2301
|
Walker AA, Madio B, Jin J, Undheim EAB, Fry BG, King GF. Melt With This Kiss: Paralyzing and Liquefying Venom of The Assassin Bug Pristhesancus plagipennis (Hemiptera: Reduviidae). Mol Cell Proteomics 2017; 16:552-566. [PMID: 28130397 DOI: 10.1074/mcp.m116.063321] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/04/2017] [Indexed: 11/06/2022] Open
Abstract
Assassin bugs (Hemiptera: Heteroptera: Reduviidae) are venomous insects, most of which prey on invertebrates. Assassin bug venom has features in common with venoms from other animals, such as paralyzing and lethal activity when injected, and a molecular composition that includes disulfide-rich peptide neurotoxins. Uniquely, this venom also has strong liquefying activity that has been hypothesized to facilitate feeding through the narrow channel of the proboscis-a structure inherited from sap- and phloem-feeding phytophagous hemipterans and adapted during the evolution of Heteroptera into a fang and feeding structure. However, further understanding of the function of assassin bug venom is impeded by the lack of proteomic studies detailing its molecular composition.By using a combined transcriptomic/proteomic approach, we show that the venom proteome of the harpactorine assassin bug Pristhesancus plagipennis includes a complex suite of >100 proteins comprising disulfide-rich peptides, CUB domain proteins, cystatins, putative cytolytic toxins, triabin-like protein, odorant-binding protein, S1 proteases, catabolic enzymes, putative nutrient-binding proteins, plus eight families of proteins without homology to characterized proteins. S1 proteases, CUB domain proteins, putative cytolytic toxins, and other novel proteins in the 10-16-kDa mass range, were the most abundant venom components. Thus, in addition to putative neurotoxins, assassin bug venom includes a high proportion of enzymatic and cytolytic venom components likely to be well suited to tissue liquefaction. Our results also provide insight into the trophic switch to blood-feeding by the kissing bugs (Reduviidae: Triatominae). Although some protein families such as triabins occur in the venoms of both predaceous and blood-feeding reduviids, the composition of venoms produced by these two groups is revealed to differ markedly. These results provide insights into the venom evolution in the insect suborder Heteroptera.
Collapse
Affiliation(s)
| | - Bruno Madio
- From the ‡Institute for Molecular Bioscience
| | - Jiayi Jin
- From the ‡Institute for Molecular Bioscience
| | | | - Bryan G Fry
- ‖School of Biological Sciences, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | |
Collapse
|
2302
|
Godfrey M, Touati SA, Kataria M, Jones A, Snijders AP, Uhlmann F. PP2A Cdc55 Phosphatase Imposes Ordered Cell-Cycle Phosphorylation by Opposing Threonine Phosphorylation. Mol Cell 2017; 65:393-402.e3. [PMID: 28132839 PMCID: PMC5296252 DOI: 10.1016/j.molcel.2016.12.018] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/10/2016] [Accepted: 12/20/2016] [Indexed: 02/02/2023]
Abstract
In the quantitative model of cell-cycle control, progression from G1 through S phase and into mitosis is ordered by thresholds of increasing cyclin-dependent kinase (Cdk) activity. How such thresholds are read out by substrates that respond with the correct phosphorylation timing is not known. Here, using the budding yeast model, we show that the abundant PP2ACdc55 phosphatase counteracts Cdk phosphorylation during interphase and delays phosphorylation of late Cdk substrates. PP2ACdc55 specifically counteracts phosphorylation on threonine residues, and consequently, we find that threonine-directed phosphorylation occurs late in the cell cycle. Furthermore, the late phosphorylation of a model substrate, Ndd1, depends on threonine identity of its Cdk target sites. Our results support a model in which Cdk-counteracting phosphatases contribute to cell-cycle ordering by imposing Cdk thresholds. They also unveil a regulatory principle based on the phosphoacceptor amino acid, which is likely to apply to signaling pathways beyond cell-cycle control.
Collapse
Affiliation(s)
- Molly Godfrey
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sandra A Touati
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Meghna Kataria
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Andrew Jones
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Ambrosius P Snijders
- Mass Spectrometry Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
2303
|
Kimura M, Morinaka Y, Imai K, Kose S, Horton P, Imamoto N. Extensive cargo identification reveals distinct biological roles of the 12 importin pathways. eLife 2017; 6:e21184. [PMID: 28117667 PMCID: PMC5305215 DOI: 10.7554/elife.21184] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022] Open
Abstract
Vast numbers of proteins are transported into and out of the nuclei by approximately 20 species of importin-β family nucleocytoplasmic transport receptors. However, the significance of the multiple parallel transport pathways that the receptors constitute is poorly understood because only limited numbers of cargo proteins have been reported. Here, we identified cargo proteins specific to the 12 species of human import receptors with a high-throughput method that employs stable isotope labeling with amino acids in cell culture, an in vitro reconstituted transport system, and quantitative mass spectrometry. The identified cargoes illuminated the manner of cargo allocation to the receptors. The redundancies of the receptors vary widely depending on the cargo protein. Cargoes of the same receptor are functionally related to one another, and the predominant protein groups in the cargo cohorts differ among the receptors. Thus, the receptors are linked to distinct biological processes by the nature of their cargoes.
Collapse
Affiliation(s)
| | | | - Kenichiro Imai
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Shingo Kose
- Cellular Dynamics Laboratory, RIKEN, Wako, Japan
| | - Paul Horton
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | | |
Collapse
|
2304
|
Weirich J, Bräutigam C, Mühlenkamp M, Franz-Wachtel M, Macek B, Meuskens I, Skurnik M, Leskinen K, Bohn E, Autenrieth I, Schütz M. Identifying components required for OMP biogenesis as novel targets for antiinfective drugs. Virulence 2017; 8:1170-1188. [PMID: 28118090 PMCID: PMC5711350 DOI: 10.1080/21505594.2016.1278333] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The emergence of multiresistant Gram-negative bacteria requires new therapies for combating bacterial infections. Targeting the biogenesis of virulence factors could be an alternative strategy instead of killing bacteria with antibiotics. The outer membrane (OM) of Gram-negative bacteria acts as a physical barrier. At the same time it facilitates the exchange of molecules and harbors a multitude of proteins associated with virulence. In order to insert proteins into the OM, an essential oligomeric membrane-associated protein complex, the ß-barrel assembly machinery (BAM) is required. Being essential for the biogenesis of outer membrane proteins (OMPs) the BAM and also periplasmic chaperones may serve as attractive targets to develop novel antiinfective agents. Herein, we aimed to elucidate which proteins belonging to the OMP biogenesis machinery have the most important function in granting bacterial fitness, OM barrier function, facilitating biogenesis of dedicated virulence factors and determination of overall virulence. To this end we used the enteropathogen Yersinia enterocolitica as a model system. We individually knocked out all non-essential components of the BAM (BamB, C and E) as well as the periplasmic chaperones DegP, SurA and Skp. In summary, we found that the most profound phenotypes were produced by the loss of BamB or SurA with both knockouts resulting in significant attenuation or even avirulence of Ye in a mouse infection model. Thus, we assume that both BamB and SurA are promising targets for the development of new antiinfective drugs in the future.
Collapse
Affiliation(s)
- Johanna Weirich
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | - Cornelia Bräutigam
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | - Melanie Mühlenkamp
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | | | - Boris Macek
- b Proteome Center Tübingen, Universität Tübingen , Tübingen , Germany
| | - Ina Meuskens
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | - Mikael Skurnik
- c Department of Bacteriology and Immunology , Medicum, Research Programs Unit, Immunobiology Research Program, University of Helsinki , Helsinki , Finland
| | - Katarzyna Leskinen
- c Department of Bacteriology and Immunology , Medicum, Research Programs Unit, Immunobiology Research Program, University of Helsinki , Helsinki , Finland
| | - Erwin Bohn
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | - Ingo Autenrieth
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| | - Monika Schütz
- a Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Tübingen , Tübingen , Germany
| |
Collapse
|
2305
|
Adlung L, Kar S, Wagner MC, She B, Chakraborty S, Bao J, Lattermann S, Boerries M, Busch H, Wuchter P, Ho AD, Timmer J, Schilling M, Höfer T, Klingmüller U. Protein abundance of AKT and ERK pathway components governs cell type-specific regulation of proliferation. Mol Syst Biol 2017; 13:904. [PMID: 28123004 PMCID: PMC5293153 DOI: 10.15252/msb.20167258] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signaling through the AKT and ERK pathways controls cell proliferation. However, the integrated regulation of this multistep process, involving signal processing, cell growth and cell cycle progression, is poorly understood. Here, we study different hematopoietic cell types, in which AKT and ERK signaling is triggered by erythropoietin (Epo). Although these cell types share the molecular network topology for pro‐proliferative Epo signaling, they exhibit distinct proliferative responses. Iterating quantitative experiments and mathematical modeling, we identify two molecular sources for cell type‐specific proliferation. First, cell type‐specific protein abundance patterns cause differential signal flow along the AKT and ERK pathways. Second, downstream regulators of both pathways have differential effects on proliferation, suggesting that protein synthesis is rate‐limiting for faster cycling cells while slower cell cycles are controlled at the G1‐S progression. The integrated mathematical model of Epo‐driven proliferation explains cell type‐specific effects of targeted AKT and ERK inhibitors and faithfully predicts, based on the protein abundance, anti‐proliferative effects of inhibitors in primary human erythroid progenitor cells. Our findings suggest that the effectiveness of targeted cancer therapy might become predictable from protein abundance.
Collapse
Affiliation(s)
- Lorenz Adlung
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sandip Kar
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,BioQuant Center, University of Heidelberg, Heidelberg, Germany.,Department of Chemistry, Indian Institute of Technology, Mumbai, India
| | - Marie-Christine Wagner
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bin She
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sajib Chakraborty
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jie Bao
- Systems Biology of the Cellular Microenvironment Group, IMMZ, ALU, Freiburg, Germany
| | - Susen Lattermann
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment Group, IMMZ, ALU, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment Group, IMMZ, ALU, Freiburg, Germany.,German Cancer Consortium (DKTK), Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Wuchter
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany.,Institute for Transfusion Medicine and Immunology, University of Heidelberg, Mannheim, Germany
| | - Anthony D Ho
- Department of Medicine V, University of Heidelberg, Heidelberg, Germany
| | - Jens Timmer
- Center for Biological Signaling Studies (BIOSS), Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Marcel Schilling
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Thomas Höfer
- Division of Theoretical Systems Biology, German Cancer Research Center (DKFZ), Heidelberg, Germany .,BioQuant Center, University of Heidelberg, Heidelberg, Germany
| | - Ursula Klingmüller
- Division of Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), Heidelberg, Germany .,Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| |
Collapse
|
2306
|
Reckel S, Hamelin R, Georgeon S, Armand F, Jolliet Q, Chiappe D, Moniatte M, Hantschel O. Differential signaling networks of Bcr-Abl p210 and p190 kinases in leukemia cells defined by functional proteomics. Leukemia 2017; 31:1502-1512. [PMID: 28111465 PMCID: PMC5508078 DOI: 10.1038/leu.2017.36] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 12/31/2022]
Abstract
The two major isoforms of the oncogenic Bcr–Abl tyrosine kinase, p210 and p190, are expressed upon the Philadelphia chromosome translocation. p210 is the hallmark of chronic myelogenous leukemia, whereas p190 occurs in the majority of B-cell acute lymphoblastic leukemia. Differences in protein interactions and activated signaling pathways that may be associated with the different diseases driven by p210 and p190 are unknown. We have performed a quantitative comparative proteomics study of p210 and p190. Strong differences in the interactome and tyrosine phosphoproteome were found and validated. Whereas the AP2 adaptor complex that regulates clathrin-mediated endocytosis interacts preferentially with p190, the phosphatase Sts1 is enriched with p210. Stronger activation of the Stat5 transcription factor and the Erk1/2 kinases is observed with p210, whereas Lyn kinase is activated by p190. Our findings provide a more coherent understanding of Bcr–Abl signaling, mechanisms of leukemic transformation, resulting disease pathobiology and responses to kinase inhibitors.
Collapse
Affiliation(s)
- S Reckel
- ISREC Foundation Chair in Translational Oncology, Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - R Hamelin
- Proteomics Core Facility, School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - S Georgeon
- ISREC Foundation Chair in Translational Oncology, Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - F Armand
- Proteomics Core Facility, School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Q Jolliet
- Proteomics Core Facility, School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - D Chiappe
- Proteomics Core Facility, School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - M Moniatte
- Proteomics Core Facility, School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - O Hantschel
- ISREC Foundation Chair in Translational Oncology, Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
2307
|
Mayers MD, Moon C, Stupp GS, Su AI, Wolan DW. Quantitative Metaproteomics and Activity-Based Probe Enrichment Reveals Significant Alterations in Protein Expression from a Mouse Model of Inflammatory Bowel Disease. J Proteome Res 2017; 16:1014-1026. [PMID: 28052195 DOI: 10.1021/acs.jproteome.6b00938] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tandem mass spectrometry based shotgun proteomics of distal gut microbiomes is exceedingly difficult due to the inherent complexity and taxonomic diversity of the samples. We introduce two new methodologies to improve metaproteomic studies of microbiome samples. These methods include the stable isotope labeling in mammals to permit protein quantitation across two mouse cohorts as well as the application of activity-based probes to enrich and analyze both host and microbial proteins with specific functionalities. We used these technologies to study the microbiota from the adoptive T cell transfer mouse model of inflammatory bowel disease (IBD) and compare these samples to an isogenic control, thereby limiting genetic and environmental variables that influence microbiome composition. The data generated highlight quantitative alterations in both host and microbial proteins due to intestinal inflammation and corroborates the observed phylogenetic changes in bacteria that accompany IBD in humans and mouse models. The combination of isotope labeling with shotgun proteomics resulted in the total identification of 4434 protein clusters expressed in the microbial proteomic environment, 276 of which demonstrated differential abundance between control and IBD mice. Notably, application of a novel cysteine-reactive probe uncovered several microbial proteases and hydrolases overrepresented in the IBD mice. Implementation of these methods demonstrated that substantial insights into the identity and dysregulation of host and microbial proteins altered in IBD can be accomplished and can be used in the interrogation of other microbiome-related diseases.
Collapse
Affiliation(s)
- Michael D Mayers
- Department of Molecular and Experimental Medicine, ‡Department of Integrative Structural and Computational Biology, and §Department of Chemical Physiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Clara Moon
- Department of Molecular and Experimental Medicine, ‡Department of Integrative Structural and Computational Biology, and §Department of Chemical Physiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Gregory S Stupp
- Department of Molecular and Experimental Medicine, ‡Department of Integrative Structural and Computational Biology, and §Department of Chemical Physiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Andrew I Su
- Department of Molecular and Experimental Medicine, ‡Department of Integrative Structural and Computational Biology, and §Department of Chemical Physiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dennis W Wolan
- Department of Molecular and Experimental Medicine, ‡Department of Integrative Structural and Computational Biology, and §Department of Chemical Physiology, The Scripps Research Institute , 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
2308
|
Proteomic Analysis of Kveim Reagent Identifies Targets of Cellular Immunity in Sarcoidosis. PLoS One 2017; 12:e0170285. [PMID: 28114394 PMCID: PMC5256960 DOI: 10.1371/journal.pone.0170285] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023] Open
Abstract
Background Kveim-reagent (Kv) skin testing was a historical method of diagnosing sarcoidosis. Intradermal injection of treated sarcoidosis spleen tissue resulted in a granuloma response at injection site by 4–6 weeks. Previous work indicates proteins as the possible trigger of this reaction. We aimed to identify Kv-specific proteins and characterise the ex vivo response of Peripheral Blood Mononuclear Cells (PBMCs) from sarcoidosis, tuberculosis and healthy control patients when stimulated with both Kv and selected Kv-specific proteins. Methods Kv extracts were separated by 1D-SDS-PAGE and 2D-DIGE and then underwent mass spectrometric analysis for protein identification. Sarcoidosis and control PBMCs were first stimulated with Kv and then with three selected recombinant protein candidates which were identified from the proteomic analysis. PBMC secreted cytokines were subsequently measured by Multiplex Cytokine Assay. Results We observed significantly increased IFN-γ and TNF-α secretion from Kv-stimulated PBMCs of sarcoidosis patients vs. PBMCs from healthy volunteers (IFN-γ: 207.2 pg/mL vs. 3.86 pg/mL, p = 0.0018; TNF-α: 2375 pg/mL vs. 42.82 pg/mL, p = 0.0003). Through proteomic approaches we then identified 74 sarcoidosis tissue-specific proteins. Of these, 3 proteins (vimentin, tubulin and alpha-actinin-4) were identified using both 1D-SDS-PAGE and 2D-DIGE. Data are available via ProteomeXchange with identifier PXD005150. Increased cytokine secretion was subsequently observed with vimentin stimulation of sarcoidosis PBMCs vs. tuberculosis PBMCs (IFN-γ: 396.6 pg/mL vs 0.1 pg/mL, p = 0.0009; TNF-α: 1139 pg/mL vs 0.1 pg/mL, p<0.0001). This finding was also observed in vimentin stimulation of sarcoidosis PBMCs compared to PBMCs from healthy controls (IFN-γ: 396.6 pg/mL vs. 0.1 pg/mL, p = 0.014; TNF-α: 1139 pg/mL vs 42.29 pg/mL, p = 0.027). No difference was found in cytokine secretion between sarcoidosis and control PBMCs when stimulated with either tubulin or alpha-actinin-4. Conclusions Stimulation with both Kveim reagent and vimentin induces a specific pro-inflammatory cytokine secretion from sarcoidosis PBMCs. Further investigation of cellular immune responses to Kveim-specific proteins may identify novel biomarkers to assist the diagnosis of sarcoidosis.
Collapse
|
2309
|
A Golden Age for Working with Public Proteomics Data. Trends Biochem Sci 2017; 42:333-341. [PMID: 28118949 PMCID: PMC5414595 DOI: 10.1016/j.tibs.2017.01.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/13/2016] [Accepted: 01/02/2017] [Indexed: 11/23/2022]
Abstract
Data sharing in mass spectrometry (MS)-based proteomics is becoming a common scientific practice, as is now common in the case of other, more mature ‘omics’ disciplines like genomics and transcriptomics. We want to highlight that this situation, unprecedented in the field, opens a plethora of opportunities for data scientists. First, we explain in some detail some of the work already achieved, such as systematic reanalysis efforts. We also explain existing applications of public proteomics data, such as proteogenomics and the creation of spectral libraries and spectral archives. Finally, we discuss the main existing challenges and mention the first attempts to combine public proteomics data with other types of omics data sets. The field of proteomics has matured and diversified substantially over the past 10 years. Proteomics data are increasingly shared through centralized, public repositories. Standardization efforts have ensured that a large proportion of these public data can be read and processed by any interested researcher. Because any proteomics data set is only partially understood, there is great opportunity for (orthogonal) reuse of public data. While public proteomics data has so far remained outside ethics and privacy discussions, recent work indicates that there is an inherent risk.
Collapse
|
2310
|
Gao J, Zhang S, He WD, Shao XH, Li CY, Wei YR, Deng GM, Kuang RB, Hu CH, Yi GJ, Yang QS. Comparative Phosphoproteomics Reveals an Important Role of MKK2 in Banana (Musa spp.) Cold Signal Network. Sci Rep 2017; 7:40852. [PMID: 28106078 PMCID: PMC5247763 DOI: 10.1038/srep40852] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 12/09/2016] [Indexed: 12/18/2022] Open
Abstract
Low temperature is one of the key environmental stresses, which greatly affects global banana production. However, little is known about the global phosphoproteomes in Musa spp. and their regulatory roles in response to cold stress. In this study, we conducted a comparative phosphoproteomic profiling of cold-sensitive Cavendish Banana and relatively cold tolerant Dajiao under cold stress. Phosphopeptide abundances of five phosphoproteins involved in MKK2 interaction network, including MKK2, HY5, CaSR, STN7 and kinesin-like protein, show a remarkable difference between Cavendish Banana and Dajiao in response to cold stress. Western blotting of MKK2 protein and its T31 phosphorylated peptide verified the phosphoproteomic results of increased T31 phosphopeptide abundance with decreased MKK2 abundance in Daojiao for a time course of cold stress. Meanwhile increased expression of MKK2 with no detectable T31 phosphorylation was found in Cavendish Banana. These results suggest that the MKK2 pathway in Dajiao, along with other cold-specific phosphoproteins, appears to be associated with the molecular mechanisms of high tolerance to cold stress in Dajiao. The results also provide new evidence that the signaling pathway of cellular MKK2 phosphorylation plays an important role in abiotic stress tolerance that likely serves as a universal plant cold tolerance mechanism.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro- bioresources, South China Agricultural University, Guangzhou, 510640, China.,Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Sheng Zhang
- Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| | - Wei-Di He
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China.,Key Laboratory of Horticultural Plant Biology of the Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Xiu-Hong Shao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Chun-Yu Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Yue-Rong Wei
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Gui-Ming Deng
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Rui-Bin Kuang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Chun-Hua Hu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Gan-Jun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| | - Qiao-Song Yang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.,Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture, Guangzhou, 510640, China.,The Guangzhou Research Branch of the National Banana Improvement Center, Guangzhou, 510640, China
| |
Collapse
|
2311
|
Tahir A, Bileck A, Muqaku B, Niederstaetter L, Kreutz D, Mayer RL, Wolrab D, Meier SM, Slany A, Gerner C. Combined Proteome and Eicosanoid Profiling Approach for Revealing Implications of Human Fibroblasts in Chronic Inflammation. Anal Chem 2017; 89:1945-1954. [DOI: 10.1021/acs.analchem.6b04433] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Ammar Tahir
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Andrea Bileck
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Besnik Muqaku
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Laura Niederstaetter
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Dominique Kreutz
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Rupert L. Mayer
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Denise Wolrab
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Samuel M. Meier
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Astrid Slany
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Christopher Gerner
- Department of Analytical
Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
2312
|
Zhang D, Xia X, Wang X, Zhang P, Lu W, Yu Y, Deng S, Yang H, Zhu H, Xu N, Liang S. PGRMC1 Is a Novel Potential Tumor Biomarker of Human Renal Cell Carcinoma Based on Quantitative Proteomic and Integrative Biological Assessments. PLoS One 2017; 12:e0170453. [PMID: 28107520 PMCID: PMC5249100 DOI: 10.1371/journal.pone.0170453] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 01/05/2017] [Indexed: 02/05/2023] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is widely observed with an elevated level in multiple human cancers. However, the roles of PGRMC1 in renal cancer are not clear and merit further study. In this report, we made a systematic, integrative biological assessment for PGRMC1 in renal cell carcinoma (RCC) by a quantitative proteomic identification, immunohistochemical detection, and its clinic pathologic significance analysis. We found that PGRMC1 abundance is increased by 3.91-fold in RCC tissues compared with its autologous para-cancerous tissues by a quantitative proteome identification. To validate the proteomic result with more confidence, 135 clinic RCC tissues were recruited to measure PGRMC1 abundance by immunohistochemical staining, and 63.7% RCC samples (n = 86) showed a higher abundance of PGRMC1 than the noncancerous counterparts. And the elevated PGRMC1 level was related to the tumor malignancy degree and overall survival of RCC patients. Meanwhile the average serum PGRMC1 concentration for RCC patients (n = 18) was significantly increased by 1.67 fold compared with healthy persons. Moreover an exogenous elevated abundance of PGRMC1 by plasmid transfections significantly enhanced cell proliferation of renal cancer cells in vitro. Our findings demonstrate PGRMC1, which promotes RCC progression phenotypes in vitro and in vivo, is a novel potential biomarker and therapeutic target for RCC.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Xiangying Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Xixi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Peng Zhang
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, P. R. China
| | - Weiliang Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Yamei Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Shi Deng
- Department of Urinary Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, P. R. China
| | - Hanshuo Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| | - Hongxia Zhu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Ningzhi Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, Cancer Institute & Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, P. R. China
| | - Shufang Liang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P. R. China
| |
Collapse
|
2313
|
Brethour D, Mehrabian M, Williams D, Wang X, Ghodrati F, Ehsani S, Rubie EA, Woodgett JR, Sevalle J, Xi Z, Rogaeva E, Schmitt-Ulms G. A ZIP6-ZIP10 heteromer controls NCAM1 phosphorylation and integration into focal adhesion complexes during epithelial-to-mesenchymal transition. Sci Rep 2017; 7:40313. [PMID: 28098160 PMCID: PMC5241876 DOI: 10.1038/srep40313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/02/2016] [Indexed: 01/06/2023] Open
Abstract
The prion protein (PrP) evolved from the subbranch of ZIP metal ion transporters comprising ZIPs 5, 6 and 10, raising the prospect that the study of these ZIPs may reveal insights relevant for understanding the function of PrP. Building on data which suggested PrP and ZIP6 are critical during epithelial-to-mesenchymal transition (EMT), we investigated ZIP6 in an EMT paradigm using ZIP6 knockout cells, mass spectrometry and bioinformatic methods. Reminiscent of PrP, ZIP6 levels are five-fold upregulated during EMT and the protein forms a complex with NCAM1. ZIP6 also interacts with ZIP10 and the two ZIP transporters exhibit interdependency during their expression. ZIP6 contributes to the integration of NCAM1 in focal adhesion complexes but, unlike cells lacking PrP, ZIP6 deficiency does not abolish polysialylation of NCAM1. Instead, ZIP6 mediates phosphorylation of NCAM1 on a cluster of cytosolic acceptor sites. Substrate consensus motif features and in vitro phosphorylation data point toward GSK3 as the kinase responsible, and interface mapping experiments identified histidine-rich cytoplasmic loops within the ZIP6/ZIP10 heteromer as a novel scaffold for GSK3 binding. Our data suggests that PrP and ZIP6 inherited the ability to interact with NCAM1 from their common ZIP ancestors but have since diverged to control distinct posttranslational modifications of NCAM1.
Collapse
Affiliation(s)
- Dylan Brethour
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada.,Department of Laboratory Medicine &Pathobiology, University of Toronto, Ontario, Canada
| | - Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada.,Department of Laboratory Medicine &Pathobiology, University of Toronto, Ontario, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | - Xinzhu Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada.,Department of Laboratory Medicine &Pathobiology, University of Toronto, Ontario, Canada
| | - Farinaz Ghodrati
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada.,Department of Laboratory Medicine &Pathobiology, University of Toronto, Ontario, Canada
| | - Sepehr Ehsani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada.,Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Elizabeth A Rubie
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jean Sevalle
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | - Zhengrui Xi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada.,Department of Neurology, University of Toronto, Ontario, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Ontario, Canada.,Department of Laboratory Medicine &Pathobiology, University of Toronto, Ontario, Canada
| |
Collapse
|
2314
|
Kirkpatrick CL, Broberg CA, McCool EN, Lee WJ, Chao A, McConnell EW, Pritchard DA, Hebert M, Fleeman R, Adams J, Jamil A, Madera L, Strömstedt AA, Göransson U, Liu Y, Hoskin DW, Shaw LN, Hicks LM. The "PepSAVI-MS" Pipeline for Natural Product Bioactive Peptide Discovery. Anal Chem 2017; 89:1194-1201. [PMID: 27991763 PMCID: PMC8609470 DOI: 10.1021/acs.analchem.6b03625] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recent increase in extensively drug-resistant bacterial pathogens and the associated increase of morbidity and mortality demonstrate the immediate need for new antibiotic backbones with novel mechanisms of action. Here, we report the development of the PepSAVI-MS pipeline for bioactive peptide discovery. This highly versatile platform employs mass spectrometry and statistics to identify bioactive peptide targets from complex biological samples. We validate the use of this platform through the successful identification of known bioactive peptides from a botanical species, Viola odorata. Using this pipeline, we have widened the known antimicrobial spectrum for V. odorata cyclotides, including antibacterial activity of cycloviolacin O2 against A. baumannii. We further demonstrate the broad applicability of the platform through the identification of novel anticancer activities for cycloviolacins by their cytotoxicity against ovarian, breast, and prostate cancer cell lines.
Collapse
Affiliation(s)
| | | | - Elijah N. McCool
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Woo Jean Lee
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Alex Chao
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Evan W. McConnell
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David A. Pritchard
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Michael Hebert
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Renee Fleeman
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL
| | - Jessie Adams
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL
| | - Amer Jamil
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Laurence Madera
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia
| | - Adam A. Strömstedt
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Ulf Göransson
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | - Yufeng Liu
- Department of Statistics and Operations Research, Department of Genetics, Department of Biostatistics, and Carolina Center for Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - David W. Hoskin
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia
| | - Lindsey N. Shaw
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL
| | - Leslie M. Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
2315
|
Zhang T, Wei W, Dirsch O, Krüger T, Kan C, Xie C, Kniemeyer O, Fang H, Settmacher U, Dahmen U. Identification of Proteins Interacting with Cytoplasmic High-Mobility Group Box 1 during the Hepatocellular Response to Ischemia Reperfusion Injury. Int J Mol Sci 2017; 18:ijms18010167. [PMID: 28275217 PMCID: PMC5297800 DOI: 10.3390/ijms18010167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 01/22/2023] Open
Abstract
Ischemia/reperfusion injury (IRI) occurs inevitably in liver transplantations and frequently during major resections, and can lead to liver dysfunction as well as systemic disorders. High-mobility group box 1 (HMGB1) plays a pathogenic role in hepatic IRI. In the normal liver, HMGB1 is located in the nucleus of hepatocytes; after ischemia reperfusion, it translocates to the cytoplasm and it is further released to the extracellular space. Unlike the well-explored functions of nuclear and extracellular HMGB1, the role of cytoplasmic HMGB1 in hepatic IRI remains elusive. We hypothesized that cytoplasmic HMGB1 interacts with binding proteins involved in the hepatocellular response to IRI. In this study, binding proteins of cytoplasmic HMGB1 during hepatic IRI were identified. Liver tissues from rats with warm ischemia reperfusion (WI/R) injury and from normal rats were subjected to cytoplasmic protein extraction. Co-immunoprecipitation using these protein extracts was performed to enrich HMGB1-protein complexes. To separate and identify the immunoprecipitated proteins in eluates, 2-dimensional electrophoresis and subsequent mass spectrometry detection were performed. Two of the identified proteins were verified using Western blotting: betaine–homocysteine S-methyltransferase 1 (BHMT) and cystathionine γ-lyase (CTH). Therefore, our results revealed the binding of HMGB1 to BHMT and CTH in cytoplasm during hepatic WI/R. This finding may help to better understand the cellular response to IRI in the liver and to identify novel molecular targets for reducing ischemic injury.
Collapse
Affiliation(s)
- Tianjiao Zhang
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany.
| | - Weiwei Wei
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany.
| | - Olaf Dirsch
- Institute of Pathology, Klinikum Chemnitz gGmbH, 09116 Chemnitz, Germany.
| | - Thomas Krüger
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany.
| | - Chunyi Kan
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany.
- Department of Obstetrics and Gynecology, Wuhan Central Hospital, Wuhan 430014, China.
| | - Chichi Xie
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany.
| | - Olaf Kniemeyer
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, 07745 Jena, Germany.
| | - Haoshu Fang
- Department of Pathophysiology, Anhui Medical University, Hefei 230032, China.
| | - Utz Settmacher
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany.
| | - Uta Dahmen
- Experimental Transplantation Surgery, Department of General, Visceral and Vascular Surgery, Jena University Hospital, 07747 Jena, Germany.
| |
Collapse
|
2316
|
Diedrich B, Rigbolt KT, Röring M, Herr R, Kaeser-Pebernard S, Gretzmeier C, Murphy RF, Brummer T, Dengjel J. Discrete cytosolic macromolecular BRAF complexes exhibit distinct activities and composition. EMBO J 2017; 36:646-663. [PMID: 28093501 DOI: 10.15252/embj.201694732] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 12/06/2016] [Accepted: 12/09/2016] [Indexed: 12/19/2022] Open
Abstract
As a central element within the RAS/ERK pathway, the serine/threonine kinase BRAF plays a key role in development and homeostasis and represents the most frequently mutated kinase in tumors. Consequently, it has emerged as an important therapeutic target in various malignancies. Nevertheless, the BRAF activation cycle still raises many mechanistic questions as illustrated by the paradoxical action and side effects of RAF inhibitors. By applying SEC-PCP-SILAC, we analyzed protein-protein interactions of hyperactive BRAFV600E and wild-type BRAF (BRAFWT). We identified two macromolecular, cytosolic BRAF complexes of distinct molecular composition and phosphorylation status. Hyperactive BRAFV600E resides in large complexes of higher molecular mass and activity, while BRAFWT is confined to smaller, slightly less active complexes. However, expression of oncogenic K-RasG12V, either by itself or in combination with RAF dimer promoting inhibitors, induces the incorporation of BRAFWT into large, active complexes, whereas pharmacological inhibition of BRAFV600E has the opposite effect. Thus, the quaternary structure of BRAF complexes is shaped by its activation status, the conformation of its kinase domain, and clinically relevant inhibitors.
Collapse
Affiliation(s)
- Britta Diedrich
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany.,ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Kristoffer Tg Rigbolt
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany.,ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany
| | - Michael Röring
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Freiburg, Germany
| | - Ricarda Herr
- Faculty of Medicine, Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Freiburg, Germany
| | | | - Christine Gretzmeier
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany.,ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany.,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Robert F Murphy
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.,Computational Biology Department and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Tilman Brummer
- ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany .,Faculty of Medicine, Institute of Molecular Medicine and Cell Research (IMMZ), University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Centre, Freiburg, Germany.,German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jörn Dengjel
- Department of Dermatology, Medical Center - University of Freiburg, Freiburg, Germany .,ZBSA Center for Biological Systems Analysis, University of Freiburg, Freiburg, Germany.,Department of Biology, University of Fribourg, Fribourg, Switzerland.,Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.,Centre for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2317
|
Nevo N, Thomas L, Chhuon C, Andrzejewska Z, Lipecka J, Guillonneau F, Bailleux A, Edelman A, Antignac C, Guerrera IC. Impact of Cystinosin Glycosylation on Protein Stability by Differential Dynamic Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC). Mol Cell Proteomics 2017; 16:457-468. [PMID: 28082515 DOI: 10.1074/mcp.m116.063867] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/11/2017] [Indexed: 11/06/2022] Open
Abstract
Cystinosis is a rare autosomal recessive lysosomal storage disorder characterized by intralysosomal accumulation of cystine. The causative gene for cystinosis is CTNS, which encodes the protein cystinosin, a lysosomal proton-driven cystine transporter. Over 100 mutations have been reported, leading to varying disease severity, often in correlation with residual cystinosin activity as a transporter and with maintenance of its protein-protein interactions. In this study, we focus on the ΔITILELP mutation, the only mutation reported that sometimes leads to severe forms, inconsistent with its residual transported activity. ΔITILELP is a deletion that eliminates a consensus site on N66, one of the protein's seven glycosylation sites. Our hypothesis was that the ΔITILELP mutant is less stable and undergoes faster degradation. Our dynamic stable isotope labeling by amino acids in cell culture (SILAC) study clearly showed that wild-type cystinosin is very stable, whereas ΔITILELP is degraded three times more rapidly. Additional lysosome inhibition experiments confirmed ΔITILELP instability and showed that the degradation was mainly lysosomal. We observed that in the lysosome, ΔITILELP is still capable of interacting with the V-ATPase complex and some members of the mTOR pathway, similar to the wild-type protein. Intriguingly, our interactomic and immunofluorescence studies showed that ΔITILELP is partially retained at the endoplasmic reticulum (ER). We proposed that the ΔITILELP mutation causes protein misfolding, ER retention and inability to be processed in the Golgi apparatus, and we demonstrated that ΔITILELP carries high-mannose glycans on all six of its remaining glycosylation sites. We found that the high turnover of ΔITILELP, because of its immature glycosylation state in combination with low transport activity, might be responsible for the phenotype observed in some patients.
Collapse
Affiliation(s)
- Nathalie Nevo
- From the ‡INSERM U1163, Laboratory of Hereditary Kidney Diseases, Imagine Institute, Paris, France.,‡‡Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Lucie Thomas
- From the ‡INSERM U1163, Laboratory of Hereditary Kidney Diseases, Imagine Institute, Paris, France.,‡‡Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Cerina Chhuon
- §Plateforme Protéomique Paris Descartes Necker, PPN, 3P5-Necker, SFR Necker, US24, 75014 Paris, France.,‡‡Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Zuzanna Andrzejewska
- From the ‡INSERM U1163, Laboratory of Hereditary Kidney Diseases, Imagine Institute, Paris, France.,‡‡Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Joanna Lipecka
- ¶The CPN Proteomics Facility - 3P5, Center of Psychiatry and Neuroscience, UMR INSERM 894, 75014 Paris, France.,‡‡Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - François Guillonneau
- ‖Plateforme Protéomique Paris Descartes Cochin, 3P5-Cochin, 75014 Paris, France.,‡‡Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Anne Bailleux
- From the ‡INSERM U1163, Laboratory of Hereditary Kidney Diseases, Imagine Institute, Paris, France.,‡‡Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Aleksander Edelman
- §Plateforme Protéomique Paris Descartes Necker, PPN, 3P5-Necker, SFR Necker, US24, 75014 Paris, France.,**INSERM U1151, 75015 Paris, France
| | - Corinne Antignac
- From the ‡INSERM U1163, Laboratory of Hereditary Kidney Diseases, Imagine Institute, Paris, France.,‡‡Paris Descartes-Sorbonne Paris Cité University, Paris, France.,§§Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Genetics, Necker Hospital, Paris, France
| | - Ida Chiara Guerrera
- §Plateforme Protéomique Paris Descartes Necker, PPN, 3P5-Necker, SFR Necker, US24, 75014 Paris, France; .,‡‡Paris Descartes-Sorbonne Paris Cité University, Paris, France
| |
Collapse
|
2318
|
El Kennani S, Adrait A, Shaytan AK, Khochbin S, Bruley C, Panchenko AR, Landsman D, Pflieger D, Govin J. MS_HistoneDB, a manually curated resource for proteomic analysis of human and mouse histones. Epigenetics Chromatin 2017; 10:2. [PMID: 28096900 PMCID: PMC5223428 DOI: 10.1186/s13072-016-0109-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Histones and histone variants are essential components of the nuclear chromatin. While mass spectrometry has opened a large window to their characterization and functional studies, their identification from proteomic data remains challenging. Indeed, the current interpretation of mass spectrometry data relies on public databases which are either not exhaustive (Swiss-Prot) or contain many redundant entries (UniProtKB or NCBI). Currently, no protein database is ideally suited for the analysis of histones and the complex array of mammalian histone variants. RESULTS We propose two proteomics-oriented manually curated databases for mouse and human histone variants. We manually curated >1700 gene, transcript and protein entries to produce a non-redundant list of 83 mouse and 85 human histones. These entries were annotated in accordance with the current nomenclature and unified with the "HistoneDB2.0 with Variants" database. This resource is provided in a format that can be directly read by programs used for mass spectrometry data interpretation. In addition, it was used to interpret mass spectrometry data acquired on histones extracted from mouse testis. Several histone variants, which had so far only been inferred by homology or detected at the RNA level, were detected by mass spectrometry, confirming the existence of their protein form. CONCLUSIONS Mouse and human histone entries were collected from different databases and subsequently curated to produce a non-redundant protein-centric resource, MS_HistoneDB. It is dedicated to the proteomic study of histones in mouse and human and will hopefully facilitate the identification and functional study of histone variants.
Collapse
Affiliation(s)
- Sara El Kennani
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Annie Adrait
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Alexey K Shaytan
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - Saadi Khochbin
- CNRS UMR 5309 INSERM U1209, Institute of Advanced Biosciences, Université Grenoble Alpes, Grenoble, France
| | - Christophe Bruley
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Anna R Panchenko
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - David Landsman
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 USA
| | - Delphine Pflieger
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| | - Jérôme Govin
- INSERM, U1038, CEA, BIG FR CNRS 3425-BGE, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
2319
|
Pietzner M, Engelmann B, Kacprowski T, Golchert J, Dirk AL, Hammer E, Iwen KA, Nauck M, Wallaschofski H, Führer D, Münte TF, Friedrich N, Völker U, Homuth G, Brabant G. Plasma proteome and metabolome characterization of an experimental human thyrotoxicosis model. BMC Med 2017; 15:6. [PMID: 28065164 PMCID: PMC5220622 DOI: 10.1186/s12916-016-0770-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Determinations of thyrotropin (TSH) and free thyroxine (FT4) represent the gold standard in evaluation of thyroid function. To screen for novel peripheral biomarkers of thyroid function and to characterize FT4-associated physiological signatures in human plasma we used an untargeted OMICS approach in a thyrotoxicosis model. METHODS A sample of 16 healthy young men were treated with levothyroxine for 8 weeks and plasma was sampled before the intake was started as well as at two points during treatment and after its completion, respectively. Mass spectrometry-derived metabolite and protein levels were related to FT4 serum concentrations using mixed-effect linear regression models in a robust setting. To compile a molecular signature discriminating between thyrotoxicosis and euthyroidism, a random forest was trained and validated in a two-stage cross-validation procedure. RESULTS Despite the absence of obvious clinical symptoms, mass spectrometry analyses detected 65 metabolites and 63 proteins exhibiting significant associations with serum FT4. A subset of 15 molecules allowed a robust and good prediction of thyroid hormone function (AUC = 0.86) without prior information on TSH or FT4. Main FT4-associated signatures indicated increased resting energy expenditure, augmented defense against systemic oxidative stress, decreased lipoprotein particle levels, and increased levels of complement system proteins and coagulation factors. Further association findings question the reliability of kidney function assessment under hyperthyroid conditions and suggest a link between hyperthyroidism and cardiovascular diseases via increased dimethylarginine levels. CONCLUSION Our results emphasize the power of untargeted OMICs approaches to detect novel pathways of thyroid hormone action. Furthermore, beyond TSH and FT4, we demonstrated the potential of such analyses to identify new molecular signatures for diagnosis and treatment of thyroid disorders. This study was registered at the German Clinical Trials Register (DRKS) [DRKS00011275] on the 16th of November 2016.
Collapse
Affiliation(s)
- Maik Pietzner
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Beatrice Engelmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
| | - Tim Kacprowski
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
| | - Janine Golchert
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
| | - Anna-Luise Dirk
- Medical Clinic I, University of Lübeck, Experimental and Clinical Endocrinology, Ratzeburger Allee 160, Zentralklinikum (Haus 40), 23538 Lübeck, Germany
| | - Elke Hammer
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
| | - K. Alexander Iwen
- Medical Clinic I, University of Lübeck, Experimental and Clinical Endocrinology, Ratzeburger Allee 160, Zentralklinikum (Haus 40), 23538 Lübeck, Germany
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Henri Wallaschofski
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- Private Practice Endocrinology, Krämpferstraße 6, 99094 Erfurt, Germany
| | - Dagmar Führer
- Department of Endocrinology and Metabolism, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45122 Essen, Germany
| | - Thomas F. Münte
- Department of Neurology, University of Lübeck, Ratzeburger Allee 169, 23538 Lübeck, Germany
| | - Nele Friedrich
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Research Centre for Prevention and Health, Glostrup University Hospital, Nordre Ringvej 57, 2600 Glostrup, Denmark
| | - Uwe Völker
- DZHK (German Centre for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
- ZIK-FunGene (Zentrum für Innovationskompetenz - Funktionelle Genomforschung), Greifswald, Germany
| | - Georg Homuth
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine and Ernst-Moritz-Arndt University Greifswald, Friedrich-Ludwig-Jahn-Straße 15a, D-17475 Greifswald, Germany
- ZIK-FunGene (Zentrum für Innovationskompetenz - Funktionelle Genomforschung), Greifswald, Germany
| | - Georg Brabant
- Medical Clinic I, University of Lübeck, Experimental and Clinical Endocrinology, Ratzeburger Allee 160, Zentralklinikum (Haus 40), 23538 Lübeck, Germany
| |
Collapse
|
2320
|
Yao Z, Darowski K, St-Denis N, Wong V, Offensperger F, Villedieu A, Amin S, Malty R, Aoki H, Guo H, Xu Y, Iorio C, Kotlyar M, Emili A, Jurisica I, Neel BG, Babu M, Gingras AC, Stagljar I. A Global Analysis of the Receptor Tyrosine Kinase-Protein Phosphatase Interactome. Mol Cell 2017; 65:347-360. [PMID: 28065597 DOI: 10.1016/j.molcel.2016.12.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/13/2016] [Accepted: 12/02/2016] [Indexed: 01/17/2023]
Abstract
Receptor tyrosine kinases (RTKs) and protein phosphatases comprise protein families that play crucial roles in cell signaling. We used two protein-protein interaction (PPI) approaches, the membrane yeast two-hybrid (MYTH) and the mammalian membrane two-hybrid (MaMTH), to map the PPIs between human RTKs and phosphatases. The resulting RTK-phosphatase interactome reveals a considerable number of previously unidentified interactions and suggests specific roles for different phosphatase families. Additionally, the differential PPIs of some protein tyrosine phosphatases (PTPs) and their mutants suggest diverse mechanisms of these PTPs in the regulation of RTK signaling. We further found that PTPRH and PTPRB directly dephosphorylate EGFR and repress its downstream signaling. By contrast, PTPRA plays a dual role in EGFR signaling: besides facilitating EGFR dephosphorylation, it enhances downstream ERK signaling by activating SRC. This comprehensive RTK-phosphatase interactome study provides a broad and deep view of RTK signaling.
Collapse
Affiliation(s)
- Zhong Yao
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Katelyn Darowski
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Nicole St-Denis
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai, Toronto, ON M5G 1X5, Canada
| | - Victoria Wong
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | | | | | - Shahreen Amin
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Ramy Malty
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Hiroyuki Aoki
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Hongbo Guo
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Yang Xu
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Caterina Iorio
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Max Kotlyar
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Andrew Emili
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Igor Jurisica
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Computer Science, University of Toronto, Toronto, ON M5S 3G4, Canada; Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovak Republic
| | - Benjamin G Neel
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mohan Babu
- Department of Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Igor Stagljar
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
2321
|
Quantitative Proteomics Reveals Ecophysiological Effects of Light and Silver Stress on the Mixotrophic Protist Poterioochromonas malhamensis. PLoS One 2017; 12:e0168183. [PMID: 28056027 PMCID: PMC5215829 DOI: 10.1371/journal.pone.0168183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022] Open
Abstract
Aquatic environments are heavily impacted by human activities including climate warming and the introduction of xenobiotics. Due to the application of silver nanoparticles as bactericidal agent the introduction of silver into the environment strongly has increased during the past years. Silver ions affect the primary metabolism of algae, in particular photosynthesis. Mixotrophic algae are an interesting test case as they do not exclusively rely on photosynthesis which may attenuate the harmful effect of silver. In order to study the effect of silver ions on mixotrophs, cultures of the chrysophyte Poterioochromonas malhamensis were treated in a replicate design in light and darkness with silver nitrate at a sub-lethal concentration. At five time points samples were taken for the identification and quantitation of proteins by mass spectrometry. In our analysis, relative quantitative protein mass spectrometry has shown to be a useful tool for functional analyses in conjunction with transcriptome reference sequences. A total of 3,952 proteins in 63 samples were identified and quantified, mapping to 4,829 transcripts of the sequenced and assembled transcriptome. Among them, 720 and 104 proteins performing various cellular functions were differentially expressed after eight days in light versus darkness and after three days of silver treatment, respectively. Specifically pathways of the energy and primary carbon metabolism were differentially affected by light and the utilization of expensive reactions hints to an energy surplus of P. malhamensis under light conditions. The excess energy is not invested in growth, but in the synthesis of storage metabolites. The effects of silver were less explicit, observable especially in the dark treatments where the light effect could not mask coinciding but weaker effects of silver. Photosynthesis, particularly the light harvesting complexes, and several sulphur containing enzymes were affected presumably due to a direct interference with the silver ions, mainly affecting energy supply.
Collapse
|
2322
|
|
2323
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 and 1488=(select 1488 from pg_sleep(5))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2324
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 and 1488=(select 1488 from pg_sleep(0))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2325
|
|
2326
|
|
2327
|
|
2328
|
|
2329
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 order by 1-- qeqq] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2330
|
|
2331
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 and 1488=(select 1488 from pg_sleep(5))-- izqc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2332
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 order by 1-- wckt] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2333
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 and 1488=(select 1488 from pg_sleep(0))-- izqc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2334
|
|
2335
|
The UniProt Consortium
BatemanAlexMartinMaria JesusO’DonovanClaireMagraneMicheleAlpiEmanueleAntunesRicardoBelyBenoitBingleyMarkBonillaCarlosBrittoRamonaBursteinasBorisasBye-A-JeeHemaCowleyAndrewSilvaAlan DaGiorgiMaurizio DeDoganTuncaFazziniFrancescoCastroLeyla GarciaFigueiraLuisGarmiriPenelopeGeorghiouGeorgeGonzalezDanielHatton-EllisEmmaLiWeizhongLiuWudongLopezRodrigoLuoJieLussiYvonneMacDougallAlistairNightingaleAndrewPalkaBarbaraPichlerKlemensPoggioliDiegoPundirSangyaPurezaLuisQiGuoyingRenauxAlexandreRosanoffStevenSaidiRabieSawfordTonyShypitsynaAleksandraSperettaElenaTurnerEdwardTyagiNidhiVolynkinVladimirWardellTonyWarnerKateWatkinsXavierZaruRossanaZellnerHermannXenariosIoannisBougueleretLydieBridgeAlanPouxSylvainRedaschiNicoleAimoLucilaArgoud-PuyGhislaineAuchinclossAndreaAxelsenKristianBansalParitBaratinDelphineBlatterMarie-ClaudeBoeckmannBrigitteBollemanJervenBoutetEmmanuelBreuzaLionelCasal-CasasCristinade CastroEdouardCoudertElisabethCucheBeatriceDocheMikaelDornevilDolnideDuvaudSeverineEstreicherAnneFamigliettiLiviaFeuermannMarcGasteigerElisabethGehantSebastienGerritsenVivienneGosArnaudGruaz-GumowskiNadineHinzUrsulaHuloChantalJungoFlorenceKellerGuillaumeLaraVicenteLemercierPhilippeLieberherrDamienLombardotThierryMartinXavierMassonPatrickMorgatAnneNetoTeresaNouspikelNevilaPaesanoSalvoPedruzziIvoPilboutSandrinePozzatoMonicaPruessManuelaRivoireCatherineRoechertBerndSchneiderMichelSigristChristianSonessonKarinStaehliSylvieStutzAndreSundaramShyamalaTognolliMichaelVerbregueLaureVeutheyAnne-LiseWuCathy HArighiCecilia NArminskiLeslieChenChumingChenYongxingGaravelliJohn SHuangHongzhanLaihoKatiMcGarveyPeterNataleDarren ARossKarenVinayakaC RWangQinghuaWangYuqiYehLai-SuZhangJian. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017; 45. [PMID: 27899622 PMCID: PMC5210571 DOI: 10.1093/nar/gkw1099;select dbms_pipe.receive_message(chr(80)||chr(81)||chr(119)||chr(87),5) from dual--] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The UniProt knowledgebase is a large resource of protein sequences and associated detailed annotation. The database contains over 60 million sequences, of which over half a million sequences have been curated by experts who critically review experimental and predicted data for each protein. The remainder are automatically annotated based on rule systems that rely on the expert curated knowledge. Since our last update in 2014, we have more than doubled the number of reference proteomes to 5631, giving a greater coverage of taxonomic diversity. We implemented a pipeline to remove redundant highly similar proteomes that were causing excessive redundancy in UniProt. The initial run of this pipeline reduced the number of sequences in UniProt by 47 million. For our users interested in the accessory proteomes, we have made available sets of pan proteome sequences that cover the diversity of sequences for each species that is found in its strains and sub-strains. To help interpretation of genomic variants, we provide tracks of detailed protein information for the major genome browsers. We provide a SPARQL endpoint that allows complex queries of the more than 22 billion triples of data in UniProt (http://sparql.uniprot.org/). UniProt resources can be accessed via the website at http://www.uniprot.org/.
Collapse
Affiliation(s)
- The UniProt Consortium
BatemanAlexMartinMaria JesusO’DonovanClaireMagraneMicheleAlpiEmanueleAntunesRicardoBelyBenoitBingleyMarkBonillaCarlosBrittoRamonaBursteinasBorisasBye-A-JeeHemaCowleyAndrewSilvaAlan DaGiorgiMaurizio DeDoganTuncaFazziniFrancescoCastroLeyla GarciaFigueiraLuisGarmiriPenelopeGeorghiouGeorgeGonzalezDanielHatton-EllisEmmaLiWeizhongLiuWudongLopezRodrigoLuoJieLussiYvonneMacDougallAlistairNightingaleAndrewPalkaBarbaraPichlerKlemensPoggioliDiegoPundirSangyaPurezaLuisQiGuoyingRenauxAlexandreRosanoffStevenSaidiRabieSawfordTonyShypitsynaAleksandraSperettaElenaTurnerEdwardTyagiNidhiVolynkinVladimirWardellTonyWarnerKateWatkinsXavierZaruRossanaZellnerHermannXenariosIoannisBougueleretLydieBridgeAlanPouxSylvainRedaschiNicoleAimoLucilaArgoud-PuyGhislaineAuchinclossAndreaAxelsenKristianBansalParitBaratinDelphineBlatterMarie-ClaudeBoeckmannBrigitteBollemanJervenBoutetEmmanuelBreuzaLionelCasal-CasasCristinade CastroEdouardCoudertElisabethCucheBeatriceDocheMikaelDornevilDolnideDuvaudSeverineEstreicherAnneFamigliettiLiviaFeuermannMarcGasteigerElisabethGehantSebastienGerritsenVivienneGosArnaudGruaz-GumowskiNadineHinzUrsulaHuloChantalJungoFlorenceKellerGuillaumeLaraVicenteLemercierPhilippeLieberherrDamienLombardotThierryMartinXavierMassonPatrickMorgatAnneNetoTeresaNouspikelNevilaPaesanoSalvoPedruzziIvoPilboutSandrinePozzatoMonicaPruessManuelaRivoireCatherineRoechertBerndSchneiderMichelSigristChristianSonessonKarinStaehliSylvieStutzAndreSundaramShyamalaTognolliMichaelVerbregueLaureVeutheyAnne-LiseWuCathy HArighiCecilia NArminskiLeslieChenChumingChenYongxingGaravelliJohn SHuangHongzhanLaihoKatiMcGarveyPeterNataleDarren ARossKarenVinayakaC RWangQinghuaWangYuqiYehLai-SuZhangJian
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK,SIB Swiss Institute of Bioinformatics, Centre Medical Universitaire, 1 rue Michel Servet, 1211 Geneva 4, Switzerland,Protein Information Resource, Georgetown University Medical Center, 3300 Whitehaven Street NW, Suite 1200, WA 20007, USA,Protein Information Resource, University of Delaware, 15 Innovation Way, Suite 205, Newark DE 19711, USA,To whom correspondence should be addressed. Tel: +44 1223 494 100; Fax: +44 1223 494 468;
| |
Collapse
|
2336
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 and (select 4810 from (select(sleep(0)))loiv)-- nzwy] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2337
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 and 1414=9491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2338
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 and 4921=8647-- ukob] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2339
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 waitfor delay '0:0:5'] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2340
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 and (select 4810 from (select(sleep(5)))loiv)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2341
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 and 3359=3359-- prvx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2342
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 and 3449=dbms_pipe.receive_message(chr(71)||chr(119)||chr(121)||chr(108),5)] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2343
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 and extractvalue(3683,concat(0x5c,0x717a627171,(select (elt(3683=3683,1))),0x71787a7871))] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2344
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 waitfor delay '0:0:5'-- wgww] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2345
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 and 3449=dbms_pipe.receive_message(chr(71)||chr(119)||chr(121)||chr(108),5)-- olei] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2346
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 and 3359=3359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2347
|
The UniProt Consortium. UniProt: the universal protein knowledgebase. Nucleic Acids Res 2017. [DOI: 10.1093/nar/gkw1099 and (select 4810 from (select(sleep(5)))loiv)-- nzwy] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
2348
|
Biotransformation and reduction of estrogenicity of bisphenol A by the biphenyl-degrading Cupriavidus basilensis. Appl Microbiol Biotechnol 2017; 101:3743-3758. [PMID: 28050635 DOI: 10.1007/s00253-016-8061-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 12/08/2016] [Accepted: 12/10/2016] [Indexed: 10/20/2022]
Abstract
The biphenyl-degrading Gram-negative bacterium Cupriavidus basilensis (formerly Ralstonia sp.) SBUG 290 uses various aromatic compounds as carbon and energy sources and has a high capacity to transform bisphenol A (BPA), which is a hormonally active substance structurally related to biphenyl. Biphenyl-grown cells initially hydroxylated BPA and converted it to four additional products by using three different transformation pathways: (a) formation of multiple hydroxylated BPA, (b) ring fission, and (c) transamination followed by acetylation or dimerization. Products of the ring fission pathway were non-toxic and all five products exhibited a significantly reduced estrogenic activity compared to BPA. Cell cultivation with phenol and especially in nutrient broth (NB) resulted in a reduced biotransformation rate and lower product quantities, and NB-grown cells did not produce all five products in detectable amounts. Thus, the question arose whether enzymes of the biphenyl degradation pathway are involved in the transformation of BPA and was addressed by proteomic analyses.
Collapse
|
2349
|
Grossmann J, Fernández H, Chaubey PM, Valdés AE, Gagliardini V, Cañal MJ, Russo G, Grossniklaus U. Proteogenomic Analysis Greatly Expands the Identification of Proteins Related to Reproduction in the Apogamous Fern Dryopteris affinis ssp. affinis. FRONTIERS IN PLANT SCIENCE 2017; 8:336. [PMID: 28382042 PMCID: PMC5360702 DOI: 10.3389/fpls.2017.00336] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/27/2017] [Indexed: 05/19/2023]
Abstract
Performing proteomic studies on non-model organisms with little or no genomic information is still difficult. However, many specific processes and biochemical pathways occur only in species that are poorly characterized at the genomic level. For example, many plants can reproduce both sexually and asexually, the first one allowing the generation of new genotypes and the latter their fixation. Thus, both modes of reproduction are of great agronomic value. However, the molecular basis of asexual reproduction is not well understood in any plant. In ferns, it combines the production of unreduced spores (diplospory) and the formation of sporophytes from somatic cells (apogamy). To set the basis to study these processes, we performed transcriptomics by next-generation sequencing (NGS) and shotgun proteomics by tandem mass spectrometry in the apogamous fern D. affinis ssp. affinis. For protein identification we used the public viridiplantae database (VPDB) to identify orthologous proteins from other plant species and new transcriptomics data to generate a "species-specific transcriptome database" (SSTDB). In total 1,397 protein clusters with 5,865 unique peptide sequences were identified (13 decoy proteins out of 1,410, protFDR 0.93% on protein cluster level). We show that using the SSTDB for protein identification increases the number of identified peptides almost four times compared to using only the publically available VPDB. We identified homologs of proteins involved in reproduction of higher plants, including proteins with a potential role in apogamy. With the increasing availability of genomic data from non-model species, similar proteogenomics approaches will improve the sensitivity in protein identification for species only distantly related to models.
Collapse
Affiliation(s)
| | - Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology (BOS), Oviedo UniversityOviedo, Spain
- *Correspondence: Helena Fernández
| | - Pururawa M. Chaubey
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of ZurichZürich, Switzerland
| | - Ana E. Valdés
- Physiological Botany, Uppsala BioCenter, Uppsala UniversityUppsala, Sweden
- Linnean Centre for Plant BiologyUppsala, Sweden
| | - Valeria Gagliardini
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of ZurichZürich, Switzerland
| | - María J. Cañal
- Area of Plant Physiology, Department of Organisms and Systems Biology (BOS), Oviedo UniversityOviedo, Spain
| | | | - Ueli Grossniklaus
- Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of ZurichZürich, Switzerland
- Ueli Grossniklaus
| |
Collapse
|
2350
|
Abstract
With the advent of high-throughput genomic and proteomic techniques, there is a massive amount of multidimensional data being generated and has increased several orders of magnitude. But the amount of data that is cataloged in the central repositories and shared publicly with the scientific community does not correlate the same rate at which the data is generated. Here, in this chapter, we discuss various proteomics data repositories that are freely accessible to the researchers for further downstream meta-analysis.
Collapse
Affiliation(s)
- Shivakumar Keerthikumar
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| |
Collapse
|