2151
|
McArthur F, Andersson CE, Loutet S, Mowbray SL, Valvano MA. Functional analysis of the glycero-manno-heptose 7-phosphate kinase domain from the bifunctional HldE protein, which is involved in ADP-L-glycero-D-manno-heptose biosynthesis. J Bacteriol 2005; 187:5292-300. [PMID: 16030223 PMCID: PMC1196024 DOI: 10.1128/jb.187.15.5292-5300.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The core oligosaccharide component of the lipopolysaccharide can be subdivided into inner and outer core regions. In Escherichia coli, the inner core consists of two 3-deoxy-d-manno-octulosonic acid and three glycero-manno-heptose residues. The HldE protein participates in the biosynthesis of ADP-glycero-manno-heptose precursors used in the assembly of the inner core. HldE comprises two functional domains: an N-terminal region with homology to the ribokinase superfamily (HldE1 domain) and a C-terminal region with homology to the cytidylyltransferase superfamily (HldE2 domain). We have employed the structure of the E. coli ribokinase as a template to model the HldE1 domain and predict critical amino acids required for enzyme activity. Mutation of these residues renders the protein inactive as determined in vivo by functional complementation analysis. However, these mutations did not affect the secondary or tertiary structure of purified HldE1, as judged by fluorescence spectroscopy and circular dichroism. Furthermore, in vivo coexpression of wild-type, chromosomally encoded HldE and mutant HldE1 proteins with amino acid substitutions in the predicted ATP binding site caused a dominant negative phenotype as revealed by increased bacterial sensitivity to novobiocin. Copurification experiments demonstrated that HldE and HldE1 form a complex in vivo. Gel filtration chromatography resulted in the detection of a dimer as the predominant form of the native HldE1 protein. Altogether, our data support the notions that the HldE functional unit is a dimer and that structural components present in each HldE1 monomer are required for enzymatic activity.
Collapse
Affiliation(s)
- Fiona McArthur
- Department of Microbiology and Immunology, Siebens Drake Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | | | | | | | |
Collapse
|
2152
|
Xie L, Bourne PE. Functional coverage of the human genome by existing structures, structural genomics targets, and homology models. PLoS Comput Biol 2005; 1:e31. [PMID: 16118666 PMCID: PMC1188274 DOI: 10.1371/journal.pcbi.0010031] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Accepted: 07/18/2005] [Indexed: 11/23/2022] Open
Abstract
The bias in protein structure and function space resulting from experimental limitations and targeting of particular functional classes of proteins by structural biologists has long been recognized, but never continuously quantified. Using the Enzyme Commission and the Gene Ontology classifications as a reference frame, and integrating structure data from the Protein Data Bank (PDB), target sequences from the structural genomics projects, structure homology derived from the SUPERFAMILY database, and genome annotations from Ensembl and NCBI, we provide a quantified view, both at the domain and whole-protein levels, of the current and projected coverage of protein structure and function space relative to the human genome. Protein structures currently provide at least one domain that covers 37% of the functional classes identified in the genome; whole structure coverage exists for 25% of the genome. If all the structural genomics targets were solved (twice the current number of structures in the PDB), it is estimated that structures of one domain would cover 69% of the functional classes identified and complete structure coverage would be 44%. Homology models from existing experimental structures extend the 37% coverage to 56% of the genome as single domains and 25% to 31% for complete structures. Coverage from homology models is not evenly distributed by protein family, reflecting differing degrees of sequence and structure divergence within families. While these data provide coverage, conversely, they also systematically highlight functional classes of proteins for which structures should be determined. Current key functional families without structure representation are highlighted here; updated information on the “most wanted list” that should be solved is available on a weekly basis from http://function.rcsb.org:8080/pdb/function_distribution/index.html. The sequencing of the human genome provides biologists with new opportunities to understand the molecular basis of physiological processes and disease states. To take full advantage of these opportunities, the three-dimensional structures of the gene products are needed to provide the appropriate level of detail. Since protein structure determination lags behind protein sequence determination, an important and ongoing question becomes: what degree of coverage of the human proteome do we have from experimental structures, and what can we infer by modeling? Or, turning the question around: what structures do we need to determine (the “most wanted list”) to further our understanding of the human condition? This paper addresses these questions through integration of existing data resources correlated using comparative functional features, namely the Gene Ontology, which describes biochemical process, molecular function, and cellular location for all types of proteins, and the Enzyme Commission classification for enzymes. Genetic disease states are linked through the Online Mendelian Inheritance in Man resource. Readers can ask their own questions of the resource at http://function.rcsb.org:8080/pdb/function_distribution/index.html. The resource should prove particularly useful to the structural genomics community as it strives to undertake large-scale structure determination with a goal of improving the understanding of protein functional space.
Collapse
Affiliation(s)
- Lei Xie
- San Diego Supercomputer Center and Department of Pharmacology, University of California, San Diego, California, United States of America
| | - Philip E Bourne
- San Diego Supercomputer Center and Department of Pharmacology, University of California, San Diego, California, United States of America
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
2153
|
Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D, Bartlam M, Rao Z. Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 2005; 121:1043-57. [PMID: 15989954 DOI: 10.1016/j.cell.2005.05.025] [Citation(s) in RCA: 592] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2005] [Revised: 05/05/2005] [Accepted: 05/19/2005] [Indexed: 11/25/2022]
Abstract
The mitochondrial respiratory Complex II or succinate:ubiquinone oxidoreductase (SQR) is an integral membrane protein complex in both the tricarboxylic acid cycle and aerobic respiration. Here we report the first crystal structure of Complex II from porcine heart at 2.4 A resolution and its complex structure with inhibitors 3-nitropropionate and 2-thenoyltrifluoroacetone (TTFA) at 3.5 A resolution. Complex II is comprised of two hydrophilic proteins, flavoprotein (Fp) and iron-sulfur protein (Ip), and two transmembrane proteins (CybL and CybS), as well as prosthetic groups required for electron transfer from succinate to ubiquinone. The structure correlates the protein environments around prosthetic groups with their unique midpoint redox potentials. Two ubiquinone binding sites are discussed and elucidated by TTFA binding. The Complex II structure provides a bona fide model for study of the mitochondrial respiratory system and human mitochondrial diseases related to mutations in this complex.
Collapse
Affiliation(s)
- Fei Sun
- Tsinghua-IBP Joint Research Group for Structural Biology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
2154
|
Ernst M, Bruckner S, Boresch S, Sieghart W. Comparative Models of GABAA Receptor Extracellular and Transmembrane Domains: Important Insights in Pharmacology and Function. Mol Pharmacol 2005; 68:1291-300. [PMID: 16103045 DOI: 10.1124/mol.105.015982] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Comparative models of the extracellular and transmembrane domains of GABAA receptors in the agonist-free state were generated based on the recently published structures of the nicotinic acetylcholine receptor. The models were validated by computational methods, and their reliability was estimated by analyzing conserved and variable elements of the cys-loop receptor topology. In addition, the methodological limits in the interpretation of such anion channel receptor models are discussed. Alignment ambiguities in the helical domain were resolved for helix 3 by placing two gaps into the linker connecting helices 2 and 3. The resulting models were shown to be consistent with a wide range of pharmacological and mutagenesis data from GABAA and glycine receptors. The loose packing of the models results in a large amount of solvent-accessible space and offers a natural explanation for the rich pharmacology and the great flexibility of these receptors that are known to exist in numerous drug-induced conformational states. Putative drug binding pockets found within and between subunits are described, and amino acid residues important for the action and subtype selectivity of volatile and intravenous anesthetics, barbiturates, and furosemide are shown to be part of these pockets. The entire helical domain, however, seems to be crucial not only for binding of drugs but also for transduction of binding to gating or of allosteric modulation. These models can now be used to design new experiments for clarification of pharmacological and structural questions as well as for investigating and visualizing drug induced conformational changes.
Collapse
Affiliation(s)
- Margot Ernst
- Center for Brain Research, Medical University Vienna, Division of Biochemistry and Molecular Biology, Spitalgasse 4, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
2155
|
Ulven T, Frimurer TM, Receveur JM, Little PB, Rist O, Nørregaard PK, Högberg T. 6-Acylamino-2-aminoquinolines as Potent Melanin-Concentrating Hormone 1 Receptor Antagonists. Identification, Structure−Activity Relationship, and Investigation of Binding Mode. J Med Chem 2005; 48:5684-97. [PMID: 16134937 DOI: 10.1021/jm050103y] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Novel 6-acylamino-2-aminoquinoline melanin-concentrating hormone 1 receptor (MCH1R) antagonists were identified by sequential in silico screening with 3D pharmacophore models derived from a series of benzamide antagonists. The structure-activity relationship exploration by synthesis of analogues found structural demands around the western part of the compounds to be quite specific, whereas much structural freedom was found in the eastern part. While these compounds in general suffered from poor solubility properties, the 4-trifluoromethoxyphenoxyacetamide western appendage provided a favorable combination of activity and solubility properties. The amine in the eastern appendage, originally required by the pharmacophore model and believed to interact with Asp123 in transmembrane 3 of MCH1R, could be removed without diminishing affinity or functional activity of the compounds. Docking studies suggested that the Asp123 interacts preferentially with the nitrogen of the central quinoline. Synthesis and testing of specific analogues supported our revised binding mode hypothesis.
Collapse
Affiliation(s)
- Trond Ulven
- 7TM Pharma A/S, Fremtidsvej 3, DK-2970 Hørsholm, Denmark
| | | | | | | | | | | | | |
Collapse
|
2156
|
Doytchinova IA, Flower DR. In silico identification of supertypes for class II MHCs. THE JOURNAL OF IMMUNOLOGY 2005; 174:7085-95. [PMID: 15905552 DOI: 10.4049/jimmunol.174.11.7085] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The development of epitope-based vaccines, which have wide population coverage, is greatly complicated by MHC polymorphism. The grouping of alleles into supertypes, on the basis of common structural and functional features, addresses this problem directly. In the present study we applied a combined bioinformatics approach, based on analysis of both protein sequence and structure, to identify similarities in the peptide binding sites of 2225 human class II MHC molecules, and thus define supertypes and supertype fingerprints. Two chemometric techniques were used: hierarchical clustering using three-dimensional Comparative Similarity Indices Analysis fields and nonhierarchical k-means clustering using sequence-based z-descriptors. An average consensus of 84% was achieved, i.e., 1872 of 2225 class II molecules were classified in the same supertype by both techniques. Twelve class II supertypes were defined: five DRs, three DQs, and four DPs. The HLA class II supertypes and their fingerprints given in parenthesis are DR1 (Trp(9beta)), DR3 (Glu(9beta), Gln(70beta), and Gln/Arg(74beta)), DR4 (Glu(9beta), Gln/Arg(70beta), and Glu/Ala(74beta)), DR5 (Glu(9beta), Asp(70beta)), and DR9 (Lys/Gln(9beta)); DQ1 (Ala/Gly(86beta)), DQ2 (Glu(86beta), Lys(71beta)), and DQ3 (Glu(86beta), Thr/Asp(71beta)); DPw1 (Asp(84beta) and Lys(69beta)), DPw2 (Gly/Val(84beta) and Glu(69beta)), DPw4 (Gly/Val(84beta) and Lys(69beta)), and DPw6 (Asp(84beta) and Glu(69beta)). Apart from the good agreement between known binding motifs and our classification, several new supertypes, and corresponding thematic binding motifs, were also defined.
Collapse
|
2157
|
Abstract
We address the question of whether or not the positions of protein-binding sites on homologous protein structures are conserved irrespective of the identities of their binding partners. First, for each domain family in the Structural Classification of Proteins (SCOP), protein-binding sites are extracted from our comprehensive database of structurally defined binary domain interactions (PIBASE). Second, the binding sites within each family are superposed using a structural alignment of its members. Finally, the degree of localization of binding sites within each family is quantified by comparing it with localization expected by chance. We found that 72% of the 1847 SCOP domain families in PIBASE have binding sites with localization values greater than expected by chance. Moreover, 554 (30%) of these families have localizations that are statistically significant (i.e., more than four standard deviations away from the mean expected by chance). In contrast, only 144 (8%) families have significantly low localization. The absence of a significant correlation of the binding site localization with the average sequence and structural conservations in a family suggests that localization can be helpful for describing the functional diversity of protein-protein interactions, complementing measures of sequence and structural conservation. Consideration of the binding site localization may also result in spatial restraints for the modeling of protein assembly structures.
Collapse
Affiliation(s)
- Dmitry Korkin
- Department of Biopharmaceutical Sciences, University of California at San Francisco, San Francisco, CA 94143-2552, USA
| | | | | |
Collapse
|
2158
|
Costache AD, Pullela PK, Kasha P, Tomasiewicz H, Sem DS. Homology-modeled ligand-binding domains of zebrafish estrogen receptors alpha, beta1, and beta2: from in silico to in vivo studies of estrogen interactions in Danio rerio as a model system. Mol Endocrinol 2005; 19:2979-90. [PMID: 16081519 DOI: 10.1210/me.2004-0435] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Homology models were constructed for the ligand-binding domains of zebrafish estrogen receptors (zfERs) alpha, beta(1), and beta(2). Estradiol-binding sites are nearly identical in zfERs and their human homologs, suggesting that zebrafish will serve as a good model system for studying human ER-binding drugs. Conversely, studies of endocrine disruptor effects on zebrafish will benefit from the wealth of data available on xenoestrogen interactions with human ERs. Compounds flagged by the Interagency Coordinating Committee on the Validation of Alternative Methods for endocrine disruptor screening were docked into our zfER homology models. Ideally, these in silico docking studies would be complemented with in vivo binding studies. To this end, fluorescently tagged estradiol was docked into zfERalpha and found to bind in the same manner as in human ERalpha, with fluorescein preferentially occupying a region between helices 11 and 12. Fluorescently tagged estradiol was synthesized and was found to localize along the path of primordial germ cell migration in the developing zebrafish embryo 3 d after fertilization, consistent with previous reports of 1) a role for estradiol in sex determination, and 2) the first appearance of ERs 2 d after fertilization. These data provide a foundation for future in silico and in vivo binding studies of estrogen agonists and antagonists with zebrafish ERs.
Collapse
Affiliation(s)
- Aurora D Costache
- Chemical Proteomics Facility at Marquette, Department of Chemistry, Marquette University, P.O. Box 1881, Milwaukee, WI 53201, USA
| | | | | | | | | |
Collapse
|
2159
|
Létoffé S, Wecker K, Delepierre M, Delepelaire P, Wandersman C. Activities of the Serratia marcescens heme receptor HasR and isolated plug and beta-barrel domains: the beta-barrel forms a heme-specific channel. J Bacteriol 2005; 187:4637-45. [PMID: 15968075 PMCID: PMC1151761 DOI: 10.1128/jb.187.13.4637-4645.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Serratia marcescens hemophore-specific outer membrane receptor HasR is a member of the TonB-dependent family of autoregulated receptors. It can transport either heme itself or heme bound to the hemophore HasA. On the basis of sequence and functional similarities with other TonB-dependent outer membrane receptors whose three-dimensional structures have been determined, a HasR structure model was proposed. The mature HasR protein comprises a 99-residue amino-terminal extension necessary for hasR transcription, followed by a plug domain of 139 amino acids and a beta-barrel domain inserted in the outer membrane, the lumen of which is closed by the plug. This model was used to generate hasR deletions encoding HasR proteins with the native signal peptides but lacking either the N-terminal regulatory extension or encoding the plug or the beta-barrel alone. The protein lacking the N-terminal extension, HasR delta11-91, was incorporated in the outer membrane and was fully functional for active uptake of free and hemophore-bound heme. The HasR beta-barrel, delta11-192, was also incorporated in the outer membrane and bound the hemophore but expressed no active heme transport properties. The HasR plug remained in the periplasm. Coexpression of the plug and the beta-barrel allowed partial plug insertion in the outer membrane, demonstrating that these two HasR domains interact in vivo. The beta-barrel and the plug also interact in vitro. Nevertheless, the two domains did not complement each other to reconstitute an active TonB-dependent receptor for free or hemophore-bound heme uptake. Production of the beta-barrel alone selectively increased passive diffusion of heme but not of other exogenous compounds. A mutation at histidine 603, which is required for heme uptake through the wild-type receptor, abolished heme diffusion, showing that HasR delta11-192 forms a specific heme channel.
Collapse
Affiliation(s)
- Sylvie Létoffé
- Unité des Membranes Bactériennes, Institut Pasteur, CNRS URA 2172, 25 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
2160
|
Douthit SA, Dlakic M, Ohman DE, Franklin MJ. Epimerase active domain of Pseudomonas aeruginosa AlgG, a protein that contains a right-handed beta-helix. J Bacteriol 2005; 187:4573-83. [PMID: 15968068 PMCID: PMC1151786 DOI: 10.1128/jb.187.13.4573-4583.2005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The polysaccharide alginate forms a protective capsule for Pseudomonas aeruginosa during chronic pulmonary infections. The structure of alginate, a linear polymer of beta1-4-linked O-acetylated d-mannuronate (M) and l-guluronate (G), is important for its activity as a virulence factor. Alginate structure is mediated by AlgG, a periplasmic C-5 mannuronan epimerase. AlgG also plays a role in protecting alginate from degradation by the periplasmic alginate lyase AlgL. Here, we show that the C-terminal region of AlgG contains a right-handed beta-helix (RHbetaH) fold, characteristic of proteins with the carbohydrate-binding and sugar hydrolase (CASH) domain. When modeled based on pectate lyase C of Erwinia chrysanthemi, the RHbetaH of AlgG has a long shallow groove that may accommodate alginate, similar to protein/polysaccharide interactions of other CASH domain proteins. The shallow groove contains a 324-DPHD motif that is conserved among AlgG and the extracellular mannuronan epimerases of Azotobacter vinelandii. Point mutations in this motif disrupt mannuronan epimerase activity but have no effect on alginate secretion. The D324A mutation has a dominant negative phenotype, suggesting that the shallow groove in AlgG contains the catalytic face for epimerization. Other conserved motifs of the epimerases, 361-NNRSYEN and 381-NLVAYN, are predicted to lie on the opposite side of the RHbetaH from the catalytic center. Point mutations N362A, N367A, and V383A result in proteins that do not protect alginate from AlgL, suggesting that these mutant proteins are not properly folded or not inserted into the alginate biosynthetic scaffold. These motifs are likely involved in asparagine and hydrophobic stacking, required for structural integrity of RHbetaH proteins, rather than for mannuronan catalysis. The results suggest that the AlgG RHbetaH protects alginate from degradation by AlgL by channeling the alginate polymer through the proposed alginate biosynthetic scaffold while epimerizing approximately every second d-mannuronate residue to l-guluronate along the epimerase catalytic face.
Collapse
Affiliation(s)
- Stephanie A Douthit
- Department of Microbiology, 109 Lewis Hall, Montana State University, Bozeman, MT 59717, USA
| | | | | | | |
Collapse
|
2161
|
Calonghi N, Cappadone C, Pagnotta E, Boga C, Bertucci C, Fiori J, Tasco G, Casadio R, Masotti L. Histone deacetylase 1: a target of 9-hydroxystearic acid in the inhibition of cell growth in human colon cancer. J Lipid Res 2005; 46:1596-603. [PMID: 15716589 DOI: 10.1194/jlr.m400424-jlr200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Recent studies have shown that an endogenous lipoperoxidation product, 9-hydroxystearic acid (9-HSA), acts in colon carcinoma cells (HT29) as a growth inhibitor by inducing p21(WAF1) in an immediate-early, p53-independent manner and that p21(WAF1) is required for 9-HSA-mediated growth arrest in HT29 cells. It is conceivable, therefore, to hypothesize that the cytostatic effect induced by this agent is at least partially associated with a molecular mechanism that involves histone deacetylase 1 (HDAC1) inhibition, as demonstrated for sodium butyrate and other specific inhibitors, such as trichostatin A and hydroxamic acids. Here, we show that, after administration, 9-HSA causes an accumulation of hyperacetylated histones and strongly inhibits the activity of HDAC1. The interaction of 9-HSA with the catalytic site of the enzyme has been highlighted by computational modeling of the human HDAC1, using its homolog from the hyperthermophilic Aquifex aeolicus as a template. Consistent with the experimental data, we find that 9-HSA can bind to the active site of the protein, showing that the inhibition of the enzyme can be explained at the molecular level by the ligand-protein interaction.
Collapse
Affiliation(s)
- Natalia Calonghi
- Department of Biochemistry G. Moruzzi, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
2162
|
de Brevern AG, Wong H, Tournamille C, Colin Y, Le Van Kim C, Etchebest C. A structural model of a seven-transmembrane helix receptor: The Duffy antigen/receptor for chemokine (DARC). Biochim Biophys Acta Gen Subj 2005; 1724:288-306. [PMID: 16046070 DOI: 10.1016/j.bbagen.2005.05.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Revised: 05/13/2005] [Accepted: 05/16/2005] [Indexed: 01/28/2023]
Abstract
The Duffy antigen/receptor for chemokine (DARC) is an erythrocyte receptor for malaria parasites (Plasmodium vivax and Plasmodium knowlesi) and for chemokines. In contrast to other chemokine receptors, DARC is a promiscuous receptor that binds chemokines of both CC and CXC classes. The four extracellular domains (ECDs) of DARC are essential for its interaction with chemokines, whilst the first (ECD1) is sufficient for the interaction with malaria erythrocyte-binding protein. In this study, we elaborate and analyze structural models of the DARC. The construction of the 3D models is based on a comparative modeling process and on the use of many procedures to predict transmembrane segments and to detect far homologous proteins with known structures. Threading, ab initio, secondary structure and Protein Blocks approaches are used to build a very large number of models. The conformational exploration of the ECDs is performed with simulated annealing. The second and fourth ECDs are strongly constrained. On the contrary, the ECD1 is highly flexible, but seems composed of three consecutive regions: a small beta-sheet, a linker region and a structured loop. The chosen structural models encompass most of the biochemical features and reflect the known experimental data. They may be used to analyze functional interaction properties.
Collapse
Affiliation(s)
- A G de Brevern
- Equipe de Bioinformatique Génomique et Moléculaire (EBGM), INSERM U 726, Université Denis DIDEROT-Paris 7, case 7113, 2, place Jussieu, 75251 Paris, France.
| | | | | | | | | | | |
Collapse
|
2163
|
Katsarou ME, Papakyriakou A, Katsaros N, Scorilas A. Expression of the C-terminal domain of novel human SR-A1 protein: Interaction with the CTD domain of RNA polymerase II. Biochem Biophys Res Commun 2005; 334:61-8. [PMID: 15992770 DOI: 10.1016/j.bbrc.2005.06.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 06/13/2005] [Indexed: 11/21/2022]
Abstract
We have recently cloned a new member of the human Ser/Arg-rich superfamily (SR) of pre-mRNA splicing factors, SR-A1. Members of the SR family of proteins have been shown to interact with the C-terminal domain (CTD) of the large subunit of RNA polymerase II, and participate in pre-mRNA splicing. The largest subunit of RNA polymerase II contains at the carboxy-terminus a peculiar repetitive sequence that consists of 52 tandem repeats of the consensus motif Tyr-Ser-Pro-Thr-Ser-Pro-Ser, referred to as the CTD. There is evidence that SR protein splicing factors are involved in cancer pathobiology through their involvement in alternative processing events. The CTD of human SR-A1 protein (aa 1187-1312), containing a conserved CTD-interaction domain and bearing a decahistidine (His10) tag was produced by DNA recombinant overexpression techniques in Escherichia coli from the vector pET16b and it was localized in the periplasmic space. The protein was further purified using a HiTrap chelating column and its circular dichroism spectra indicate that it assumes a defined structure in solution. Performing a pull-down assay we proved that the novel SR-A1 [1187-1312 His10] protein interacts with the CTD domain of RNA polymerase II.
Collapse
Affiliation(s)
- Maria E Katsarou
- Institute of Physical Chemistry, NCSR Demokritos, 153 10 Ag. Paraskevi Attikis, Greece
| | | | | | | |
Collapse
|
2164
|
Abstract
Modeling a protein structure based on a homologous structure is a standard method in structural biology today. In this process an alignment of a target protein sequence onto the structure of a template(s) is used as input to a program that constructs a 3D model. It has been shown that the most important factor in this process is the correctness of the alignment and the choice of the best template structure(s), while it is generally believed that there are no major differences between the best modeling programs. Therefore, a large number of studies to benchmark the alignment qualities and the selection process have been performed. However, to our knowledge no large-scale benchmark has been performed to evaluate the programs used to transform the alignment to a 3D model. In this study, a benchmark of six different homology modeling programs- Modeller, SegMod/ENCAD, SWISS-MODEL, 3D-JIGSAW, nest, and Builder-is presented. The performance of these programs is evaluated using physiochemical correctness and structural similarity to the correct structure. From our analysis it can be concluded that no single modeling program outperform the others in all tests. However, it is quite clear that three modeling programs, Modeller, nest, and SegMod/ ENCAD, perform better than the others. Interestingly, the fastest and oldest modeling program, SegMod/ ENCAD, performs very well, although it was written more than 10 years ago and has not undergone any development since. It can also be observed that none of the homology modeling programs builds side chains as well as a specialized program (SCWRL), and therefore there should be room for improvement.
Collapse
Affiliation(s)
- Björn Wallner
- Stockholm Bioinformatics Center, Albanova University Center, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
2165
|
Grottesi A, Domene C, Haider S, Sansom MSP. Molecular dynamics simulation approaches to K channels: conformational flexibility and physiological function. IEEE Trans Nanobioscience 2005; 4:112-20. [PMID: 15816177 DOI: 10.1109/tnb.2004.842473] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Molecular modeling and simulations enable extrapolation for the structure of bacterial potassium channels to the function of their mammalian homologues. Molecular dynamics simulations have revealed the concerted single-file motion of potassium ions and water molecules through the selectivity filter of K channels and the role of filter flexibility in ion permeation and in "fast gating." Principal components analysis of extended K channel simulations suggests that hinge-bending of pore-lining M2 (or S6) helices plays a key role in K channel gating. Based on these and other simulations, a molecular model for gating of inward rectifier K channel gating is presented.
Collapse
Affiliation(s)
- Alessandro Grottesi
- Department of Biochemistry, University of Oxford, Oxford OX 3QU, United Kingdom.
| | | | | | | |
Collapse
|
2166
|
Ray WK, Keith SM, DeSantis AM, Hunt JP, Larson TJ, Helm RF, Kennelly PJ. A phosphohexomutase from the archaeon Sulfolobus solfataricus is covalently modified by phosphorylation on serine. J Bacteriol 2005; 187:4270-5. [PMID: 15937189 PMCID: PMC1151728 DOI: 10.1128/jb.187.12.4270-4275.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A phosphoserine-containing peptide was identified from tryptic digests from Sulfolobus solfataricus P1 by liquid chromatography-tandem mass spectrometry. Its amino acid sequence closely matched that bracketing Ser-309 in the predicted protein product of open reading frame sso0207, a putative phosphohexomutase, in the genome of S. solfataricus P2. Open reading frame sso0207 was cloned, and its protein product expressed in Escherichia coli. The recombinant protein proved capable of interconverting mannose 1-phosphate and mannose 6-phosphate, as well as glucose 1-phosphate and glucose 6-phosphate, in vitro. It displayed no catalytic activity toward glucosamine 6-phosphate or N-acetylglucosamine 6-phosphate. Models constructed using the X-ray crystal structure of a homologous phosphohexomutase from Pseudomonas aeruginosa predicted that Ser-309 of the archaeal protein lies within the substrate binding site. The presence of a phosphoryl group at this location would be expected to electrostatically interfere with the binding of negatively charged phosphohexose substrates, thus attenuating the catalytic efficiency of the enzyme. Using site-directed mutagenesis, Ser-309 was substituted by aspartic acid to mimic the presence of a phosphoryl group. The V(max) of the mutationally altered protein was only 4% that of the unmodified form. Substitution of Ser-309 with larger, but uncharged, amino acids, including threonine, also decreased catalytic efficiency, but to a lesser extent--three- to fivefold. We therefore predict that phosphorylation of the enzyme in vivo serves to regulate its catalytic activity.
Collapse
Affiliation(s)
- W Keith Ray
- Department of Biochemistry and Virginia Institute for Genomics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | | | | | | | |
Collapse
|
2167
|
Zhou H, Zhang C, Liu S, Zhou Y. Web-based toolkits for topology prediction of transmembrane helical proteins, fold recognition, structure and binding scoring, folding-kinetics analysis and comparative analysis of domain combinations. Nucleic Acids Res 2005; 33:W193-7. [PMID: 15980453 PMCID: PMC1160121 DOI: 10.1093/nar/gki360] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 02/11/2005] [Accepted: 02/22/2005] [Indexed: 11/13/2022] Open
Abstract
We have developed the following web servers for protein structural modeling and analysis at http://theory.med.buffalo.edu: THUMBUP, UMDHMM(TMHP) and TUPS, predictors of transmembrane helical protein topology based on a mean-burial-propensity scale of amino acid residues (THUMBUP), hidden Markov model (UMDHMM(TMHP)) and their combinations (TUPS); SPARKS 2.0 and SP3, two profile-profile alignment methods, that match input query sequence(s) to structural templates by integrating sequence profile with knowledge-based structural score (SPARKS 2.0) and structure-derived profile (SP3); DFIRE, a knowledge-based potential for scoring free energy of monomers (DMONOMER), loop conformations (DLOOP), mutant stability (DMUTANT) and binding affinity of protein-protein/peptide/DNA complexes (DCOMPLEX & DDNA); TCD, a program for protein-folding rate and transition-state analysis of small globular proteins; and DOGMA, a web-server that allows comparative analysis of domain combinations between plant and other 55 organisms. These servers provide tools for prediction and/or analysis of proteins on the secondary structure, tertiary structure and interaction levels, respectively.
Collapse
Affiliation(s)
- Hongyi Zhou
- Department of Physiology & Biophysics, Howard Hughes Medical Institute Center for Single Molecule Biophysics, State University of New York at Buffalo124 Sherman Hall, Buffalo, NY 14214, USA
| | - Chi Zhang
- Department of Physiology & Biophysics, Howard Hughes Medical Institute Center for Single Molecule Biophysics, State University of New York at Buffalo124 Sherman Hall, Buffalo, NY 14214, USA
| | - Song Liu
- Department of Physiology & Biophysics, Howard Hughes Medical Institute Center for Single Molecule Biophysics, State University of New York at Buffalo124 Sherman Hall, Buffalo, NY 14214, USA
| | - Yaoqi Zhou
- Department of Physiology & Biophysics, Howard Hughes Medical Institute Center for Single Molecule Biophysics, State University of New York at Buffalo124 Sherman Hall, Buffalo, NY 14214, USA
- Department of Macromolecular Science, The Key Laboratory of Molecular Engineering of Polymers, Fudan UniversityShanghai, China
| |
Collapse
|
2168
|
Centeno NB, Planas-Iglesias J, Oliva B. Comparative modelling of protein structure and its impact on microbial cell factories. Microb Cell Fact 2005; 4:20. [PMID: 15989691 PMCID: PMC1183243 DOI: 10.1186/1475-2859-4-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 06/30/2005] [Indexed: 11/22/2022] Open
Abstract
Comparative modeling is becoming an increasingly helpful technique in microbial cell factories as the knowledge of the three-dimensional structure of a protein would be an invaluable aid to solve problems on protein production. For this reason, an introduction to comparative modeling is presented, with special emphasis on the basic concepts, opportunities and challenges of protein structure prediction. This review is intended to serve as a guide for the biologist who has no special expertise and who is not involved in the determination of protein structure. Selected applications of comparative modeling in microbial cell factories are outlined, and the role of microbial cell factories in the structural genomics initiative is discussed.
Collapse
Affiliation(s)
- Nuria B Centeno
- Structural Bioinformatics Laboratory, Research Group on Biomedical Informatics (GRIB), IMIM/UPF. c/ Dr. Aiguader 80. 08003 Barcelona, Spain
| | - Joan Planas-Iglesias
- Structural Bioinformatics Laboratory, Research Group on Biomedical Informatics (GRIB), IMIM/UPF. c/ Dr. Aiguader 80. 08003 Barcelona, Spain
| | - Baldomero Oliva
- Structural Bioinformatics Laboratory, Research Group on Biomedical Informatics (GRIB), IMIM/UPF. c/ Dr. Aiguader 80. 08003 Barcelona, Spain
| |
Collapse
|
2169
|
Abstract
Computational characterization of proteins is a necessary first step in understanding the biologic role of a protein. The composite architecture of mammalian proteins makes the prediction of the biologic role rather difficult. Nevertheless, integration of many different prediction methods allows for a more accurate representation. Information on the 3D structure of a protein improves the reliability of predictions of many features. This article reviews existing methods used to characterize proteins and several tools that provide an integrated access to different types of information. The authors point out the increasing importance of structural constraints and an increasing need to integrate different approaches.
Collapse
Affiliation(s)
- Jadwiga Bienkowska
- Serono Reproductive Biology Institute, One Technology Pl., Rockland, MA 02370, USA.
| |
Collapse
|
2170
|
Stevens FJ, Kuemmel C, Babnigg G, Collart FR. Efficient recognition of protein fold at low sequence identity by conservative application of Psi-BLAST: application. J Mol Recognit 2005; 18:150-7. [PMID: 15593246 DOI: 10.1002/jmr.719] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Based on a study involving structural comparisons of proteins sharing 25% or less sequence identity, three rounds of Psi-BLAST appear capable of identifying remote evolutionary homologs with greater than 95% confidence provided that more than 50% of the query sequence can be aligned with the target sequence. Since it seems that more than 80% of all homologous protein pairs may be characterized by a lack of significant sequence similarity, the experimental biologist is often confronted with a lack of guidance from conventional homology searches involving pair-wise sequence comparisons. The ability to disregard levels of sequence identity and expect value in Psi-BLAST if at least 50% of the query sequence has been aligned allows for generation of new hypotheses by consideration of matches that are conventionally disregarded. In one example, we suggest a possible evolutionary linkage between the cupredoxin and immunoglobulin fold families. A thermostable hypothetical protein of unknown function may be a circularly permuted homolog to phosphotriesterase, an enzyme capable of detoxifying organophosphate nerve agents. In a third example, the amino acid sequence of another hypothetical protein of unknown function reveals the ATP binding-site, metal binding site, and catalytic sidechain consistent with kinase activity of unknown specificity. This approach significantly expands the utility of existing sequence data to define the primary structure degeneracy of binding sites for substrates, cofactors and other proteins.
Collapse
Affiliation(s)
- F J Stevens
- Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.
| | | | | | | |
Collapse
|
2171
|
Yang Q, Wang X, Ye L, Mentrikoski M, Mohammadi E, Kim YM, Maloney PC. Experimental tests of a homology model for OxlT, the oxalate transporter of Oxalobacter formigenes. Proc Natl Acad Sci U S A 2005; 102:8513-8. [PMID: 15932938 PMCID: PMC1150865 DOI: 10.1073/pnas.0503533102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Indexed: 11/18/2022] Open
Abstract
Using the x-ray structure of the glycerol 3-phosphate transporter (GlpT), we devised a model for the distantly related oxalate transporter, OxlT. The model accommodates all earlier biochemical information on OxlT, including the idea that Lys-355 lies on the permeation pathway, and predicts that Lys-355 and a second positive center, Arg-272, comprise the binding site for divalent oxalate. Study of R272K, R272A, and R272Q derivatives verifies that Arg-272 is essential, and comparisons with GlpT show that both anion transporters bind substrates within equivalent domains. In 22 single-cysteine variants in TM7 and TM8, topology as marked by accessibility to Oregon green maleimide is predicted by the model, with similar concordance for 52 positions probed earlier. The model also reconciles cross-linking of a cysteine pair placed near the periplasmic ends of TM2 and TM7, and retrospective study of TM2 and TM11 confirms that positions supporting disulfide trapping lie at a helical interface. Our work describes a pathway to the modeling of OxlT and other transporters in the major facilitator superfamily and outlines simple experimental tests to evaluate such proposals.
Collapse
Affiliation(s)
- Qiang Yang
- Department of Physiology, Johns Hopkins Medical School, 725 North Wolfe Street, Baltimore, MD 21205-2185, USA
| | | | | | | | | | | | | |
Collapse
|
2172
|
Rigolet P, Xi XG, Rety S, Chich JF. The structural comparison of the bacterial PepX and human DPP-IV reveals sites for the design of inhibitors of PepX activity. FEBS J 2005; 272:2050-9. [PMID: 15819895 DOI: 10.1111/j.1742-4658.2005.04631.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
X-prolyl dipeptidyl aminopeptidases (X-PDAP) are enzymes catalysing the release of dipeptides from the amino termini of polypeptides containing a proline or an alanine at the penultimate position. Involved in various mammalian regulation processes, as well as in chronic human diseases, they have been proposed to play a role in pathogenicity for Streptococci. We compared the structure of X-PDAP from Lactococcus lactis (PepX) with its human counterpart DPP-IV. Despite very different overall folds, the residues most implicated for X-PDAP activity are conserved in the same positions and orientations in both enzymes, thus defining a structural signature for the X-PDAP specificity that crosses the species frontiers of evolution. Starting from this observation, we tested some inhibitors of DPP-IV on PepX activity, for which no specific inhibitor is known. We thus found that PepX was highly sensitive to valine-pyrrolidide with a KI of 9.3 microm, close to that reported in DPP-IV inhibition. We finally used the structure of PepX from L. lactis as a template for computer-based homology modeling of PepX from the pathogenic Streptococcus gordonii. Docking simulations of valine-pyrrolidide into the active site of PepX led to the identification of key residues for a rational drug design against PepX from Streptococci. These results could have applications in human health giving new perspectives to the struggle against pathogens.
Collapse
Affiliation(s)
- Pascal Rigolet
- Laboratoire de Biotechnologies et Pharmacologie Génétique Appliquée CNRS, Ecole Normale Supérieure (ENS) Cachan, France.
| | | | | | | |
Collapse
|
2173
|
Andreini C, Banci L, Bertini I, Elmi S, Rosato A. Comparative Analysis of the ADAM and ADAMTS Families. J Proteome Res 2005; 4:881-8. [PMID: 15952735 DOI: 10.1021/pr0500096] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The "A Disintegrin And Metalloproteinase" (ADAM) protein family and the "A Disintegrin-like And Metalloproteinase with ThromboSpondin motifs" (ADAMTS) protein family are two related families of human proteins. The similarities and differences between these two families have been investigated using phylogenetic trees and homology modeling. The phylogenetic analysis indicates that the two families are well differentiated, even when only the common metalloprotease domain is taken into account. Within the ADAM family, several proteins are lacking the binding motif for the catalytic zinc in the active site and thus presumably lack any catalytic activity. These proteins tend to cluster within the ADAM phylogenetic tree and are expressed in specific tissues, suggesting a functional differentiation. The present analysis allows us to propose the following: (i) ADAMTS proteins have a conserved role in the human organism as proteases, with some differentiation in terms of substrate specificity; (ii) ADAM proteins can act as proteases and/or mediators of intermolecular interactions; (iii) proteolytically active ADAMs tend to be more ubiquitously expressed than the inactive ones.
Collapse
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | | | | | | | | |
Collapse
|
2174
|
Guo RB, Rigolet P, Zargarian L, Fermandjian S, Xi XG. Structural and functional characterizations reveal the importance of a zinc binding domain in Bloom's syndrome helicase. Nucleic Acids Res 2005; 33:3109-24. [PMID: 15930159 PMCID: PMC1142346 DOI: 10.1093/nar/gki619] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bloom's syndrome (BS) is an autosomal recessive human disorder characterized by genomic instability and a predisposition to a wide variety of cancers. The gene mutated in BS, BLM, encodes a protein containing three domains: an N-terminal domain whose function remains elusive, a helicase domain characterized by seven ‘signature’ motifs conserved in a wide range of helicases and a C-terminal extension that can be further divided into two sub-domains: RecQ-Ct and HRDC. The RecQ-Ct domain appears essential because two point-mutations altering highly conserved cysteine residues within this domain have been found in BS patients. We report herein that BLM contains a zinc ion. Modelling studies suggest that four conserved cysteine residues within the RecQ-Ct domain coordinate this zinc ion and subsequent mutagenesis studies further confirm this prediction. Biochemical and biophysical studies show that the ATPase, helicase and DNA binding activities of the mutants are severely modified. Structural analysis of both wild-type and mutant proteins reveal that alteration of cysteine residues does not significantly change the overall conformation. The observed defects in ATPase and helicase activities were inferred to result from a compromise of DNA binding. Our results implicate an important role of this zinc binding domain in both DNA binding and protein conformation. They could be pivotal for understanding the molecular basis of BS disease.
Collapse
Affiliation(s)
| | | | | | | | - Xu Guang Xi
- To whom correspondence should be addressed. Tel: +33 1 47 40 68 92; Fax: +33 1 47 40 76 71;
| |
Collapse
|
2175
|
Vieth M, Sutherland JJ, Robertson DH, Campbell RM. Kinomics: characterizing the therapeutically validated kinase space. Drug Discov Today 2005; 10:839-46. [PMID: 15970266 DOI: 10.1016/s1359-6446(05)03477-x] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The annotation and visualization of medicinally relevant kinase space revealed that kinase inhibitors in the clinic are, on average, of higher molecular weight and more lipophilic than all other clinically investigated drugs. Tyrosine kinases from the vascular endothelial growth factor and epidermal growth factor receptor families are the most pursued targets. Furthermore, oncological indications account for 75% of all kinase-related clinical interest. In addition, analysis of the similarity between kinase targets with respect to sequence, selectivity and structure has revealed that kinases with > or =60% sequence identity are most likely to be inhibited by the same classes of compounds and have similar ATP-binding sites. The identification of this threshold, together with the widely accepted representation of the sequence-based kinase space, is expanding our understanding of the clinical and structural space of the kinome.
Collapse
Affiliation(s)
- Michal Vieth
- Discovery Chemistry Research, Lilly Research Laboratories, Lilly Corporate Center, DC 1513, Indianapolis, IN 46285, USA.
| | | | | | | |
Collapse
|
2176
|
Squire CJ, Dickson JM, Ivanovic I, Baker EN. Structure and inhibition of the human cell cycle checkpoint kinase, Wee1A kinase: an atypical tyrosine kinase with a key role in CDK1 regulation. Structure 2005; 13:541-50. [PMID: 15837193 DOI: 10.1016/j.str.2004.12.017] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 12/21/2004] [Accepted: 12/22/2004] [Indexed: 11/25/2022]
Abstract
Phosphorylation is critical to regulation of the eukaryotic cell cycle. Entry to mitosis is triggered by the cyclin-dependent kinase CDK1 (Cdc2), which is inactivated during the preceding S and G2 phases by phosphorylation of T14 and Y15. Two homologous kinases, Wee1, which phosphorylates Y15, and Myt1, which phosphorylates both T14 and Y15, mediate this inactivation. We have determined the crystal structure of the catalytic domain of human somatic Wee1 (Wee1A) complexed with an active-site inhibitor at 1.8 A resolution. Although Wee1A is functionally a tyrosine kinase, in sequence and structure it most closely resembles serine/threonine kinases such as Chk1 and cAMP kinases. The crystal structure shows that although the catalytic site closely resembles that of other protein kinases, the activation segment contains Wee1-specific features that maintain it in an active conformation and, together with a key substitution in its glycine-rich loop, help determine its substrate specificity.
Collapse
Affiliation(s)
- Christopher J Squire
- School of Biological Sciences and Centre for Molecular Biodiscovery, University of Auckland, Auckland 1001, New Zealand
| | | | | | | |
Collapse
|
2177
|
Sadeghi M, Parto S, Arab S, Ranjbar B. Prediction of protein secondary structure based on residue pair types and conformational states using dynamic programming algorithm. FEBS Lett 2005; 579:3397-400. [PMID: 15936021 DOI: 10.1016/j.febslet.2005.04.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Revised: 04/11/2005] [Accepted: 04/24/2005] [Indexed: 11/17/2022]
Abstract
We have used a statistical approach for protein secondary structure prediction based on information theory and simultaneously taking into consideration pairwise residue types and conformational states. Since the prediction of residue secondary structure by one residue window sliding make ambiguity in state prediction, we used a dynamic programming algorithm to find the path with maximum score. A score system for residue pairs in particular conformations is derived for adjacent neighbors up to ten residue apart in sequence. The three state overall per-residue accuracy, Q3, of this method in a jackknife test with dataset created from PDBSELECT is more than 70%.
Collapse
Affiliation(s)
- Mehdi Sadeghi
- Department of Biophysics, National Institute of Genetic Engineering and Biotechnology, P.O.Box 14155-6343, Tehran, Iran.
| | | | | | | |
Collapse
|
2178
|
Zhang XP, Lee KI, Solinger JA, Kiianitsa K, Heyer WD. Gly-103 in the N-terminal domain of Saccharomyces cerevisiae Rad51 protein is critical for DNA binding. J Biol Chem 2005; 280:26303-11. [PMID: 15908697 DOI: 10.1074/jbc.m503244200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rad51 is a homolog of the bacterial RecA protein and is central for recombination in eukaryotes performing homology search and DNA strand exchange. Rad51 and RecA share a core ATPase domain that is structurally similar to the ATPase domains of helicases and the F1 ATPase. Rad51 has an additional N-terminal domain, whereas RecA protein has an additional C-terminal domain. Here we show that glycine 103 in the N-terminal domain of Saccharomyces cerevisiae Rad51 is important for binding to single-stranded and duplex DNA. The Rad51-G103E mutant protein is deficient in DNA strand exchange and ATPase activity due to a primary DNA binding defect. The N-terminal domain of Rad51 is connected to the ATPase core through an extended elbow linker that ensures flexibility of the N-terminal domain. Molecular modeling of the Rad51-G103E mutant protein shows that the negatively charged glutamate residue lies on the surface of the N-terminal domain facing a positively charged patch composed of Arg-260, His-302, and Lys-305 on the ATPase core domain. A possible structural explanation for the DNA binding defect is that a charge interaction between Glu-103 and the positive patch restricts the flexibility of the N-terminal domain. Rad51-G103E was identified in a screen for Rad51 interaction-deficient mutants and was shown to ablate the Rad54 interaction in two-hybrid assays (Krejci, L., Damborsky, J., Thomsen, B., Duno, M., and Bendixen, C. (2001) Mol. Cell. Biol. 21, 966-976). Surprisingly, we found that the physical interaction of Rad51-G103E with Rad54 was not affected. Our data suggest that the two-hybrid interaction defect was an indirect consequence of the DNA binding defect.
Collapse
Affiliation(s)
- Xiao-Ping Zhang
- Section of Microbiology, University of California, Davis, California 95616-8665, USA
| | | | | | | | | |
Collapse
|
2179
|
Karim S, Lundh D, Holmström KO, Mandal A, Pirhonen M. Structural and functional characterization of AtPTR3, a stress-induced peptide transporter of Arabidopsis. J Mol Model 2005; 11:226-36. [PMID: 15889294 DOI: 10.1007/s00894-005-0257-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 01/27/2005] [Indexed: 10/25/2022]
Abstract
A T-DNA tagged mutant line of Arabidopsis thaliana, produced with a promoter trap vector carrying a promoterless gus (uidA) as a reporter gene, showed GUS induction in response to mechanical wounding. Cloning of the chromosomal DNA flanking the T-DNA revealed that the insert had caused a knockout mutation in a PTR-type peptide transporter gene named At5g46050 in GenBank, here renamed AtPTR3. The gene and the deduced protein were characterized by molecular modelling and bioinformatics. Molecular modelling of the protein with fold recognition identified 12 transmembrane spanning regions and a large loop between the sixth and seventh helices. The structure of AtPTR3 resembled the other PTR-type transporters of plants and transporters in the major facilitator superfamily. Computer analysis of the AtPTR3 promoter suggested its expression in roots, leaves and seeds, complex hormonal regulation and induction by abiotic and biotic stresses. The computer-based hypotheses were tested experimentally by exposing the mutant plants to amino acids and several stress treatments. The AtPTR3 gene was induced by the amino acids histidine, leucine and phenylalanine in cotyledons and lower leaves, whereas a strong induction was obtained in the whole plant upon exposure to salt. Furthermore, the germination frequency of the mutant line was reduced on salt-containing media, suggesting that the AtPTR3 protein is involved in stress tolerance in seeds during germination.
Collapse
Affiliation(s)
- Sazzad Karim
- School of Life Sciences, University of Skövde, 541 28 Skövde, Sweden
| | | | | | | | | |
Collapse
|
2180
|
Zhou CZ, Meyer P, Quevillon-Cheruel S, Li De La Sierra-Gallay I, Collinet B, Graille M, Blondeau K, François JM, Leulliot N, Sorel I, Poupon A, Janin J, Van Tilbeurgh H. Crystal structure of the YML079w protein from Saccharomyces cerevisiae reveals a new sequence family of the jelly-roll fold. Protein Sci 2005; 14:209-15. [PMID: 15608122 PMCID: PMC2253319 DOI: 10.1110/ps.041121305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We determined the three-dimensional crystal structure of the protein YML079wp, encoded by a hypothetical open reading frame from Saccharomyces cerevisiae to a resolution of 1.75 A. The protein has no close homologs and its molecular and cellular functions are unknown. The structure of the protein is a jelly-roll fold consisting of ten beta-strands organized in two parallel packed beta-sheets. The protein has strong structural resemblance to the plant storage and ligand binding proteins (canavalin, glycinin, auxin binding protein) but also to some plant and bacterial enzymes (epimerase, germin). The protein forms homodimers in the crystal, confirming measurements of its molecular mass in solution. Two monomers have their beta-sheet packed together to form the dimer. The presence of a hydrophobic ligand in a well conserved pocket inside the barrel and local sequence similarity with bacterial epimerases may suggest a biochemical function for this protein.
Collapse
Affiliation(s)
- Cong-Zhao Zhou
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Centre National de la Recherche Scientifique-Unité Mixte de Recherche 8619, Université Paris-Sud, 91405 Orsay, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2181
|
Higashi K, Takasawa R, Yoshimori A, Goh T, Tanuma S, Kuchitsu K. Identification of a novel gene family, paralogs of inhibitor of apoptosis proteins present in plants, fungi, and animals. Apoptosis 2005; 10:471-80. [PMID: 15909109 DOI: 10.1007/s10495-005-1876-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Only few orthologs of animal apoptosis regulators have been found in plants. Recently, the ectopic expression of mammalian inhibitor of apoptosis proteins (IAPs) has been shown to affect plant programmed cell death. Here, we identified two novel proteins homologous to Arabidopsis thaliana IAP-like protein (AtILP) 1 and 2 by applying an improved motif searching method. Furthermore, homologs of AtILP1 were found to occur as a novel gene family in other organisms such as fungi and animals including Homo sapiens (HsILP1). Like baculovirus IAP repeats (BIRs) in IAPs, ILPs contain two highly conserved BIR-like domains (BLDs) with a putative C2HC-type zinc finger. Phylogenetic analyses indicated that ILPs are putative paralogs of IAPs. Homology modeling revealed that the three-dimensional structure of BLD in HsILP1 is similar to that of BIR. Transient expression of HsILP1 resulted in inhibition of etoposide-induced apoptosis in HEK293 and HeLaS3 cells. These findings suggest that ILPs are conserved in a wide range of eukaryotes including plants, and that their functions are closely related to those of IAPs.
Collapse
Affiliation(s)
- K Higashi
- Genome and Drug Research Center, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | |
Collapse
|
2182
|
Todd AE, Marsden RL, Thornton JM, Orengo CA. Progress of Structural Genomics Initiatives: An Analysis of Solved Target Structures. J Mol Biol 2005; 348:1235-60. [PMID: 15854658 DOI: 10.1016/j.jmb.2005.03.037] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 02/28/2005] [Accepted: 03/15/2005] [Indexed: 11/27/2022]
Abstract
The explosion in gene sequence data and technological breakthroughs in protein structure determination inspired the launch of structural genomics (SG) initiatives. An often stated goal of structural genomics is the high-throughput structural characterisation of all protein sequence families, with the long-term hope of significantly impacting on the life sciences, biotechnology and drug discovery. Here, we present a comprehensive analysis of solved SG targets to assess progress of these initiatives. Eleven consortia have contributed 316 non-redundant entries and 323 protein chains to the Protein Data Bank (PDB), and 459 and 393 domains to the CATH and SCOP structure classifications, respectively. The quality and size of these proteins are comparable to those solved in traditional structural biology and, despite huge scope for duplicated efforts, only 14% of targets have a close homologue (>/=30% sequence identity) solved by another consortium. Analysis of CATH and SCOP revealed the significant contribution that structural genomics is making to the coverage of superfamilies and folds. A total of 67% of SG domains in CATH are unique, lacking an already characterised close homologue in the PDB, whereas only 21% of non-SG domains are unique. For 29% of domains, structure determination revealed a remote evolutionary relationship not apparent from sequence, and 19% and 11% contributed new superfamilies and folds. The secondary structure class, fold and superfamily distributions of this dataset reflect those of the genomes. The domains fall into 172 different folds and 259 superfamilies in CATH but the distribution is highly skewed. The most populous of these are those that recur most frequently in the genomes. Whilst 11% of superfamilies are bacteria-specific, most are common to all three superkingdoms of life and together the 316 PDB entries have provided new and reliable homology models for 9287 non-redundant gene sequences in 206 completely sequenced genomes. From the perspective of this analysis, it appears that structural genomics is on track to be a success, and it is hoped that this work will inform future directions of the field.
Collapse
Affiliation(s)
- Annabel E Todd
- Department of Biochemistry and Molecular Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| | | | | | | |
Collapse
|
2183
|
Bulaj G, West PJ, Garrett JE, Watkins M, Marsh M, Zhang MM, Norton RS, Smith BJ, Yoshikami D, Olivera BM. Novel Conotoxins from Conus striatus and Conus kinoshitai Selectively Block TTX-Resistant Sodium Channels. Biochemistry 2005; 44:7259-65. [PMID: 15882064 DOI: 10.1021/bi0473408] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The peptides isolated from venoms of predatory marine Conus snails ("conotoxins") are well-known to be highly potent and selective pharmacological agents for voltage-gated ion channels and receptors. We report the discovery of two novel TTX-resistant sodium channel blockers, mu-conotoxins SIIIA and KIIIA, from two species of cone snails. The two toxins were identified and characterized by combining molecular techniques and chemical synthesis. Both peptides inhibit TTX-resistant sodium currents in neurons of frog sympathetic and dorsal root ganglia but poorly block action potentials in frog skeletal muscle, which are mediated by TTX-sensitive sodium channels. The amino acid sequences in the C-terminal region of the two peptides and of the previously characterized mu-conotoxin SmIIIA (which also blocks TTX-resistant channels) are similar, but the three peptides differ in the length of their first N-terminal loop. We used molecular dynamics simulations to analyze how altering the number of residues in the first loop affects the overall structure of mu-conotoxins. Our results suggest that the naturally occurring truncations do not affect the conformation of the C-terminal loops. Taken together, structural and functional differences among mu-conotoxins SmIIIA, SIIIA, and KIIIA offer a unique insight into the "evolutionary engineering" of conotoxin activity.
Collapse
Affiliation(s)
- Grzegorz Bulaj
- Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2184
|
Möglich A, Weinfurtner D, Maurer T, Gronwald W, Kalbitzer HR. A restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles. BMC Bioinformatics 2005; 6:91. [PMID: 15819976 PMCID: PMC1127110 DOI: 10.1186/1471-2105-6-91] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 04/08/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We have developed the program PERMOL for semi-automated homology modeling of proteins. It is based on restrained molecular dynamics using a simulated annealing protocol in torsion angle space. As main restraints defining the optimal local geometry of the structure weighted mean dihedral angles and their standard deviations are used which are calculated with an algorithm described earlier by Doker et al. (1999, BBRC, 257, 348-350). The overall long-range contacts are established via a small number of distance restraints between atoms involved in hydrogen bonds and backbone atoms of conserved residues. Employing the restraints generated by PERMOL three-dimensional structures are obtained using standard molecular dynamics programs such as DYANA or CNS. RESULTS To test this modeling approach it has been used for predicting the structure of the histidine-containing phosphocarrier protein HPr from E. coli and the structure of the human peroxisome proliferator activated receptor gamma (Ppar gamma). The divergence between the modeled HPr and the previously determined X-ray structure was comparable to the divergence between the X-ray structure and the published NMR structure. The modeled structure of Ppar gamma was also very close to the previously solved X-ray structure with an RMSD of 0.262 nm for the backbone atoms. CONCLUSION In summary, we present a new method for homology modeling capable of producing high-quality structure models. An advantage of the method is that it can be used in combination with incomplete NMR data to obtain reasonable structure models in accordance with the experimental data.
Collapse
Affiliation(s)
- Andreas Möglich
- Institut für Biophysik und physikalische Biochemie, Universität Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
- Department of Biophysical Chemistry, Biozentrum, University of Basel, Klingelbergstr. 70, CH-4056 Basel, Switzerland
| | - Daniel Weinfurtner
- Institut für Biophysik und physikalische Biochemie, Universität Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
- Institut für Organische Chemie und Biochemie, Technische Universität München, Lichtenbergstr. 4, D-85747 Garching, Germany
| | - Till Maurer
- Institut für Biophysik und physikalische Biochemie, Universität Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
- Department of Lead Discovery, Boehringer Ingelheim Pharma GmbH, Birkendorfer Str. 65, D-88397 Biberach, Germany
| | - Wolfram Gronwald
- Institut für Biophysik und physikalische Biochemie, Universität Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| | - Hans Robert Kalbitzer
- Institut für Biophysik und physikalische Biochemie, Universität Regensburg, Universitätsstr. 31, D-93053 Regensburg, Germany
| |
Collapse
|
2185
|
Collinson AD, Bligh SWA, Graham DL, Mott HR, Chalk PA, Korniotis N, Lowe PN. Fluorescence properties of green fluorescent protein FRET pairs concatenated with the small G protein, Rac, and its interacting domain of the kinase, p21-activated kinase. Assay Drug Dev Technol 2005; 2:659-73. [PMID: 15674024 DOI: 10.1089/adt.2004.2.659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many diseases are caused by aberrant cell signalling controlled by intracellular protein-protein interactions. Inhibitors of such interactions thus have enormous potential as chemotherapeutic agents. It is advantageous to test for such inhibitors using cell-based screens in which modulation of the interaction gives a rapid response. Fluorescence resonance energy transfer (FRET) systems, based on interacting donor and acceptor green fluorescent proteins (GFPs), have potential in such screens. Here, we describe experiments aimed at using a FRET system to monitor the interaction between the small G protein Rac and a region of its binding partner, the Ser/Thr kinase, p21-activated kinase (PAK). Initial attempts to use a previously described construct, enhanced GFP-PAK-enhanced blue fluorescent protein, failed because of the difficulty of obtaining equal and high expression levels of both the fusion protein and Rac in mammalian cells. Here, three proteins in which Rac, PAK, and the two GFPs were concatenated in different combinations on a single protein were expressed and characterised. In each construct, however, intramolecular interaction of PAK and Rac was observed. As this was of extremely high affinity, presumably because of entropy effects from the interacting partners being tethered, these molecules were not suitable for detection of inhibitors of the interaction. Molecular modelling was used to investigate the way in which the concatenated constructs might form intramolecular interactions. As this explained key properties of these proteins, it is likely that this approach could be used to design constructs where the unwanted intramolecular protein-protein interactions are prevented, whilst allowing the desired intermolecular Rac/PAK interaction. This would provide constructs that are useable for drug discovery.
Collapse
Affiliation(s)
- Andie D Collinson
- Structural & Biophysical Sciences, GlaxoSmithKline Medicines Research Centre, Stevenage, Herts, UK
| | | | | | | | | | | | | |
Collapse
|
2186
|
Liao H, Yeh W, Chiang D, Jernigan R, Lustig B. Protein sequence entropy is closely related to packing density and hydrophobicity. Protein Eng Des Sel 2005; 18:59-64. [PMID: 15788422 PMCID: PMC2553042 DOI: 10.1093/protein/gzi009] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We investigated the correlation between the Shannon information entropy, 'sequence entropy', with respect to the local flexibility of native globular proteins as described by inverse packing density. These are determined at each residue position for a total set of 130 query proteins, where sequence entropies are calculated from each set of aligned residues. For the accompanying aggregate set of 130 alignments, a strong linear correlation is observed between the calculated sequence entropy and the corresponding inverse packing density determined at an associated residue position. This region of linearity spans the range of C(alpha) packing densities from 12 to 25 amino acids within a sphere of 9 angstrom radius. Three different hydrophobicity scales all mimic the behavior of the sequence entropies. This confirms the idea that the ability to accommodate mutations is strongly dependent on the available space and on the propensity for each amino acid type to be buried. Future applications of these types of methods may prove useful in identifying both core and flexible residues within a protein.
Collapse
Affiliation(s)
- H. Liao
- Department of Chemistry, San Jose State University, San Jose, CA 95192-0101
| | - W. Yeh
- Department of General Engineering, San Jose State University, San Jose, CA 95192-0101
| | - D. Chiang
- Sage-N Research, Saratoga, CA 95070-6082
| | - R.L. Jernigan
- L.H. Baker Center for Bioinformatics and Biological Statistics, Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50014, USA
| | - B. Lustig
- Department of Chemistry, San Jose State University, San Jose, CA 95192-0101
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
2187
|
Zhang Y, Skolnick J. Tertiary structure predictions on a comprehensive benchmark of medium to large size proteins. Biophys J 2005; 87:2647-55. [PMID: 15454459 PMCID: PMC1304683 DOI: 10.1529/biophysj.104.045385] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We evaluate tertiary structure predictions on medium to large size proteins by TASSER, a new algorithm that assembles protein structures through rearranging the rigid fragments from threading templates guided by a reduced Calpha and side-chain based potential consistent with threading based tertiary restraints. Predictions were generated for 745 proteins 201-300 residues in length that cover the Protein Data Bank (PDB) at the level of 35% sequence identity. With homologous proteins excluded, in 365 cases, the templates identified by our threading program, PROSPECTOR_3, have a root-mean-square deviation (RMSD) to native < 6.5 angstroms, with >70% alignment coverage. After TASSER assembly, in 408 cases the best of the top five full-length models has a RMSD < 6.5 angstroms. Among the 745 targets are 18 membrane proteins, with one-third having a predicted RMSD < 5.5 A. For all representative proteins less than or equal to 300 residues that have corresponding multiple NMR structures in the Protein Data Bank, approximately 20% of the models generated by TASSER are closer to the NMR structure centroid than the farthest individual NMR model. These results suggest that reasonable structure predictions for nonhomologous large size proteins can be automatically generated on a proteomic scale, and the application of this approach to structural as well as functional genomics represent promising applications of TASSER.
Collapse
Affiliation(s)
- Yang Zhang
- Center of Excellence in Bioinformatics, University at Buffalo, Buffalo, New York 14203, USA
| | | |
Collapse
|
2188
|
Musiani F, Zambelli B, Stola M, Ciurli S. Nickel trafficking: insights into the fold and function of UreE, a urease metallochaperone. J Inorg Biochem 2005; 98:803-13. [PMID: 15134926 DOI: 10.1016/j.jinorgbio.2003.12.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 12/02/2003] [Accepted: 12/22/2003] [Indexed: 11/18/2022]
Abstract
UreE is a metallo-chaperone assisting the incorporation of two adjacent Ni(2+) ions in the active site of urease. This study describes an attempt to distill general information on this protein using a computational post-genomic approach for the understanding of the structural details of the molecular function of UreE in nickel trafficking. The two crystal structures recently determined for UreE from Bacillus pasteurii (BpUreE) and Klebsiella aerogenes (KaUreE) were comparatively analyzed. This analysis provided insights into the protein structural and conformational features. A structural database of UreE proteins from a large number of different genomes was built using homology modeling. All available sequences of UreE were retrieved from protein and cDNA databases, and their structures were modeled on the crystal structures of BpUreE and KaUreE. A self-consistent iterative protocol was devised for multiple sequence alignment optimization involving secondary structure prediction and evaluation of the energy features of the obtained modeled structures. The quality of all models was tested using standard assessment procedures. The final optimized structure-based multiple alignment and the derived model structures provided insightful information on the evolutionary conservation of key residues in the protein sequence and surface patches presumably involved in protein recognition during the urease active site assembly.
Collapse
Affiliation(s)
- Francesco Musiani
- Department of Agro-Environmental Science and Technology, University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy
| | | | | | | |
Collapse
|
2189
|
Silveira NJFD, Uchôa HB, Pereira JH, Canduri F, Basso LA, Palma MS, Santos DS, de Azevedo WF. Molecular models of protein targets from Mycobacterium tuberculosis. J Mol Model 2005; 11:160-6. [PMID: 15759144 DOI: 10.1007/s00894-005-0240-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 12/02/2004] [Indexed: 10/25/2022]
Abstract
Structural characterization of enzymes that belong to microbial metabolic pathways is very important for structure-based drug design since some of these proteins may be present in the bacterial genome, but absent in humans. Thus, metabolic pathways became potential targets for drug design. The motivation of this work is the fact that Mycobacterium tuberculosis is the cause of the deaths of millions of people in the world, so that the structural characterization of protein targets to propose new drugs has become essential. DBMODELING is a relational database, created to highlight the importance of methods of molecular modeling applied to the Mycobacterium tuberculosis genome with the aim of proposing protein-ligand docking analysis. There are currently more than 300 models for proteins from Mycobacterium tuberculosis genome in the database. The database contains a detailed description of the reaction catalyzed by each enzyme and their atomic coordinates. Information about structures, a tool for animated gif image, a table with a specification of the metabolic pathway, modeled protein, inputs used in modeling, and analysis methods used in this project are available in the database for download. The search tool can be used for researchers to find specific pathways or enzymes.
Collapse
Affiliation(s)
- Nelson José Freitas da Silveira
- Programa de Pós-Graduação em Biofísica Molecular Departamento de Física, UNESP, São José do Rio Preto, SP, 15054-000, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
2190
|
Nakazawa T, Takai T, Hatanaka H, Mizuuchi E, Nagamune T, Okumura K, Ogawa H. Multiple-mutation at a potential ligand-binding region decreased allergenicity of a mite allergen Der f 2 without disrupting global structure. FEBS Lett 2005; 579:1988-94. [PMID: 15792808 DOI: 10.1016/j.febslet.2005.01.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 01/07/2005] [Accepted: 01/26/2005] [Indexed: 11/19/2022]
Abstract
We assessed the effect of multiple-mutations within one IgE-binding area on allergenicity of Der f 2. The triple-mutant of Der f 2, P34/95/99A, exhibited the most significant reduction of allergenicity and circular dichroism analysis showed that the global structure of Der f 2 was maintained in P34/95/99A. These results indicate that such a strategy is effective when designing allergen-vaccines, which achieve less allergenicity for a broad population of patients without disrupting the global structure. Structurally, Der f 2 is a member of the MD-2 related lipid-recognition proteins. The sites for the triple-mutation located on the characteristically charged entrance of a cavity and corresponded to the regions critical to ligand-binding in the Niemann-Pick type 2 disease protein and MD-2.
Collapse
Affiliation(s)
- Takuya Nakazawa
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | | | | | |
Collapse
|
2191
|
Yoshimori A, Takasawa R, Hayakawa A, Mizuno M, Yoshida J, Tanuma S. Structure-based design of an agonistic peptide targeting Fas. Apoptosis 2005; 10:323-9. [PMID: 15843893 DOI: 10.1007/s10495-005-0806-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A small agonistic peptide FRAP-4 (WEWT, Fas reactive peptide-4) that binds to the human Fas molecule was discovered using our computer screening strategy named the Amino acid Complement Wave (ACW) method, which is based on the complementarities of interacting amino acids between comprehensive testing peptides and a target protein surface pocket. In silico docking studies demonstrated the specific interaction of FRAP-4 with the main Fas ligand (FasL) binding domain in the Fas molecule. An octamer of this peptide produced by carboxyl terminal linkages of polylysine branches (MAP), (FRAP-4)8-MAP, effectively induced apoptosis in human ovarian cancer cell line NOS4 cells that was associated with the activation of caspases-8, -9 and -3, and the cleavage of PARP. Alanine substitution of the N-terminal W in FRAP-4 resulted in complete loss of FasL-mimetic action of (FRAP-4)8-MAP, suggesting that the aromatic functionality at the N-terminal position W appears to play an essentially important role in Fas binding ability. These observations indicate that the FasL-mimetic peptide should serve as an excellent starting point for the design of effective compounds with FasL-mimetic activity. Furthermore, the ACW method for the structure-based design of optimized small peptides against receptor molecules such as Fas could open new avenues for the development of peptide mimetic and nonpeptidic organic forms to generate novel effective pharmaceuticals.
Collapse
Affiliation(s)
- A Yoshimori
- Research Institute for Biological Sciences, Tokyo University of Science, 2669 Yamazaki Noda, Chiba, 278-0022, Japan
| | | | | | | | | | | |
Collapse
|
2192
|
Likić VA, Perry A, Hulett J, Derby M, Traven A, Waller RF, Keeling PJ, Koehler CM, Curran SP, Gooley PR, Lithgow T. Patterns that Define the Four Domains Conserved in Known and Novel Isoforms of the Protein Import Receptor Tom20. J Mol Biol 2005; 347:81-93. [PMID: 15733919 DOI: 10.1016/j.jmb.2004.12.057] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Revised: 12/17/2004] [Accepted: 12/27/2004] [Indexed: 11/22/2022]
Abstract
Tom20 is the master receptor for protein import into mitochondria. Analysis of motifs present in Tom20 sequences from fungi and animals found several highly conserved regions, including features of the transmembrane segment, the ligand-binding domain and functionally important flexible segments at the N terminus and the C terminus of the protein. Hidden Markov model searches of genome sequence data revealed novel isoforms of Tom20 in vertebrate and invertebrate animals. A three-dimensional comparative model of the novel type I Tom20, based on the structurally characterized type II isoform, shows important differences in the amino acid residues lining the ligand-binding groove, where the type I protein from animals is more similar to the fungal form of Tom20. Given that the two receptor types from mouse interact with the same set of precursor protein substrates, comparative analysis of the substrate-binding site provides unique insight into the mechanism of substrate recognition. No Tom20-related protein was found in genome sequence data from plants or protozoans, suggesting the receptor Tom20 evolved after the split of animals and fungi from the main lineage of eukaryotes.
Collapse
Affiliation(s)
- Vladimir A Likić
- Russell Grimwade School of Biochemistry and Molecular Biology, University of Melbourne, Melbourne 3010, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2193
|
Monk BC, Niimi K, Lin S, Knight A, Kardos TB, Cannon RD, Parshot R, King A, Lun D, Harding DRK. Surface-active fungicidal D-peptide inhibitors of the plasma membrane proton pump that block azole resistance. Antimicrob Agents Chemother 2005; 49:57-70. [PMID: 15616276 PMCID: PMC538910 DOI: 10.1128/aac.49.1.57-70.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 1.8-million-member D-octapeptide combinatorial library was constructed in which each member comprised a diversity-containing N-terminal pentapeptide and a C-terminal amidated triarginine motif. The C-terminal motif concentrated the library members at the fungal cell surface. A primary screen for inhibitors of Saccharomyces cerevisiae and Candida albicans growth, together with an in vitro secondary screen with the S. cerevisiae plasma membrane ATPase (Pma1p) as a target, identified the antifungal D-octapeptide BM0 (D-NH(2)-RFWWFRRR-CONH(2)). Optimization of BM0 led to the construction of BM2 (D-NH(2)-RRRFWWFRRR-CONH(2)), which had broad-spectrum fungicidal activity against S. cerevisiae, Candida species, and Cryptococcus neoformans; bound strongly to the surfaces of fungal cells; inhibited the physiological activity of Pma1p; and appeared to target Pma1p, with 50% inhibitory concentrations in the range of 0.5 to 2.5 microM. At sub-MICs (<5 microM), BM2 chemosensitized to fluconazole (FLC) S. cerevisiae strains functionally hyperexpressing fungal lanosterol 14alpha-demethylase and resistance-conferring transporters of azole drugs. BM2 chemosensitized to FLC some FLC-resistant clinical isolates of C. albicans and C. dubliniensis and chemosensitized to itraconazole clinical isolates of C. krusei that are intrinsically resistant to FLC. The growth-inhibitory concentrations of BM2 did not cause fungal cell permeabilization, significant hemolysis of red blood cells, or the death of cultured HEp-2 epithelial cells. BM2 represents a novel class of broad-spectrum, surface-active, Pma1p-targeting fungicides which increases the potencies of azole drugs and circumvents azole resistance.
Collapse
Affiliation(s)
- Brian C Monk
- Molecular Microbiology Laboratory, Department of Oral Sciences, School of Dentistry, University of Otago, P.O. Box 647, Dunedin 9001, New Zealand.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2194
|
Aloy P, Russell RB. Structure-based systems biology: a zoom lens for the cell. FEBS Lett 2005; 579:1854-8. [PMID: 15763563 DOI: 10.1016/j.febslet.2005.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 02/08/2005] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
Systems biology seeks to explain complex biological systems, such as the cell, through the integration of many different types of information. Here, we discuss how the incorporation of high-resolution structural data can provide key molecular details often necessary to understand the complex connection between individual molecules and cell behavior. We suggest a process of zooming on the cell, from global networks through pathways to the precise atomic contacts at the interfaces of interacting proteins.
Collapse
Affiliation(s)
- Patrick Aloy
- EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany.
| | | |
Collapse
|
2195
|
Takahashi S, Zhao Y, O’Maille PE, Greenhagen BT, Noel JP, Coates RM, Chappell J. Kinetic and molecular analysis of 5-epiaristolochene 1,3-dihydroxylase, a cytochrome P450 enzyme catalyzing successive hydroxylations of sesquiterpenes. J Biol Chem 2005; 280:3686-96. [PMID: 15522862 PMCID: PMC2859954 DOI: 10.1074/jbc.m411870200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The final step of capsidiol biosynthesis is catalyzed by 5-epiaristolochene dihydroxylase (EAH), a cytochrome P450 enzyme that catalyzes the regio- and stereospecific insertion of two hydroxyl moieties into the bicyclic sesquiterpene 5-epiaristolochene (EA). Detailed kinetic studies using EA and the two possible monohydroxylated intermediates demonstrated the release of 1beta-hydroxy-EA ((OH)EA) at high EA concentrations and a 10-fold catalytic preference for 1beta(OH)EA versus 3alpha(OH)EA, indicative of a preferred reaction order of hydroxylation at C-1, followed by that at C-3. Sequence alignments and homology modeling identified active-site residues tested for their contribution to substrate specificity and overall enzymatic activity. Mutants EAH-S368C and EAH-S368V exhibited wild-type catalytic efficiencies for 1beta(OH)EA biosynthesis, but were devoid of the successive hydroxylation activity for capsidiol biosynthesis. In contrast to EAH-S368C, EAH-S368V catalyzed the relative equal biosynthesis of 1beta(OH)EA, 2beta(OH)EA, and 3beta(OH)EA from EA with wild-type efficiency. Moreover, EAH-S368V converted approximately 1.5% of these monohydroxylated products to their respective ketone forms. Alanine and threonine mutations at position 368 were significantly compromised in their conversion rates of EA to capsidiol and correlated with 3.6- and 5.7-fold increases in their Km values for the 1beta(OH)EA intermediate, respectively. A role for Ile486 in the successive hydroxylations of EA was also suggested by the EAH-I468A mutant, which produced significant amounts 1beta(OH)EA, but negligible amounts of capsidiol from EA. The altered product profile of the EAH-I486A mutant correlated with a 3.6-fold higher Km for EA and a 4.4-fold slower turnover rate (kcat) for 1beta(OH)EA. These kinetic and mutational studies were correlated with substrate docking predictions to suggest how Ser368 and Ile486 might contribute to active-site topology, substrate binding, and substrate presentation to the oxo-Fe-heme reaction center.
Collapse
Affiliation(s)
- Shunji Takahashi
- Plant Physiology, Biochemistry, and Molecular Biology Program, Agronomy Department, University of Kentucky, Lexington, Kentucky, 40546-0312
| | - Yuxin Zhao
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801
| | - Paul E. O’Maille
- Salk Institute for Biological Studies, La Jolla, California 92037
| | - Bryan T. Greenhagen
- Plant Physiology, Biochemistry, and Molecular Biology Program, Agronomy Department, University of Kentucky, Lexington, Kentucky, 40546-0312
| | - Joseph P. Noel
- Salk Institute for Biological Studies, La Jolla, California 92037
| | - Robert M. Coates
- Department of Chemistry, University of Illinois, Urbana, Illinois 61801
| | - Joe Chappell
- Plant Physiology, Biochemistry, and Molecular Biology Program, Agronomy Department, University of Kentucky, Lexington, Kentucky, 40546-0312
| |
Collapse
|
2196
|
Topf M, Baker ML, John B, Chiu W, Sali A. Structural characterization of components of protein assemblies by comparative modeling and electron cryo-microscopy. J Struct Biol 2005; 149:191-203. [PMID: 15681235 DOI: 10.1016/j.jsb.2004.11.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 11/05/2004] [Indexed: 02/01/2023]
Abstract
We explore structural characterization of protein assemblies by a combination of electron cryo-microscopy (cryoEM) and comparative protein structure modeling. Specifically, our method finds an optimal atomic model of a given assembly subunit and its position within an assembly by fitting alternative comparative models into a cryoEM map. The alternative models are calculated by MODELLER [J. Mol. Biol. 234 (1993) 313] from different sequence alignments between the modeled protein and its template structures. The fitting of these models into a cryoEM density map is performed either by FOLDHUNTER [J. Mol. Biol. 308 (2001) 1033] or by a new density fitting module of MODELLER (Mod-EM). Identification of the most accurate model is based on the correlation between the model accuracy and the quality of fit into the cryoEM density map. To quantify this correlation, we created a benchmark consisting of eight proteins of different structural folds with corresponding density maps simulated at five resolutions from 5 to 15 angstroms, with three noise levels each. Each of the proteins in the set was modeled based on 300 different alignments to their remotely related templates (12-32% sequence identity), spanning the range from entirely inaccurate to essentially accurate alignments. The benchmark revealed that one of the most accurate models can usually be identified by the quality of its fit into the cryoEM density map, even for noisy maps at 15 angstroms resolution. Therefore, a cryoEM density map can be helpful in improving the accuracy of a comparative model. Moreover, a pseudo-atomic model of a component in an assembly may be built better with comparative models of the native subunit sequences than with experimentally determined structures of their homologs.
Collapse
Affiliation(s)
- Maya Topf
- Department of Biopharmaceutical Sciences, California Institute for Quantitative Biomedical Research, Mission Bay Genentech Hall, 600 16th Street, Suite N472D, University of California, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
2197
|
Chattopadhyay A, Jones NG, Nietlispach D, Nielsen PR, Voorheis HP, Mott HR, Carrington M. Structure of the C-terminal Domain from Trypanosoma brucei Variant Surface Glycoprotein MITat1.2. J Biol Chem 2005; 280:7228-35. [PMID: 15557330 DOI: 10.1074/jbc.m410787200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The variant surface glycoprotein (VSG) of African trypanosomes has a structural role in protecting other cell surface proteins from effector molecules of the mammalian immune system and also undergoes antigenic variation necessary for a persistent infection in a host. Here we have reported the solution structure of a VSG type 2 C-terminal domain from MITat1.2, completing the first structure of both domains of a VSG. The isolated C-terminal domain is a monomer in solution and forms a novel fold, which commences with a short alpha-helix followed by a single turn of 3(10)-helix and connected by a short loop to a small anti-parallel beta-sheet and then a longer alpha-helix at the C terminus. This compact domain is flanked by two unstructured regions. The structured part of the domain contains 42 residues, and the core comprises 2 disulfide bonds and 2 hydrophobic residues. These cysteines and hydrophobic residues are conserved in other VSGs, and we have modeled the structures of two further VSG C-terminal domains using the structure of MITat1.2. The models suggest that the overall structure of the core is conserved in the different VSGs but that the C-terminal alpha-helix is of variable length and depends on the presence of charged residues. The results provided evidence for a conserved tertiary structure for all the type 2 VSG C-terminal domains, indicated that VSG dimers form through interactions between N-terminal domains, and showed that the selection pressure for sequence variation within a conserved tertiary structure acts on the whole of the VSG molecule.
Collapse
Affiliation(s)
- Anasuya Chattopadhyay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
2198
|
Dlakić M. 3D models of yeast RNase P/MRP proteins Rpp1p and Pop3p. RNA (NEW YORK, N.Y.) 2005; 11:123-127. [PMID: 15613537 PMCID: PMC1370701 DOI: 10.1261/rna.7128905] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2004] [Accepted: 11/08/2004] [Indexed: 05/24/2023]
Abstract
Sensitive profile searches and fold recognition were used to predict the structures of two yeast RNase P/MRP proteins. Rpp1p, which is one of the subunits common to eukaryotes and archaea, is predicted to adopt the seven-stranded TIM-barrel fold found in PHP phosphoesterases. Pop3p, initially thought to be one of the RNase P/MRP subunits unique to yeast, has been assigned the L7Ae/L30e fold. This RNA-binding fold is also present in human RNase P subunit Rpp38, raising the possibility that Pop3p and Rpp38 are functional homologs.
Collapse
|
2199
|
Pawlak SD, Radlinska M, Chmiel AA, Bujnicki JM, Skowronek KJ. Inference of relationships in the 'twilight zone' of homology using a combination of bioinformatics and site-directed mutagenesis: a case study of restriction endonucleases Bsp6I and PvuII. Nucleic Acids Res 2005; 33:661-71. [PMID: 15684412 PMCID: PMC548357 DOI: 10.1093/nar/gki213] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thus far, identification of functionally important residues in Type II restriction endonucleases (REases) has been difficult using conventional methods. Even though known REase structures share a fold and marginally recognizable active site, the overall sequence similarities are statistically insignificant, unless compared among proteins that recognize identical or very similar sequences. Bsp6I is a Type II REase, which recognizes the palindromic DNA sequence 5′GCNGC and cleaves between the cytosine and the unspecified nucleotide in both strands, generating a double-strand break with 5′-protruding single nucleotides. There are no solved structures of REases that recognize similar DNA targets or generate cleavage products with similar characteristics. In straightforward comparisons, the Bsp6I sequence shows no significant similarity to REases with known structures. However, using a fold-recognition approach, we have identified a remote relationship between Bsp6I and the structure of PvuII. Starting from the sequence–structure alignment between Bsp6I and PvuII, we constructed a homology model of Bsp6I and used it to predict functionally significant regions in Bsp6I. The homology model was supported by site-directed mutagenesis of residues predicted to be important for dimerization, DNA binding and catalysis. Completing the picture of sequence–structure–function relationships in protein superfamilies becomes an essential task in the age of structural genomics and our study may serve as a paradigm for future analyses of superfamilies comprising strongly diverged members with little or no sequence similarity.
Collapse
Affiliation(s)
| | - Monika Radlinska
- Institute of Microbiology, Warsaw Universityul. Miecznikowa 1, 02-096 Warsaw, Poland
| | | | - Janusz M. Bujnicki
- To whom correspondence should be addressed. Tel: +48 22 668 5384; Fax: +48 22 668 5288;
| | | |
Collapse
|
2200
|
Vardy E, Arkin IT, Gottschalk KE, Kaback HR, Schuldiner S. Structural conservation in the major facilitator superfamily as revealed by comparative modeling. Protein Sci 2005; 13:1832-40. [PMID: 15215526 PMCID: PMC2279927 DOI: 10.1110/ps.04657704] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The structures of membrane transporters are still mostly unsolved. Only recently, the first two high-resolution structures of transporters of the major facilitator superfamily (MFS) were published. Despite the low sequence similarity of the two proteins involved, lactose permease and glycerol-3-phosphate transporter, the reported structures are highly similar. This leads to the hypothesis that all members of the MFS share a similar structure, regardless of their low sequence identity. To test this hypothesis, we generated models of two other members of the MFS, the Tn10-encoded metal-tetracycline/H(+) antiporter (TetAB) and the rat vesicular monoamine transporter (rVMAT2). The models are based on the two MFS structures and on experimental data. The models for both proteins are in good agreement with the data available and support the notion of a shared fold for all MFS proteins.
Collapse
Affiliation(s)
- Eyal Vardy
- Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, 91904 Israel
| | | | | | | | | |
Collapse
|