akter S, Huang J, Bodra N, De Smet B, Wahni K, Rombaut D, Pauwels J, Gevaert K, Carroll K, Van Breusegem F, Messens J. DYn-2 Based Identification of Arabidopsis Sulfenomes. Mol Cell Proteomics 2015; 14:1183-200. [PMID: 25693797 DOI: 10.1074/mcp.m114.046896] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Indexed: 01/02/2023] Open
Abstract
Identifying the sulfenylation state of stressed cells is emerging as a strategic approach for the detection of key reactive oxygen species signaling proteins. Here, we optimized an in vivo trapping method for cysteine sulfenic acids in hydrogen peroxide (H2O2) stressed plant cells using a dimedone based DYn-2 probe. We demonstrated that DYn-2 specifically detects sulfenylation events in an H2O2 dose- and time-dependent way. With mass spectrometry, we identified 226 sulfenylated proteins after H2O2 treatment of Arabidopsis cells, residing in the cytoplasm (123); plastid (68); mitochondria (14); nucleus (10); endoplasmic reticulum, Golgi and plasma membrane (7) and peroxisomes (4). Of these, 123 sulfenylated proteins have never been reported before to undergo cysteine oxidative post-translational modifications in plants. All in all, with this DYn-2 approach, we have identified new sulfenylated proteins, and gave a first glance on the locations of the sulfenomes of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Salma Akter
- From the Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium; Faculty of Biological Sciences, University of Dhaka, 1000 Dhaka, Bangladesh
| | - Jingjing Huang
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Nandita Bodra
- From the Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Barbara De Smet
- From the Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Khadija Wahni
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Debbie Rombaut
- From the Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Jarne Pauwels
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, 9000 Ghent, Belgium; Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Kate Carroll
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Frank Van Breusegem
- From the Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium; Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
| | - Joris Messens
- Structural Biology Research Center, VIB, 1050 Brussels, Belgium; Brussels Center for Redox Biology, 1050 Brussels, Belgium; Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium;
| |
Collapse
|
2116
|
Isogai T, van der Kammen R, Goerdayal SS, Heck AJR, Altelaar AFM, Innocenti M. Proteomic analyses uncover a new function and mode of action for mouse homolog of Diaphanous 2 (mDia2). Mol Cell Proteomics 2015; 14:1064-78. [PMID: 25682332 PMCID: PMC4390252 DOI: 10.1074/mcp.m114.043885] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Indexed: 11/29/2022] Open
Abstract
mDia2 is an auto-inhibited Formin influencing actin dynamics upon conversion to the active conformation. mDia2 regulates actin-based protrusions and cell invasion, cell differentiation, vesicle trafficking, and cytokinesis. However, whether mDia2 has additional functions and how its action is functionally specified remain unknown. Here we draw the interactome of auto-inhibited and constitutively active mDia2 to address these issues. We embed mDia2 in protein networks accounting for its attributed functions and unexpectedly link it to the Ubiquitin Proteasome System. Taking FBXO3 as a test case, we show that mDia2 binds FBXO3 and p53, and regulates p53 transcriptional activity in an actin-nucleation-independent and conformation-insensitive manner. Increased mDia2 and FBXO3 levels elevate p53 activity and expression thereby sensitizing cells to p53-dependent apoptosis, whereas their decrease produces opposite effects. Thus, we discover a new role of mDia2 in p53 regulation suggesting that the closed conformation is biologically active and an FBXO3-based mechanism to functionally specify mDia2's activity.
Collapse
Affiliation(s)
- Tadamoto Isogai
- From the ‡Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Rob van der Kammen
- From the ‡Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Soenita S Goerdayal
- §Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- §Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands; ¶Netherlands Proteomics Centre and Cancer Genomics Centre, 3584 CH Utrecht, The Netherlands
| | - A F Maarten Altelaar
- §Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands; ¶Netherlands Proteomics Centre and Cancer Genomics Centre, 3584 CH Utrecht, The Netherlands
| | - Metello Innocenti
- From the ‡Division of Molecular Genetics, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
| |
Collapse
|
2117
|
Sanggaard KW, Dyrlund TF, Thomsen LR, Nielsen TA, Brøndum L, Wang T, Thøgersen IB, Enghild JJ. Characterization of the gila monster (Heloderma suspectum suspectum) venom proteome. Data Brief 2015. [PMID: 26217734 PMCID: PMC4510068 DOI: 10.1016/j.dib.2015.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The data presented here is related to the research article entitled “Characterization of the gila monster (Heloderma suspectum suspectum) venom proteome” by Sanggaard et al. in Journal of Proteomics [1]. The gila monster venom was collected, analyzed by 2D-gel electrophoresis and after Coomassie-Brilliant Blue staining the major spots were excised, subjected to in-gel trypsin digestion, and analyzed by LC–MS/MS. Subsequently, the venom proteins were identified based on de novo sequencing and homology searching. The mass spectrometry proteomics data have been deposited to the ProteomeXchange (dataset identifier PXD0001343), and in the present article we present an overview of the identified proteins. Protein identification failed for three of the selected spots, with the method described above. Instead, an iterative process, based on de novo sequencing, was employed.
Collapse
Affiliation(s)
- Kristian W Sanggaard
- Department of Molecular Biology and Genetics, Aarhus University, Denmark ; Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| | - Thomas F Dyrlund
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Line R Thomsen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark ; Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| | - Tania A Nielsen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark ; Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| | - Lars Brøndum
- Museum of Natural History, Aarhus University, Denmark
| | - Tobias Wang
- Department of Zoophysiology, Aarhus University, Denmark
| | - Ida B Thøgersen
- Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Denmark ; Interdisciplinary Nanoscience Center, Aarhus University, Denmark
| |
Collapse
|
2118
|
Robertson J, Jacquemet G, Byron A, Jones MC, Warwood S, Selley JN, Knight D, Humphries JD, Humphries MJ. Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat Commun 2015; 6:6265. [PMID: 25677187 PMCID: PMC4338609 DOI: 10.1038/ncomms7265] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 01/09/2015] [Indexed: 01/09/2023] Open
Abstract
Cell–extracellular matrix (ECM) adhesion is a fundamental requirement for multicellular existence due to roles in positioning, proliferation and differentiation. Phosphorylation plays a major role in adhesion signalling; however, a full understanding of the phosphorylation events that occur at sites of adhesion is lacking. Here we report a proteomic and phosphoproteomic analysis of adhesion complexes isolated from cells spread on fibronectin. We identify 1,174 proteins, 499 of which are phosphorylated (1,109 phosphorylation sites), including both well-characterized and novel adhesion-regulated phosphorylation events. Immunoblotting suggests that two classes of phosphorylated residues are found at adhesion sites—those induced by adhesion and those constitutively phosphorylated but recruited in response to adhesion. Kinase prediction analysis identifies novel kinases with putative roles in adhesion signalling including CDK1, inhibition of which reduces adhesion complex formation. This phospho-adhesome data set constitutes a valuable resource to improve our understanding of the signalling mechanisms through which cell–ECM interactions control cell behaviour. Protein phosphorylation is known to play an important role in cell adhesion signalling. Robertson et al. present a proteomic resource mapping the phosphorylation states of proteins isolated from adhesion complexes and, taking advantage of this data set, show that the cell cycle kinase CDK1 may influence cell adhesion.
Collapse
Affiliation(s)
- Joseph Robertson
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Adam Byron
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Matthew C Jones
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Stacey Warwood
- Biological Mass Spectrometry Core Facility, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Julian N Selley
- Biological Mass Spectrometry Core Facility, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - David Knight
- Biological Mass Spectrometry Core Facility, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Jonathan D Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
2119
|
Hui S, Silverman JM, Chen SS, Erickson DW, Basan M, Wang J, Hwa T, Williamson JR. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol Syst Biol 2015; 11:784. [PMID: 25678603 PMCID: PMC4358657 DOI: 10.15252/msb.20145697] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A central aim of cell biology was to understand the strategy of gene expression in response to the environment. Here, we study gene expression response to metabolic challenges in exponentially growing Escherichia coli using mass spectrometry. Despite enormous complexity in the details of the underlying regulatory network, we find that the proteome partitions into several coarse-grained sectors, with each sector's total mass abundance exhibiting positive or negative linear relations with the growth rate. The growth rate-dependent components of the proteome fractions comprise about half of the proteome by mass, and their mutual dependencies can be characterized by a simple flux model involving only two effective parameters. The success and apparent generality of this model arises from tight coordination between proteome partition and metabolism, suggesting a principle for resource allocation in proteome economy of the cell. This strategy of global gene regulation should serve as a basis for future studies on gene expression and constructing synthetic biological circuits. Coarse graining may be an effective approach to derive predictive phenomenological models for other ‘omics’ studies.
Collapse
Affiliation(s)
- Sheng Hui
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Josh M Silverman
- Department of Integrative Structural and Computational Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Stephen S Chen
- Department of Integrative Structural and Computational Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - David W Erickson
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Markus Basan
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Jilong Wang
- Department of Physics, University of California at San Diego, La Jolla, CA, USA
| | - Terence Hwa
- Department of Physics, University of California at San Diego, La Jolla, CA, USA Section of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
2120
|
Building high-quality assay libraries for targeted analysis of SWATH MS data. Nat Protoc 2015; 10:426-41. [PMID: 25675208 DOI: 10.1038/nprot.2015.015] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Targeted proteomics by selected/multiple reaction monitoring (S/MRM) or, on a larger scale, by SWATH (sequential window acquisition of all theoretical spectra) MS (mass spectrometry) typically relies on spectral reference libraries for peptide identification. Quality and coverage of these libraries are therefore of crucial importance for the performance of the methods. Here we present a detailed protocol that has been successfully used to build high-quality, extensive reference libraries supporting targeted proteomics by SWATH MS. We describe each step of the process, including data acquisition by discovery proteomics, assertion of peptide-spectrum matches (PSMs), generation of consensus spectra and compilation of MS coordinates that uniquely define each targeted peptide. Crucial steps such as false discovery rate (FDR) control, retention time normalization and handling of post-translationally modified peptides are detailed. Finally, we show how to use the library to extract SWATH data with the open-source software Skyline. The protocol takes 2-3 d to complete, depending on the extent of the library and the computational resources available.
Collapse
|
2121
|
Shotgun analysis of plasma fibrin clot-bound proteins in patients with acute myocardial infarction. Thromb Res 2015; 135:754-9. [PMID: 25686879 DOI: 10.1016/j.thromres.2015.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/19/2015] [Accepted: 02/04/2015] [Indexed: 01/27/2023]
Abstract
INTRODUCTION The presence and amount of the proteins within a plasma clot may influence clot properties, like susceptibility to fibrinolysis, however, the clot proteome has not yet been extensively described. The aim of the study was to investigate the protein composition of clots of four patients with acute myocardial infarction (AMI) in two time points: in the acute ischemic phase and two months later during the standard therapy. MATERIALS AND METHODS Shotgun proteomic method (2DLC-MS/MS) was used to investigate time-dependent protein composition changes of clots prepared ex vivo from citrated plasma of the peripheral blood of patients with AMI. RESULTS Proteomic analysis revealed a total number of 62 proteins identified in all 8 samples grouping into several distinct functional clusters (e.g. cholesterol transporter activity, immunoglobulin binding and peptidase regulatory activity). The protein signatures of clots differed significantly depending on time after ACS, showing 30% greater variability in protein composition of the clots prepared in the plasma two months after the onset of AMI. Several proteins potentially involved in clot formation and resolution showed an interesting pattern of changes over time. CONCLUSION We provided the first qualitative analysis of proteomes of fibrin clots generated ex vivo in plasma taken from patients with AMI showing differences between clots generated in the acute ischemic phase and those prepared two months later. It might be hypothesized that differences involving proteins of potential influence on within-clot fibrinolysis and clot stability may partially explain time-dependent changes in the clots structure and firmness in patients with AMI.
Collapse
|
2122
|
Diner BA, Li T, Greco TM, Crow MS, Fuesler JA, Wang J, Cristea IM. The functional interactome of PYHIN immune regulators reveals IFIX is a sensor of viral DNA. Mol Syst Biol 2015; 11:787. [PMID: 25665578 PMCID: PMC4358659 DOI: 10.15252/msb.20145808] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The human PYHIN proteins, AIM2, IFI16, IFIX, and MNDA, are critical regulators of immune response, transcription, apoptosis, and cell cycle. However, their protein interactions and underlying mechanisms remain largely uncharacterized. Here, we provide the interaction network for all PYHIN proteins and define a function in sensing of viral DNA for the previously uncharacterized IFIX protein. By designing a cell-based inducible system and integrating microscopy, immunoaffinity capture, quantitative mass spectrometry, and bioinformatics, we identify over 300 PYHIN interactions reflective of diverse functions, including DNA damage response, transcription regulation, intracellular signaling, and antiviral response. In view of the IFIX interaction with antiviral factors, including nuclear PML bodies, we further characterize IFIX and demonstrate its function in restricting herpesvirus replication. We discover that IFIX detects viral DNA in both the nucleus and cytoplasm, binding foreign DNA via its HIN domain in a sequence-non-specific manner. Furthermore, IFIX contributes to the induction of interferon response. Our results highlight the value of integrative proteomics in deducing protein function and establish IFIX as an antiviral DNA sensor important for mounting immune responses.
Collapse
Affiliation(s)
- Benjamin A Diner
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Tuo Li
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Todd M Greco
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Marni S Crow
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - John A Fuesler
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Jennifer Wang
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| |
Collapse
|
2123
|
Guarna MM, Melathopoulos AP, Huxter E, Iovinella I, Parker R, Stoynov N, Tam A, Moon KM, Chan QWT, Pelosi P, White R, Pernal SF, Foster LJ. A search for protein biomarkers links olfactory signal transduction to social immunity. BMC Genomics 2015; 16:63. [PMID: 25757461 PMCID: PMC4342888 DOI: 10.1186/s12864-014-1193-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 12/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background The Western honey bee (Apis mellifera L.) is a critical component of human agriculture through its pollination activities. For years, beekeepers have controlled deadly pathogens such as Paenibacillus larvae, Nosema spp. and Varroa destructor with antibiotics and pesticides but widespread chemical resistance is appearing and most beekeepers would prefer to eliminate or reduce the use of in-hive chemicals. While such treatments are likely to still be needed, an alternate management strategy is to identify and select bees with heritable traits that allow them to resist mites and diseases. Breeding such bees is difficult as the tests involved to identify disease-resistance are complicated, time-consuming, expensive and can misidentify desirable genotypes. Additionally, we do not yet fully understand the mechanisms behind social immunity. Here we have set out to discover the molecular mechanism behind hygienic behavior (HB), a trait known to confer disease resistance in bees. Results After confirming that HB could be selectively bred for, we correlated measurements of this behavior with protein expression over a period of three years, at two geographically distinct sites, using several hundred bee colonies. By correlating the expression patterns of individual proteins with HB scores, we identified seven putative biomarkers of HB that survived stringent control for multiple hypothesis testing. Intriguingly, these proteins were all involved in semiochemical sensing (odorant binding proteins), nerve signal transmission or signal decay, indicative of the series of events required to respond to an olfactory signal from dead or diseased larvae. We then used recombinant versions of two odorant-binding proteins to identify the classes of ligands that these proteins might be helping bees detect. Conclusions Our data suggest that neurosensory detection of odors emitted by dead or diseased larvae is the likely mechanism behind a complex and important social immunity behavior that allows bees to co-exist with pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-014-1193-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Marta Guarna
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Andony P Melathopoulos
- Beaverlodge Research Farm, Agriculture & Agri-Food Canada, Beaverlodge, AB, T0H 0C0, Canada. .,Current address: Dalhousie University, Halifax, NS, Canada.
| | | | - Immacolata Iovinella
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
| | - Robert Parker
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada. .,Current address: Macquarie University, Sydney, NSW, Australia.
| | - Nikolay Stoynov
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Amy Tam
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Kyung-Mee Moon
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Queenie W T Chan
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Paolo Pelosi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy.
| | - Rick White
- Department of Statistics, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | - Stephen F Pernal
- Beaverlodge Research Farm, Agriculture & Agri-Food Canada, Beaverlodge, AB, T0H 0C0, Canada.
| | - Leonard J Foster
- Department of Biochemistry & Molecular Biology, Centre for High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
2124
|
Betzer C, Movius AJ, Shi M, Gai WP, Zhang J, Jensen PH. Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein. PLoS One 2015; 10:e0116473. [PMID: 25659148 PMCID: PMC4319895 DOI: 10.1371/journal.pone.0116473] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/09/2014] [Indexed: 01/09/2023] Open
Abstract
Monomeric α-synuclein (αSN) species are abundant in nerve terminals where they are hypothesized to play a physiological role related to synaptic vesicle turn-over. In Parkinson’s disease (PD) and dementia with Lewy body (DLB), αSN accumulates as aggregated soluble oligomers in terminals, axons and the somatodendritic compartment and insoluble filaments in Lewy inclusions and Lewy neurites. The autosomal dominant heritability associated to mutations in the αSN gene suggest a gain of function associated to aggregated αSN. We have conducted a proteomic screen to identify the αSN interactome in brain synaptosomes. Porcine brain synaptosomes were fractionated, solubilized in non-denaturing detergent and subjected to co-immunoprecipitation using purified recombinant human αSN monomers or oligomers as bait. The isolated αSN binding proteins were identified with LC-LTQ-orbitrap tandem mass spectrometry and quantified by peak area using Windows client application, Skyline Targeted Proteomic Environment. Data are available via ProteomeXchange with identifier PXD001462. To quantify the preferential binding an average fold increase was calculated by comparing binding to monomer and oligomer. We identified 10 proteins preferentially binding monomer, and 76 binding preferentially to oligomer and a group of 92 proteins not displaying any preferred conformation of αSN. The proteomic data were validated by immunoprecipitation in both human and porcine brain extracts using antibodies against monomer αSN interactors: Abl interactor 1, and myelin proteolipid protein, and oligomer interactors: glutamate decarboxylase 2, synapsin 1, glial fibrillary acidic protein, and VAMP-2. We demonstrate the existence of αSN conformation selective ligands and present lists of proteins, whose identity and functions will be useful for modeling normal and pathological αSN dependent processes.
Collapse
Affiliation(s)
- Cristine Betzer
- University of Aarhus, DANDRITE—Danish Research Institute of Translational Neuroscience & Department of Biomedicine, Aarhus, Denmark
| | - A. James Movius
- Flinders University School of Medicine, Department of Human Physiology and Centre for Neuroscience, Bedford Park, SA, Australia
| | - Min Shi
- Flinders University School of Medicine, Department of Human Physiology and Centre for Neuroscience, Bedford Park, SA, Australia
| | - Wei-Ping Gai
- Washington School of Medicine, Department of Pathology, Seattle, United States of America
| | - Jing Zhang
- Flinders University School of Medicine, Department of Human Physiology and Centre for Neuroscience, Bedford Park, SA, Australia
| | - Poul Henning Jensen
- University of Aarhus, DANDRITE—Danish Research Institute of Translational Neuroscience & Department of Biomedicine, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
2125
|
Lin LL, Hsia CR, Hsu CL, Huang HC, Juan HF. Integrating transcriptomics and proteomics to show that tanshinone IIA suppresses cell growth by blocking glucose metabolism in gastric cancer cells. BMC Genomics 2015; 16:41. [PMID: 25652794 PMCID: PMC4328042 DOI: 10.1186/s12864-015-1230-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/09/2015] [Indexed: 12/17/2022] Open
Abstract
Background Tanshinone IIA (TIIA) is a diterpene quinone extracted from the plant Danshen (Salvia miltiorrhiza) used in traditional Chinese herbal medicine. It has been reported to have anti-tumor potential against several kinds of cancer, including gastric cancer. In most solid tumors, a metabolic switch to glucose is a hallmark of cancer cells, which do this to provide nutrients for cell proliferation. However, the mechanism associated with glucose metabolism by which TIIA acts on gastric cancer cells remains to be elucidated. Results We found that TIIA treatment is able to significantly inhibit cell growth and the proliferation of gastric cancer in a dose-dependent manner. Using next-generation sequencing-based RNA-seq transcriptomics and quantitative proteomics-isobaric tags for relative and absolute quantification (iTRAQ), we characterized the mechanism of TIIA regulation in gastric cancer cell line AGS. In total, 16,603 unique transcripts and 102 proteins were identified. After enrichment analysis, we found that TIIA regulated genes are involved in carbohydrate metabolism, the cell cycle, apoptosis, DNA damage and cytoskeleton reorganization. Our proteomics data revealed the downregulation of intracellular ATP levels, glucose-6-phosphate isomerase and L-lactate dehydrogenase B chains by TIIA, which might work with disorders of glucose metabolism and extracellular lactate levels to suppress cell proliferation. The up-regulation of p53 and down-regulation of AKT was shown in TIIA- treated cells, which indicates the transformation of oncogenes. Severe DNA damage, cell cycle arrest at the G2/M transition and apoptosis with cytoskeleton reorganization were detected in TIIA-treated gastric cancer cells. Conclusions Combining transcriptomics and proteomics results, we propose that TIIA treatment could lead cell stresses, including nutrient deficiency and DNA damage, by inhibiting the glucose metabolism of cancer cells. This study provides an insight into how the TIIA regulatory metabolism in gastric cancer cells suppresses cell growth, and may help improve the development of cancer therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1230-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li-Ling Lin
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| | - Chieh-Ren Hsia
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| | - Chia-Lang Hsu
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics and Center for Systems and Synthetic Biology, National Yang-Ming University, No.155, Sec.2, Linong Street, Taipei, 112, Taiwan.
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan. .,Institute of Molecular and Cellular Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan. .,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 106, Taiwan.
| |
Collapse
|
2126
|
Capriotti AL, Cavaliere C, Piovesana S, Stampachiacchiere S, Ventura S, Zenezini Chiozzi R, Laganà A. Characterization of quinoa seed proteome combining different protein precipitation techniques: Improvement of knowledge of nonmodel plant proteomics. J Sep Sci 2015; 38:1017-25. [PMID: 25580831 DOI: 10.1002/jssc.201401319] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/19/2014] [Accepted: 12/25/2014] [Indexed: 12/21/2022]
Abstract
A shotgun proteomics approach was used to characterize the quinoa seed proteome. To obtain comprehensive proteomic data from quinoa seeds three different precipitation procedures were employed: MeOH/CHCl3 /double-distilled H2 O, acetone either alone or with trichloroacetic acid; the isolated proteins were then in-solution digested and the resulting peptides were analyzed by nano-liquid chromatography coupled to tandem mass spectrometry. However, since quinoa is a nonmodel plant species, only a few protein sequences are included in the most widely known protein sequence databases. To improve the data reliability a UniProt subdatabase, containing only proteins of Caryophillales order, was used. A total of 352 proteins were identified and evaluated both from a qualitative and quantitative point of view. This combined approach is certainly useful to increase the final number of identifications, but no particular class of proteins was extracted and identified in spite of the different chemistries and the different precipitation protocols. However, with respect to the other two procedures, from the relative quantitative analysis, based on the number of spectral counts, the trichloroacetic acid/acetone protocol was the best procedure for sample handling and quantitative protein extraction. This study could pave the way to further high-throughput studies on Chenopodium Quinoa.
Collapse
|
2127
|
Liu Y, Buil A, Collins BC, Gillet LCJ, Blum LC, Cheng LY, Vitek O, Mouritsen J, Lachance G, Spector TD, Dermitzakis ET, Aebersold R. Quantitative variability of 342 plasma proteins in a human twin population. Mol Syst Biol 2015; 11:786. [PMID: 25652787 PMCID: PMC4358658 DOI: 10.15252/msb.20145728] [Citation(s) in RCA: 261] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The degree and the origins of quantitative variability of most human plasma proteins are largely unknown. Because the twin study design provides a natural opportunity to estimate the relative contribution of heritability and environment to different traits in human population, we applied here the highly accurate and reproducible SWATH mass spectrometry technique to quantify 1,904 peptides defining 342 unique plasma proteins in 232 plasma samples collected longitudinally from pairs of monozygotic and dizygotic twins at intervals of 2–7 years, and proportioned the observed total quantitative variability to its root causes, genes, and environmental and longitudinal factors. The data indicate that different proteins show vastly different patterns of abundance variability among humans and that genetic control and longitudinal variation affect protein levels and biological processes to different degrees. The data further strongly suggest that the plasma concentrations of clinical biomarkers need to be calibrated against genetic and temporal factors. Moreover, we identified 13 cis-SNPs significantly influencing the level of specific plasma proteins. These results therefore have immediate implications for the effective design of blood-based biomarker studies.
Collapse
Affiliation(s)
- Yansheng Liu
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Alfonso Buil
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Ben C Collins
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Ludovic C J Gillet
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Lorenz C Blum
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Lin-Yang Cheng
- Department of Statistics and Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Olga Vitek
- Department of Statistics and Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Jeppe Mouritsen
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Genevieve Lachance
- Department of Twin Research and Genetic Epidemiology, King's College London St Tomas' Hospital Campus, London, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London St Tomas' Hospital Campus, London, UK
| | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland Faculty of Science, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2128
|
Walker MP, Stopford CM, Cederlund M, Fang F, Jahn C, Rabinowitz AD, Goldfarb D, Graham DM, Yan F, Deal AM, Fedoriw Y, Richards KL, Davis IJ, Weidinger G, Damania B, Major MB. FOXP1 potentiates Wnt/β-catenin signaling in diffuse large B cell lymphoma. Sci Signal 2015; 8:ra12. [PMID: 25650440 DOI: 10.1126/scisignal.2005654] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transcription factor FOXP1 (forkhead box protein P1) is a master regulator of stem and progenitor cell biology. In diffuse large B cell lymphoma (DLBCL), copy number amplifications and chromosomal translocations result in overexpression of FOXP1. Increased abundance of FOXP1 in DLBCL is a predictor of poor prognosis and resistance to therapy. We developed a genome-wide, mass spectrometry-coupled, gain-of-function genetic screen, which revealed that FOXP1 potentiates β-catenin-dependent, Wnt-dependent gene expression. Gain- and loss-of-function studies in cell models and zebrafish confirmed that FOXP1 was a general and conserved enhancer of Wnt signaling. In a Wnt-dependent fashion, FOXP1 formed a complex with β-catenin, TCF7L2 (transcription factor 7-like 2), and the acetyltransferase CBP [CREB (adenosine 3',5'-monophosphate response element-binding protein)-binding protein], and this complex bound the promoters of Wnt target genes. FOXP1 promoted the acetylation of β-catenin by CBP, and acetylation was required for FOXP1-mediated potentiation of β-catenin-dependent transcription. In DLBCL, we found that FOXP1 promoted sensitivity to Wnt pathway inhibitors, and knockdown of FOXP1 or blocking β-catenin transcriptional activity slowed xenograft tumor growth. These data connect excessive FOXP1 with β-catenin-dependent signal transduction and provide a molecular rationale for Wnt-directed therapy in DLBCL.
Collapse
Affiliation(s)
- Matthew P Walker
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Charles M Stopford
- Division of Microbiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27516-7361, USA
| | - Maria Cederlund
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Fang Fang
- Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Christopher Jahn
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Alex D Rabinowitz
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Dennis Goldfarb
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3175, USA
| | - David M Graham
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Feng Yan
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Allison M Deal
- UNC Lineberger Comprehensive Cancer Center Biostatistics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Yuri Fedoriw
- Department of Pathology and Laboratory, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Kristy L Richards
- Division of Hematology/Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27516-7361, USA
| | - Ian J Davis
- Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Blossom Damania
- Division of Microbiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27516-7361, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA. Division of Microbiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27516-7361, USA.
| |
Collapse
|
2129
|
Eagle GL, Zhuang J, Jenkins RE, Till KJ, Jithesh PV, Lin K, Johnson GG, Oates M, Park K, Kitteringham NR, Pettitt AR. Total proteome analysis identifies migration defects as a major pathogenetic factor in immunoglobulin heavy chain variable region (IGHV)-unmutated chronic lymphocytic leukemia. Mol Cell Proteomics 2015; 14:933-45. [PMID: 25645933 PMCID: PMC4390271 DOI: 10.1074/mcp.m114.044479] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Indexed: 01/07/2023] Open
Abstract
The mutational status of the immunoglobulin heavy chain variable region defines two clinically distinct forms of chronic lymphocytic leukemia (CLL) known as mutated (M-CLL) and unmutated (UM-CLL). To elucidate the molecular mechanisms underlying the adverse clinical outcome associated with UM-CLL, total proteomes from nine UM-CLL and nine M-CLL samples were analyzed by isobaric tags for relative and absolute quantification (iTRAQ)-based mass spectrometry. Based on the expression of 3521 identified proteins, principal component analysis separated CLL samples into two groups corresponding to immunoglobulin heavy chain variable region mutational status. Computational analysis showed that 43 cell migration/adhesion pathways were significantly enriched by 39 differentially expressed proteins, 35 of which were expressed at significantly lower levels in UM-CLL samples. Furthermore, UM-CLL cells underexpressed proteins associated with cytoskeletal remodeling and overexpressed proteins associated with transcriptional and translational activity. Taken together, our findings indicate that UM-CLL cells are less migratory and more adhesive than M-CLL cells, resulting in their retention in lymph nodes, where they are exposed to proliferative stimuli. In keeping with this hypothesis, analysis of an extended cohort of 120 CLL patients revealed a strong and specific association between UM-CLL and lymphadenopathy. Our study illustrates the potential of total proteome analysis to elucidate pathogenetic mechanisms in cancer.
Collapse
Affiliation(s)
- Gina L Eagle
- From the ‡Department of Molecular and Clinical Cancer Medicine
| | - Jianguo Zhuang
- From the ‡Department of Molecular and Clinical Cancer Medicine,
| | - Rosalind E Jenkins
- §MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GA, UK
| | - Kathleen J Till
- From the ‡Department of Molecular and Clinical Cancer Medicine
| | | | - Ke Lin
- ¶Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool L7 8XP, UK
| | - Gillian G Johnson
- ¶Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool L7 8XP, UK
| | - Melanie Oates
- From the ‡Department of Molecular and Clinical Cancer Medicine
| | - Kevin Park
- §MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GA, UK
| | - Neil R Kitteringham
- §MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GA, UK
| | - Andrew R Pettitt
- From the ‡Department of Molecular and Clinical Cancer Medicine, ¶Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool L7 8XP, UK
| |
Collapse
|
2130
|
Braakman RBH, Bezstarosti K, Sieuwerts AM, de Weerd V, van Galen AM, Stingl C, Luider TM, Timmermans MAM, Smid M, Martens JWM, Foekens JA, Demmers JAA, Umar A. Integrative Analysis of Genomics and Proteomics Data on Clinical Breast Cancer Tissue Specimens Extracted with Acid Guanidinium Thiocyanate–Phenol–Chloroform. J Proteome Res 2015; 14:1627-36. [DOI: 10.1021/acs.jproteome.5b00046] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- René B. H. Braakman
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Postgraduate
School of Molecular Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics
Center, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein
50, 3015 GE Rotterdam, The Netherlands
| | - Anieta M. Sieuwerts
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Postgraduate
School of Molecular Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Vanja de Weerd
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Anne M. van Galen
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Christoph Stingl
- Department
of Neurology, Erasmus MC, University Medical Center Rotterdam, Dr
Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Theo M. Luider
- Department
of Neurology, Erasmus MC, University Medical Center Rotterdam, Dr
Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Mieke A. M. Timmermans
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Marcel Smid
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - John W. M. Martens
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Postgraduate
School of Molecular Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - John A. Foekens
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Postgraduate
School of Molecular Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - Jeroen A. A. Demmers
- Proteomics
Center, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein
50, 3015 GE Rotterdam, The Netherlands
| | - Arzu Umar
- Department
of Medical Oncology, Erasmus MC Cancer Institute, University Medical Center Rotterdam,
Be401, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
- Postgraduate
School of Molecular Medicine, Erasmus MC, University Medical Center Rotterdam, Dr Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| |
Collapse
|
2131
|
Hustedt N, Seeber A, Sack R, Tsai-Pflugfelder M, Bhullar B, Vlaming H, van Leeuwen F, Guénolé A, van Attikum H, Srivas R, Ideker T, Shimada K, Gasser SM. Yeast PP4 interacts with ATR homolog Ddc2-Mec1 and regulates checkpoint signaling. Mol Cell 2015; 57:273-89. [PMID: 25533186 PMCID: PMC5706562 DOI: 10.1016/j.molcel.2014.11.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/16/2014] [Accepted: 11/14/2014] [Indexed: 12/25/2022]
Abstract
Mec1-Ddc2 (ATR-ATRIP) controls the DNA damage checkpoint and shows differential cell-cycle regulation in yeast. To find regulators of Mec1-Ddc2, we exploited a mec1 mutant that retains catalytic activity in G2 and recruitment to stalled replication forks, but which is compromised for the intra-S phase checkpoint. Two screens, one for spontaneous survivors and an E-MAP screen for synthetic growth effects, identified loss of PP4 phosphatase, pph3Δ and psy2Δ, as the strongest suppressors of mec1-100 lethality on HU. Restored Rad53 phosphorylation accounts for part, but not all, of the pph3Δ-mediated survival. Phosphoproteomic analysis confirmed that 94% of the mec1-100-compromised targets on HU are PP4 regulated, including a phosphoacceptor site within Mec1 itself, mutation of which confers damage sensitivity. Physical interaction between Pph3 and Mec1, mediated by cofactors Psy2 and Ddc2, is shown biochemically and through FRET in subnuclear repair foci. This establishes a physical and functional Mec1-PP4 unit for regulating the checkpoint response.
Collapse
Affiliation(s)
- Nicole Hustedt
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland
| | - Ragna Sack
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Monika Tsai-Pflugfelder
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Bhupinder Bhullar
- Novartis Institutes for Biomedical Research, Novartis Pharma AG, Fabrikstrasse 22, 4056 Basel, Switzerland
| | - Hanneke Vlaming
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Fred van Leeuwen
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Aude Guénolé
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Haico van Attikum
- Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, the Netherlands
| | - Rohith Srivas
- Departments of Bioengineering and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Trey Ideker
- Departments of Bioengineering and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kenji Shimada
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Sciences, University of Basel, 4056 Basel, Switzerland.
| |
Collapse
|
2132
|
Oveland E, Muth T, Rapp E, Martens L, Berven FS, Barsnes H. Viewing the proteome: how to visualize proteomics data? Proteomics 2015; 15:1341-55. [PMID: 25504833 DOI: 10.1002/pmic.201400412] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/23/2014] [Accepted: 12/05/2014] [Indexed: 01/18/2023]
Abstract
Proteomics has become one of the main approaches for analyzing and understanding biological systems. Yet similar to other high-throughput analysis methods, the presentation of the large amounts of obtained data in easily interpretable ways remains challenging. In this review, we present an overview of the different ways in which proteomics software supports the visualization and interpretation of proteomics data. The unique challenges and current solutions for visualizing the different aspects of proteomics data, from acquired spectra via protein identification and quantification to pathway analysis, are discussed, and examples of the most useful visualization approaches are highlighted. Finally, we offer our ideas about future directions for proteomics data visualization.
Collapse
Affiliation(s)
- Eystein Oveland
- Proteomics Unit, Department of Biomedicine, University of Bergen, Bergen, Norway; KG Jebsen Centre for Multiple Sclerosis Research, Department of Clinical Medicine, University of Bergen, Bergen, Norway; Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | | | | | | | | |
Collapse
|
2133
|
Kunowska N, Rotival M, Yu L, Choudhary J, Dillon N. Identification of protein complexes that bind to histone H3 combinatorial modifications using super-SILAC and weighted correlation network analysis. Nucleic Acids Res 2015; 43:1418-32. [PMID: 25605797 PMCID: PMC4330348 DOI: 10.1093/nar/gku1350] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The large number of chemical modifications that are found on the histone proteins of eukaryotic cells form multiple complex combinations, which can act as recognition signals for reader proteins. We have used peptide capture in conjunction with super-SILAC quantification to carry out an unbiased high-throughput analysis of the composition of protein complexes that bind to histone H3K9/S10 and H3K27/S28 methyl-phospho modifications. The accurate quantification allowed us to perform Weighted correlation network analysis (WGCNA) to obtain a systems-level view of the histone H3 histone tail interactome. The analysis reveals the underlying modularity of the histone reader network with members of nuclear complexes exhibiting very similar binding signatures, which suggests that many proteins bind to histones as part of pre-organized complexes. Our results identify a novel complex that binds to the double H3K9me3/S10ph modification, which includes Atrx, Daxx and members of the FACT complex. The super-SILAC approach allows comparison of binding to multiple peptides with different combinations of modifications and the resolution of the WGCNA analysis is enhanced by maximizing the number of combinations that are compared. This makes it a useful approach for assessing the effects of changes in histone modification combinations on the composition and function of bound complexes.
Collapse
Affiliation(s)
- Natalia Kunowska
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Maxime Rotival
- Integrative Genomics and Medicine Group, MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Lu Yu
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Jyoti Choudhary
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Niall Dillon
- Gene Regulation and Chromatin Group, MRC Clinical Sciences Centre, Imperial College, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
2134
|
Comparative proteomic analysis of hyphae and germinating cysts of Phytophthora pisi and Phytophthora sojae. J Proteomics 2015; 117:24-40. [PMID: 25613045 DOI: 10.1016/j.jprot.2015.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/05/2014] [Accepted: 01/05/2015] [Indexed: 12/13/2022]
Abstract
UNLABELLED The recently described oomycete pathogen Phytophthora pisi causes root rot on pea and faba bean, while the closely related Phytophthora sojae is the causal agent of soybean root and stem rot. Differences in the pathogenicity factor repertoires that enable the two species to have distinct host specificity towards pea and soybean, were studied using tandem mass spectrometry in a global proteome study of hyphae and germinating cysts in P. pisi and P. sojae. In total 2775 proteins from P. pisi and 2891 proteins from P. sojae were identified. Fifty-eight orthologous proteins were more abundant in germinated cysts of both pathogens and thus identified as candidate proteins for the infective stage. Several of these proteins were associated with lipid transport and metabolism, and energy production. Twenty-three orthologous proteins were more abundant in hyphae of both pathogens and thus identified as candidate proteins for vegetative growth. Proteins uniquely present in germinating cysts of either P. pisi or P. sojae were considered as candidates for species-specific pathogenicity factors that may be involved in host specificity. Among these proteins were serine proteases, membrane transporters and a berberine-like protein. These results significantly expand the knowledge of the expressed proteome in P. pisi and P. sojae. BIOLOGICAL SIGNIFICANCE P. sojae and P. pisi are closely related species that specifically cause root rot on soybean and pea, respectively. The pathogenicity factors contributing to their host specificity remained unknown. We carried out a comparative large-scale proteome analysis of vegetative (hyphae) and infective (germinating cysts) life stages in P. pisi and P. sojae. This study provides knowledge of the common factors and mechanism involved in initiation of infection and species-specific proteins that may contribute to the host specificity of these pathogens. This knowledge will lead to a better understanding of the infection biology of these pathogens, allowing new possibilities towards developing alternative and effective plant protection measures.
Collapse
|
2135
|
Rinschen MM, Pahmeyer C, Pisitkun T, Schnell N, Wu X, Maaß M, Bartram MP, Lamkemeyer T, Schermer B, Benzing T, Brinkkoetter PT. Comparative phosphoproteomic analysis of mammalian glomeruli reveals conserved podocin C-terminal phosphorylation as a determinant of slit diaphragm complex architecture. Proteomics 2015; 15:1326-31. [PMID: 25420462 DOI: 10.1002/pmic.201400235] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/10/2014] [Accepted: 11/20/2014] [Indexed: 11/06/2022]
Abstract
Glomerular biology is dependent on tightly controlled signal transduction networks that control phosphorylation of signaling proteins such as cytoskeletal regulators or slit diaphragm proteins of kidney podocytes. Cross-species comparison of phosphorylation events is a powerful mean to functionally prioritize and identify physiologically meaningful phosphorylation sites. Here, we present the result of phosphoproteomic analyses of cow and rat glomeruli to allow cross-species comparisons. We discovered several phosphorylation sites with potentially high biological relevance, e.g. tyrosine phosphorylation of the cytoskeletal regulator synaptopodin and the slit diaphragm protein neph-1 (Kirrel). Moreover, cross-species comparisons revealed conserved phosphorylation of the slit diaphragm protein nephrin on an acidic cluster at the intracellular terminus and conserved podocin phosphorylation on the very carboxyl terminus of the protein. We studied a highly conserved podocin phosphorylation site in greater detail and show that phosphorylation regulates affinity of the interaction with nephrin and CD2AP. Taken together, these results suggest that species comparisons of phosphoproteomic data may reveal regulatory principles in glomerular biology. All MS data have been deposited in the ProteomeXchange with identifier PXD001005 (http://proteomecentral.proteomexchange.org/dataset/PXD001005).
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2136
|
Cytoplasmic TAF2-TAF8-TAF10 complex provides evidence for nuclear holo-TFIID assembly from preformed submodules. Nat Commun 2015; 6:6011. [PMID: 25586196 PMCID: PMC4309443 DOI: 10.1038/ncomms7011] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/02/2014] [Indexed: 01/27/2023] Open
Abstract
General transcription factor TFIID is a cornerstone of RNA polymerase II transcription initiation in eukaryotic cells. How human TFIID-a megadalton-sized multiprotein complex composed of the TATA-binding protein (TBP) and 13 TBP-associated factors (TAFs)-assembles into a functional transcription factor is poorly understood. Here we describe a heterotrimeric TFIID subcomplex consisting of the TAF2, TAF8 and TAF10 proteins, which assembles in the cytoplasm. Using native mass spectrometry, we define the interactions between the TAFs and uncover a central role for TAF8 in nucleating the complex. X-ray crystallography reveals a non-canonical arrangement of the TAF8-TAF10 histone fold domains. TAF2 binds to multiple motifs within the TAF8 C-terminal region, and these interactions dictate TAF2 incorporation into a core-TFIID complex that exists in the nucleus. Our results provide evidence for a stepwise assembly pathway of nuclear holo-TFIID, regulated by nuclear import of preformed cytoplasmic submodules.
Collapse
|
2137
|
Loroch S, Zahedi RP, Sickmann A. Highly Sensitive Phosphoproteomics by Tailoring Solid-Phase Extraction to Electrostatic Repulsion-Hydrophilic Interaction Chromatography. Anal Chem 2015; 87:1596-604. [DOI: 10.1021/ac502708m] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Stefan Loroch
- Leibniz-Institut für Analytische Wissenschaften−ISAS−e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| | - René Peiman Zahedi
- Leibniz-Institut für Analytische Wissenschaften−ISAS−e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften−ISAS−e.V., Otto-Hahn-Straße 6b, 44227 Dortmund, Germany
- School of Natural & Computing Sciences, University of Aberdeen, Meston Building, Meston Walk, Old Aberdeen AB24 3UE, United Kingdom
- Medizinische
Fakultät, Ruhr-Universität Bochum, Universitätsstraße
150, 44801 Bochum, Germany
| |
Collapse
|
2138
|
Chang HY, Li MH, Huang TC, Hsu CL, Tsai SR, Lee SC, Huang HC, Juan HF. Quantitative proteomics reveals middle infrared radiation-interfered networks in breast cancer cells. J Proteome Res 2015; 14:1250-62. [PMID: 25556991 DOI: 10.1021/pr5011873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Breast cancer is one of the leading cancer-related causes of death worldwide. Treatment of triple-negative breast cancer (TNBC) is complex and challenging, especially when metastasis has developed. In this study, we applied infrared radiation as an alternative approach for the treatment of TNBC. We used middle infrared (MIR) with a wavelength range of 3-5 μm to irradiate breast cancer cells. MIR significantly inhibited cell proliferation in several breast cancer cells but did not affect the growth of normal breast epithelial cells. We performed iTRAQ-coupled LC-MS/MS analysis to investigate the MIR-triggered molecular mechanisms in breast cancer cells. A total of 1749 proteins were identified, quantified, and subjected to functional enrichment analysis. From the constructed functionally enriched network, we confirmed that MIR caused G2/M cell cycle arrest, remodeled the microtubule network to an astral pole arrangement, altered the actin filament formation and focal adhesion molecule localization, and reduced cell migration activity and invasion ability. Our results reveal the coordinative effects of MIR-regulated physiological responses in concentrated networks, demonstrating the potential implementation of infrared radiation in breast cancer therapy.
Collapse
Affiliation(s)
- Hsin-Yi Chang
- Department of Life Science, National Taiwan University , Taipei 10617, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
2139
|
Feller C, Forné I, Imhof A, Becker PB. Global and specific responses of the histone acetylome to systematic perturbation. Mol Cell 2015; 57:559-71. [PMID: 25578876 DOI: 10.1016/j.molcel.2014.12.008] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/24/2014] [Accepted: 11/25/2014] [Indexed: 01/12/2023]
Abstract
Regulation of histone acetylation is fundamental to the utilization of eukaryotic genomes in chromatin. Aberrant acetylation contributes to disease and can be clinically combated by inhibiting the responsible enzymes. Our knowledge of the histone acetylation system is patchy because we so far lacked the methodology to describe acetylation patterns and their genesis by integrated enzyme activities. We devised a generally applicable, mass spectrometry-based strategy to precisely and accurately quantify combinatorial modification motifs. This was applied to generate a comprehensive inventory of acetylation motifs on histones H3 and H4 in Drosophila cells. Systematic depletion of known or suspected acetyltransferases and deacetylases revealed specific alterations of histone acetylation signatures, established enzyme-substrate relationships, and unveiled an extensive crosstalk between neighboring modifications. Unexpectedly, overall histone acetylation levels remained remarkably constant upon depletion of individual acetyltransferases. Conceivably, the acetylation level is adjusted to maintain the global charge neutralization of chromatin and the stability of nuclei.
Collapse
Affiliation(s)
- Christian Feller
- Adolf-Butenandt-Institute and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Ignasi Forné
- Adolf-Butenandt-Institute and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Axel Imhof
- Adolf-Butenandt-Institute and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, Munich, Germany
| | - Peter B Becker
- Adolf-Butenandt-Institute and Center for Integrated Protein Science Munich, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
2140
|
Rb and FZR1/Cdh1 determine CDK4/6-cyclin D requirement in C. elegans and human cancer cells. Nat Commun 2015; 6:5906. [PMID: 25562820 PMCID: PMC4354291 DOI: 10.1038/ncomms6906] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 11/19/2014] [Indexed: 01/02/2023] Open
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) in complex with D-type cyclins promote cell cycle entry. Most human cancers contain overactive CDK4/6-cyclin D, and CDK4/6-specific inhibitors are promising anti-cancer therapeutics. Here, we investigate the critical functions of CDK4/6-cyclin D kinases, starting from an unbiased screen in the nematode Caenorhabditis elegans. We found that simultaneous mutation of lin-35, a retinoblastoma (Rb)-related gene, and fzr-1, an orthologue to the APC/C co-activator Cdh1, completely eliminates the essential requirement of CDK4/6-cyclin D (CDK-4/CYD-1) in C. elegans. CDK-4/CYD-1 phosphorylates specific residues in the LIN-35 Rb spacer domain and FZR-1 amino terminus, resembling inactivating phosphorylations of the human proteins. In human breast cancer cells, simultaneous knockdown of Rb and FZR1 synergistically bypasses cell division arrest induced by the CDK4/6-specific inhibitor PD-0332991. Our data identify FZR1 as a candidate CDK4/6-cyclin D substrate and point to an APC/CFZR1 activity as an important determinant in response to CDK4/6-inhibitors. In most human tumours, the cell cycle regulators Cdk4/6-cyclinD are overactive. Here the authors use C. elegans as a model system to identify downstream regulators that are critical in the response of tumour cells to Cdk4/6 inhibitors.
Collapse
|
2141
|
MacLeod AK, Fallon PG, Sharp S, Henderson CJ, Wolf CR, Huang JTJ. An enhanced in vivo stable isotope labeling by amino acids in cell culture (SILAC) model for quantification of drug metabolism enzymes. Mol Cell Proteomics 2015; 14:750-60. [PMID: 25561501 PMCID: PMC4349992 DOI: 10.1074/mcp.m114.043661] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Many of the enzymes involved in xenobiotic metabolism are maintained at a low basal level and are only synthesized in response to activation of upstream sensor/effector proteins. This induction can have implications in a variety of contexts, particularly during the study of the pharmacokinetics, pharmacodynamics, and drug–drug interaction profile of a candidate therapeutic compound. Previously, we combined in vivo SILAC material with a targeted high resolution single ion monitoring (tHR/SIM) LC-MS/MS approach for quantification of 197 peptide pairs, representing 51 drug metabolism enzymes (DME), in mouse liver. However, as important enzymes (for example, cytochromes P450 (Cyp) of the 1a and 2b subfamilies) are maintained at low or undetectable levels in the liver of unstimulated metabolically labeled mice, quantification of these proteins was unreliable. In the present study, we induced DME expression in labeled mice through synchronous ligand-mediated activation of multiple upstream nuclear receptors, thereby enhancing signals for proteins including Cyps 1a, 2a, 2b, 2c, and 3a. With this enhancement, 115 unique, lysine-containing, Cyp-derived peptides were detected in the liver of a single animal, as opposed to 56 in a pooled sample from three uninduced animals. A total of 386 peptide pairs were quantified by tHR/SIM, representing 68 Phase I, 30 Phase II, and eight control proteins. This method was employed to quantify changes in DME expression in the hepatic cytochrome P450 reductase null (HRN) mouse. We observed compensatory induction of several enzymes, including Cyps 2b10, 2c29, 2c37, 2c54, 2c55, 2e1, 3a11, and 3a13, carboxylesterase (Ces) 2a, and glutathione S-transferases (Gst) m2 and m3, along with down-regulation of hydroxysteroid dehydrogenases (Hsd) 11b1 and 17b6. Using DME-enhanced in vivo SILAC material with tHR/SIM, therefore, permits the robust analysis of multiple DME of importance to xenobiotic metabolism, with improved utility for the study of drug pharmacokinetics, pharmacodynamics, and of chemically treated and genetically modified mouse models.
Collapse
Affiliation(s)
- A Kenneth MacLeod
- From the ‡Jacqui Wood Cancer Centre, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland
| | - Padraic G Fallon
- §School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Sheila Sharp
- From the ‡Jacqui Wood Cancer Centre, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland
| | - Colin J Henderson
- From the ‡Jacqui Wood Cancer Centre, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland
| | - C Roland Wolf
- From the ‡Jacqui Wood Cancer Centre, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland
| | - Jeffrey T-J Huang
- From the ‡Jacqui Wood Cancer Centre, Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland;
| |
Collapse
|
2142
|
Fabre B, Lambour T, Garrigues L, Amalric F, Vigneron N, Menneteau T, Stella A, Monsarrat B, Van den Eynde B, Burlet-Schiltz O, Bousquet-Dubouch MP. Deciphering preferential interactions within supramolecular protein complexes: the proteasome case. Mol Syst Biol 2015; 11:771. [PMID: 25561571 PMCID: PMC4332148 DOI: 10.15252/msb.20145497] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In eukaryotic cells, intracellular protein breakdown is mainly performed by the ubiquitin-proteasome system. Proteasomes are supramolecular protein complexes formed by the association of multiple sub-complexes and interacting proteins. Therefore, they exhibit a very high heterogeneity whose function is still not well understood. Here, using a newly developed method based on the combination of affinity purification and protein correlation profiling associated with high-resolution mass spectrometry, we comprehensively characterized proteasome heterogeneity and identified previously unknown preferential associations within proteasome sub-complexes. In particular, we showed for the first time that the two main proteasome subtypes, standard proteasome and immunoproteasome, interact with a different subset of important regulators. This trend was observed in very diverse human cell types and was confirmed by changing the relative proportions of both 20S proteasome forms using interferon-γ. The new method developed here constitutes an innovative and powerful strategy that could be broadly applied for unraveling the dynamic and heterogeneous nature of other biologically relevant supramolecular protein complexes.
Collapse
Affiliation(s)
- Bertrand Fabre
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Thomas Lambour
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Luc Garrigues
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - François Amalric
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research, Brussels, Belgium WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium de Duve Institute Université catholique de Louvain, Brussels, Belgium
| | - Thomas Menneteau
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Alexandre Stella
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Bernard Monsarrat
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Benoît Van den Eynde
- Ludwig Institute for Cancer Research, Brussels, Belgium WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Brussels, Belgium de Duve Institute Université catholique de Louvain, Brussels, Belgium
| | - Odile Burlet-Schiltz
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| | - Marie-Pierre Bousquet-Dubouch
- CNRS IPBS (Institut de Pharmacologie et de Biologie Structurale), Toulouse, France Université de Toulouse UPS IPBS, Toulouse, France
| |
Collapse
|
2143
|
Pfeiffer MJ, Taher L, Drexler H, Suzuki Y, Makałowski W, Schwarzer C, Wang B, Fuellen G, Boiani M. Differences in embryo quality are associated with differences in oocyte composition: a proteomic study in inbred mice. Proteomics 2015; 15:675-87. [PMID: 25367296 DOI: 10.1002/pmic.201400334] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/10/2014] [Accepted: 10/29/2014] [Indexed: 12/18/2022]
Abstract
Current models of early mouse development assign roles to stochastic processes and epigenetic regulation, which are considered to be as influential as the genetic differences that exist between strains of the species Mus musculus. The aim of this study was to test whether mouse oocytes vary from each other in the abundance of gene products that could influence, prime, or even predetermine developmental trajectories and features of derivative embryos. Using the paradigm of inbred mouse strains, we quantified 2010 protein groups (SILAC LC-MS/MS) and 15205 transcripts (RNA deep sequencing) present simultaneously in oocytes of four strains tested (129/Sv, C57Bl/6J, C3H/HeN, DBA/2J). Oocytes differed according to donor strain in the abundance of catalytic and regulatory proteins, as confirmed for a subset (bromodomain adjacent to zinc finger domain, 1B [BAZ1B], heme oxygenase 1 [HMOX1], estrogen related receptor, beta [ESRRB]) via immunofluorescence in situ. Given a Pearson's r correlation coefficient of 0.18-0.20, the abundance of oocytic proteins could not be predicted from that of cognate mRNAs. Our results document that a prerequisite to generate embryo diversity, namely the different abundances of maternal proteins in oocytes, can be studied in the model of inbred mouse strains. Thus, we highlight the importance of proteomic quantifications in modern embryology. All MS data have been deposited in the ProteomeXchange with identifier PXD001059 (http://proteomecentral.proteomexchange.org/dataset/PXD001059).
Collapse
Affiliation(s)
- Martin J Pfeiffer
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
2144
|
Wei H, Brunecky R, Donohoe BS, Ding SY, Ciesielski PN, Yang S, Tucker MP, Himmel ME. Identifying the ionically bound cell wall and intracellular glycoside hydrolases in late growth stage Arabidopsis stems: implications for the genetic engineering of bioenergy crops. FRONTIERS IN PLANT SCIENCE 2015; 6:315. [PMID: 26029221 PMCID: PMC4429552 DOI: 10.3389/fpls.2015.00315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 04/21/2015] [Indexed: 05/07/2023]
Abstract
Identifying the cell wall-ionically bound glycoside hydrolases (GHs) in Arabidopsis stems is important for understanding the regulation of cell wall integrity. For cell wall proteomics studies, the preparation of clean cell wall fractions is a challenge since cell walls constitute an open compartment, which is more likely to contain a mixture of intracellular and extracellular proteins due to cell leakage at the late growth stage. Here, we utilize a CaCl2-extraction procedure to isolate non-structural proteins from Arabidopsis whole stems, followed by the in-solution and in-gel digestion methods coupled with Nano-LC-MS/MS, bioinformatics and literature analyses. This has led to the identification of 75 proteins identified using the in-solution method and 236 proteins identified by the in-gel method, among which about 10% of proteins predicted to be secreted. Together, eight cell wall proteins, namely AT1G75040, AT5G26000, AT3G57260, AT4G21650, AT3G52960, AT3G49120, AT5G49360, and AT3G14067, were identified by the in-solution method; among them, three were the GHs (AT5G26000, myrosinase 1, GH1; AT3G57260, β-1,3-glucanase 2, GH17; AT5G49360, bifunctional XYL 1/α-L-arabinofuranosidase, GH3). Moreover, four more GHs: AT4G30270 (xyloglucan endotransferase, GH16), AT1G68560 (bifunctional α-l-arabinofuranosidase/XYL, GH31), AT1G12240 (invertase, GH32) and AT2G28470 (β-galactosidase 8, GH35), were identified by the in-gel solution method only. Notably, more than half of above identified GHs are xylan- or hemicellulose-modifying enzymes, and will likely have an impact on cellulose accessibility, which is a critical factor for downstream enzymatic hydrolysis of plant tissues for biofuels production. The implications of these cell wall proteins identified at the late growth stage for the genetic engineering of bioenergy crops are discussed.
Collapse
Affiliation(s)
- Hui Wei
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
- *Correspondence: Hui Wei and Michael E. Himmel, Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA ;
| | - Roman Brunecky
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
| | - Shi-You Ding
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
- Department of Plant Biology, Michigan State UniversityEast Lansing, MI, USA
| | | | - Shihui Yang
- National Bioenergy Center, National Renewable Energy LaboratoryGolden, CO, USA
| | - Melvin P. Tucker
- National Bioenergy Center, National Renewable Energy LaboratoryGolden, CO, USA
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy LaboratoryGolden, CO, USA
- *Correspondence: Hui Wei and Michael E. Himmel, Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA ;
| |
Collapse
|
2145
|
Simova-Stoilova LP, Romero-Rodríguez MC, Sánchez-Lucas R, Navarro-Cerrillo RM, Medina-Aunon JA, Jorrín-Novo JV. 2-DE proteomics analysis of drought treated seedlings of Quercus ilex supports a root active strategy for metabolic adaptation in response to water shortage. FRONTIERS IN PLANT SCIENCE 2015; 6:627. [PMID: 26322068 PMCID: PMC4536546 DOI: 10.3389/fpls.2015.00627] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 07/29/2015] [Indexed: 05/19/2023]
Abstract
Holm oak is a dominant tree in the western Mediterranean region. Despite being well adapted to dry hot climate, drought is the main cause of mortality post-transplanting in reforestation programs. An active response to drought is critical for tree establishment and survival. Applying a gel-based proteomic approach, dynamic changes in root proteins of drought treated Quercus ilex subsp. Ballota [Desf.] Samp. seedlings were followed. Water stress was applied on 20 day-old holm oak plantlets by water limitation for a period of 10 and 20 days, each followed by 10 days of recovery. Stress was monitored by changes in water status, plant growth, and electrolyte leakage. Contrary to leaves, holm oak roots responded readily to water shortage at physiological level by growth inhibition, changes in water status and membrane stability. Root proteins were extracted using trichloroacetate/acetone/phenol protocol and separated by two-dimensional electrophoresis. Coomassie colloidal stained gel images were analyzed and spot intensity data subjected to multivariate statistical analysis. Selected consistent spots in three biological replicas, presenting significant changes under stress, were subjected to MALDI-TOF mass spectrometry (peptide mass fingerprinting and MS/MS). For protein identification, combined search was performed with MASCOT search engine over NCBInr Viridiplantae and Uniprot databases. Data are available via ProteomeXchange with identifier PXD002484. Identified proteins were classified into functional groups: metabolism, protein biosynthesis and proteolysis, defense against biotic stress, cellular protection against abiotic stress, intracellular transport. Several enzymes of the carbohydrate metabolism decreased in abundance in roots under drought stress while some related to ATP synthesis and secondary metabolism increased. Results point at active metabolic adjustment and mobilization of the defense system in roots to actively counteract drought stress.
Collapse
Affiliation(s)
- Lyudmila P. Simova-Stoilova
- Agricultural and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
| | - Maria C. Romero-Rodríguez
- Agricultural and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
| | - Rosa Sánchez-Lucas
- Agricultural and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
| | - Rafael M. Navarro-Cerrillo
- Department of Forestry Engineering, School of Agricultural and Forestry Engineering, University of Coìrdoba, Agrifood Campus of International ExcellenceCoìrdoba, Spain
| | - J. Alberto Medina-Aunon
- Computational Proteomics, Proteomics Facility, Centro Nacional de Biotecnología – CSICMadrid, Spain
| | - Jesús V. Jorrín-Novo
- Agricultural and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of CordobaCordoba, Spain
- *Correspondence: Jesús V. Jorrín-Novo, Agricultural and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Cordoba, Agrifood Campus of International Excellence, Campus de Rabanales, Ed. Severo Ochoa, Planta baja, 14071 Cordoba, Spain
| |
Collapse
|
2146
|
Ferl RJ, Koh J, Denison F, Paul AL. Spaceflight induces specific alterations in the proteomes of Arabidopsis. ASTROBIOLOGY 2015; 15:32-56. [PMID: 25517942 PMCID: PMC4290804 DOI: 10.1089/ast.2014.1210] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Life in spaceflight demonstrates remarkable acclimation processes within the specialized habitats of vehicles subjected to the myriad of unique environmental issues associated with orbital trajectories. To examine the response processes that occur in plants in space, leaves and roots from Arabidopsis (Arabidopsis thaliana) seedlings from three GFP reporter lines that were grown from seed for 12 days on the International Space Station and preserved on orbit in RNAlater were returned to Earth and analyzed by using iTRAQ broad-scale proteomics procedures. Using stringent criteria, we identified over 1500 proteins, which included 1167 leaf proteins and 1150 root proteins we were able to accurately quantify. Quantification revealed 256 leaf proteins and 358 root proteins that showed statistically significant differential abundance in the spaceflight samples compared to ground controls, with few proteins differentially regulated in common between leaves and roots. This indicates that there are measurable proteomics responses to spaceflight and that the responses are organ-specific. These proteomics data were compared with transcriptome data from similar spaceflight samples, showing that there is a positive but limited relationship between transcriptome and proteome regulation of the overall spaceflight responses of plants. These results are discussed in terms of emergence understanding of plant responses to spaceflight particularly with regard to cell wall remodeling, as well as in the context of deriving multiple omics data sets from a single on-orbit preservation and operations approach.
Collapse
Affiliation(s)
- Robert J. Ferl
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
- Interdisciplinary Center for Biotechnology, University of Florida, Gainesville, Florida
| | - Jin Koh
- Interdisciplinary Center for Biotechnology, University of Florida, Gainesville, Florida
| | - Fiona Denison
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| | - Anna-Lisa Paul
- Department of Horticultural Sciences, Program in Plant Molecular and Cellular Biology, University of Florida, Gainesville, Florida
| |
Collapse
|
2147
|
Zelanis A, Huesgen PF, Oliveira AK, Tashima AK, Serrano SM, Overall CM. Snake venom serine proteinases specificity mapping by proteomic identification of cleavage sites. J Proteomics 2015; 113:260-7. [DOI: 10.1016/j.jprot.2014.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
|
2148
|
Fang X, Chen W, Zhao Y, Ruan S, Zhang H, Yan C, Jin L, Cao L, Zhu J, Ma H, Cheng Z. Global analysis of lysine acetylation in strawberry leaves. FRONTIERS IN PLANT SCIENCE 2015; 6:739. [PMID: 26442052 PMCID: PMC4569977 DOI: 10.3389/fpls.2015.00739] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/31/2015] [Indexed: 05/08/2023]
Abstract
Protein lysine acetylation is a reversible and dynamic post-translational modification. It plays an important role in regulating diverse cellular processes including chromatin dynamic, metabolic pathways, and transcription in both prokaryotes and eukaryotes. Although studies of lysine acetylome in plants have been reported, the throughput was not high enough, hindering the deep understanding of lysine acetylation in plant physiology and pathology. In this study, taking advantages of anti-acetyllysine-based enrichment and high-sensitive-mass spectrometer, we applied an integrated proteomic approach to comprehensively investigate lysine acetylome in strawberry. In total, we identified 1392 acetylation sites in 684 proteins, representing the largest dataset of acetylome in plants to date. To reveal the functional impacts of lysine acetylation in strawberry, intensive bioinformatic analysis was performed. The results significantly expanded our current understanding of plant acetylome and demonstrated that lysine acetylation is involved in multiple cellular metabolism and cellular processes. More interestingly, nearly 50% of all acetylated proteins identified in this work were localized in chloroplast and the vital role of lysine acetylation in photosynthesis was also revealed. Taken together, this study not only established the most extensive lysine acetylome in plants to date, but also systematically suggests the significant and unique roles of lysine acetylation in plants.
Collapse
Affiliation(s)
- Xianping Fang
- Institute of Biology, Hangzhou Academy of Agricultural SciencesHangzhou, China
| | - Wenyue Chen
- Institute of Biology, Hangzhou Academy of Agricultural SciencesHangzhou, China
| | - Yun Zhao
- Experiment Center, Hangzhou Academy of Agricultural SciencesHangzhou, China
| | - Songlin Ruan
- Institute of Biology, Hangzhou Academy of Agricultural SciencesHangzhou, China
| | - Hengmu Zhang
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Chengqi Yan
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Liang Jin
- Research and Development Center of Flower, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | | | - Jun Zhu
- Jingjie PTM BiolabsHangzhou, China
| | - Huasheng Ma
- Institute of Biology, Hangzhou Academy of Agricultural SciencesHangzhou, China
- *Correspondence: Huasheng Ma, Hangzhou Academy of Agricultural Sciences, Institute of Biology, East Hangxin Road 1, Hangzhou 310024, China
| | - Zhongyi Cheng
- Institute for Advanced Study of Translational Medicine, Tongji UniversityShanghai, China
- Zhongyi Cheng, Institute for Advanced Study of Translational Medicine, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
2149
|
Labas V, Spina L, Belleannee C, Teixeira-Gomes AP, Gargaros A, Dacheux F, Dacheux JL. Analysis of epididymal sperm maturation by MALDI profiling and top-down mass spectrometry. J Proteomics 2015; 113:226-43. [DOI: 10.1016/j.jprot.2014.09.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 09/17/2014] [Accepted: 09/30/2014] [Indexed: 12/27/2022]
|
2150
|
Lu Q, Ding S, Reiland S, Rödiger A, Roschitzki B, Xue P, Gruissem W, Lu C, Baginsky S. Identification and characterization of chloroplast casein kinase II from Oryza sativa (rice). JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:175-87. [PMID: 25316064 DOI: 10.1093/jxb/eru405] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plastid casein kinase II is an important regulator of transcription, posttranscriptional processes, and, most likely, different metabolic functions in dicotyledonous species. Here we report the identification and characterization of pCKII from the monocotyledonous species Oryza sativa. OspCKII activity was enriched from isolated rice chloroplasts using heparin-Sepharose chromatography, in which it co-elutes with the transcriptionally active chromosome (TAC) and several ribosomal proteins. Inclusion mass scanning of the kinase-active fraction identified the gene model for OspCKII. Transient expression of GFP fused to the 184 N-terminal amino acids of the OspCKII sequence in rice confirmed the chloroplastic localization of the kinase. OspCKII activity shows the characteristic features of casein kinase II, such as the utilization of GTP as phosphate donor, inhibition by low concentrations of heparin and poly-lysine, and utilization of the canonical pCKII motif E-S-E-G-E in the model substrate RNP29. Phosphoproteome analysis of a protein extract from rice leaves combined with a meta-analysis with published phosphoproteomics data revealed differences in the target protein spectrum between rice and Arabidopsis. Consistently, several pCKII phosphorylation sites in dicotyledonous plants are not conserved in monocots and algae, suggesting that details of pCKII regulation in plastids have changed during evolution.
Collapse
Affiliation(s)
- Qingtao Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shunhua Ding
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Sonja Reiland
- Department of Biology, Plant Biotechnology, ETH Zurich, 8092 Zurich, Switzerland
| | - Anja Rödiger
- Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Bernd Roschitzki
- Functional Genomics Center Zurich, University of Zurich \ ETH Zurich, 8057 Zurich, Switzerland
| | - Peng Xue
- Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wilhelm Gruissem
- Department of Biology, Plant Biotechnology, ETH Zurich, 8092 Zurich, Switzerland Functional Genomics Center Zurich, University of Zurich \ ETH Zurich, 8057 Zurich, Switzerland
| | - Congming Lu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Sacha Baginsky
- Department of Biology, Plant Biotechnology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|