2201
|
Studies in fat grafting: Part III. Fat grafting irradiated tissue--improved skin quality and decreased fat graft retention. Plast Reconstr Surg 2014; 134:249-257. [PMID: 25068325 DOI: 10.1097/prs.0000000000000326] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Following radiation therapy, skin becomes fibrotic and can present a difficult problem for reconstructive surgeons. There is an increasing belief that fat grafting under irradiated skin can reverse the damage caused by radiation. The present study evaluated the effect of fat grafting on irradiated skin, along with fat graft quality and retention rates in irradiated tissue. METHODS Nine adult Crl:NU-Foxn1 CD-1 mice underwent 30-Gy external beam irradiation of the scalp. Four weeks after irradiation, scalp skin from irradiated and nonirradiated mice was harvested and compared histologically for dermal thickness, collagen content, and vascular density. Human fat grafts were then injected in the subcutaneous plane of the scalp. Skin assessment was performed in the irradiated group at 2 and 8 weeks after grafting, and fat graft retention was measured at baseline and every 2 weeks up to 8 weeks after grafting using micro-computed tomography. Finally, fat graft samples were explanted at 8 weeks, and quality scoring was performed. RESULTS Fat grafting resulted in decreased dermal thickness, decreased collagen content, and increased vascular density in irradiated skin. Computed tomographic analysis revealed significantly decreased fat graft survival in the irradiated group compared with the nonirradiated group. Histologic scoring of explanted fat grafts demonstrated no difference in quality between the irradiated and nonirradiated groups. CONCLUSIONS Fat grafting attenuates dermal collagen deposition and vessel depletion characteristic of radiation fibrosis. Although fat graft retention rates are significantly lower in irradiated than in nonirradiated tissue, the quality of retained fat between the groups is similar.
Collapse
|
2202
|
Wang Y, Lauer ME, Anand S, Mack JA, Maytin EV. Hyaluronan synthase 2 protects skin fibroblasts against apoptosis induced by environmental stress. J Biol Chem 2014; 289:32253-32265. [PMID: 25266724 DOI: 10.1074/jbc.m114.578377] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
A balanced turnover of dermal fibroblasts is crucial for structural integrity and normal function of the skin. During recovery from environmental injury (such as UV exposure and physical wounding), apoptosis is an important mechanism regulating fibroblast turnover. We are interested in the role that hyaluronan (HA), an extracellular matrix molecule synthesized by HA synthase enzymes (Has), plays in regulating apoptosis in fibroblasts. We previously reported that Has1 and Has3 double knock-out (Has1/3 null) mice show accelerated wound closure and increased numbers of fibroblasts in the dermis. In the present study, we report that HA levels and Has2 mRNA expression are higher in cultured Has1/3 null primary skin fibroblasts than in wild type (WT) cells. Apoptosis induced by two different environmental stressors, UV exposure and serum starvation (SS), was reduced in the Has1/3 null cells. Hyaluronidase, added to cultures to remove extracellular HA, surprisingly had no effect upon apoptotic susceptibility to UVB or SS. However, cells treated with 4-methylumbelliferone to inhibit HA synthesis were sensitized to apoptosis induced by SS or UVB. When fibroblasts were transfected with Has2-specific siRNA that lowered Has2 mRNA and HA levels by 90%, both Has1/3 null and WT cells became significantly more sensitive to apoptosis. The exogenous addition of high molecular weight HA failed to reverse this effect. We conclude that Has1/3 null skin fibroblasts (which have higher levels of Has2 gene expression) are resistant to stress-induced apoptosis.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biomedical Engineering and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Mark E Lauer
- Department of Biomedical Engineering and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Sanjay Anand
- Department of Biomedical Engineering and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195; Department of Dermatology, Dermatology and Plastic Surgery Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Judith A Mack
- Department of Biomedical Engineering and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195; Department of Dermatology, Dermatology and Plastic Surgery Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Edward V Maytin
- Department of Biomedical Engineering and Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195; Department of Dermatology, Dermatology and Plastic Surgery Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195.
| |
Collapse
|
2203
|
Müller J, Gorressen S, Grandoch M, Feldmann K, Kretschmer I, Lehr S, Ding Z, Schmitt JP, Schrader J, Garbers C, Heusch G, Kelm M, Scheller J, Fischer JW. Interleukin-6-dependent phenotypic modulation of cardiac fibroblasts after acute myocardial infarction. Basic Res Cardiol 2014; 109:440. [PMID: 25236954 DOI: 10.1007/s00395-014-0440-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 09/02/2014] [Accepted: 09/05/2014] [Indexed: 11/26/2022]
Abstract
Interleukin-6 (IL-6) is a multifunctional cytokine that orchestrates the immune response to a wide variety of pathophysiologic challenges but also contributes to tissue homeostasis. Furthermore, IL-6 is elevated in patients with acute myocardial infarction. Hyaluronan (HA) is an extracellular carbohydrate that has been implicated in wound healing and accumulates after acute myocardial infarction (AMI). Aim of this study was to investigate the involvement of IL-6 in the regulation of the HA-matrix in the early phase of infarct healing. In the present study, we show by the use of a blocking anti-IL-6 antibody, that endogenous IL-6 rapidly but transiently increased HA-synthase (HAS) 1 and 2 expression resulting in the formation of a HA-rich matrix acutely after AMI in mice. In vitro, IL-6 induced HAS1 and 2 via STAT3 phosphorylation in cardiac fibroblasts (CF) and supported a myofibroblastic phenotype in a HA-dependent manner. Furthermore, CCL5 and MCP1 expression were dependent on IL-6, HA-synthesis and the HA-receptor CD44 as shown in cultured CF derived from CD44 knockout mice. In vivo after AMI, blocking IL-6 decreased HA-matrix formation in the peri-infarct region and alpha-smooth muscle actin-positive myofibroblasts. Blocking IL-6 also reduced neutrophil infiltration in infarcted left ventricles. Moreover, treatment with the blocking IL-6 antibody reduced cardiac ejection fraction and increased infarct size 3 weeks after AMI. These findings support a functionally important role for IL-6 in CF by transiently inducing a HA-rich matrix that in turn promotes a myofibroblastic phenotype and inflammatory responses, and ultimately establishes a cardioprotective program after AMI.
Collapse
Affiliation(s)
- Julia Müller
- Institut für Pharmakologie und Klinische Pharmakologie, Universitätsklinikum der Heinrich-Heine-Universität Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2204
|
Abstract
Lupus nephritis (LN) is an autoimmune disease that occurs when autoantibodies complex with self-antigen and form immune complexes that accumulate in the glomeruli. These immune complexes initiate an inflammatory response resulting in glomerular injury. LN often concomitantly affects the tubulointerstitial compartment of the kidney, leading first to interstitial inflammation and subsequently to interstitial fibrosis and atrophy of the renal tubules if not appropriately treated. Presently the only way to assess interstitial inflammation and fibrosis is through kidney biopsy, which is invasive and cannot be repeated frequently. Hence, monitoring of disease progression and response to therapy is suboptimal. In this paper we describe a mathematical model of the progress from tubulointerstitial inflammation to fibrosis. We demonstrate how the model can be used to monitor treatments for interstitial fibrosis in LN with drugs currently being developed or used for nonrenal fibrosis.
Collapse
|
2205
|
Hyaluronan and RHAMM in wound repair and the "cancerization" of stromal tissues. BIOMED RESEARCH INTERNATIONAL 2014; 2014:103923. [PMID: 25157350 PMCID: PMC4137499 DOI: 10.1155/2014/103923] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 07/04/2014] [Indexed: 12/12/2022]
Abstract
Tumors and wounds share many similarities including loss of tissue architecture, cell polarity and cell differentiation, aberrant extracellular matrix (ECM) remodeling (Ballard et al., 2006) increased inflammation, angiogenesis, and elevated cell migration and proliferation. Whereas these changes are transient in repairing wounds, tumors do not regain tissue architecture but rather their continued progression is fueled in part by loss of normal tissue structure. As a result tumors are often described as wounds that do not heal. The ECM component hyaluronan (HA) and its receptor RHAMM have both been implicated in wound repair and tumor progression. This review highlights the similarities and differences in their roles during these processes and proposes that RHAMM-regulated wound repair functions may contribute to “cancerization” of the tumor microenvironment.
Collapse
|
2206
|
Görg B, Karababa A, Shafigullina A, Bidmon HJ, Häussinger D. Ammonia-induced senescence in cultured rat astrocytes and in human cerebral cortex in hepatic encephalopathy. Glia 2014; 63:37-50. [PMID: 25092802 DOI: 10.1002/glia.22731] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022]
Abstract
Hepatic encephalopathy (HE) is a frequent complication of liver cirrhosis and is due to a low-grade cerebral edema associated with oxidative/nitrosative stress. Recent reports suggest that cognitive impairment in cirrhotic patients may not resolve completely after an attack of manifest HE. As astrocyte dysfunction is central to the pathogenesis of HE and astrocytes are critically involved in synaptic plasticity, we tested for sustained impairment of astrocyte function by analyzing expression levels of senescence biomarkers in ammonia-treated cultured rat astrocytes and in postmortem brain samples from cirrhotic patients with or without HE. NH4 Cl time- and dose-dependently inhibited proliferation of cultured astrocytes by up to 45% (5 mmol/L, 72 h) and strongly increased senescence-associated β-galactosidase activity. Inhibition of astrocyte proliferation by ammonia was mediated by a l-methionine sulfoximine-, oxidative stress-, and p38(MAPK) -dependent activation of p53 associated with enhanced transcription of cell cycle inhibitory genes GADD45α and p21. Mitochondria and the nucleus were identified as sources of oxygen radical formation after prolonged NH4 Cl exposure. Concurrently, NH4 Cl (5 mmol/L) treatment inhibited both epidermal growth factor- and brain-derived neurotrophic factor (BDNF)-induced proliferation as well as BDNF-mediated astrocyte morphology changes through downregulation of the respective growth factor receptors epidermal growth factor receptor and truncated tyrosine receptor kinase B. Increased mRNA expression levels of senescence-associated genes were also found in post mortem brain samples from patients with liver cirrhosis with HE, but not in those without HE. The data suggest that ammonia toxicity and HE are associated with premature astrocyte senescence, which may impair neurotransmission and contribute to persistence of cognitive disturbances after resolution of episodes of overt HE.
Collapse
Affiliation(s)
- Boris Görg
- Clinic for Gastroenterologogy, Hepatology and Infectious Diseases, Heinrich Heine University, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
2207
|
Midgley AC, Bowen T, Phillips AO, Steadman R. MicroRNA-7 inhibition rescues age-associated loss of epidermal growth factor receptor and hyaluronan-dependent differentiation in fibroblasts. Aging Cell 2014; 13:235-44. [PMID: 24134702 PMCID: PMC4331777 DOI: 10.1111/acel.12167] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2013] [Indexed: 01/21/2023] Open
Abstract
Age-related defects in fibroblast differentiation were previously shown to be associated with impaired hyaluronan synthase 2 (HAS2) and epidermal growth factor receptor (EGFR) function, with both required for normal fibroblast functionality. In fibroblasts, transforming growth factor-beta 1 (TGF-β1)-dependent phenotypic activation uses two distinct but co-operating pathways that involve TGF-β receptor (TGF-βR)/Smad2 activation and HA-mediated CD44-EGFR co-localization and signalling through extracellular signal-regulated kinase 1/2 (ERK1/2). The HA-mediated CD44-EGFR pathway was found to be compromised with in vitro aging, through loss of EGFR expression and a reduced movement of CD44 throughout the cellular membrane. Here, we also investigate the involvement of microRNAs (miRNAs) in age-related loss of differentiation, through investigation of miRNA-7 (miR-7) regulation of the HA-mediated EGFR-signalling pathway. The transcription of miR-7 was found to be upregulated in aged cells. In young cells, age-related loss of differentiation could be mimicked through transfection of pre-miR-7, and in aged cells, could be reversed through transfection of locked nucleic acids (LNA) targeting miR-7. Additionally, miR-7 was found to be involved in the regulation of CD44 membrane motility, which was downregulated in instances of miR-7 upregulation, and partially restorable through either miR-7 inhibition or HAS2 overexpression. The altered dynamics of CD44 in the cell membrane demonstrated a further action of miR-7 in regulating the HA-dependent CD44/EGFR pathway. We explain this novel mechanism of age-associated functional consequence due to miR-7 upregulation and demonstrate that it is reversible; highlighting miR-7 as a potential target for restoring the healing capabilities in chronic wounds in the elderly.
Collapse
Affiliation(s)
- Adam C. Midgley
- Institute of Nephrology; Institute of Molecular & Experimental Medicine; School of Medicine and Cardiff Institute of Tissue Engineering & Repair; University of Cardiff; Heath Park Cardiff CF14 4XN UK
| | - Timothy Bowen
- Institute of Nephrology; Institute of Molecular & Experimental Medicine; School of Medicine and Cardiff Institute of Tissue Engineering & Repair; University of Cardiff; Heath Park Cardiff CF14 4XN UK
| | - Aled O. Phillips
- Institute of Nephrology; Institute of Molecular & Experimental Medicine; School of Medicine and Cardiff Institute of Tissue Engineering & Repair; University of Cardiff; Heath Park Cardiff CF14 4XN UK
| | - Robert Steadman
- Institute of Nephrology; Institute of Molecular & Experimental Medicine; School of Medicine and Cardiff Institute of Tissue Engineering & Repair; University of Cardiff; Heath Park Cardiff CF14 4XN UK
| |
Collapse
|
2208
|
Principe DR, Doll JA, Bauer J, Jung B, Munshi HG, Bartholin L, Pasche B, Lee C, Grippo PJ. TGF-β: duality of function between tumor prevention and carcinogenesis. J Natl Cancer Inst 2014; 106:djt369. [PMID: 24511106 DOI: 10.1093/jnci/djt369] [Citation(s) in RCA: 417] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Several mechanisms underlying tumor progression have remained elusive, particularly in relation to transforming growth factor beta (TGF-β). Although TGF-β initially inhibits epithelial growth, it appears to promote the progression of advanced tumors. Defects in normal TGF-β pathways partially explain this paradox, which can lead to a cascade of downstream events that drive multiple oncogenic pathways, manifesting as several key features of tumorigenesis (uncontrolled proliferation, loss of apoptosis, epithelial-to-mesenchymal transition, sustained angiogenesis, evasion of immune surveillance, and metastasis). Understanding the mechanisms of TGF-β dysregulation will likely reveal novel points of convergence between TGF-β and other pathways that can be specifically targeted for therapy.
Collapse
Affiliation(s)
- Daniel R Principe
- Affiliations of authors: Department of Medicine, Division of Gastroenterology (DRP, JB, BJ) and Division of Hematology/Oncology (HGM), Department of Surgery, Division of GI Surgical Oncology (DRP, PJG), and Department of Urology (CL), Northwestern University Feinberg School of Medicine, Chicago, IL; Department of Biomedical Engineering. McCormick School of Engineering, Northwestern University, Evanston, IL (DRP); Department of Biomedical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI (JAD); UMR INSERM U1052, CNRS 5286, Université Lyon 1, Centre de Recherche en Cancérologie de Lyon, Lyon, France (LB); Division of Hematology/Oncology, Department of Medicine, University of Alabama-Birmingham, Birmingham, AL (BP); Department of Pathology and Laboratory Medicine, University of California-Irvine, Irvine, CA (CL)
| | | | | | | | | | | | | | | | | |
Collapse
|
2209
|
Liu LK, Finzel BC. Fragment-based identification of an inducible binding site on cell surface receptor CD44 for the design of protein-carbohydrate interaction inhibitors. J Med Chem 2014; 57:2714-25. [PMID: 24606063 DOI: 10.1021/jm5000276] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Selective inhibitors of hyaluronan (HA) binding to the cell surface receptor CD44 will have value as probes of CD44-mediated signaling and have potential as therapeutic agents in chronic inflammation, cardiovascular disease, and cancer. Using biophysical binding assays, fragment screening, and crystallographic characterization of complexes with the CD44 HA binding domain, we have discovered an inducible pocket adjacent to the HA binding groove into which small molecules may bind. Iterations of fragment combination and structure-driven design have allowed identification of a series of 1,2,3,4-tetrahydroisoquinolines as the first nonglycosidic inhibitors of the CD44-HA interaction. The affinity of these molecules for the CD44 HA binding domain parallels their ability to interfere with CD44 binding to polymeric HA in vitro. X-ray crystallographic complexes of lead compounds are described and compared to a new complex with a short HA tetrasaccharide, to establish the tetrahydroisoquinoline pharmacophore as an attractive starting point for lead optimization.
Collapse
Affiliation(s)
- Li-Kai Liu
- Department of Medicinal Chemistry, University of Minnesota , 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | | |
Collapse
|
2210
|
Chang G, Wang J, Zhang H, Zhang Y, Wang C, Xu H, Zhang H, Lin Y, Ma L, Li Q, Pang T. CD44 targets Na(+)/H(+) exchanger 1 to mediate MDA-MB-231 cells' metastasis via the regulation of ERK1/2. Br J Cancer 2014; 110:916-27. [PMID: 24434427 PMCID: PMC3929887 DOI: 10.1038/bjc.2013.809] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/24/2013] [Accepted: 12/04/2013] [Indexed: 12/31/2022] Open
Abstract
Background: CD44, a transmembrane glycoprotein expressed in a variety of cells and tissues, has been implicated in tumour metastasis. But the molecular mechanisms of CD44-mediated tumour cell metastasis remain to be elucidated. Methods: The downregulation of CD44 was determined by immunofluorescence. Moreover, the motility of breast cancer cells was detected by wound-healing and transwell experiments. Then the spontaneous metastasis of CD44-silenced MDA-MB-231 cells was tested by histology with BALB/c nude mice. Results: A positive correlation between CD44 and Na+/H+ exchanger isoform 1 (NHE1) was found in two breast cancer cells. CD44 downregulation could inhibit the metastasis of MDA-MB-231 cells and the expressions of Na+/H+ exchanger 1. Moreover, CD44 overexpression upregulated the metastasis of MCF-7 cells, but the elevated metastatic ability was then inhibited by Cariporide. Interestingly, during these processes only the p-ERK1/2 was suppressed by CD44 downregulation and the expression of matrix metalloproteinases and metastatic capacity of MDA-MB-231 cells were greatly inhibited by the MEK1 inhibitor PD98059, which even had a synergistic effect with Cariporide. Furthermore, CD44 downregulation inhibits breast tumour outgrowth and spontaneous lung metastasis. Conclusions: Taken together, this work indicates that CD44 regulates the metastasis of breast cancer cells through regulating NHE1 expression, which could be used as a novel strategy for breast cancer therapy.
Collapse
Affiliation(s)
- G Chang
- 1] State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China [2] Department of Neurology, Tianjin Medical University General Hospital; Tianjin Neurological Institute; Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education; Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Anshan Road, Tianjin 300052, China
| | - J Wang
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - H Zhang
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Y Zhang
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - C Wang
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - H Xu
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - H Zhang
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Y Lin
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - L Ma
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - Q Li
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| | - T Pang
- State key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing Road 288, Tianjin 300020, China
| |
Collapse
|
2211
|
Yan JK, Wang WQ, Wu JY. Recent advances in Cordyceps sinensis polysaccharides: Mycelial fermentation, isolation, structure, and bioactivities: A review. J Funct Foods 2014; 6:33-47. [PMID: 32362940 PMCID: PMC7185505 DOI: 10.1016/j.jff.2013.11.024] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 11/23/2013] [Accepted: 11/27/2013] [Indexed: 12/26/2022] Open
Abstract
Cordyceps (Ophiocordyceps sinensis) sinensis, the Chinese caterpillar fungus, is a unique and precious medicinal fungus in traditional Chinese medicine which has been used as a prestigious tonic and therapeutic herb in China for centuries. Polysaccharides are bioactive constituents of C. sinensis, exhibiting several activities such as immunomodulation, antitumour, antioxidant and hypoglycaemic. As natural C. sinensis fruiting body-caterpillar complexes are very rare and expensive, the polysaccharides documented over the last 15-20 years from this fungal species were mostly extracted from cultivated fungal mycelia (intracellular polysaccharides) or from mycelial fermentation broth (exopolysaccharides). Extraction and purification of the polysaccharides is a tedious process involving numerous steps of liquid and solid phase separations. Nevertheless, a large number of polysaccharide structures have been purified and elucidated. However, relationships between the structures and activities of these polysaccharides are not well established. This review provides a comprehensive summary of the most recent developments in various aspects (i.e., production, extraction, structure, and bioactivity) of the intracellular and exopolysaccharides from mycelial fermentation of C. sinensis fungi. The contents and data will serve as useful references for further investigation, production and application of these polysaccharides in functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Jing-Kun Yan
- Department of Applied Biology & Chemical Technology, PolyU Shenzhen Research Institute, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Wen-Qiang Wang
- Department of Applied Biology & Chemical Technology, PolyU Shenzhen Research Institute, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jian-Yong Wu
- Department of Applied Biology & Chemical Technology, PolyU Shenzhen Research Institute, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
2212
|
Howard CM, Baudino TA. Dynamic cell-cell and cell-ECM interactions in the heart. J Mol Cell Cardiol 2013; 70:19-26. [PMID: 24140801 DOI: 10.1016/j.yjmcc.2013.10.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 12/17/2022]
Abstract
Recent studies have placed an increasing amount of emphasis on the cardiovascular system and understanding how the heart and its vasculature can be regenerated following pathological stresses, such as hypertension and myocardial infarction. The remodeling process involves the permanent cellular constituents of the heart including myocytes, fibroblasts, endothelial cells, pericytes, smooth muscle cells and stem cells. It also includes transient cell populations, such as immune cells (e.g. lymphocytes, mast cells and macrophages) and circulating stem cells. Following injury, there are dramatic shifts in the various cardiac cell populations that can affect cell-cell and cell-extracellular matrix interactions and cardiac function. Cardiac fibroblasts are a key component in normal heart function, as well as during the remodeling process through dynamic cell-cell interactions and synthesis and degradation of the extracellular matrix. Fibroblasts dynamically interact with the various cardiac cell populations through mechanical, chemical (autocrine and/or paracrine) and electrophysiological means to alter gene and protein expression, cellular processes and ultimately cardiac function. Better understanding these cell-cell and cell-extracellular matrix interactions and their biological consequences should provide novel therapeutic targets for the treatment of heart disease. In this review we discuss the nature of these interactions and the importance of these interactions in maintaining normal heart function, as well as their role in the cardiac remodeling process. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium."
Collapse
Affiliation(s)
| | - Troy A Baudino
- Department of Medicine, Division of Molecular Cardiology, Cardiovascular Research Institute, Texas A&M Health Science Center, Temple, TX 76504, USA; Central Texas Veterans Health Care System, Temple, TX 76504, USA.
| |
Collapse
|
2213
|
Gong J, Wang Y, Jiang R, Zhang G, Tian F. The naïve effector cells of collagen type I during acute experimental pancreatitis are acinar cells and not pancreatic stellate cells. Biochem Biophys Res Commun 2013; 439:528-32. [PMID: 24036265 DOI: 10.1016/j.bbrc.2013.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 09/02/2013] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The purpose of this study was to investigate the expression of collagen type I and the mRNA level of its regulatory factor, TGF-β1, in tissue samples of acute pancreatitis and to determine the significance of collagen type I in predisposition to pancreatic fibrosis during acute pancreatitis. METHODS Sprague-Dawley rats were divided into an experimental group (30 rats) and a control group (12 rats). The rats in the experimental group were intraperitoneally injected with cerulein to induce acute pancreatitis. The distribution and expression of collagen type I in the pancreatic tissues were examined by immunohistochemical staining. The mRNA level of TGF-β1 was determined by real-time polymerase chain reaction (PCR). RESULTS (1) Collagen type I was localized in the cytoplasm of pancreatic acinar cells. With pancreatitis progressed, strong positive staining for collagen type I covered whole pancreatic lobules, whereas, the islet tissue, interlobular area, and pancreatic necrotic area were negative for collagen type I. (2) The level of TGF-β1 mRNA in rats from the experimental group increased gradually the establishment of acute pancreatitis, and was significantly higher than that in the control group at every time point. CONCLUSIONS (1) During acute pancreatitis, pancreatic acinar cells, not pancreatic stellate cells as traditionally believed, were the naïve effector cells of collagen type I. (2) TGF-β1 played a key role in regulating collagen I expression during acute pancreatitis.
Collapse
Affiliation(s)
- JiaQing Gong
- Department of General Surgery, The People's Liberation Army General Hospital of Chengdu Command, Chengdu 610083, Sicuan Province, China.
| | | | | | | | | |
Collapse
|