2151
|
Cutlar L, Zhou D, Gao Y, Zhao T, Greiser U, Wang W, Wang W. Highly Branched Poly(β-Amino Esters): Synthesis and Application in Gene Delivery. Biomacromolecules 2015; 16:2609-17. [DOI: 10.1021/acs.biomac.5b00966] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lara Cutlar
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dezhong Zhou
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yongsheng Gao
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Tianyu Zhao
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Udo Greiser
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Wei Wang
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
- School
of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenxin Wang
- Charles
Institute of Dermatology, School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Ireland
- School
of Materials Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2152
|
Yamada T, Amann JM, Fukuda K, Takeuchi S, Fujita N, Uehara H, Iwakiri S, Itoi K, Shilo K, Yano S, Carbone DP. Akt Kinase-Interacting Protein 1 Signals through CREB to Drive Diffuse Malignant Mesothelioma. Cancer Res 2015; 75:4188-97. [PMID: 26294214 DOI: 10.1158/0008-5472.can-15-0858] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/26/2015] [Indexed: 12/12/2022]
Abstract
Diffuse malignant mesothelioma (DMM) is a tumor of serosal membranes with propensity for progressive local disease. Because current treatment options are largely ineffective, novel therapeutic strategies based on molecular mechanisms and the disease characteristics are needed to improve the outcomes of patients with this disease. Akt kinase interacting protein 1 (Aki1; Freud-1/CC2D1A) is a scaffold protein for the PI3K-PDK1-Akt signaling module that helps determine receptor signal selectivity for EGFR. Aki1 has been suggested as a therapeutic target, but its potential has yet to be evaluated in a tumor setting. Here, we report evidence supporting its definition as a therapeutic target in DMM. In cell-based assays, Aki1 silencing decreased cell viability and caused cell-cycle arrest of multiple DMM cell lines via effects on the PKA-CREB1 signaling pathway. Blocking CREB activity phenocopied Aki1 silencing. Clinically, Aki1 was expressed in most human DMM specimens where its expression correlated with phosphorylated CREB1. Notably, Aki1 siRNA potently blocked tumor growth in an orthotopic implantation model of DMM when administered directly into the pleural cavity of tumor-bearing mice. Our findings suggest an important role for the Aki1-CREB axis in DMM pathogenesis and provide a preclinical rationale to target Aki1 by intrathoracic therapy in locally advanced tumors.
Collapse
Affiliation(s)
- Tadaaki Yamada
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio. Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Joseph M Amann
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio
| | - Koji Fukuda
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shinji Takeuchi
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Naoya Fujita
- Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hisanori Uehara
- Department of Molecular and Environmental Pathology, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan
| | - Shotaro Iwakiri
- Department of Respiratory Surgery, Hyogo Prefectural Amagasaki Hospital, Amagasaki, Japan
| | - Kazumi Itoi
- Department of Respiratory Surgery, Hyogo Prefectural Amagasaki Hospital, Amagasaki, Japan
| | - Konstantin Shilo
- Department of Pathology, The Ohio State University Medical Center, Columbus, Ohio
| | - Seiji Yano
- Division of Medical Oncology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.
| | - David P Carbone
- Department of Internal Medicine, The Ohio State University Medical Center, Columbus, Ohio.
| |
Collapse
|
2153
|
Yan Y, Xue L, Miller JB, Zhou K, Kos P, Elkassih S, Liu L, Nagai A, Xiong H, Siegwart DJ. One-pot Synthesis of Functional Poly(amino ester sulfide)s and Utility in Delivering pDNA and siRNA. POLYMER 2015; 72:271-280. [PMID: 26726270 PMCID: PMC4695292 DOI: 10.1016/j.polymer.2015.02.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of efficacious carriers is an important long-standing challenge in gene therapy. In the past few decades, tremendous progress has been made toward non-viral vectors for gene delivery including cationic lipids and polymers. However, there continues to be a need for clinically translatable polymer-based delivery carriers because they offer tunable degradation profiles and functional groups, diverse structures/morphologies, and scalability in preparation. Herein, we developed a library of 144 degradable polymers with varying amine and hydrophobic content via a facile method that involves thiobutyrolactone aminolysis and consequent thiol-(meth)acrylate or acrylamide addition in one-pot. The polymer platform was evaluated for pDNA and siRNA delivery to HeLa cells in vitro. Hydrophobically modified 5S, 2E1, 6CY1, 5CY2, and 2M1 grafted HEMATL polymers are capable of delivering pDNA depending on the chemical composition and the size of the polyplexes. Hydrophobically modified 5S and 2B grafted HEMATL and 5S grafted ATL polymers exhibit capability for siRNA delivery that approaches the efficacy of commercially available transfection reagents. Due to tunable functionality and scalable preparation, this synthetic approach may have broad applicability in the design of delivery materials for gene therapy.
Collapse
Affiliation(s)
- Yunfeng Yan
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Lian Xue
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Jason B. Miller
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Kejin Zhou
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Petra Kos
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Sussana Elkassih
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Li Liu
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Atsushi Nagai
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Hu Xiong
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| | - Daniel J. Siegwart
- University of Texas Southwestern Medical Center, Simmons Comprehensive Cancer Center, Department of Biochemistry, Dallas, Texas 75390, United States
| |
Collapse
|
2154
|
McClorey G, Wood MJ. An overview of the clinical application of antisense oligonucleotides for RNA-targeting therapies. Curr Opin Pharmacol 2015; 24:52-8. [PMID: 26277332 DOI: 10.1016/j.coph.2015.07.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/16/2015] [Accepted: 07/27/2015] [Indexed: 01/16/2023]
Abstract
Despite the discovery more than two decades ago that antisense oligonucleotides (ASOs) could be used to modulate protein expression, there have been only two antisense drugs approved for clinical use till date. Despite this low success rate, the antisense field is undergoing resurgence due to the development of more potent and nuclease resistant chemistries, as well as nanoparticle delivery systems that enhance delivery to target tissues. In this review, we introduce the predominant therapeutic strategies in the antisense field whilst highlighting recent clinical findings that demonstrate the significant potential of these approaches for development of novel therapies in several diseases.
Collapse
Affiliation(s)
- Graham McClorey
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, OX1 3QX Oxford, UK
| | - Matthew J Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, OX1 3QX Oxford, UK.
| |
Collapse
|
2155
|
LaFountaine JS, Fathe K, Smyth HDC. Delivery and therapeutic applications of gene editing technologies ZFNs, TALENs, and CRISPR/Cas9. Int J Pharm 2015; 494:180-94. [PMID: 26278489 DOI: 10.1016/j.ijpharm.2015.08.029] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/05/2015] [Accepted: 08/09/2015] [Indexed: 12/24/2022]
Abstract
In recent years, several new genome editing technologies have been developed. Of these the zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and the CRISPR/Cas9 RNA-guided endonuclease system are the most widely described. Each of these technologies utilizes restriction enzymes to introduce a DNA double stranded break at a targeted location with the guide of homologous binding proteins or RNA. Such targeting is viewed as a significant advancement compared to current gene therapy methods that lack such specificity. Proof-of-concept studies have been performed to treat multiple disorders, including in vivo experiments in mammals and even early phase human trials. Careful consideration and investigation of delivery strategies will be required so that the therapeutic potential for gene editing is achieved. In this review, the mechanisms of each of these gene editing technologies and evidence of therapeutic potential will be briefly described and a comprehensive list of past studies will be provided. The pharmaceutical approaches of each of these technologies are discussed along with the current delivery obstacles. The topics and information reviewed herein provide an outline of the groundbreaking research that is being performed, but also highlights the potential for progress yet to be made using these gene editing technologies.
Collapse
Affiliation(s)
- Justin S LaFountaine
- The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Kristin Fathe
- The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA
| | - Hugh D C Smyth
- The University of Texas at Austin, 2409 University Avenue, Austin, TX 78712, USA.
| |
Collapse
|
2156
|
Nishina K, Piao W, Yoshida-Tanaka K, Sujino Y, Nishina T, Yamamoto T, Nitta K, Yoshioka K, Kuwahara H, Yasuhara H, Baba T, Ono F, Miyata K, Miyake K, Seth PP, Low A, Yoshida M, Bennett CF, Kataoka K, Mizusawa H, Obika S, Yokota T. DNA/RNA heteroduplex oligonucleotide for highly efficient gene silencing. Nat Commun 2015; 6:7969. [PMID: 26258894 PMCID: PMC4918363 DOI: 10.1038/ncomms8969] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 07/01/2015] [Indexed: 12/13/2022] Open
Abstract
Antisense oligonucleotides (ASOs) are recognized therapeutic agents for the modulation of specific genes at the post-transcriptional level. Similar to any medical drugs, there are opportunities to improve their efficacy and safety. Here we develop a short DNA/RNA heteroduplex oligonucleotide (HDO) with a structure different from double-stranded RNA used for short interfering RNA and single-stranded DNA used for ASO. A DNA/locked nucleotide acid gapmer duplex with an α-tocopherol-conjugated complementary RNA (Toc-HDO) is significantly more potent at reducing the expression of the targeted mRNA in liver compared with the parent single-stranded gapmer ASO. Toc-HDO also improves the phenotype in disease models more effectively. In addition, the high potency of Toc-HDO results in a reduction of liver dysfunction observed in the parent ASO at a similar silencing effect. HDO technology offers a novel concept of therapeutic oligonucleotides, and the development of this molecular design opens a new therapeutic field.
Collapse
Affiliation(s)
- Kazutaka Nishina
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Wenying Piao
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Kie Yoshida-Tanaka
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Yumiko Sujino
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Tomoko Nishina
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Tsuyoshi Yamamoto
- Bioorganic Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Keiko Nitta
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Kotaro Yoshioka
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Hiroya Kuwahara
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Hidenori Yasuhara
- Bioorganic Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Takeshi Baba
- Bioorganic Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Fumiko Ono
- The Corporation for Production and Research of Laboratory Primates, 1-16-2 Sakura, Tsukuba-shi, Ibaraki 305-0003, Japan
| | - Kanjiro Miyata
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koichi Miyake
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Punit P. Seth
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, USA
| | - Audrey Low
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, USA
| | - Masayuki Yoshida
- Department of Life Science and Medical Ethics, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - C. Frank Bennett
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, California 92010, USA
| | - Kazunori Kataoka
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hidehiro Mizusawa
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Satoshi Obika
- Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
- Bioorganic Chemistry, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita-shi, Osaka 565-0871, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
- Section of Molecular Technology, Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| |
Collapse
|
2157
|
Li Y, Osada K, Chen Q, Tockary TA, Dirisala A, Takeda KM, Uchida S, Nagata K, Itaka K, Kataoka K. Toroidal Packaging of pDNA into Block Ionomer Micelles Exerting Promoted in Vivo Gene Expression. Biomacromolecules 2015. [DOI: 10.1021/acs.biomac.5b00491] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yanmin Li
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kensuke Osada
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi,
Saitama 332-0012, Japan
| | - Qixian Chen
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Theofilus A. Tockary
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Anjaneyulu Dirisala
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Kaori M. Takeda
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
| | - Satoshi Uchida
- Division
of Clinical Biotechnology, Center for Disease Biology and Integrative
Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Kazuya Nagata
- Division
of Clinical Biotechnology, Center for Disease Biology and Integrative
Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Keiji Itaka
- Division
of Clinical Biotechnology, Center for Disease Biology and Integrative
Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Kazunori Kataoka
- Department
of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Department
of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan
- Division
of Clinical Biotechnology, Center for Disease Biology and Integrative
Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
2158
|
Bishop CJ, Abubaker-Sharif B, Guiriba T, Tzeng SY, Green JJ. Gene delivery polymer structure-function relationships elucidated via principal component analysis. Chem Commun (Camb) 2015; 51:12134-7. [PMID: 26126593 PMCID: PMC4568840 DOI: 10.1039/c5cc04417k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Principal component analysis was applied to a biomaterial library of poly(beta-amino ester)s, useful for non-viral gene delivery, to elucidate chemical parameters that drive biological function. Correlative relationships and principal components were analyzed between 24 physico-chemical polymer properties and 3 cell-based functional variables in human glioblastoma cells (transfection, uptake, and viability).
Collapse
Affiliation(s)
- C J Bishop
- The Johns Hopkins University School of Medicine, Department of Biomedical Engineering, Translational Tissue Engineering Center, 400 North Broadway, Baltimore MD, USA.
| | | | | | | | | |
Collapse
|
2159
|
Mitragotri S, Anderson DG, Chen X, Chow EK, Ho D, Kabanov AV, Karp JM, Kataoka K, Mirkin CA, Petrosko SH, Shi J, Stevens MM, Sun S, Teoh S, Venkatraman SS, Xia Y, Wang S, Gu Z, Xu C. Accelerating the Translation of Nanomaterials in Biomedicine. ACS NANO 2015; 9:6644-54. [PMID: 26115196 PMCID: PMC5227554 DOI: 10.1021/acsnano.5b03569] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Due to their size and tailorable physicochemical properties, nanomaterials are an emerging class of structures utilized in biomedical applications. There are now many prominent examples of nanomaterials being used to improve human health, in areas ranging from imaging and diagnostics to therapeutics and regenerative medicine. An overview of these examples reveals several common areas of synergy and future challenges. This Nano Focus discusses the current status and future potential of promising nanomaterials and their translation from the laboratory to the clinic, by highlighting a handful of successful examples.
Collapse
Affiliation(s)
- Samir Mitragotri
- Center for Bioengineering, Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States
- Address correspondence to: , ,
| | - Daniel G. Anderson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xiaoyuan Chen
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Edward K. Chow
- Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077
| | - Dean Ho
- Division of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, California 90095, United States
| | - Alexander V. Kabanov
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffrey M. Karp
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Kazunori Kataoka
- Departments of Materials Engineering and Bioengineering, University of Tokyo, Tokyo 113-8654, Japan
| | - Chad A. Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Sarah Hurst Petrosko
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Jinjun Shi
- Laboratory for Nanoengineering & Drug Delivery, Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering, Institute for Biomedical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Sweehin Teoh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798
| | - Subbu S. Venkatraman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Shutao Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhen Gu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27695, United States
- Address correspondence to: , ,
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798
- Address correspondence to: , ,
| |
Collapse
|
2160
|
Choi JW, Kim J, Bui QN, Li Y, Yun CO, Lee DS, Kim SW. Tuning Surface Charge and PEGylation of Biocompatible Polymers for Efficient Delivery of Nucleic Acid or Adenoviral Vector. Bioconjug Chem 2015; 26:1818-29. [PMID: 26158495 DOI: 10.1021/acs.bioconjchem.5b00357] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
As an effective and safe strategy to overcome the limits of therapeutic nucleic acid or adenovirus (Ad) vectors for in vivo application, various technologies to modify the surface of vectors with nonimmunogenic/biocompatible polymers have been emerging in the field of gene therapy. However, the transfection efficacy of the polymer to transfer genetic materials is still relatively weak. To develop more advanced and effective polymers to deliver not only Ad vectors, but also nucleic acids, 6 biocompatible polymers were newly designed and synthesized to different sizes (2k, 3.4k, or 5k) of poly(ethylene) glycol (PEG) and different numbers of amine groups (2 or 5) based on methoxy poly(ethylene glycol)-b-poly{N-[N-(2-aminoethyl)-2-aminoethyl]-l-glutamate (PNLG). We characterized size distribution and surface charge of 6 PNLGs after complexation with either nucleic acid or Ad. Among all 6 PNLGs, the 5 amine group PNLG showed the strongest efficacy in delivering nucleic acid as well as Ad vectors. Interestingly, cellular uptake results showed higher uptake ability in Ad complexed with 2 amine group PNLG than Ad/5 amine group PNLG, suggesting that the size of Ad/PNLGs is more essential than the surface charge for cellular uptake in polymers with charges greater than 30 mV. Moreover, the endosome escape ability of Ad/PNLGs increased depending on the number of amine groups, but decreased by PEG size. Cancer cell killing efficacy and immune response studies of oncolytic Ad/PNLGs showed 5 amine group PNLG to be a more effective and safe carrier for delivering Ad. Overall, these studies provide new insights into the functional mechanism of polymer-based approaches to either nucleic acid or Ad/nanocomplex. Furthermore, the identified ideal biocompatible PNLG polymer formulation (5 amine/2k PEG for nucleic acid, 5 amine/5k PEG for Ad) demonstrated high transduction efficiency as well as therapeutic value (efficacy and safety) and thus has strong potential for in vivo therapeutic use in the future.
Collapse
Affiliation(s)
- Joung-Woo Choi
- †Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jaesung Kim
- †Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Quang Nam Bui
- ‡Theranostic Macromolecules Research Center, School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yi Li
- ‡Theranostic Macromolecules Research Center, School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chae-Ok Yun
- §Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Doo Sung Lee
- ‡Theranostic Macromolecules Research Center, School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Sung Wan Kim
- †Center for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States.,§Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea
| |
Collapse
|
2161
|
Guo J, McKenna SL, O’Dwyer ME, Cahill MR, O’Driscoll CM. RNA interference for multiple myeloma therapy: targeting signal transduction pathways. Expert Opin Ther Targets 2015; 20:107-21. [DOI: 10.1517/14728222.2015.1071355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
2162
|
Yuba E, Kanda Y, Yoshizaki Y, Teranishi R, Harada A, Sugiura K, Izawa T, Yamate J, Sakaguchi N, Koiwai K, Kono K. pH-sensitive polymer-liposome-based antigen delivery systems potentiated with interferon-γ gene lipoplex for efficient cancer immunotherapy. Biomaterials 2015. [PMID: 26222284 DOI: 10.1016/j.biomaterials.2015.07.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Potentiation of pH-sensitive liposome-based antigen carriers with IFN-γ gene lipoplexes was attempted to achieve efficient induction of tumor-specific immunity. 3-Methylglutarylated poly(glycidol) (MGluPG)-modified liposomes and cationic liposomes were used, respectively, for the delivery of antigenic protein ovalbumin (OVA) and IFN-γ-encoding plasmid DNA (pDNA). The MGluPG-modified liposomes and the cationic liposome-pDNA complexes (lipoplexes) formed hybrid complexes via electrostatic interactions after their mixing in aqueous solutions. The hybrid complexes co-delivered OVA and IFN-γ-encoding pDNA into DC2.4 cells, a murine dendritic cell line, as was the case of MGluPG-modified liposomes for OVA or the lipoplexes for pDNA. Both the lipoplexes and the hybrid complexes transfected DC2.4 cells and induced IFN-γ protein production, but transfection activities of the hybrid complexes were lower than those of the parent lipoplexes. Subcutaneous administration of hybrid complexes to mice bearing E.G7-OVA tumor reduced tumor volumes, which might result from the induction of OVA-specific cytotoxic T lymphocytes (CTLs). However, the hybrid complex-induced antitumor effect was the same level of the MGluPG-modified liposome-mediated antitumor immunity. In contrast, an extremely strong antitumor immune response was derived when these liposomes and lipoplexes without complexation were injected subcutaneously at the same site of tumor-bearing mice. Immunohistochemical analysis of tumor sections revealed that immunization through the liposome-lipoplex combination promoted the infiltration of CTLs to tumors at an early stage of treatment compared with liposomes, resulting in strong therapeutic effects.
Collapse
Affiliation(s)
- Eiji Yuba
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yuhei Kanda
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yuta Yoshizaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Ryoma Teranishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Atsushi Harada
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Kikuya Sugiura
- Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Division of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan
| | - Naoki Sakaguchi
- Terumo Corp., Ltd., Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Kazunori Koiwai
- Terumo Corp., Ltd., Ashigarakami-gun, Kanagawa 259-0151, Japan
| | - Kenji Kono
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
2163
|
Abstract
The efficient delivery of short interfering RNA (siRNA) is an enormous challenge in the field of gene therapy. Herein, we report a delivery nanosystem based on programmed DNA self-assembly mammalian target of rapamycin (mTOR) siRNA-loaded DNA nanotubes (DNA-NTs). We demonstrate that these siRNA-DNA-NTs can be effectively transfected into pulmonary arterial smooth muscle cells (PASMCs) via endocytosis; and that the loaded mTOR siRNA can induce obvious autophagy and inhibit cell growth under both normal and hypoxic conditions. Moreover, we found that mTOR siRNA can control the autophagy and proliferation of PASMCs under hypoxic condition, suggesting a potential therapeutic application for mTOR siRNA in diseases involving abnormal autophagy in PASMCs.
Collapse
|
2164
|
Abstract
The prokaryotic type II CRISPR-Cas9 (clustered regularly interspaced short palindromic repeats-CRISPR-associated 9) system is rapidly revolutionizing the field of genetic engineering, allowing researchers to alter the genomes of a large range of organisms with relative ease. Experimental approaches based on this versatile technology have the potential to transform the field of cancer genetics. Here, we review current approaches for functional studies of cancer genes that are based on CRISPR-Cas, with emphasis on their applicability for the development of next-generation models of human cancer.
Collapse
Affiliation(s)
- Francisco J. Sánchez-Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- Corresponding author. Communication can be sent to
| |
Collapse
|
2165
|
Ahmed M, Narain R. Carbohydrate-based materials for targeted delivery of drugs and genes to the liver. Nanomedicine (Lond) 2015. [DOI: 10.2217/nnm.15.58] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The insult to liver by toxic materials leads to cirrhosis, hepatitis and cancer. Upon administration, drugs accumulate in liver, which is systemically cleared by reticuloendothelial system. However, specific targeting of drugs to liver is a serious challenge. Specific delivery of molecules to hepatocytes is accomplished by targeting cell surface lectins, asialoglycoprotein receptors. Asialofetuin, N-acetyl glucosamine and galactose are high-affinity ligands of asialoglycoprotein receptors. The bioconjugation of drugs, fluorescent molecules and gene delivery vectors with lectin-targeting agents, and their delivery in liver hepatocytes, is discussed. Mannose and N-acetyl glucosamine conjugates are evaluated for their delivery to hepatic stellate and kupffer cells. The glycosylated gene and drug delivery vectors in clinical trials are outlined.
Collapse
Affiliation(s)
- Marya Ahmed
- Chemical Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
| | - Ravin Narain
- Chemical & Materials Engineering, University of Alberta, 116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada
| |
Collapse
|
2166
|
Michel T, Kankura A, Salinas Medina ML, Kurz J, Behring A, Avci-Adali M, Nolte A, Schlensak C, Wendel HP, Krajewski S. In Vitro Evaluation of a Novel mRNA-Based Therapeutic Strategy for the Treatment of Patients Suffering from Alpha-1-Antitrypsin Deficiency. Nucleic Acid Ther 2015; 25:235-44. [PMID: 26125662 DOI: 10.1089/nat.2015.0537] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In single-gene disorders, like alpha-1-antitrypsin deficiency (AATD), a gene mutation causes missing or dysfunctional protein synthesis. This, in turn, can lead to serious complications for the patient affected. Furthermore, single-gene disorders are associated with severe early-onset conditions and necessitate expensive lifelong care. Until nowadays, therapeutic treatment options are still limited, cost-intensive, or lack effectiveness. For these reasons, we aim to develop a novel mRNA-based therapeutic strategy for the treatment of single-gene disorders, such as AATD, which is based on the induction of de novo synthesis of the functional proteins. Therefore, an alpha-1-antitrypsin (AAT) encoding mRNA was generated by in vitro transcription. After in vitro delivery of the mRNA to different cells, protein expression and functionality, as well as adverse effects and mRNA serum stability, were analyzed. Our results show that the AAT mRNA-transfected cells express the AAT protein in high amounts within the first 24 h. Moreover, the expressed AAT protein is highly functional, since the activity of elastase is significantly inhibited. Our data also show that mRNA concentrations up to 1 μg per 150,000 cells have no adverse effects on cell viability and immune activation. Furthermore, the encapsulated AAT encoding mRNA is stable and functional in human serum for up to 30 min. Overall, the proposed project provides an innovative, highly promising, and safe therapeutic approach and, thus, promises a novel progress in the treatment of single-gene disorders, whereby affected patients could greatly benefit.
Collapse
Affiliation(s)
- Tatjana Michel
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Anna Kankura
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Martha L Salinas Medina
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Julia Kurz
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Andreas Behring
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Meltem Avci-Adali
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Andrea Nolte
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Christian Schlensak
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Hans Peter Wendel
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| | - Stefanie Krajewski
- Clinical Research Laboratory, Department of Thoracic and Cardiovascular Surgery, University Hospital Tuebingen, Tuebingen University , Tuebingen, Germany
| |
Collapse
|
2167
|
Majzoub RN, Ewert KK, Jacovetty EL, Carragher B, Potter CS, Li Y, Safinya CR. Patterned Threadlike Micelles and DNA-Tethered Nanoparticles: A Structural Study of PEGylated Cationic Liposome-DNA Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7073-7083. [PMID: 26048043 PMCID: PMC4554524 DOI: 10.1021/acs.langmuir.5b00993] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The self-assembly of oppositely charged biomacromolecules has been extensively studied due to its pertinence in the design of functional nanomaterials. Using cryo electron microscopy (cryo-EM), optical light scattering, and fluorescence microscopy, we investigated the structure and phase behavior of PEGylated (PEG: poly(ethylene glycol)) cationic liposome-DNA nanoparticles (CL-DNA NPs) as a function of DNA length, topology (linear and circular), and ρ(chg) (the molar charge ratio of cationic lipid to anionic DNA). Although all NPs studied exhibited lamellar internal nanostructure, NPs formed with short (∼2 kbps), linear, polydisperse DNA were defect-rich and contained smaller domains. Unexpectedly, we found distinctly different equilibrium structures away from the isoelectric point. At ρ(chg) > 1, in the excess cationic lipid regime, threadlike micelles rich in PEG-lipid were found to coexist with NPs, cationic liposomes, and spherical micelles. At high concentrations these PEGylated threadlike micelles formed a well-ordered, patterned morphology with highly uniform intermicellar spacing. At ρ(chg) < 1, in the excess DNA regime and with no added salt, individual NPs were tethered together via long, linear DNA (48 kbps λ-phage DNA) into a biopolymer-mediated floc. Our results provide insight into what equilibrium nanostructures can form when oppositely charged macromolecules self-assemble in aqueous media. Self-assembled, well-ordered threadlike micelles and tethered nanoparticles may have a broad range of applications in bionanotechnology, including nanoscale lithograpy and the development of lipid-based multifunctional nanoparticle networks.
Collapse
Affiliation(s)
- Ramsey N. Majzoub
- Department of Physics, Department of Materials, and Molecular, Cellular and Developmental, Biology Department, University of California, Santa Barbara CA 93106, USA
| | - Kai K. Ewert
- Department of Physics, Department of Materials, and Molecular, Cellular and Developmental, Biology Department, University of California, Santa Barbara CA 93106, USA
| | - Erica L. Jacovetty
- National Resource for Automated Molecular Microscopy, Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La, Jolla, CA 92037, USA
| | - Bridget Carragher
- National Resource for Automated Molecular Microscopy, Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La, Jolla, CA 92037, USA
| | - Clinton S. Potter
- National Resource for Automated Molecular Microscopy, Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La, Jolla, CA 92037, USA
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara CA 93106, USA
| | - Cyrus R. Safinya
- Department of Physics, Department of Materials, and Molecular, Cellular and Developmental, Biology Department, University of California, Santa Barbara CA 93106, USA
| |
Collapse
|
2168
|
Li X, Xie Z, Xie C, Lu W, Gao C, Ren H, Ying M, Wei X, Gao J, Su B, Ren Y, Liu M. D-SP5 Peptide-Modified Highly Branched Polyethylenimine for Gene Therapy of Gastric Adenocarcinoma. Bioconjug Chem 2015; 26:1494-503. [DOI: 10.1021/acs.bioconjchem.5b00137] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xue Li
- Key
Laboratory of Smart Drug Delivery (Fudan University), Ministry of
Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Zuoxu Xie
- Key
Laboratory of Smart Drug Delivery (Fudan University), Ministry of
Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Cao Xie
- Key
Laboratory of Smart Drug Delivery (Fudan University), Ministry of
Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Weiyue Lu
- Key
Laboratory of Smart Drug Delivery (Fudan University), Ministry of
Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Chunli Gao
- Department
of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200030, PR China
| | - Henglei Ren
- Department
of Otolaryngology-Head and Neck Surgery, Eye and ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200030, PR China
| | - Man Ying
- Key
Laboratory of Smart Drug Delivery (Fudan University), Ministry of
Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Xiaoli Wei
- Key
Laboratory of Smart Drug Delivery (Fudan University), Ministry of
Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Jie Gao
- Key
Laboratory of Smart Drug Delivery (Fudan University), Ministry of
Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Bingxia Su
- Key
Laboratory of Smart Drug Delivery (Fudan University), Ministry of
Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Yachao Ren
- Key
Laboratory of Smart Drug Delivery (Fudan University), Ministry of
Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| | - Min Liu
- Key
Laboratory of Smart Drug Delivery (Fudan University), Ministry of
Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, PR China
| |
Collapse
|
2169
|
Gabai VL, Shifrin VI. Feasibility analysis of p62 (SQSTM1)-encoding DNA vaccine as a novel cancer immunotherapy. Int Rev Immunol 2015; 33:375-82. [PMID: 25277339 PMCID: PMC4438419 DOI: 10.3109/08830185.2014.954699] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy is a thriving field, but its clinical achievements are modest so far. One of its major hurdles seems to be finding a feasible cancer antigen as a target for immune response. After many years of research, three major criteria for choice of tumor antigens emerged. An antigen should be: (i) immunogenic; (ii) essential for cancers cells (to avoid its loss through immunoediting), but dispensable for normal tissues to reduce the risk of toxicity, and (iii) overexpressed in tumors as compared to the normal tissues. Here we argue that p62 (SQSTM1), a protein involved in autophagy and signal transduction, fits all the above criteria and can be chosen as a novel cancer antigen. Accordingly, we carried out an extensive study and found antitumor and antimetastatic activity of p62-encoding DNA vaccine in five types of commonly used transplantable tumor models of mice and rats, and spontaneous tumors in several dogs. Given that toxicity of p62 vaccine was minimal, if any, we believe that p62-encoding vaccine merits further clinical development.
Collapse
|
2170
|
Yu H, Jiang X, Tan KT, Hang L, Patzel V. Efficient production of superior dumbbell-shaped DNA minimal vectors for small hairpin RNA expression. Nucleic Acids Res 2015; 43:e120. [PMID: 26068470 PMCID: PMC4605290 DOI: 10.1093/nar/gkv583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/22/2015] [Indexed: 01/01/2023] Open
Abstract
Genetic therapy holds great promise for the treatment of inherited or acquired genetic diseases; however, its breakthrough is hampered by the lack of suitable gene delivery systems. Dumbbell-shaped DNA minimal vectors represent an attractive, safe alternative to the commonly used viral vectors which are fraught with risk, but dumbbell generation appears to be costly and time-consuming. We developed a new PCR-based method for dumbbell production which comprises only two steps. First, PCR amplification of the therapeutic expression cassette using chemically modified primers to form a ready-to-ligate DNA structure; and second, a highly efficient intramolecular ligation reaction. Compared with conventional strategies, the new method produces dumbbell vectors more rapidly, with higher yields and purity, and at lower costs. In addition, such produced small hairpin RNA expressing dumbbells triggered superior target gene knockdown compared with conventionally produced dumbbells or plasmids. Our novel method is suitable for large-scale dumbbell production and can facilitate clinical applications of this vector system.
Collapse
Affiliation(s)
- Han Yu
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Xiaoou Jiang
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Kar Tong Tan
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Liting Hang
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| | - Volker Patzel
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 117597, Singapore
| |
Collapse
|
2171
|
Nam JP, Nam K, Nah JW, Kim SW. Evaluation of Histidylated Arginine-Grafted Bioreducible Polymer To Enhance Transfection Efficiency for Use as a Gene Carrier. Mol Pharm 2015; 12:2352-64. [DOI: 10.1021/acs.molpharmaceut.5b00013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Joung-Pyo Nam
- Center
for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics
and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kihoon Nam
- Center
for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics
and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jae-Woon Nah
- Department
of Polymer Science and Engineering, Sunchon National University, 255 Jungang-ro, Suncheon, Jeollanam-do, Republic of Korea
| | - Sung Wan Kim
- Center
for Controlled Chemical Delivery (CCCD), Department of Pharmaceutics
and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
2172
|
Park H, Cho S, Han YH, Janat-Amsbury MM, Boudina S, Bae YH. Combinatorial gene construct and non-viral delivery for anti-obesity in diet-induced obese mice. J Control Release 2015; 207:154-62. [PMID: 25817008 DOI: 10.1016/j.jconrel.2015.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 03/04/2015] [Accepted: 03/14/2015] [Indexed: 12/16/2022]
Abstract
The combinatorial peptidergic therapy of islet amyloid polypeptide (IAPP) and leptin (LEP) analogues was once an optimistic option in treating obese animals and patients. However, the need for frequent administrations and its negative side effects prevent it from being a viable choice. Here, we developed a combinatorial gene therapy of IAPP and LEP, where two genes are inserted into a single plasmid with self-cleaving furin and 2A sites to treat diet-induced obese (DIO) mice. The developed plasmid DNA (pDNA) individually produced both IAPP and LEP peptides in vitro and in vivo. The pDNA was delivered with a non-viral polymeric carrier, and its once-a-week administrations demonstrated a synergistic loss of body weight and significant reductions of fat mass, blood glucose, and lipid levels in DIO mice. The results suggest that the combinatorial gene therapy would have higher potential than the peptidergic approach for future translation due to its improved practicability.
Collapse
Affiliation(s)
- Hongsuk Park
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Sungpil Cho
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT 84132, USA
| | - Yong Hwan Han
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - Margit M Janat-Amsbury
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, University of Utah, Salt Lake City, UT 84132, USA
| | - Sihem Boudina
- Division of Endocrinology, Metabolism, and Diabetes and Program in Molecular Medicine, University of Utah, Salt Lake City, UT 84112, USA
| | - You Han Bae
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA; Utah-Inha Drug Delivery Systems and Advanced Therapeutics Research Center, Incheon, Republic of Korea.
| |
Collapse
|
2173
|
Abstract
In this article, advances in designing polymeric nanoparticles for targeted cancer gene therapy are reviewed. Characterization and evaluation of biomaterials, targeting ligands, and transcriptional elements are each discussed. Advances in biomaterials have driven improvements to nanoparticle stability and tissue targeting, conjugation of ligands to the surface of polymeric nanoparticles enable binding to specific cancer cells, and the design of transcriptional elements has enabled selective DNA expression specific to the cancer cells. Together, these features have improved the performance of polymeric nanoparticles as targeted non-viral gene delivery vectors to treat cancer. As polymeric nanoparticles can be designed to be biodegradable, non-toxic, and to have reduced immunogenicity and tumorigenicity compared to viral platforms, they have significant potential for clinical use. Results of polymeric gene therapy in clinical trials and future directions for the engineering of nanoparticle systems for targeted cancer gene therapy are also presented.
Collapse
Affiliation(s)
- Jayoung Kim
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David R. Wilson
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Camila G. Zamboni
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins Medical Institutions, Baltimore, MD, USA
- Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jordan J. Green
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2174
|
Yang YY, Hu H, Wang X, Yang F, Shen H, Xu FJ, Wu DC. Acid-Labile Poly(glycidyl methacrylate)-Based Star Gene Vectors. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12238-12248. [PMID: 25993557 DOI: 10.1021/acsami.5b02733] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
It was recently reported that ethanolamine-functionalized poly(glycidyl methacrylate) (PGEA) possesses great potential applications in gene therapy due to its good biocompatibility and high transfection efficiency. Importing responsivity into PGEA vectors would further improve their performances. Herein, a series of responsive star-shaped vectors, acetaled β-cyclodextrin-PGEAs (A-CD-PGEAs) consisting of a β-CD core and five PGEA arms linked by acid-labile acetal groups, were proposed and characterized as therapeutic pDNA vectors. The A-CD-PGEAs owned abundant hydroxyl groups to shield extra positive charges of A-CD-PGEAs/pDNA complexes, and the star structure could decrease charge density. The incorporation of acetal linkers endowed A-CD-PGEAs with pH responsivity and degradation. In weakly acidic endosome, the broken acetal linkers resulted in decomposition of A-CD-PGEAs and morphological transformation of A-CD-PGEAs/pDNA complexes, lowering cytotoxicity and accelerating release of pDNA. In comparison with control CD-PGEAs without acetal linkers, A-CD-PGEAs exhibited significantly better transfection performances.
Collapse
Affiliation(s)
- Yan-Yu Yang
- ‡Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China
- §Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 China
| | - Hao Hu
- ‡Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China
- §Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 China
| | | | | | | | - Fu-Jian Xu
- ‡Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing 100029 China
- §Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029 China
| | | |
Collapse
|
2175
|
Mutso M, Nikonov A, Pihlak A, Žusinaite E, Viru L, Selyutina A, Reintamm T, Kelve M, Saarma M, Karelson M, Merits A. RNA Interference-Guided Targeting of Hepatitis C Virus Replication with Antisense Locked Nucleic Acid-Based Oligonucleotides Containing 8-oxo-dG Modifications. PLoS One 2015; 10:e0128686. [PMID: 26039055 PMCID: PMC4454572 DOI: 10.1371/journal.pone.0128686] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/29/2015] [Indexed: 12/23/2022] Open
Abstract
The inhibitory potency of an antisense oligonucleotide depends critically on its design and the accessibility of its target site. Here, we used an RNA interference-guided approach to select antisense oligonucleotide target sites in the coding region of the highly structured hepatitis C virus (HCV) RNA genome. We modified the conventional design of an antisense oligonucleotide containing locked nucleic acid (LNA) residues at its termini (LNA/DNA gapmer) by inserting 8-oxo-2'-deoxyguanosine (8-oxo-dG) residues into the central DNA region. Obtained compounds, designed with the aim to analyze the effects of 8-oxo-dG modifications on the antisense oligonucleotides, displayed a unique set of properties. Compared to conventional LNA/DNA gapmers, the melting temperatures of the duplexes formed by modified LNA/DNA gapmers and DNA or RNA targets were reduced by approximately 1.6-3.3°C per modification. Comparative transfection studies showed that small interfering RNA was the most potent HCV RNA replication inhibitor (effective concentration 50 (EC50): 0.13 nM), whereas isosequential standard and modified LNA/DNA gapmers were approximately 50-fold less efficient (EC50: 5.5 and 7.1 nM, respectively). However, the presence of 8-oxo-dG residues led to a more complete suppression of HCV replication in transfected cells. These modifications did not affect the efficiency of RNase H cleavage of antisense oligonucleotide:RNA duplexes but did alter specificity, triggering the appearance of multiple cleavage products. Moreover, the incorporation of 8-oxo-dG residues increased the stability of antisense oligonucleotides of different configurations in human serum.
Collapse
MESH Headings
- 8-Hydroxy-2'-Deoxyguanosine
- Base Pairing
- Cell Line, Tumor
- Deoxyguanosine/analogs & derivatives
- Deoxyguanosine/chemistry
- Genome, Viral
- Hepacivirus/genetics
- Hepacivirus/growth & development
- Hepatocytes/metabolism
- Hepatocytes/virology
- Humans
- Molecular Targeted Therapy
- Oligonucleotides/chemistry
- Oligonucleotides/metabolism
- Oligonucleotides, Antisense/chemical synthesis
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- RNA Cleavage
- RNA Interference
- RNA Stability
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- RNA, Viral/antagonists & inhibitors
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Structure-Activity Relationship
- Virus Replication
Collapse
Affiliation(s)
- Margit Mutso
- Institute of Technology, University of Tartu, Tartu, Estonia
- GeneCode, Ltd., Tallinn, Estonia
| | - Andrei Nikonov
- Institute of Technology, University of Tartu, Tartu, Estonia
- GeneCode, Ltd., Tallinn, Estonia
| | | | - Eva Žusinaite
- Institute of Technology, University of Tartu, Tartu, Estonia
- GeneCode, Ltd., Tallinn, Estonia
| | - Liane Viru
- Institute of Technology, University of Tartu, Tartu, Estonia
- GeneCode, Ltd., Tallinn, Estonia
| | | | - Tõnu Reintamm
- GeneCode, Ltd., Tallinn, Estonia
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Merike Kelve
- GeneCode, Ltd., Tallinn, Estonia
- Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Mati Karelson
- GeneCode, Ltd., Tallinn, Estonia
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
2176
|
Yan M, Wen J, Liang M, Lu Y, Kamata M, Chen ISY. Modulation of Gene Expression by Polymer Nanocapsule Delivery of DNA Cassettes Encoding Small RNAs. PLoS One 2015; 10:e0127986. [PMID: 26035832 PMCID: PMC4452785 DOI: 10.1371/journal.pone.0127986] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 04/21/2015] [Indexed: 01/25/2023] Open
Abstract
Small RNAs, including siRNAs, gRNAs and miRNAs, modulate gene expression and serve as potential therapies for human diseases. Delivery to target cells remains the fundamental limitation for use of these RNAs in humans. To address this challenge, we have developed a nanocapsule delivery technology that encapsulates small DNA molecules encoding RNAs into a small (30nm) polymer nanocapsule. For proof of concept, we transduced DNA expression cassettes for three small RNAs. In one application, the DNA cassette encodes an shRNA transcriptional unit that downregulates CCR5 and protects from HIV-1 infection. The DNA cassette nanocapsules were further engineered for timed release of the DNA cargo for prolonged knockdown of CCR5. Secondly, the nanocapsules provide an efficient means for delivery of gRNAs in the CRISPR/Cas9 system to mutate integrated HIV-1. Finally, delivery of microRNA-125b to mobilized human CD34+ cells enhances survival and expansion of the CD34+ cells in culture.
Collapse
Affiliation(s)
- Ming Yan
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute (CNSI), University of California Los Angeles, Los Angeles, California, United States of America
- University of California Los Angeles AIDS Institute, Los Angeles, California, United States of America
| | - Jing Wen
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- University of California Los Angeles AIDS Institute, Los Angeles, California, United States of America
| | - Min Liang
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
| | - Yunfeng Lu
- Department of Biomolecular and Chemical Engineering, University of California Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute (CNSI), University of California Los Angeles, Los Angeles, California, United States of America
| | - Masakazu Kamata
- Division of Hematology-Oncology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- University of California Los Angeles AIDS Institute, Los Angeles, California, United States of America
| | - Irvin S. Y. Chen
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California, United States of America
- University of California Los Angeles AIDS Institute, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
2177
|
Barkalina N, Jones C, Coward K. Nanomedicine and mammalian sperm: Lessons from the porcine model. Theriogenology 2015; 85:74-82. [PMID: 26116055 DOI: 10.1016/j.theriogenology.2015.05.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/05/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
Biomedical nanotechnology allows us to engineer versatile nanosized platforms that are comparable in size to biological molecules and intracellular organelles. These platforms can be loaded with large amounts of biological cargo, administered systemically and act at a distance, target specific cell populations, undergo intracellular internalization via endogenous uptake mechanisms, and act as contrast agents or release cargo for therapeutic purposes. Over recent years, nanomaterials have been increasingly viewed as favorable candidates for intragamete delivery. Particularly in the case of sperm, nanomaterial-based approaches have been shown to improve the efficacy of existing techniques such as sperm-mediated gene transfer, loading sperm with exogenous proteins, and tagging sperm for subsequent sex- or function-based sorting. In this short review, we provide an outline of the current state of nanotechnology for biomedical applications in reproductive biology and present highlights from a series of our studies evaluating the use of specialized silica nanoparticles in boar sperm as a potential delivery vehicle into mammalian gametes. The encouraging data obtained already from the porcine model in our laboratory have formed the basis for ethical approval of similar experiments in human sperm, thereby bringing us a step closer toward the potential use of this novel technology in the clinical environment.
Collapse
Affiliation(s)
- Natalia Barkalina
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford, UK.
| | - Celine Jones
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford, UK
| | - Kevin Coward
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
2178
|
Aravalli RN, Belcher JD, Steer CJ. Liver-targeted gene therapy: Approaches and challenges. Liver Transpl 2015; 21:718-37. [PMID: 25824605 PMCID: PMC9353592 DOI: 10.1002/lt.24122] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/06/2015] [Accepted: 03/14/2015] [Indexed: 12/15/2022]
Abstract
The liver plays a major role in many inherited and acquired genetic disorders. It is also the site for the treatment of certain inborn errors of metabolism that do not directly cause injury to the liver. The advancement of nucleic acid-based therapies for liver maladies has been severely limited because of the myriad untoward side effects and methodological limitations. To address these issues, research efforts in recent years have been intensified toward the development of targeted gene approaches using novel genetic tools, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats as well as various nonviral vectors such as Sleeping Beauty transposons, PiggyBac transposons, and PhiC31 integrase. Although each of these methods uses a distinct mechanism of gene modification, all of them are dependent on the efficient delivery of DNA and RNA molecules into the cell. This review provides an overview of current and emerging therapeutic strategies for liver-targeted gene therapy and gene repair.
Collapse
Affiliation(s)
- Rajagopal N. Aravalli
- Department of Radiology, University of Minnesota Medical School, Minneapolis, MN 54455
| | - John D. Belcher
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 54455
| | - Clifford J. Steer
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 54455,Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis, MN 54455
| |
Collapse
|
2179
|
Germershaus O, Nultsch K. Localized, non-viral delivery of nucleic acids: Opportunities, challenges and current strategies. Asian J Pharm Sci 2015. [DOI: 10.1016/j.ajps.2014.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
2180
|
Fuhrmann G, Herrmann IK, Stevens MM. Cell-derived vesicles for drug therapy and diagnostics: opportunities and challenges. NANO TODAY 2015; 10:397-409. [PMID: 28458718 PMCID: PMC5409525 DOI: 10.1016/j.nantod.2015.04.004] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Extracellular vesicles are small lipid-based membrane-bound entities shed by cells under both physiological and pathological conditions. Their discovery as intercellular communicators through transfer of nucleic acid- and protein-based cargos between cells locally and at distance in a highly specific manner has created recent excitement. The information they transport and their composition may vary depending on the cell of origin as well as the eliciting stimulus. Such sensitive changes in vesicle characteristics hold significant promise for the improved diagnosis of pathological conditions, including infections and neoplastic lesions in a minimally invasive way. Similarly, these cell-derived vesicles exhibit promising characteristics that could enhance drug targeting efficiencies. Recent developments in the field have aimed at studying EVs as novel drug carriers due to their natural composition, biological function and selective cell interaction. In this review, we discuss new research avenues in diagnostics and drug therapy based on extracellular vesicles. We show how cell-derived vesicles can be harvested and engineered to meet application-specific design requirements. We finally discuss potential risks encountered when translating extracellular vesicle based approaches into (pre)clinical applications.
Collapse
Affiliation(s)
- Gregor Fuhrmann
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| | - Inge K. Herrmann
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| | - Molly M. Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Prince Consort Road, SW7 2AZ London, United Kingdom
| |
Collapse
|
2181
|
Yi WJ, Zheng LT, Su RC, Liu Q, Zhao ZG. Amino Acid-Based Cationic Lipids With α
-Tocopherol Hydrophobic Tail for Efficient Gene Delivery. Chem Biol Drug Des 2015; 86:1192-202. [DOI: 10.1111/cbdd.12585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/01/2015] [Accepted: 05/05/2015] [Indexed: 01/05/2023]
Affiliation(s)
- Wen-Jing Yi
- College of Chemistry and Environmental Protection Engineering; Southwest University for Nationalities; Chengdu 610041 China
| | - Li-Ting Zheng
- College of Chemistry and Environmental Protection Engineering; Southwest University for Nationalities; Chengdu 610041 China
| | | | - Qiang Liu
- College of Chemistry and Environmental Protection Engineering; Southwest University for Nationalities; Chengdu 610041 China
| | - Zhi-Gang Zhao
- College of Chemistry and Environmental Protection Engineering; Southwest University for Nationalities; Chengdu 610041 China
| |
Collapse
|
2182
|
Wu Z, Liu GQ, Yang XL, Jiang JH. Electrostatic nucleic acid nanoassembly enables hybridization chain reaction in living cells for ultrasensitive mRNA imaging. J Am Chem Soc 2015; 137:6829-36. [PMID: 25969953 DOI: 10.1021/jacs.5b01778] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Efficient approaches for intracellular delivery of nucleic acid reagents to achieve sensitive detection and regulation of gene and protein expressions are essential for chemistry and biology. We develop a novel electrostatic DNA nanoassembly that, for the first time, realizes hybridization chain reaction (HCR), a target-initiated alternating hybridization reaction between two hairpin probes, for signal amplification in living cells. The DNA nanoassembly has a designed structure with a core gold nanoparticle, a cationic peptide interlayer, and an electrostatically assembled outer layer of fluorophore-labeled hairpin DNA probes. It is shown to have high efficiency for cellular delivery of DNA probes via a unique endocytosis-independent mechanism that confers a significant advantage of overcoming endosomal entrapment. Moreover, electrostatic assembly of DNA probes enables target-initialized release of the probes from the nanoassembly via HCR. This intracellular HCR offers efficient signal amplification and enables ultrasensitive fluorescence activation imaging of mRNA expression with a picomolar detection limit. The results imply that the developed nanoassembly may provide an invaluable platform in low-abundance biomarker discovery and regulation for cell biology and theranostics.
Collapse
Affiliation(s)
- Zhan Wu
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Gao-Qin Liu
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xiao-Li Yang
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
2183
|
Stoppani E, Bassi I, Dotti S, Lizier M, Ferrari M, Lucchini F. Expression of a single siRNA against a conserved region of NP gene strongly inhibits in vitro replication of different Influenza A virus strains of avian and swine origin. Antiviral Res 2015; 120:16-22. [PMID: 25986248 DOI: 10.1016/j.antiviral.2015.04.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022]
Abstract
Influenza A virus is the principal agent responsible of the respiratory tract's infections in humans. Every year, highly pathogenic and infectious strains with new antigenic assets appear, making ineffective vaccines so far developed. The discovery of RNA interference (RNAi) opened the way to the progress of new promising drugs against Influenza A virus and also to the introduction of disease resistance traits in genetically modified animals. In this paper, we show that Madin-Darby Canine Kidney (MDCK) cell line expressing short hairpin RNAs (shRNAs) cassette, designed on a specific conserved region of the nucleoprotein (NP) viral genome, can strongly inhibit the viral replication of four viral strains sharing the target sequence, reducing the viral mRNA respectively to 2.5×10(-4), 7.5×10(-5), 1.7×10(-3), 1.9×10(-4) compared to the control, as assessed by real-time PCR. Moreover, we demonstrate that during the challenge with a viral strain bearing a single mismatch on the target sequence, although a weaker inhibition is observed, viral mRNA is still lowered down to 1.2×10(-3) folds in the shRNA-expressing clone compared to the control, indicating a broad potential use of this approach. In addition, we developed a highly predictive and fast screening test of siRNA sequences based on dual-luciferase assay, useful for the in vitro prediction of the potential effect of viral inhibition. In conclusion, these findings reveal new siRNA sequences able to inhibit Influenza A virus replication and provide a basis for the development of siRNAs as prophylaxis and therapy for influenza infection both in humans and animals.
Collapse
Affiliation(s)
- Elena Stoppani
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona, Italy; Laboratorio Colture Cellulari, Reparto Substrati Cellulari e Immunologia Cellulare, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Ivan Bassi
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona, Italy
| | - Silvia Dotti
- Laboratorio Colture Cellulari, Reparto Substrati Cellulari e Immunologia Cellulare, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Michela Lizier
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona, Italy; UOS/IRGB/CNR, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Maura Ferrari
- Laboratorio Colture Cellulari, Reparto Substrati Cellulari e Immunologia Cellulare, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Brescia, Italy
| | - Franco Lucchini
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona, Italy.
| |
Collapse
|
2184
|
Lo YL, Chou HL, Liao ZX, Huang SJ, Ke JH, Liu YS, Chiu CC, Wang LF. Chondroitin sulfate-polyethylenimine copolymer-coated superparamagnetic iron oxide nanoparticles as an efficient magneto-gene carrier for microRNA-encoding plasmid DNA delivery. NANOSCALE 2015; 7:8554-65. [PMID: 25897645 DOI: 10.1039/c5nr01404b] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
MicroRNA-128 (miR-128) is an attractive therapeutic molecule with powerful glioblastoma regulation properties. However, miR-128 lacks biological stability and leads to poor delivery efficacy in clinical applications. In our previous study, we demonstrated two effective transgene carriers, including polyethylenimine (PEI)-decorated superparamagnetic iron oxide nanoparticles (SPIONs) as well as chemically-conjugated chondroitin sulfate-PEI copolymers (CPs). In this contribution, we report optimized conditions for coating CPs onto the surfaces of SPIONs, forming CPIOs, for magneto-gene delivery systems. The optimized weight ratio of the CPs and SPIONs is 2 : 1, which resulted in the formation of a stable particle as a good transgene carrier. The hydrodynamic diameter of the CPIOs is ∼136 nm. The gel electrophoresis results demonstrate that the weight ratio of CPIO/DNA required to completely encapsulate pDNA is ≥3. The in vitro tests of CPIO/DNA were done in 293 T, CRL5802, and U87-MG cells in the presence and absence of an external magnetic field. The magnetofection efficiency of CPIO/DNA was measured in the three cell lines with or without fetal bovine serum (FBS). CPIO/DNA exhibited remarkably improved gene expression in the presence of the magnetic field and 10% FBS as compared with a gold non-viral standard, PEI/DNA, and a commercial magnetofection reagent, PolyMag/DNA. In addition, CPIO/DNA showed less cytotoxicity than PEI/DNA and PolyMag/DNA against the three cell lines. The transfection efficiency of the magnetoplex improved significantly with an assisted magnetic field. In miR-128 delivery, a microRNA plate array and fluorescence in situ hybridization were used to demonstrate that CPIO/pMIRNA-128 indeed expresses more miR-128 with the assisted magnetic field than without. In a biodistribution test, CPIO/Cy5-DNA showed higher accumulation at the tumor site where an external magnet is placed nearby.
Collapse
Affiliation(s)
- Yu-Lun Lo
- Department of Medicinal & Applied Chemistry, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
2185
|
Yao C, Tai Z, Wang X, Liu J, Zhu Q, Wu X, Zhang L, Zhang W, Tian J, Gao Y, Gao S. Reduction-responsive cross-linked stearyl peptide for effective delivery of plasmid DNA. Int J Nanomedicine 2015; 10:3403-16. [PMID: 26056440 PMCID: PMC4431505 DOI: 10.2147/ijn.s82413] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Low efficiency and significant toxicity are the main obstacles to successful gene delivery. We have developed a cationic reduction-responsive vector based on a disulfide cross-linked stearylated polyarginine peptide modified with histidine (C-SHR) for DNA delivery. The structure of the C-SHR was characterized, and the in vitro and in vivo transfection efficiency and cytotoxicity of C-SHR/plasmid DNA complexes were examined. Compared with non-cross-linked stearylated polyarginine peptide (SHR), C-SHR increased the intracellular uptake and dissociation behavior of the complexes. In addition, the gene transfection efficiency of C-SHR/plasmid DNA complexes in HEK293 and HeLa cells was improved and was comparable with that of bPEI-25K/plasmid DNA complexes, and the cytotoxicity of C-SHR was significantly less than that of bPEI-25K. Importantly, the in vivo gene transfection efficiency of C-SHR/plasmid DNA complexes was five fold higher than that of SHR/plasmid DNA complexes, suggesting that C-SHR is an efficient non-viral vector for DNA delivery.
Collapse
Affiliation(s)
- Chong Yao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Zongguang Tai
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Xiaoyu Wang
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Jiyong Liu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Quangang Zhu
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China ; Department of Pharmacy, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xin Wu
- Department of Pharmaceutics, Shanghai First People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Lijuan Zhang
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Wei Zhang
- Department of Pharmaceutics, Shanghai Pulmonary Hospital, Shanghai Tongji University, Shanghai, People's Republic of China
| | - Jing Tian
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Yuan Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Shen Gao
- Department of Pharmaceutics, Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| |
Collapse
|
2186
|
Xun MM, Xiao YP, Zhang J, Liu YH, Peng Q, Guo Q, Wu WX, Xu Y, Yu XQ. Low molecular weight PEI-based polycationic gene vectors via Michael addition polymerization with improved serum-tolerance. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.03.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
2187
|
Bartke RM, Cameron EL, Cristie-David AS, Custer TC, Denies MS, Daher M, Dhakal S, Ghosh S, Heinicke LA, Hoff JD, Hou Q, Kahlscheuer ML, Karslake J, Krieger AG, Li J, Li X, Lund PE, Vo NN, Park J, Pitchiaya S, Rai V, Smith DJ, Suddala KC, Wang J, Widom JR, Walter NG. Meeting report: SMART timing--principles of single molecule techniques course at the University of Michigan 2014. Biopolymers 2015; 103:296-302. [PMID: 25546606 PMCID: PMC4613745 DOI: 10.1002/bip.22603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 12/17/2014] [Indexed: 11/07/2022]
Abstract
Four days after the announcement of the 2014 Nobel Prize in Chemistry for "the development of super-resolved fluorescence microscopy" based on single molecule detection, the Single Molecule Analysis in Real-Time (SMART) Center at the University of Michigan hosted a "Principles of Single Molecule Techniques 2014" course. Through a combination of plenary lectures and an Open House at the SMART Center, the course took a snapshot of a technology with an especially broad and rapidly expanding range of applications in the biomedical and materials sciences. Highlighting the continued rapid emergence of technical and scientific advances, the course underscored just how brightly the future of the single molecule field shines.
Collapse
Affiliation(s)
- Rebecca M Bartke
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2188
|
Fortier C, Louvier E, Durocher Y, De Crescenzo G. Tailoring the Surface of a Gene Delivery Vector with Carboxymethylated Dextran: A Systematic Analysis. Biomacromolecules 2015; 16:1671-81. [DOI: 10.1021/acs.biomac.5b00221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Charles Fortier
- Department
of Chemical Engineering, Groupe de Recherche en Sciences et Technologies
Biomédicales (GRSTB), École Polytechnique de Montréal, P.O.
Box 6079, succ. Centre-Ville, Montreal (QC), Canada H3C 3A7
- Life Sciences
- NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount,
National Research Council Canada, Montreal (QC), Canada H4P 2R2
| | - Elodie Louvier
- Life Sciences
- NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount,
National Research Council Canada, Montreal (QC), Canada H4P 2R2
- Département
de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal (QC), Canada H3C 3J7
| | - Yves Durocher
- Life Sciences
- NRC Human Health Therapeutics Portfolio, Building Montreal-Royalmount,
National Research Council Canada, Montreal (QC), Canada H4P 2R2
- Département
de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal (QC), Canada H3C 3J7
| | - Gregory De Crescenzo
- Department
of Chemical Engineering, Groupe de Recherche en Sciences et Technologies
Biomédicales (GRSTB), École Polytechnique de Montréal, P.O.
Box 6079, succ. Centre-Ville, Montreal (QC), Canada H3C 3A7
| |
Collapse
|
2189
|
|
2190
|
Rosli N, Christie MP, Moyle PM, Toth I. Peptide based DNA nanocarriers incorporating a cell-penetrating peptide derived from neurturin protein and poly-l-lysine dendrons. Bioorg Med Chem 2015; 23:2470-9. [DOI: 10.1016/j.bmc.2015.03.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 11/16/2022]
|
2191
|
Kokil GR, Veedu RN, Ramm GA, Prins JB, Parekh HS. Type 2 diabetes mellitus: limitations of conventional therapies and intervention with nucleic acid-based therapeutics. Chem Rev 2015; 115:4719-43. [PMID: 25918949 DOI: 10.1021/cr5002832] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ganesh R Kokil
- †School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Rakesh N Veedu
- §Center for Comparative Genomics, Murdoch University, 90 South Street, Murdoch, WA 6150, Australia.,∥Western Australian Neuroscience Research Institute, Perth, WA 6150, Australia.,‡School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4072 Australia
| | - Grant A Ramm
- ⊥The Hepatic Fibrosis Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.,#Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Johannes B Prins
- ∇Mater Research Institute, The University of Queensland, Brisbane, QLD 4101, Australia
| | - Harendra S Parekh
- †School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
2192
|
Borgheti-Cardoso LN, Depieri LV, Kooijmans SAA, Diniz H, Calzzani RAJ, Vicentini FTMDC, van der Meel R, Fantini MCDA, Iyomasa MM, Schiffelers RM, Bentley MVLB. An in situ gelling liquid crystalline system based on monoglycerides and polyethylenimine for local delivery of siRNAs. Eur J Pharm Sci 2015; 74:103-17. [PMID: 25917525 DOI: 10.1016/j.ejps.2015.04.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022]
Abstract
The development of delivery systems able to complex and release siRNA into the cytosol is essential for therapeutic use of siRNA. Among the delivery systems, local delivery has advantages over systemic administration. In this study, we developed and characterized non-viral carriers to deliver siRNA locally, based on polyethylenimine (PEI) as gene carrier, and a self-assembling drug delivery system that forms a gel in situ. Liquid crystalline formulations composed of monoglycerides (MO), PEI, propylene glycol (PG) and 0.1M Tris buffer pH 6.5 were developed and characterized by polarized light microscopy, Small Angle X-ray Scattering (SAXS), for their ability to form inverted type liquid crystalline phases (LC2) in contact with excess water, water absorption capacity, ability to complex with siRNA and siRNA release. In addition, gel formation in vivo was determined by subcutaneous injection of the formulations in mice. In water excess, precursor fluid formulations rapidly transformed into a viscous liquid crystalline phase. The presence of PEI influences the liquid crystalline structure of the LC2 formed and was crucial for complexing siRNA. The siRNA was released from the crystalline phase complexed with PEI. The release rate was dependent on the rate of water uptake. The formulation containing MO/PEI/PG/Tris buffer at 7.85:0.65:76.5:15 (w/w/w/w) complexed with 10 μM of siRNA, characterized as a mixture of cubic phase (diamond-type) and inverted hexagonal phase (after contact with excess water), showed sustained release for 7 days in vitro. In mice, in situ gel formation occurred after subcutaneous injection of the formulations, and the gels were degraded in 30 days. Initially a mild inflammatory process occurred in the tissue surrounding the gel; but after 14 days the tissue appeared normal. Taken together, this work demonstrates the rational development of an in situ gelling formulation for local release of siRNA.
Collapse
Affiliation(s)
- Lívia Neves Borgheti-Cardoso
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Lívia Vieira Depieri
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Sander A A Kooijmans
- Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henrique Diniz
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | | | | | - Roy van der Meel
- Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Mamie Mizusaki Iyomasa
- Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Raymond M Schiffelers
- Laboratory of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Maria Vitória Lopes Badra Bentley
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
2193
|
Li J, Chen Q, Zha Z, Li H, Toh K, Dirisala A, Matsumoto Y, Osada K, Kataoka K, Ge Z. Ternary polyplex micelles with PEG shells and intermediate barrier to complexed DNA cores for efficient systemic gene delivery. J Control Release 2015; 209:77-87. [PMID: 25912408 DOI: 10.1016/j.jconrel.2015.04.024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/20/2015] [Accepted: 04/21/2015] [Indexed: 02/02/2023]
Abstract
Simultaneous achievement of prolonged retention in blood circulation and efficient gene transfection activity in target tissues has always been a major challenge hindering in vivo applications of nonviral gene vectors via systemic administration. Herein, we constructed novel rod-shaped ternary polyplex micelles (TPMs) via complexation between the mixed block copolymers of poly(ethylene glycol)-b-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-b-PAsp(DET)) and poly(N-isopropylacrylamide)-b-PAsp(DET) (PNIPAM-b-PAsp(DET)) and plasmid DNA (pDNA) at room temperature, exhibiting distinct temperature-responsive formation of a hydrophobic intermediate layer between PEG shells and pDNA cores through facile temperature increase from room temperature to body temperature (~37 °C). As compared with binary polyplex micelles of PEG-b-PAsp(DET) (BPMs), TPMs were confirmed to condense pDNA into a more compact structure, which achieved enhanced tolerability to nuclease digestion and strong counter polyanion exchange. In vitro gene transfection results demonstrated TPMs exhibiting enhanced gene transfection efficiency due to efficient cellular uptake and endosomal escape. Moreover, in vivo performance evaluation after intravenous injection confirmed that TPMs achieved significantly prolonged blood circulation, high tumor accumulation, and promoted gene expression in tumor tissue. Moreover, TPMs loading therapeutic pDNA encoding an anti-angiogenic protein remarkably suppressed tumor growth following intravenous injection into H22 tumor-bearing mice. These results suggest TPMs with PEG shells and facilely engineered intermediate barrier to inner complexed pDNA have great potentials as systemic nonviral gene vectors for cancer gene therapy.
Collapse
Affiliation(s)
- Junjie Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230 026, China
| | - Qixian Chen
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Zengshi Zha
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230 026, China
| | - Hui Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230 026, China
| | - Kazuko Toh
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0 033, Japan
| | - Anjaneyulu Dirisala
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yu Matsumoto
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0 033, Japan
| | - Kensuke Osada
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Kazunori Kataoka
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0 033, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230 026, China.
| |
Collapse
|
2194
|
Antipina AY, Gurtovenko AA. Molecular Mechanism of Calcium-Induced Adsorption of DNA on Zwitterionic Phospholipid Membranes. J Phys Chem B 2015; 119:6638-45. [DOI: 10.1021/acs.jpcb.5b01256] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alexandra Yu. Antipina
- Institute
of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi
Prospect V.O. 31, St. Petersburg 199004, Russia
- Faculty
of Physics, St. Petersburg State University, Ulyanovskaya str. 1, Petrodvorets, St. Petersburg 198504, Russia
| | - Andrey A. Gurtovenko
- Institute
of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi
Prospect V.O. 31, St. Petersburg 199004, Russia
- Faculty
of Physics, St. Petersburg State University, Ulyanovskaya str. 1, Petrodvorets, St. Petersburg 198504, Russia
| |
Collapse
|
2195
|
Zhang B, Ma XP, Sui MH, Van Kirk E, Murdoch WJ, Radosz M, Lin NM, Shen YQ. Guanidinoamidized linear polyethyleneimine for gene delivery. CHINESE JOURNAL OF POLYMER SCIENCE 2015. [DOI: 10.1007/s10118-015-1644-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
2196
|
α-Globin as a molecular target in the treatment of β-thalassemia. Blood 2015; 125:3694-701. [PMID: 25869286 DOI: 10.1182/blood-2015-03-633594] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 03/31/2015] [Indexed: 12/31/2022] Open
Abstract
The thalassemias, together with sickle cell anemia and its variants, are the world's most common form of inherited anemia, and in economically undeveloped countries, they still account for tens of thousands of premature deaths every year. In developed countries, treatment of thalassemia is also still far from ideal, requiring lifelong transfusion or allogeneic bone marrow transplantation. Clinical and molecular genetic studies over the course of the last 50 years have demonstrated how coinheritance of modifier genes, which alter the balance of α-like and β-like globin gene expression, may transform severe, transfusion-dependent thalassemia into relatively mild forms of anemia. Most attention has been paid to pathways that increase γ-globin expression, and hence the production of fetal hemoglobin. Here we review the evidence that reduction of α-globin expression may provide an equally plausible approach to ameliorating clinically severe forms of β-thalassemia, and in particular, the very common subgroup of patients with hemoglobin E β-thalassemia that makes up approximately half of all patients born each year with severe β-thalassemia.
Collapse
|
2197
|
Walthers CM, Seidlits SK. Gene delivery strategies to promote spinal cord repair. Biomark Insights 2015; 10:11-29. [PMID: 25922572 PMCID: PMC4395076 DOI: 10.4137/bmi.s20063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed.
Collapse
|
2198
|
The aptamer-siRNA conjugates: reprogramming T cells for cancer therapy. Ther Deliv 2015; 6:1-4. [PMID: 25565435 DOI: 10.4155/tde.14.92] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
2199
|
Abstract
Recent advances in the development of genome editing technologies based on programmable nucleases have substantially improved our ability to make precise changes in the genomes of eukaryotic cells. Genome editing is already broadening our ability to elucidate the contribution of genetics to disease by facilitating the creation of more accurate cellular and animal models of pathological processes. A particularly tantalizing application of programmable nucleases is the potential to directly correct genetic mutations in affected tissues and cells to treat diseases that are refractory to traditional therapies. Here we discuss current progress toward developing programmable nuclease-based therapies as well as future prospects and challenges.
Collapse
Affiliation(s)
- David Benjamin Turitz Cox
- 1] Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] Department of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [3] Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [4] McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA
| | - Randall Jeffrey Platt
- 1] Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA. [3] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [4] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Feng Zhang
- 1] Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA. [2] McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA. [3] Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA. [4] Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2200
|
Hu Q, Wu M, Fang C, Cheng C, Zhao M, Fang W, Chu PK, Ping Y, Tang G. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy. NANO LETTERS 2015; 15:2732-9. [PMID: 25806599 DOI: 10.1021/acs.nanolett.5b00570] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Live attenuated bacteria are of increasing importance in biotechnology and medicine in the emerging field of cancer immunotherapy. Oral DNA vaccination mediated by live attenuated bacteria often suffers from low infection efficiency due to various biological barriers during the infection process. To this end, we herein report, for the first time, a new strategy to engineer cationic nanoparticle-coated bacterial vectors that can efficiently deliver oral DNA vaccine for efficacious cancer immunotherapy. By coating live attenuated bacteria with synthetic nanoparticles self-assembled from cationic polymers and plasmid DNA, the protective nanoparticle coating layer is able to facilitate bacteria to effectively escape phagosomes, significantly enhance the acid tolerance of bacteria in stomach and intestines, and greatly promote dissemination of bacteria into blood circulation after oral administration. Most importantly, oral delivery of DNA vaccines encoding autologous vascular endothelial growth factor receptor 2 (VEGFR2) by this hybrid vector showed remarkable T cell activation and cytokine production. Successful inhibition of tumor growth was also achieved by efficient oral delivery of VEGFR2 with nanoparticle-coated bacterial vectors due to angiogenesis suppression in the tumor vasculature and tumor necrosis. This proof-of-concept work demonstrates that coating live bacterial cells with synthetic nanoparticles represents a promising strategy to engineer efficient and versatile DNA vaccines for the era of immunotherapy.
Collapse
MESH Headings
- Administration, Oral
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/chemistry
- Cell Line, Tumor
- Coated Materials, Biocompatible/chemical synthesis
- Humans
- Immunotherapy, Active/methods
- Nanocapsules/administration & dosage
- Nanocapsules/chemistry
- Nanocapsules/ultrastructure
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/microbiology
- Neoplasms, Experimental/pathology
- Salmonella/physiology
- Transformation, Bacterial
- Treatment Outcome
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/chemistry
Collapse
Affiliation(s)
- Qinglian Hu
- †Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Min Wu
- †Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Chun Fang
- ‡College of Animal Science, Zhejiang University, Hangzhou 310028, China
| | - Changyong Cheng
- ‡College of Animal Science, Zhejiang University, Hangzhou 310028, China
| | - Mengmeng Zhao
- †Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| | - Weihuan Fang
- ‡College of Animal Science, Zhejiang University, Hangzhou 310028, China
| | - Paul K Chu
- §Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Yuan Ping
- ∥School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Guping Tang
- †Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310028, China
| |
Collapse
|