2401
|
Abstract
Mycobacterium tuberculosis, the scourge of humanity, is one of the most successful and scientifically challenging pathogens of all time. To catalyse the conception of new prophylactic and therapeutic interventions against tuberculosis, and to enhance our understanding of the biology of the tubercle bacillus, the complete genome sequence of the most widely used strain, H37Rv, has been determined. Bioinformatic analysis led to the identification of approximately 4000 genes in the 4.41 Mb genome sequence and provided fresh insight into the biochemistry, physiology. genetics and immunology of this much-feared bacterium. Genomic information is centralised in TubercuList (http://www.pasteur.fr/Bio/TubercuList/).
Collapse
Affiliation(s)
- S T Cole
- Unité de Génétique Moléculaire Bactérienne, Institut Pasteur, Paris, France.
| |
Collapse
|
2402
|
Serrano M, Zilhão R, Ricca E, Ozin AJ, Moran CP, Henriques AO. A Bacillus subtilis secreted protein with a role in endospore coat assembly and function. J Bacteriol 1999; 181:3632-43. [PMID: 10368135 PMCID: PMC93838 DOI: 10.1128/jb.181.12.3632-3643.1999] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial endospores are encased in a complex protein coat, which confers protection against noxious chemicals and influences the germination response. In Bacillus subtilis, over 20 polypeptides are organized into an amorphous undercoat, a lamellar lightly staining inner structure, and an electron-dense outer coat. Here we report on the identification of a polypeptide of about 30 kDa required for proper coat assembly, which was extracted from spores of a gerE mutant. The N-terminal sequence of this polypeptide matched the deduced product of the tasA gene, after removal of a putative 27-residue signal peptide, and TasA was immunologically detected in material extracted from purified spores. Remarkably, deletion of tasA results in the production of asymmetric spores that accumulate misassembled material in one pole and have a greatly expanded undercoat and an altered outer coat structure. Moreover, we found that tasA and gerE mutations act synergistically to decrease the efficiency of spore germination. We show that tasA is the most distal member of a three-gene operon, which also encodes the type I signal peptidase SipW. Expression of the tasA operon is enhanced 2 h after the onset of sporulation, under the control of sigmaH. When tasA transcription is uncoupled from sipW expression, a presumptive TasA precursor accumulates, suggesting that its maturation depends on SipW. Mature TasA is found in supernatants of sporulating cultures and intracellularly from 2 h of sporulation onward. We suggest that, at an early stage of sporulation, TasA is secreted to the septal compartment. Later, after engulfment of the prespore by the mother cell, TasA acts from the septal-proximal pole of the spore membranes to nucleate the organization of the undercoat region. TasA is the first example of a polypeptide involved in coat assembly whose production is not mother cell specific but rather precedes its formation. Our results implicate secretion as a mechanism to target individual proteins to specific cellular locations during the assembly of the bacterial endospore coat.
Collapse
Affiliation(s)
- M Serrano
- Instituto de Tecnologia Química e Biológica, 2780 Oeiras Codex, Portugal
| | | | | | | | | | | |
Collapse
|
2403
|
Abstract
Histidyl-tRNA synthetase (HisRS) is responsible for the synthesis of histidyl-transfer RNA, which is essential for the incorporation of histidine into proteins. This amino acid has uniquely moderate basic properties and is an important group in many catalytic functions of enzymes. A compilation of currently known primary structures of HisRS shows that the subunits of these homo-dimeric enzymes consist of 420-550 amino acid residues. This represents a relatively short chain length among aminoacyl-tRNA synthetases (aaRS), whose peptide chain sizes range from about 300 to 1100 amino acid residues. The crystal structures of HisRS from two organisms and their complexes with histidine, histidyl-adenylate and histidinol with ATP have been solved. HisRS from Escherichia coli and Thermus thermophilus are very similar dimeric enzymes consisting of three domains: the N-terminal catalytic domain containing the six-stranded antiparallel beta-sheet and the three motifs characteristic of class II aaRS, a HisRS-specific helical domain inserted between motifs 2 and 3 that may contact the acceptor stem of the tRNA, and a C-terminal alpha/beta domain that may be involved in the recognition of the anticodon stem and loop of tRNA(His). The aminoacylation reaction follows the standard two-step mechanism. HisRS also belongs to the group of aaRS that can rapidly synthesize diadenosine tetraphosphate, a compound that is suspected to be involved in several regulatory mechanisms of cell metabolism. Many analogs of histidine have been tested for their properties as substrates or inhibitors of HisRS, leading to the elucidation of structure-activity relationships concerning configuration, importance of the carboxy and amino group, and the nature of the side chain. HisRS has been found to act as a particularly important antigen in autoimmune diseases such as rheumatic arthritis or myositis. Successful attempts have been made to identify epitopes responsible for the complexation with such auto-antibodies.
Collapse
Affiliation(s)
- W Freist
- Max-Planck-Institut für experimentelle Medizin, Abteilung Molekulare Biologie Neuronaler Signale, Göttingen, Germany
| | | | | | | | | |
Collapse
|
2404
|
Huang M, Oppermann-Sanio FB, Steinbüchel A. Biochemical and molecular characterization of the Bacillus subtilis acetoin catabolic pathway. J Bacteriol 1999; 181:3837-41. [PMID: 10368162 PMCID: PMC93865 DOI: 10.1128/jb.181.12.3837-3841.1999] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recent study indicated that Bacillus subtilis catabolizes acetoin by enzymes encoded by the acu gene cluster (F. J. Grundy, D. A. Waters, T. Y. Takova, and T. M. Henkin, Mol. Microbiol. 10:259-271, 1993) that are completely different from those in the multicomponent acetoin dehydrogenase enzyme system (AoDH ES) encoded by aco gene clusters found before in all other bacteria capable of utilizing acetoin as the sole carbon source for growth. By hybridization with a DNA probe covering acoA and acoB of the AoDH ES from Clostridium magnum, genomic fragments from B. subtilis harboring acoA, acoB, acoC, acoL, and acoR homologous genes were identified, and some of them were functionally expressed in E. coli. Furthermore, acoA was inactivated in B. subtilis by disruptive mutagenesis; these mutants were impaired to express PPi-dependent AoDH E1 activity to remove acetoin from the medium and to grow with acetoin as the carbon source. Therefore, acetoin is catabolized in B. subtilis by the same mechanism as all other bacteria investigated so far, leaving the function of the previously described acu genes obscure.
Collapse
Affiliation(s)
- M Huang
- Institut für Mikrobiologie der Westfälischen Wilhelms-Universität Münster, D-48149 Münster, Germany
| | | | | |
Collapse
|
2405
|
Zimniak P, Pikula S, Bandorowicz-Pikula J, Awasthi YC. Mechanisms for xenobiotic transport in biological membranes. Toxicol Lett 1999; 106:107-18. [PMID: 10403654 DOI: 10.1016/s0378-4274(99)00061-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- P Zimniak
- Department of Internal Medicine, University of Arkansas for Medical Sciences, and McClellan VA Hospital Medical Research, Little Rock, USA
| | | | | | | |
Collapse
|
2406
|
Abstract
The availability of a number of complete cellular genome sequences allows the development of organisms’ classification, taking into account their genome content, the loss or acquisition of genes, and overall gene similarities as signatures of common ancestry. On the basis of correspondence analysis and hierarchical classification methods, a methodological framework is introduced here for the classification of the available 20 completely sequenced genomes and partial information for Schizosaccharomyces pombe, Homo sapiens, and Mus musculus. The outcome of such an analysis leads to a classification of genomes that we call a genomic tree. Although these trees are phenograms, they carry with them strong phylogenetic signatures and are remarkably similar to 16S-like rRNA-based phylogenies. Our results suggest that duplication and deletion events that took place through evolutionary time were globally similar in related organisms. The genomic trees presented here place the Archaea in the proximity of the Bacteria when the whole gene content of each organism is considered, and when ancestral gene duplications are eliminated. Genomic trees represent an additional approach for the understanding of evolution at the genomic level and may contribute to the proper assessment of the evolutionary relationships between extant species.
Collapse
|
2407
|
Paidhungat M, Setlow P. Isolation and characterization of mutations in Bacillus subtilis that allow spore germination in the novel germinant D-alanine. J Bacteriol 1999; 181:3341-50. [PMID: 10348844 PMCID: PMC93799 DOI: 10.1128/jb.181.11.3341-3350.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/1999] [Accepted: 03/24/1999] [Indexed: 11/20/2022] Open
Abstract
Bacillus subtilis spores break their metabolic dormancy through a process called germination. Spore germination is triggered by specific molecules called germinants, which are thought to act by binding to and stimulating spore receptors. Three homologous operons, gerA, gerB, and gerK, were previously proposed to encode germinant receptors because inactivating mutations in those genes confer a germinant-specific defect in germination. To more definitely identify genes that encode germinant receptors, we isolated mutants whose spores germinated in the novel germinant D-alanine, because such mutants would likely contain gain-of-function mutations in genes that encoded preexisting germinant receptors. Three independent mutants were isolated, and in each case the mutant phenotype was shown to result from a single dominant mutation in the gerB operon. Two of the mutations altered the gerBA gene, whereas the third affected the gerBB gene. These results suggest that gerBA and gerBB encode components of the germinant receptor. Furthermore, genetic interactions between the wild-type gerB and the mutant gerBA and gerBB alleles suggested that the germinant receptor might be a complex containing GerBA, GerBB, and probably other proteins. Thus, we propose that the gerB operon encodes at least two components of a multicomponent germinant receptor.
Collapse
Affiliation(s)
- M Paidhungat
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | |
Collapse
|
2408
|
Martin PK, Li T, Sun D, Biek DP, Schmid MB. Role in cell permeability of an essential two-component system in Staphylococcus aureus. J Bacteriol 1999; 181:3666-73. [PMID: 10368139 PMCID: PMC93842 DOI: 10.1128/jb.181.12.3666-3673.1999] [Citation(s) in RCA: 206] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A temperature-sensitive lethal mutant of Staphylococcus aureus was found to harbor a mutation in the uncharacterized two-component histidine kinase (HK)-response regulator (RR) pair encoded by yycFG; orthologues of yycFG could be identified in the genomes of Bacillus subtilis and other gram-positive bacteria. Sequence analysis of the mutant revealed a point mutation resulting in a nonconservative change (Glu to Lys) in the regulator domain of the RR at position 63. To confirm that this signal transduction system was essential, a disrupted copy of either the RR (yycF) or the HK (yycG) was constructed with a set of suicide vectors and used to generate tandem duplications in the chromosome. Resolution of the duplications, leaving an insertion in either the yycF or the yycG coding region, was achieved only in the presence of an additional wild-type copy of the two open reading frames. Phenotypic characterization of the conditional lethal mutant showed that at permissive growth conditions, the mutant was hypersusceptible to macrolide and lincosamide antibiotics, even in the presence of the ermB resistance determinant. Other mutant phenotypes, including hypersensitivity to unsaturated long-chain fatty acids and suppression of the conditional lethal phenotype by high sucrose and NaCl concentrations, suggest that the role of the two-component system includes the proper regulation of bacterial cell wall or membrane composition. The effects of this point mutation are strongly bactericidal at the nonpermissive temperature, indicating that this pathway provides an excellent target for the identification of novel antibiotics.
Collapse
Affiliation(s)
- P K Martin
- Microcide Pharmaceuticals, Inc., Mountain View, California 94043, USA.
| | | | | | | | | |
Collapse
|
2409
|
Abstract
As genome sequences and protein structures are deciphered, we wish to predict their corresponding functions. Many functions cannot be told from from the sequence, however, although there has been progress in this quest for an impossible Grail. Furthermore, a structure and its corresponding sequence become most interesting when one knows the function. Inductive reasoning, based on the integration of biological and sequence knowledge, should enable sequence and functional data to be combined in a productive way.
Collapse
Affiliation(s)
- A Danchin
- Régulation de l'Expression Génétique, Institut Pasteur, Paris, France.
| |
Collapse
|
2410
|
Matsuno K, Blais T, Serio AW, Conway T, Henkin TM, Sonenshein AL. Metabolic imbalance and sporulation in an isocitrate dehydrogenase mutant of Bacillus subtilis. J Bacteriol 1999; 181:3382-91. [PMID: 10348849 PMCID: PMC93804 DOI: 10.1128/jb.181.11.3382-3391.1999] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A Bacillus subtilis mutant with a deletion in the citC gene, encoding isocitrate dehydrogenase, the third enzyme of the tricarboxylic acid branch of the Krebs cycle, exhibited reduced growth yield in broth medium and had greatly reduced ability to sporulate compared to the wild type due to a block at stage I, i.e., a failure to form the polar division septum. In early stationary phase, mutant cells accumulated intracellular and extracellular concentrations of citrate and isocitrate that were at least 15-fold higher than in wild-type cells. The growth and sporulation defects of the mutant could be partially bypassed by deletion of the major citrate synthase gene (citZ), by raising the pH of the medium, or by supplementation of the medium with certain divalent cations, suggesting that abnormal accumulation of citrate affects survival of stationary-phase cells and sporulation by lowering extracellular pH and chelating metal ions. While these genetic and environmental alterations were not sufficient to allow the majority of the mutant cell population to pass the stage I block (lack of asymmetric septum formation), introduction of the sof-1 mutant form of the Spo0A transcription factor, when coupled with a reduction in citrate synthesis, restored sporulation gene expression and spore formation nearly to wild-type levels. Thus, the primary factor inhibiting sporulation in a citC mutant is abnormally high accumulation of citrate, but relief of this metabolic defect is not by itself sufficient to restore competence for sporulation.
Collapse
Affiliation(s)
- K Matsuno
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | | | |
Collapse
|
2411
|
Abstract
Microbial genome sequencing is driven by the need to understand and control pathogens and to exploit extremophiles and their enzymes in bioremediation and industry. It is hard for the traditional bacteriologist to grasp the scale and pace of the venture. Around two dozen microbial genomes have now been completed and, within a decade, genomes from every significant species of bacterial pathogen of humans, animals and plants will have been sequenced. Indeed, we will often have more than one sequence from a species or genus--for example, we already have sequences from two strains of Helicobacter pylori, from two strains of Mycobacterium tuberculosis and from three species of Pyrococcus. However, genome sequencing risks becoming expensive molecular stamp-collecting without the tools to mine the data and fuel hypothesis-driven laboratory-based research. Bioinformatics, twinned with the new experimental approaches forming functional genomics', provides some of the needed tools. Nonetheless, there will be an increasing need for us to explore the detailed implications of genomic findings. Microbial genome sequencing thus represents not a threat, but an exciting opportunity for molecular microbiologists.
Collapse
Affiliation(s)
- M J Pallen
- Department of Medical Microbiology, St Bartholomew's and the Royal London School of Medicine and Dentistry, West Smithfield, London, UK.
| |
Collapse
|
2412
|
Abstract
The heptacistronic dnaK heat shock operon of Bacillus subtilis consists of the genes hrcA, grpE, dnaK, dnaJ, orf35, orf28 and orf50. It is controlled by the CIRCE/HrcA operator/repressor system and specifies three primary transcripts, two of which are processed into three different products. We have analysed the regulatory consequences of this complex transcriptional organization in detail. First, the seven genes were heat induced to different extents at the mRNA level and can be classified into three groups by their induction factors. This differential induction was also reflected at the protein level. Secondly, the cellular amounts of the proteins HrcA, DnaK and DnaJ in B. subtilis differed drastically both under non-heat shock conditions and after thermal upshock. Thirdly, Northern blot analyses demonstrated that an mRNA-processing reaction generating products of differential stabilities plays an essential role during the regulation of gene expression. A crucial factor determining the low stability of two transcripts is the presence of the CIRCE element at their 5' ends. We demonstrate that CIRCE leads to the destabilization of mRNAs, but only if it is located in the immediate vicinity of a Shine-Dalgarno sequence. These results show that B. subtilis is using various, especially post-transcriptional, regulatory mechanisms to fine tune the expression of the individual genes of the heptacistronic dnaK operon.
Collapse
Affiliation(s)
- G Homuth
- Institute of Genetics, University of Bayreuth, D-95440 Bayreuth, Germany
| | | | | |
Collapse
|
2413
|
López de Saro FJ, Yoshikawa N, Helmann JD. Expression, abundance, and RNA polymerase binding properties of the delta factor of Bacillus subtilis. J Biol Chem 1999; 274:15953-8. [PMID: 10336502 DOI: 10.1074/jbc.274.22.15953] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The delta protein is a dispensable subunit of Bacillus subtilis RNA polymerase (RNAP) that has major effects on the biochemical properties of the purified enzyme. In the presence of delta, RNAP displays an increased specificity of transcription, a decreased affinity for nucleic acids, and an increased efficiency of RNA synthesis because of enhanced recycling. Despite these profound effects, a strain containing a deletion of the delta gene (rpoE) is viable and shows no major alterations in gene expression. Quantitative immunoblotting experiments demonstrate that delta is present in molar excess relative to RNAP in both vegetative cells and spores. Expression of rpoE initiates from a single, sigmaA-dependent promoter and is maximal in transition phase. A rpoE mutant strain has an altered morphology and is delayed in the exit from stationary phase. For biochemical analyses we have created derivatives of delta and sigmaA that can be radiolabeled with protein kinase A. Using electrophoretic mobility shift assays, we demonstrate that delta binds core RNAP with an apparent affinity of 2.5 x 10(6) M-1, but we are unable to demonstrate the formation of a ternary complex containing core enzyme, delta, and sigmaA.
Collapse
Affiliation(s)
- F J López de Saro
- Section of Microbiology, Cornell University, Ithaca, New York 14853-8101, USA
| | | | | |
Collapse
|
2414
|
Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett MM, Stewart AM, Cotton MD, Pratt MS, Phillips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA, White O, Salzberg SL, Smith HO, Venter JC, Fraser CM. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 1999; 399:323-9. [PMID: 10360571 DOI: 10.1038/20601] [Citation(s) in RCA: 1023] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The 1,860,725-base-pair genome of Thermotoga maritima MSB8 contains 1,877 predicted coding regions, 1,014 (54%) of which have functional assignments and 863 (46%) of which are of unknown function. Genome analysis reveals numerous pathways involved in degradation of sugars and plant polysaccharides, and 108 genes that have orthologues only in the genomes of other thermophilic Eubacteria and Archaea. Of the Eubacteria sequenced to date, T. maritima has the highest percentage (24%) of genes that are most similar to archaeal genes. Eighty-one archaeal-like genes are clustered in 15 regions of the T. maritima genome that range in size from 4 to 20 kilobases. Conservation of gene order between T. maritima and Archaea in many of the clustered regions suggests that lateral gene transfer may have occurred between thermophilic Eubacteria and Archaea.
Collapse
Affiliation(s)
- K E Nelson
- Institute for Genomic Research, Rockville, Maryland 20850, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2415
|
Rondon MR, Raffel SJ, Goodman RM, Handelsman J. Toward functional genomics in bacteria: analysis of gene expression in Escherichia coli from a bacterial artificial chromosome library of Bacillus cereus. Proc Natl Acad Sci U S A 1999; 96:6451-5. [PMID: 10339608 PMCID: PMC26902 DOI: 10.1073/pnas.96.11.6451] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/1998] [Accepted: 03/30/1999] [Indexed: 11/18/2022] Open
Abstract
As the study of microbes moves into the era of functional genomics, there is an increasing need for molecular tools for analysis of a wide diversity of microorganisms. Currently, biological study of many prokaryotes of agricultural, medical, and fundamental scientific interest is limited by the lack of adequate genetic tools. We report the application of the bacterial artificial chromosome (BAC) vector to prokaryotic biology as a powerful approach to address this need. We constructed a BAC library in Escherichia coli from genomic DNA of the Gram-positive bacterium Bacillus cereus. This library provides 5.75-fold coverage of the B. cereus genome, with an average insert size of 98 kb. To determine the extent of heterologous expression of B. cereus genes in the library, we screened it for expression of several B. cereus activities in the E. coli host. Clones expressing 6 of 10 activities tested were identified in the library, namely, ampicillin resistance, zwittermicin A resistance, esculin hydrolysis, hemolysis, orange pigment production, and lecithinase activity. We analyzed selected BAC clones genetically to identify rapidly specific B. cereus loci. These results suggest that BAC libraries will provide a powerful approach for studying gene expression from diverse prokaryotes.
Collapse
Affiliation(s)
- M R Rondon
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Russell Laboratories, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
2416
|
Affiliation(s)
- M P Francino
- Department of Biology, University of Rochester, New York 14627, USA
| | | |
Collapse
|
2417
|
Abstract
This essay addresses the paradoxes of the complex and highly redundant genomes. The central theses developed are that: (1) the distinctive feature of complex genomes is the existence of epigenetic mechanisms that permit extremely high levels of both tandem and dispersed redundancy; (2) the special contribution of transposable elements is to modularize the genome; and (3) the labilizing forces of recombination and transposition are just barely contained, giving a dynamic genetic system of ever increasing complexity that verges on the chaotic.
Collapse
Affiliation(s)
- N V Fedoroff
- Biotechnology Institute, Pennsylvania State University, University Park 16802, USA
| |
Collapse
|
2418
|
Cabrera-Hernandez A, Sanchez-Salas JL, Paidhungat M, Setlow P. Regulation of four genes encoding small, acid-soluble spore proteins in Bacillus subtilis. Gene 1999; 232:1-10. [PMID: 10333516 DOI: 10.1016/s0378-1119(99)00124-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Three genes (sspH, sspL, and tlp) encoding new, minor small, acid-soluble proteins (SASP) unique to spores of Bacillus subtilis are expressed only in the forespore compartment during sporulation of this organism. The sspH and sspL genes are monocistronic, whereas tlp is the second gene in an operon with a second small orf, which we have termed sspN. The sspH and sspL genes are recognized primarily by the forespore-specific sigma factor for RNA polymerase, sigmaG; the sspN-tlp operon is recognized equally well by sigmaG and the other forespore-specific sigma factor, sigmaF. Sequences centered 10 and 35nt upstream of the 5'-ends of sspH, sspL, and sspN mRNAs all show homology to -10 and -35 sequences recognized by sigmaF and sigmaG, which are generally quite similar. Mutations disrupting the sspH, sspL, sspN-tlp, or tlp loci cause a loss of the appropriate SASP from spores, but have no discernible effect on sporulation, spore properties, or spore germination.
Collapse
Affiliation(s)
- A Cabrera-Hernandez
- Department of Biochemistry, University of Connecticut Health Center, Farmington, CT 06032, USA
| | | | | | | |
Collapse
|
2419
|
Smith MC, Burns RN, Wilson SE, Gregory MA. The complete genome sequence of the Streptomyces temperate phage straight phiC31: evolutionary relationships to other viruses. Nucleic Acids Res 1999; 27:2145-55. [PMID: 10219087 PMCID: PMC148434 DOI: 10.1093/nar/27.10.2145] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The completed genome sequence of the temperate Streptomyces phage straight phiC31 is reported. straight phiC31 contains genes that are related by sequence similarities to several other dsDNA phages infecting many diverse bacterial hosts, including Escherichia, Arthrobacter, Mycobacterium, Rhodobacter, Staphylococcus, Bacillus, Streptococcus, Lactobacillus and Lactococcus. These observations provide further evidence that dsDNA phages from diverse bacterial hosts are related and have had access to a common genetic pool. Analysis of the late genes was particularly informative. The sequences of the head assembly proteins (portal, head protease and major capsid) were conserved between straight phiC31, coliphage HK97, staphylococcal phage straight phiPVL, two Rhodobacter capsulatus prophages and two Mycobacterium tuberculosis prophages. These phages and prophages (where non-defective) from evolutionarily diverse hosts are, therefore, likely to share a common head assembly mechanism i.e. that of HK97. The organisation of the tail genes in straight phiC31 is highly reminiscent of tail regions from other phage genomes. The unusual organisation of the putative lysis genes in straight phiC31 is discussed, and speculations are made as to the roles of some inessential early gene products. Similarities between certain phage gene products and eukaryotic dsDNA virus proteins were noted, in particular, the primase/helicases and the terminases (large subunits). Furthermore, the complete sequence clarifies the overall transcription map of the phage during lytic growth and the positions of elements involved in the maintenance of lysogeny.
Collapse
Affiliation(s)
- M C Smith
- Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | | | | | |
Collapse
|
2420
|
Abstract
Pyruvate carboxylase (PC; EC 6.4.1.1), a member of the biotin-dependent enzyme family, catalyses the ATP-dependent carboxylation of pyruvate to oxaloacetate. PC has been found in a wide variety of prokaryotes and eukaryotes. In mammals, PC plays a crucial role in gluconeogenesis and lipogenesis, in the biosynthesis of neurotransmitter substances, and in glucose-induced insulin secretion by pancreatic islets. The reaction catalysed by PC and the physical properties of the enzyme have been studied extensively. Although no high-resolution three-dimensional structure has yet been determined by X-ray crystallography, structural studies of PC have been conducted by electron microscopy, by limited proteolysis, and by cloning and sequencing of genes and cDNA encoding the enzyme. Most well characterized forms of active PC consist of four identical subunits arranged in a tetrahedron-like structure. Each subunit contains three functional domains: the biotin carboxylation domain, the transcarboxylation domain and the biotin carboxyl carrier domain. Different physiological conditions, including diabetes, hyperthyroidism, genetic obesity and postnatal development, increase the level of PC expression through transcriptional and translational mechanisms, whereas insulin inhibits PC expression. Glucocorticoids, glucagon and catecholamines cause an increase in PC activity or in the rate of pyruvate carboxylation in the short term. Molecular defects of PC in humans have recently been associated with four point mutations within the structural region of the PC gene, namely Val145-->Ala, Arg451-->Cys, Ala610-->Thr and Met743-->Thr.
Collapse
Affiliation(s)
- S Jitrapakdee
- Department of Biochemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | |
Collapse
|
2421
|
Kuroda M, Hayashi H, Ohta T. Chromosome-determined zinc-responsible operon czr in Staphylococcus aureus strain 912. Microbiol Immunol 1999; 43:115-25. [PMID: 10229265 DOI: 10.1111/j.1348-0421.1999.tb02382.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel operon, czrAB (zinc-responsible genes), was identified in the chromosome of Staphylococcus aureus. The operon consists of two genes, czrA and czrB. The czrA gene, coding for an 11.5 kDa protein, was homologous to cadC, arsR of S. aureus plasmid pI258 and smtB of Synechococcus PCC7942. The czrB, coding for a 36 kDa membrane spanning protein, was homologous to the czcD gene, cobalt, zinc and the cadmium-resistant factor of Bacillus subtilis and Alcaligenes eutrophus. In the presence of zinc (0.1-10 mM), the transcription of czrAB was enhanced in a concentration-dependent manner. Other heavy metals, such as cobalt, copper, manganese and nickel showed no effect on czrAB expression. The disruptant of the czrB gene became sensitive to zinc ion (MIC, 2 mM; MBC, 10 mM), and the complementation with the plasmid recovered the resistance to zinc at the same concentration as a parental strain (MIC, 5 mM; MBC, 20 mM). The disruptant accumulated intracellular zinc up to 0.4 mg per g dry weight of the organism, while that of the parental strain was 0.25 mg per g dry weight. The findings indicated that the novel operon czrAB should play a role in the transportation of zinc across the cell membrane to maintain the proper intracellular concentration.
Collapse
Affiliation(s)
- M Kuroda
- Department of Microbiology, Institute of Basic Medical Sciences, and College of Medical Technology, University of Tsukuba, Ibaraki, Japan
| | | | | |
Collapse
|
2422
|
Osterås M, Stotz A, Schmid Nuoffer S, Jenal U. Identification and transcriptional control of the genes encoding the Caulobacter crescentus ClpXP protease. J Bacteriol 1999; 181:3039-50. [PMID: 10322004 PMCID: PMC93758 DOI: 10.1128/jb.181.10.3039-3050.1999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The region of the Caulobacter crescentus chromosome harboring the genes for the ClpXP protease was isolated and characterized. Comparison of the deduced amino acid sequences of the C. crescentus ClpP and ClpX proteins with those of their homologues from several gram-positive and gram-negative bacteria revealed stronger conservation for the ATPase regulatory subunit (ClpX) than for the peptidase subunit (ClpP). The C. crescentus clpX gene was shown by complementation analysis to be functional in Escherichia coli. However, clpX from E. coli was not able to substitute for the essential nature of the clpX gene in C. crescentus. The clpP and clpX genes are separated on the C. crescentus chromosome by an open reading frame pointing in the opposite direction from the clp genes, and transcription of clpP and clpX was found to be uncoupled. clpP is transcribed as a monocistronic unit with a promoter (PP1) located immediately upstream of the 5' end of the gene and a terminator structure following its 3' end. PP1 is under heat shock control and is induced upon entry of the cells into the stationary phase. At least three promoters for clpX (PX1, PX2, and PX3) were mapped in the clpP-clpX intergenic region. In contrast to PP1, the clpX promoters were found to be downregulated after heat shock but were also subject to growth phase control. In addition, the clpP and clpX promoters showed different activity patterns during the cell cycle. Together, these results demonstrate that the genes coding for the peptidase and the regulatory subunits of the ClpXP protease are under independent transcriptional control in C. crescentus. Determination of the numbers of ClpP and ClpX molecules per cell suggested that ClpX is the limiting component compared with ClpP.
Collapse
Affiliation(s)
- M Osterås
- Division of Molecular Microbiology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
2423
|
Msadek T. When the going gets tough: survival strategies and environmental signaling networks in Bacillus subtilis. Trends Microbiol 1999; 7:201-7. [PMID: 10354595 DOI: 10.1016/s0966-842x(99)01479-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Regulatory pathways involving two-component histidine kinase/response regulator proteins of Bacillus subtilis are highly interconnected and form a signal transduction network controlling stationary-phase adaptive responses. These include chemotaxis and motility, degradative enzyme synthesis, antibiotic production, natural competence for DNA uptake, and sporulation. Many of these responses are mutually exclusive, with different control levels involving protein-environment, protein-protein and protein-DNA interactions, allowing the bacteria to adapt rapidly to environmental changes.
Collapse
Affiliation(s)
- T Msadek
- Unité de Biochimie Microbienne, URA 1300 du Centre National de la Recherche Scientifique, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| |
Collapse
|
2424
|
Mejlhede N, Atkins JF, Neuhard J. Ribosomal -1 frameshifting during decoding of Bacillus subtilis cdd occurs at the sequence CGA AAG. J Bacteriol 1999; 181:2930-7. [PMID: 10217788 PMCID: PMC93739 DOI: 10.1128/jb.181.9.2930-2937.1999] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During translation of the Bacillus subtilis cdd gene, encoding cytidine deaminase (CDA), a ribosomal -1 frameshift occurs near the stop codon, resulting in a CDA subunit extended by 13 amino acids. The frequency of the frameshift is approximately 16%, and it occurs both when the cdd gene is expressed from a multicopy plasmid in Escherichia coli and when it is expressed from the chromosomal copy in B. subtilis. As a result, heterotetrameric forms of the enzyme are formed in vivo along with the dominant homotetrameric species. The different forms have approximately the same specific activity. The cdd gene was cloned in pUC19 such that the lacZ' gene of the vector followed the cdd gene in the -1 reading frame immediately after the cdd stop codon. By using site-directed mutagenesis of the cdd-lacZ' fusion, it was shown that frameshifting occurred at the sequence CGA AAG, 9 bp upstream of the in-frame cdd stop codon, and that it was stimulated by a Shine-Dalgarno-like sequence located 14 bp upstream of the shift site. The possible function of this frameshift in gene expression is discussed.
Collapse
Affiliation(s)
- N Mejlhede
- Center for Enzyme Research, Institute of Molecular Biology, University of Copenhagen, DK-1307 Copenhagen K, Denmark
| | | | | |
Collapse
|
2425
|
le Coq D, Fillinger S, Aymerich S. Histidinol phosphate phosphatase, catalyzing the penultimate step of the histidine biosynthesis pathway, is encoded by ytvP (hisJ) in Bacillus subtilis. J Bacteriol 1999; 181:3277-80. [PMID: 10322033 PMCID: PMC93787 DOI: 10.1128/jb.181.10.3277-3280.1999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The deduced product of the Bacillus subtilis ytvP gene is similar to that of ORF13, a gene of unknown function in the Lactococcus lactis histidine biosynthesis operon. A B. subtilis ytvP mutant was auxotrophic for histidine. The only enzyme of the histidine biosynthesis pathway that remained uncharacterized in B. subtilis was histidinol phosphate phosphatase (HolPase), catalyzing the penultimate step of this pathway. HolPase activity could not be detected in crude extracts of the ytvP mutant, while purified glutathione S-transferase-YtvP fusion protein exhibited strong HolPase activity. These observations demonstrated that HolPase is encoded by ytvP in B. subtilis and led us to rename this gene hisJ. Together with the HolPase of Saccharomyces cerevisiae and the presumed HolPases of L. lactis and Schizosaccharomyces pombe, HisJ constitutes a family of related enzymes that are not homologous to the HolPases of Escherichia coli, Salmonella typhimurium, and Haemophilus influenzae.
Collapse
Affiliation(s)
- D le Coq
- Laboratoire de G¿en¿etique Mol¿eculaire et Cellulaire, Centre National de la Recherche Scientifique ERS 567, Institut National de la Recherche Agronomique, F-78850 Thiverval-Grignon, France
| | | | | |
Collapse
|
2426
|
Pedersen LB, Angert ER, Setlow P. Septal localization of penicillin-binding protein 1 in Bacillus subtilis. J Bacteriol 1999; 181:3201-11. [PMID: 10322023 PMCID: PMC93777 DOI: 10.1128/jb.181.10.3201-3211.1999] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1998] [Accepted: 02/26/1999] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that Bacillus subtilis cells lacking penicillin-binding protein 1 (PBP1), encoded by ponA, have a reduced growth rate in a variety of growth media and are longer, thinner, and more bent than wild-type cells. It was also recently shown that cells lacking PBP1 require increased levels of divalent cations for growth and are either unable to grow or grow as filaments in media low in Mg2+, suggesting a possible involvement of PBP1 in septum formation under these conditions. Using epitope-tagging and immunofluorescence microscopy, we have now shown that PBP1 is localized at division sites in vegetative cells of B. subtilis. In addition, we have used fluorescence and electron microscopy to show that growing ponA mutant cells display a significant septation defect, and finally by immunofluorescence microscopy we have found that while FtsZ localizes normally in most ponA mutant cells, a significant proportion of ponA mutant cells display FtsZ rings with aberrant structure or improper localization, suggesting that lack of PBP1 affects FtsZ ring stability or assembly. These results provide strong evidence that PBP1 is localized to and has an important function in the division septum in B. subtilis. This is the first example of a high-molecular-weight class A PBP that is localized to the bacterial division septum.
Collapse
Affiliation(s)
- L B Pedersen
- Department of Biochemistry, University of Connecticut Health Center, Farmington, Connecticut 06032, USA
| | | | | |
Collapse
|
2427
|
d'Enfert C, Bonini BM, Zapella PD, Fontaine T, da Silva AM, Terenzi HF. Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mol Microbiol 1999; 32:471-83. [PMID: 10320571 DOI: 10.1046/j.1365-2958.1999.01327.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cAMP-activatable Ca2+-dependent neutral trehalase was identified in germinating conidia of Aspergillus nidulans and Neurospora crassa. Using a PCR approach, A. nidulans and N. crassa genes encoding homologues of the neutral trehalases found in several yeasts were cloned and sequenced. Disruption of the AntreB gene encoding A. nidulans neutral trehalase revealed that it is responsible for intracellular trehalose mobilization at the onset of conidial germination, and that this phenomenon is partially involved in the transient accumulation of glycerol in the germinating conidia. Although trehalose mobilization is not essential for the completion of spore germination and filamentous growth in A. nidulans, it is required to achieve wild-type germination rates under carbon limitation, suggesting that intracellular trehalose can partially contribute the energy requirements of spore germination. Furthermore, it was shown that trehalose accumulation in A. nidulans can protect germinating conidia against an otherwise lethal heat shock. Because transcription of the treB genes is not increased after a heat shock but induced upon heat shock recovery, it is proposed that, in filamentous fungi, mobilization of trehalose during the return to appropriate growth is promoted by transcriptional and post-translational regulatory mechanisms, in particular cAMP-dependent protein kinase-mediated phosphorylation.
Collapse
Affiliation(s)
- C d'Enfert
- Laboratoire des Aspergillus, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
| | | | | | | | | | | |
Collapse
|
2428
|
Takamatsu H, Kodama T, Watabe K. Assembly of the CotSA coat protein into spores requires CotS in Bacillus subtilis. FEMS Microbiol Lett 1999; 174:201-6. [PMID: 10234840 DOI: 10.1111/j.1574-6968.1999.tb13569.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The CotSA protein, encoded by cotSA (ytxN) of Bacillus subtilis, was detected from the cells at 5 h after the onset of sporulation (T5) and in the spore coat of wild-type cells, but not in cotE, cotS, gerE, or cotSA mutant spores. CotSA was also detected in the sporangium at T5 to T7 but not in the sporangium at T18 of cotS mutant cells, while the incorporation of CotS into the coat was not dependent upon CotSA. These results suggested that CotSA was synthesized simultaneously with CotS during T5 to T7 of sporulation and assembled into the coat dependent upon CotS.
Collapse
Affiliation(s)
- H Takamatsu
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan
| | | | | |
Collapse
|
2429
|
Mackiewicz P, Gierlik A, Kowalczuk M, Dudek MR, Cebrat S. How Does Replication-Associated Mutational Pressure Influence Amino Acid Composition of Proteins? Genome Res 1999. [DOI: 10.1101/gr.9.5.409] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
We have performed detrended DNA walks on whole prokaryotic genomes, on noncoding sequences and, separately, on each position in codons of coding sequences. Our method enables us to distinguish between the mutational pressure associated with replication and the mutational pressure associated with transcription and other mechanisms that introduce asymmetry into prokaryotic chromosomes. In many prokaryotic genomes, each component of mutational pressure affects coding sequences not only in silent positions but also in positions in which changes cause amino acid substitutions in coded proteins. Asymmetry in the silent positions of codons differentiates the rate of translation of mRNA produced from leading and lagging strands. Asymmetry in the amino acid composition of proteins resulting from replication-associated mutational pressure also corresponds to leading and lagging roles of DNA strands, whereas asymmetry connected with transcription and coding function corresponds to the distance of genes from the origin or terminus of chromosome replication.
Collapse
|
2430
|
Strey J, Wittchen KD, Meinhardt F. Regulation of beta-galactosidase expression in Bacillus megaterium DSM319 by a XylS/AraC-type transcriptional activator. J Bacteriol 1999; 181:3288-92. [PMID: 10322036 PMCID: PMC93790 DOI: 10.1128/jb.181.10.3288-3292.1999] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The beta-galactosidase-encoding bgaM gene of Bacillus megaterium DSM319 and the divergently orientated bgaR operon were isolated and sequenced. Both traits are subject to catabolite repression. A set of single-gene replacement mutants was generated and used to analyze gene function. BgaR was found to be a XylS/AraC-type positive transcriptional regulator of bgaM; a potential regulator binding site overlaps the bgaM promoter. A mechanism for regulation of beta-galactosidase expression in B. megaterium is proposed.
Collapse
MESH Headings
- Bacillus megaterium/enzymology
- Bacillus megaterium/genetics
- Bacterial Proteins
- Base Sequence
- Binding Sites
- Cloning, Molecular
- DNA-Binding Proteins
- Gene Deletion
- Gene Expression
- Gene Expression Regulation, Bacterial/drug effects
- Gene Expression Regulation, Enzymologic/drug effects
- Genes, Bacterial/genetics
- Genes, Bacterial/physiology
- Glucose/metabolism
- Glucose/pharmacology
- Lactose/metabolism
- Lactose/pharmacology
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Insertional
- Nitrophenylgalactosides/metabolism
- Open Reading Frames/genetics
- Operon/genetics
- Promoter Regions, Genetic/genetics
- Sequence Analysis, DNA
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic/drug effects
- beta-Galactosidase/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- J Strey
- Institut für Mikrobiologie, Westfälische Wilhelms-Universität Münster, 48149 Münster, Germany
| | | | | |
Collapse
|
2431
|
Okuda J, Hayakawa E, Nishibuchi M, Nishino T. Sequence analysis of the gyrA and parC homologues of a wild-type strain of Vibrio parahaemolyticus and its fluoroquinolone-resistant mutants. Antimicrob Agents Chemother 1999; 43:1156-62. [PMID: 10223929 PMCID: PMC89126 DOI: 10.1128/aac.43.5.1156] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio parahaemolyticus causes seafood-borne gastroenteritis in humans. It is particularly important in Japan, where raw seafood is frequently consumed. Fluoroquinolone is one of the current drugs of choice for treating patients infected by V. parahaemolyticus because resistant strains are rarely found. To study a possible fluoroquinolone resistance mechanism in this organism, nucleotide sequences that are homologous to known gyrA and parC genes have been cloned from V. parahaemolyticus AQ3815 and sequenced by amplification with degenerate primers of the quinolone resistance-determining region (QRDR), followed by cassette ligation-mediated PCR. Open reading frames encoding polypeptides of 878 and 761 amino acid residues were detected in the gyrA and parC homologues, respectively. The V. parahaemolyticus GyrA and ParC sequences were most closely related to Erwinia carotovora GyrA (76% identity) and Escherichia coli ParC (69% identity) sequences, respectively. Ciprofloxacin-resistant mutants of AQ3815 were obtained on an agar medium by multistep selection with increasing levels of the quinolone. One point mutation only in the gyrA QRDR was detected among mutants with low- to intermediate-level resistance, while point mutations in both the gyrA and parC QRDRs were detected only in strains with high-level resistance. These results strongly suggest that, as in other gram-negative bacteria, GyrA and ParC are the primary and secondary targets, respectively, of ciprofloxacin in V. parahaemolyticus.
Collapse
Affiliation(s)
- J Okuda
- New Product Research Laboratories I, Daiichi Pharmaceutical Co., Ltd., Edogawa-ku, Tokyo, Japan
| | | | | | | |
Collapse
|
2432
|
Yang DH, von Kalckreuth J, Allmansberger R. Synthesis of the sigmaD protein is not sufficient to trigger expression of motility functions in Bacillus subtilis. J Bacteriol 1999; 181:2942-6. [PMID: 10217790 PMCID: PMC93741 DOI: 10.1128/jb.181.9.2942-2946.1999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1998] [Accepted: 02/17/1999] [Indexed: 11/20/2022] Open
Abstract
The gene encoding sigmaD, sigD, is transcribed from two promoter regions, the fla/che promoter region in front of the fla/che operon and PsigD directly in front of sigD. If sigmaD is translated from transcripts originating from PsigD, the cell is unable to express motility functions but synthesizes autolysins. Therefore, one function of the additional promoter is to allow the cell to express autolysins without expressing motility functions as well.
Collapse
Affiliation(s)
- D H Yang
- Lehrstuhl für Mikrobiologie, Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | | | | |
Collapse
|
2433
|
Maruyama K, Sato N, Ohta N. Conservation of structure and cold-regulation of RNA-binding proteins in cyanobacteria: probable convergent evolution with eukaryotic glycine-rich RNA-binding proteins. Nucleic Acids Res 1999; 27:2029-36. [PMID: 10198437 PMCID: PMC148417 DOI: 10.1093/nar/27.9.2029] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The rbp gene family of the cyanobacterium Anabaena variabilis strain M3 consists of eight members that encode small RNA-binding proteins containing a single RNA recognition motif (RRM). Similar genes are found in the genomes of Synechocystis sp. PCC6803, Helicobacter pylori and Treponema pallidum, but are absent from the other completely sequenced prokaryotic genomes. The expression of the rbp genes of Anabaena is induced by low temperature, with the exception of the rbpD gene. We found four stretches of conserved sequences in the 5'-untranslated region of the cyanobacterial rbp genes that are known to be induced by low temperature. The cold-regulated Rbp proteins contain a short C-terminal glycine-rich domain. In this respect, these proteins are similar to plant and mammalian glycine-rich RNA-binding proteins (GRPs), which also contain a single RRM domain with a C-terminal glycine-rich domain and are highly expressed at low temperature. Detailed phylogenetic analysis showed, however, that the cyanobacterial Rbp proteins and the eukaryotic GRPs do not belong to a single lineage, but that the glycine-rich domains are likely to have been added independently. The cold-regulation of both types of proteins is also likely to have evolved independently. Furthermore, the chloroplast RNA-binding proteins are not likely to have originated from the Rbp proteins of endosymbiont cyanobacterium, but are supposed to have diverged from the GRPs. These results suggest that the cyanobacterial Rbp proteins and the eukaryotic GRPs are similar in both structure and regulation, but that this apparent similarity has resulted from convergent evolution.
Collapse
Affiliation(s)
- K Maruyama
- Department of Biochemistry and Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-Ohkubo, Urawa, Saitama Prefecture 338-8570, Japan
| | | | | |
Collapse
|
2434
|
Ohnishi R, Ishikawa S, Sekiguchi J. Peptidoglycan hydrolase LytF plays a role in cell separation with CwlF during vegetative growth of Bacillus subtilis. J Bacteriol 1999; 181:3178-84. [PMID: 10322020 PMCID: PMC93774 DOI: 10.1128/jb.181.10.3178-3184.1999] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Peptidoglycan hydrolase, LytF (CwlE), was determined to be identical to YhdD (deduced cell wall binding protein) by zymography after insertional inactivation of the yhdD gene. YhdD exhibits high sequence similarity with CwlF (PapQ, LytE) and p60 of Listeria monocytogenes. The N-terminal region of YhdD has a signal sequence followed by five tandem repeated regions containing polyserine residues. The C-terminal region corresponds to the catalytic domain, because a truncated protein without the N-terminal region retained cell wall hydrolase activity. The histidine-tagged LytF protein produced in Escherichia coli cells hydrolyzed the linkage of D-gamma-glutamyl-meso-diaminopimelic acid in murein peptides, indicating that it is a D,L-endopeptidase. Northern hybridization and primer extension analyses indicated that the lytF gene was transcribed by EsigmaD RNA polymerase. Disruption of lytF led to slightly filamentous cells, and a lytF cwlF double mutant exhibited extraordinary microfiber formation, which is similar to the cell morphology of the cwlF sigD mutant.
Collapse
Affiliation(s)
- R Ohnishi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda-shi, Nagano 386-8567, Japan
| | | | | |
Collapse
|
2435
|
Porwollik S, Noonan B, O'Toole PW. Molecular characterization of a flagellar export locus of Helicobacter pylori. Infect Immun 1999; 67:2060-70. [PMID: 10225855 PMCID: PMC115938 DOI: 10.1128/iai.67.5.2060-2070.1999] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/1998] [Accepted: 02/08/1999] [Indexed: 01/13/2023] Open
Abstract
Motility of Helicobacter species has been shown to be essential for successful colonization of the host. We have investigated the organization of a flagellar export locus in Helicobacter pylori. A 7-kb fragment of the H. pylori CCUG 17874 genome was cloned and sequenced, revealing an operon comprising an open reading frame of unknown function (ORF03), essential housekeeping genes (ileS and murB), flagellar export genes (fliI and fliQ), and a homolog to a gene implicated in virulence factor transport in other pathogens (virB11). A promoter for this operon, showing similarity to the Escherichia coli sigma70 consensus, was identified by primer extension. Cotranscription of the genes in the operon was demonstrated by reverse transcription-PCR, and transcription of virB11, fliI, fliQ, and murB was detected in human or mouse biopsies obtained from infected hosts. The genetic organization of this locus was conserved in a panel of H. pylori clinical isolates. Engineered fliI and fliQ mutant strains were completely aflagellate and nonmotile, whereas a virB11 mutant still produced flagella. The fliI and fliQ mutant strains produced reduced levels of flagellin and the hook protein FlgE. Production of OMP4, a member of the outer membrane protein family identified in H. pylori 26695, was reduced in both the virB11 mutant and the fliI mutant, suggesting related functions of the virulence factor export protein (VirB11) and the flagellar export component (FliI).
Collapse
Affiliation(s)
- S Porwollik
- Institute of Molecular BioSciences, Massey University, Palmerston North, New Zealand
| | | | | |
Collapse
|
2436
|
Fernández S, Alonso JC. Bacillus subtilis sequence-independent DNA-binding and DNA-bending protein Hbsu negatively controls its own synthesis. Gene X 1999; 231:187-93. [PMID: 10231583 DOI: 10.1016/s0378-1119(99)00105-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Transcription of the hbs gene under vegetative growth condition is subject to repression when cells enter in late exponential phase. We have determined the sites at which transcription of the hbs gene initiates in vitro. On a supercoiled template, transcription of the hbs gene is initiated by sigmaARNAP at two overlapping hbs promoters (P1 and P3). We have demonstrated that highly purified Hbsu protein acts as a repressor of its own synthesis. The binding of the sequence-independent DNA-binding and DNA-bending Hbsu protein does not seem to exclude sigmaARNAP from the promoters. In this report we show that Hbsu, in vitro, does not repress transcription by a mere steric hindrance on sigmaARNAP binding.
Collapse
Affiliation(s)
- S Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | | |
Collapse
|
2437
|
Ayora S, Stasiak A, Alonso JC. The Bacillus subtilis bacteriophage SPP1 G39P delivers and activates the G40P DNA helicase upon interacting with the G38P-bound replication origin. J Mol Biol 1999; 288:71-85. [PMID: 10329127 DOI: 10.1006/jmbi.1999.2662] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Initiation of Bacillus subtilis bacteriophage SPP1 replication requires the phage-encoded genes 38, 39 and 40 products (G38P, G39P and G40P). G39P, which does not bind DNA, interacts with the replisome organiser, G38P, in the absence of ATP and with the ATP-activated hexameric replication fork helicase, G40P. G38P, which specifically interacts with the phage replication origin (oriL) DNA, does not seem to form a stable complex with G40P in solution. G39P when complexed with G40P-ATP inactivates the single-stranded DNA binding, ATPase and unwinding activities of G40P, and such effects are reversed by increasing amounts of G38P. Unwinding of a forked substrate by G40P-ATP is increased about tenfold by the addition of G38P and G39P to the reaction mixture. The specific protein-protein interactions between oriL-bound G38P and the G39P-G40P-ATPgammaS complex are necessary for helicase delivery to the SPP1 replication origin. Formation of G38P-G39P heterodimers releases G40P-ATPgammaS from the unstable oriL-G38P-G39P-G40P-ATPgammaS intermediate. G40P-ATPgammaS binds to the origin region, the uncomplexed G38P fraction remains bound to oriL, and the G38P-G39P heterodimer is lost from the complex. We demonstrate that G39P is a component of an oligomeric nucleoprotein complex which plays an important role in the initiation of SPP1 replication.
Collapse
Affiliation(s)
- S Ayora
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, CSIC, Cantoblanco, Campus Universidad Autónoma de Madrid, E-28049, Spain
| | | | | |
Collapse
|
2438
|
Sakamoto J, Koga E, Mizuta T, Sato C, Noguchi S, Sone N. Gene structure and quinol oxidase activity of a cytochrome bd-type oxidase from Bacillus stearothermophilus. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1411:147-58. [PMID: 10216161 DOI: 10.1016/s0005-2728(99)00012-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gram-positive thermophilic Bacillus species contain cytochrome caa3-type cytochrome c oxidase as their main terminal oxidase in the respiratory chain. We previously identified and purified an alternative oxidase, cytochrome bd-type quinol oxidase, from a mutant of Bacillus stearothermophilus defective in the caa3-type oxidase activity (J. Sakamoto et al., FEMS Microbiol. Lett. 143 (1996) 151-158). Compared with proteobacterial counterparts, B. stearothermophilus cytochrome bd showed lower molecular weights of the two subunits, shorter wavelength of alpha-band absorption maximum due to heme D, and lower quinol oxidase activity. Preincubation with menaquinone-2 enhanced the enzyme activity up to 40 times, suggesting that, besides the catalytic site, there is another quinone-binding site which largely affects the enzyme activity. In order to clarify the molecular basis of the differences of cytochromes bd between B. stearothermophilus and proteobacteria, the genes encoding for the B. stearothermophilus bd was cloned based on its partial peptide sequences. The gene for subunit I (cbdA) encodes 448 amino acid residues with a molecular weight of 50195 Da, which is 14 and 17% shorter than those of Escherichia coli and Azotobacter vinelandii, respectively, and CbdA lacks the C-terminal half of the long hydrophilic loop between the putative transmembrane segments V and VI (Q loop), which has been suggested to include the substrate quinone-binding site for the E. coli enzyme. The gene for subunit II (cbdB) encodes 342 residues with a molecular weight of 38992 Da. Homology search indicated that the B. stearothermophilus cbdAB has the highest sequence similarity to ythAB in B. subtilis genome rather than to cydAB, the first set of cytochrome bd genes identified in the genome. Sequence comparison of cytochromes bd and their homologs from various organisms demonstrates that the proteins can be classified into two subfamilies, a proteobacterial type including E. coli bd and a more widely distributed type including the B. stearothermophilus enzyme, suggesting that the latter type is evolutionarily older.
Collapse
Affiliation(s)
- J Sakamoto
- Department of Biochemical Engineering and Science, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka 820-8502, Japan.
| | | | | | | | | | | |
Collapse
|
2439
|
Pelchat M, Gagnon Y, Laberge S, Lapointe J. Co-transcription of Rhizobium meliloti lysyl-tRNA synthetase and glutamyl-tRNA synthetase genes. FEBS Lett 1999; 449:23-7. [PMID: 10225420 DOI: 10.1016/s0014-5793(99)00385-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An open reading frame encoding a putative polypeptide very similar to several lysyl-tRNA synthetases was found 10 nucleotides downstream of Rhizobium meliloti gltX encoding glutamyl-tRNA synthetase. Expression of this gene complemented a mutation in lysS of Escherichia coli and led to the overexpression of a polypeptide of the expected mass (62 kDa), thus confirming that it encodes R. meliloti lysyl-tRNA synthetase. Reverse transcription/polymerase chain reaction was used to demonstrate that this lysS gene is co-transcribed with gltX in R. meliloti. This is the first reported case of two immediately adjacent and co-transcribed genes encoding aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- M Pelchat
- Département de Biochimie, Faculté des Sciences et de Génie, Université Laval, Sainte-Foy, Que., Canada
| | | | | | | |
Collapse
|
2440
|
Abstract
The gene encoding ClpC in Bacillus anthracis was amplified from the chromosome by polymerase chain reaction using degenerate oligonucleotide primers. These primers also amplified a second DNA fragment identified as a clpB homolog. Both genes were suggested to be functional. Contrary to Bacillus subtilis which possesses clpC but not clpB, many Bacillus species were found to harbor both clpC and clpB. We also found that Clostridium strains could possess clpB, clpC, or both. All the Gram-negative strains tested had clpB only.
Collapse
Affiliation(s)
- O Namy
- Toxines et Pathogénie Bactériennes (CNRS URA 1858), Institut Pasteur, Paris, France
| | | | | |
Collapse
|
2441
|
Jakoby M, Krämer R, Burkovski A. Nitrogen regulation in Corynebacterium glutamicum: isolation of genes involved and biochemical characterization of corresponding proteins. FEMS Microbiol Lett 1999; 173:303-10. [PMID: 10227160 DOI: 10.1111/j.1574-6968.1999.tb13518.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The regulation of nitrogen assimilation was investigated in the Gram-positive actinomycete Corynebacterium glutamicum. Biochemical studies and site-directed mutagenesis revealed that glutamine synthetase activity is regulated via adenylylation in this organism. The genes encoding the central signal transduction protein PH (glnB) and the primary nitrogen sensor uridylyltransferase (glnD) were isolated and sequenced. Additionally, genes putatively involved in the degradation of ornithine (ocd) and sarcosine (soxA), ammonium uptake (amtP) and protein secretion (ftsY, srp) were identified in C. glutamicum. Based on these observations, the mechanism of N regulation in C. glutamicum is similar to that of the Gram-negative Escherichia coli. As deduced from data base searches, the described regulation may also hold true for the important pathogen Mycobacterium glutamicum.
Collapse
Affiliation(s)
- M Jakoby
- Institut für Biochemie, Universität zu Köln, Cologne, Germany
| | | | | |
Collapse
|
2442
|
Itaya M, Tanaka T. Fate of unstable Bacillus subtilis subgenome: re-integration and amplification in the main genome. FEBS Lett 1999; 448:235-8. [PMID: 10218482 DOI: 10.1016/s0014-5793(99)00351-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The plastic Bacillus subtilis genome was dissected into two physically separate genomes, the 3.9 Mb main genome and the 0.3 Mb subgenome. DNA replication of the main genome was initiated from the normal replication origin (oriC) and that of the subgenome was from a 7.2 kb oriN-containing fragment artificially inserted. When the 7.2 kb fragment was shortened to a 1.5 kb fragment that contains oriN but lacks the segregational function, the subgenome became unstable and was rapidly lost from the cell, producing inviable cells due to the loss of essential genes carried by the subgenome. Stable survivors were isolated in which the subgenome had re-integrated and multiplied in the main genome. These results suggest that a reduced genetic stability of the subgenome induces size variation of the B. subtilis genome.
Collapse
Affiliation(s)
- M Itaya
- Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan.
| | | |
Collapse
|
2443
|
Quentin Y, Fichant G, Denizot F. Inventory, assembly and analysis of Bacillus subtilis ABC transport systems. J Mol Biol 1999; 287:467-84. [PMID: 10092453 DOI: 10.1006/jmbi.1999.2624] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have undertaken the inventory and assembly of the ATP binding cassette (ABC) transporter systems in the complete genome of Bacillus subtilis. We combined the identification of the three protein partners that compose an ABC transporter (nucleotide-binding domain, NBD; membrane spanning domain, MSD; and solute-binding protein, SBP) with constraints on the genetic organization. This strategy allowed the identification of 86 NBDs in 78 proteins, 103 MSD proteins and 37 SBPs. The analysis of transcriptional units allows the reconstruction of 59 ABC transporters, which include at least one NBD and one MSD. A particular class of five dimeric ATPases was not associated to MSD partners and is assumed to be involved either in macrolide resistance or regulation of translation elongation. In addition, we have detected five genes encoding ATPases without any gene coding for MSD protein in their neighborhood and 11 operons that encode only the membrane and solute-binding proteins. On the bases of similarities, three ATP-binding proteins are proposed to energize ten incomplete systems, suggesting that one ATPase may be recruited by more than one transporter. Finally, we estimate that the B. subtilis genome encodes for at least 78 ABC transporters that have been split in 38 importers and 40 extruders. The ABC systems have been further classified into 11 sub-families according to the tree obtained from the NBDs and the clustering of the MSDs and the SBPs. Comparisons with Escherichia coli show that the extruders are over-represented in B. subtilis, corresponding to an expansion of the sub-families of antibiotic and drug resistance systems.
Collapse
Affiliation(s)
- Y Quentin
- Laboratoire de Chimie Bactérienne, Institut de Biologie Structurale et Microbiologie CNRS, 31, Chemin Joseph Aiguier, Marseille Cedex 20, 13402, France.
| | | | | |
Collapse
|
2444
|
Schönert S, Buder T, Dahl MK. Properties of maltose-inducible alpha-glucosidase MalL (sucrase-isomaltase-maltase) in Bacillus subtilis: evidence for its contribution to maltodextrin utilization. Res Microbiol 1999; 150:167-77. [PMID: 10229946 DOI: 10.1016/s0923-2508(99)80033-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Recently, we identified the maltose inducible alpha-glucosidase MalL of Bacillus subtilis. The malL gene encodes a 561-residue protein with amino acid identities to several alpha-glucosidases and is located in a nine-gene spanning gene cluster, which is presumably organized in an operon. MalL was overproduced, purified, and its enzymatic characteristics were described in more detail. This characterization of the enzyme showed a protein stable up to 37 degrees C after temperature treatment for 15 min and exhibiting an optimal reaction temperature of 42 degrees C. Various disaccharides such as sucrose, maltose, and isomaltose were hydrolyzed with different efficiencies. MalL also hydrolyzes longer maltodextrins from maltotriose up to maltohexaose, but not maltoheptaose, palatinose, isomaltotriose, or isomaltotetraose. MalL expression is subject to both maltose induction and carbon catabolite repression. In this article, we present data demonstrating that induction of MalL expression also occurs when starch, amylose, or glycogen are present in the growth medium. The hydrolysis of these substrates by alpha-amylase presumably leads to products which, when taken up into the cytoplasm, trigger the initiation of maltose operon transcription. Furthermore, MalL expression varies temporally, showing a second induction in the stationary growth phase.
Collapse
Affiliation(s)
- S Schönert
- Lehrstuhl für Mikrobiologie, Universität Erlangen-Nürnberg, Germany
| | | | | |
Collapse
|
2445
|
Abstract
Analysis of 15 complete bacterial chromosomes revealed important biases in gene organization. Strong compositional asymmetries between the genes lying on the leading versus lagging strands were observed at the level of nucleotides, codons and, surprisingly, amino acids. For some species, the bias is so high that the sole knowledge of a protein sequence allows one to predict with almost no errors whether the gene is transcribed from one strand or the other. Furthermore, we show that these biases are not species specific but appear to be universal. These findings may have important consequences in our understanding of fundamental biological processes in bacteria, such as replication fidelity, codon usage in genes and even amino acid usage in proteins.
Collapse
|
2446
|
Debarbouille M, Gardan R, Arnaud M, Rapoport G. Role of bkdR, a transcriptional activator of the sigL-dependent isoleucine and valine degradation pathway in Bacillus subtilis. J Bacteriol 1999; 181:2059-66. [PMID: 10094682 PMCID: PMC93617 DOI: 10.1128/jb.181.7.2059-2066.1999] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A new gene, bkdR (formerly called yqiR), encoding a regulator with a central (catalytic) domain was found in Bacillus subtilis. This gene controls the utilization of isoleucine and valine as sole nitrogen sources. Seven genes, previously called yqiS, yqiT, yqiU, yqiV, bfmBAA, bfmBAB, and bfmBB and now referred to as ptb, bcd, buk, lpd, bkdA1, bkdA2, and bkdB, are located downstream from the bkdR gene in B. subtilis. The products of these genes are similar to phosphate butyryl coenzyme A transferase, leucine dehydrogenase, butyrate kinase, and four components of the branched-chain keto acid dehydrogenase complex: E3 (dihydrolipoamide dehydrogenase), E1alpha (dehydrogenase), E1beta (decarboxylase), and E2 (dihydrolipoamide acyltransferase). Isoleucine and valine utilization was abolished in bcd and bkdR null mutants of B. subtilis. The seven genes appear to be organized as an operon, bkd, transcribed from a -12, -24 promoter. The expression of the bkd operon was induced by the presence of isoleucine or valine in the growth medium and depended upon the presence of the sigma factor SigL, a member of the sigma 54 family. Transcription of this operon was abolished in strains containing a null mutation in the regulatory gene bkdR. Deletion analysis showed that upstream activating sequences are involved in the expression of the bkd operon and are probably the target of bkdR. Transcription of the bkd operon is also negatively controlled by CodY, a global regulator of gene expression in response to nutritional conditions.
Collapse
Affiliation(s)
- M Debarbouille
- Unité de Biochimie Microbienne, Institut Pasteur, URA 1300 du Centre National de la Recherche Scientifique, 75724 Paris Cedex 15, France.
| | | | | | | |
Collapse
|
2447
|
Abstract
Sequencing of the complete Bacillus subtilis chromosome revealed the presence of approximately 4100 genes, 1000 of which were previously identified and mapped by classical genetic crosses. Comparison of these experimentally determined positions to those derived from the nucleotide sequence showed discrepancies reaching up to 24 degrees (approximately 280 kb). The size of these discrepancies as a function of their position along the chromosome is not random but, apparently, reveals some periodicity. Our analyses demonstrate that the discrepancies can be accounted for by inaccurate positioning of the early reference markers with respect to which all subsequently identified loci were mapped by transduction and transformation. We conclude (i) that specific DNA sequences, such as recombination hotspots or presence of heterologous DNA, had no detectable effect on the results obtained by classical mapping, and (ii) that PBS1 transduction appears to be an accurate and unbiased mapping method in B. subtilis.
Collapse
Affiliation(s)
- C Rivolta
- Institut de Génétique et de Biologie Microbiennes, Université de Lausanne, CH-1005 Lausanne, Switzerland
| | | |
Collapse
|
2448
|
Kappes RM, Kempf B, Kneip S, Boch J, Gade J, Meier-Wagner J, Bremer E. Two evolutionarily closely related ABC transporters mediate the uptake of choline for synthesis of the osmoprotectant glycine betaine in Bacillus subtilis. Mol Microbiol 1999; 32:203-16. [PMID: 10216873 DOI: 10.1046/j.1365-2958.1999.01354.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Biosynthesis of the compatible solute glycine betaine in Bacillus subtilis confers a considerable degree of osmotic tolerance and proceeds via a two-step oxidation process of choline, with glycine betaine aldehyde as the intermediate. We have exploited the sensitivity of B. subtilis strains defective in glycine betaine production against glycine betaine aldehyde to select for mutants resistant to this toxic intermediate. These strains were also defective in choline uptake, and genetic analysis proved that two mutations affecting different genetic loci (opuB and opuC) were required for these phenotypes. Molecular analysis allowed us to demonstrate that the opuB and opuC operons each encode a binding protein-dependent ABC transport system that consists of four components. The presumed binding proteins of both ABC transporters were shown to be lipoproteins. Kinetic analysis of [14C]-choline uptake via OpuB (K(m) = 1 microM; Vmax = 21 nmol min-1 mg-1 protein) and OpuC (K(m) = 38 microM; Vmax = 75 nmol min-1 mg-1 protein) revealed that each of these ABC transporters exhibits high affinity and substantial transport capacity. Western blotting experiments with a polyclonal antiserum cross-reacting with the presumed substrate-binding proteins from both the OpuB and OpuC transporter suggested that the expression of the opuB and opuC operons is regulated in response to increasing osmolality of the growth medium. Primer extension analysis confirmed the osmotic control of opuB and allowed the identification of the promoter of this operon. The opuB and opuC operons are located close to each other on the B. subtilis chromosome, and their high sequence identity strongly suggests that these systems have evolved from a duplication event of a primordial gene cluster. Despite the close relatedness of OpuB and OpuC, these systems exhibit a striking difference in substrate specificity for osmoprotectants that would not have been predicted readily for such closely related ABC transporters.
Collapse
Affiliation(s)
- R M Kappes
- Philipps University Marburg, Department of Biology, Germany
| | | | | | | | | | | | | |
Collapse
|
2449
|
Fabret C, Feher VA, Hoch JA. Two-component signal transduction in Bacillus subtilis: how one organism sees its world. J Bacteriol 1999; 181:1975-83. [PMID: 10094672 PMCID: PMC93607 DOI: 10.1128/jb.181.7.1975-1983.1999] [Citation(s) in RCA: 274] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- C Fabret
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
2450
|
Hurtado A, Rodríguez-Valera F. Accessory DNA in the genomes of representatives of the Escherichia coli reference collection. J Bacteriol 1999; 181:2548-54. [PMID: 10198021 PMCID: PMC93683 DOI: 10.1128/jb.181.8.2548-2554.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Different strains of the Escherichia coli reference collection (ECOR) differ widely in chromosomal size. To analyze the nature of the differential gene pool carried by different strains, we have followed an approach in which random amplified polymorphic DNA (RAPD) was used to generate several PCR fragments. Those present in some but not all the strains were screened by hybridization to assess their distribution throughout the ECOR collection. Thirteen fragments with various degrees of occurrence were sequenced. Three of them corresponded to RAPD markers of widespread distribution. Of these, two were housekeeping genes shown by hybridization to be present in all the E. coli strains and in Salmonella enterica LT2; the third fragment contained a paralogous copy of dnaK with widespread, but not global, distribution. The other 10 RAPD markers were found in only a few strains. However, hybridization results demonstrated that four of them were actually present in a large selection of the ECOR collection (between 42 and 97% of the strains); three of these fragments contained open reading frames associated with phages or plasmids known in E. coli K-12. The remaining six fragments were present in only between one and four strains; of these, four fragments showed no similarity to any sequence in the databases, and the other two had low but significant similarity to a protein involved in the Klebsiella capsule synthesis and to RNA helicases of archaeal genomes, respectively. Their percent GC, dinucleotide content, and codon adaptation index suggested an exogenous origin by horizontal transfer. These results can be interpreted as reflecting the presence of a large pool of strain-specific genes, whose origin could be outside the species boundaries.
Collapse
Affiliation(s)
- A Hurtado
- División de Microbiología, Centro de Biología Molecular y Celular, Campus de San Juan, Universidad Miguel Hernández, 03550 San Juan de Alicante, Spain
| | | |
Collapse
|