201
|
Kulandaivel S, Wang YM, Chen SF, Lin CH, Yeh YC. A Cu-based metal-organic framework synthesized via a green method exhibits unique catecholase-like activity for epigallocatechin gallate detection in teas. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:8307-8315. [PMID: 39513318 DOI: 10.1039/d4ay01733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Tea contains various antioxidant compounds, including polyphenols, catechins, theaflavins, theasinensins, and flavonoids. Among these, epigallocatechin gallate (EGCG) is a crucial antioxidant recognized for its potent bioactivity. This study presents the synthesis of a highly selective Cu-PyC NH4+-based metal-organic framework (MOF) nanozyme that exhibits catecholase-like activity to assess the antioxidant capabilities of EGCG. The developed nanozyme demonstrates robust stability and specificity in oxidizing 3,5-di-tert-butylcatechol (3,5-DTBC), showcasing unique catecholase activity distinct from that of typical oxidase nanozymes. Furthermore, this nanozyme displays exceptional efficacy, sensitivity, and selectivity in targeting EGCG, enabling accurate quantification of EGCG levels in commercial tea products via UV-spectroscopy. The assay exhibits a linear response within the EGCG concentration range of 0.5-125 μM, with a detection limit of 0.83 μM, alongside excellent reproducibility and stability. These findings suggest that this nanozyme offers a promising approach for precisely evaluating antioxidants, with significant implications for the food and beverage industry and health research.
Collapse
Affiliation(s)
| | - Yu-Meng Wang
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Sung-Fang Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
| | - Chia-Her Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yi-Chun Yeh
- Department of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan.
| |
Collapse
|
202
|
Ren H, Wang T, Liu R. Correlation Analyses of Amylase and Protease Activities and Physicochemical Properties of Wheat Bran During Solid-State Fermentation. Foods 2024; 13:3998. [PMID: 39766945 PMCID: PMC11675429 DOI: 10.3390/foods13243998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Solid-state fermentation (SSF) has emerged as an effective method for wheat bran valorization, providing advantages like cost reduction, decreased water usage, and enhanced product quality. In this study, wheat bran was fermented using Rhizopus oryzae to evaluate the extraction yield of soluble dietary fiber, the activities of protease and amylase, and the physicochemical characteristics of wheat bran during SSF. The findings demonstrated that the maximum yield of soluble dietary fiber was achieved after 120 h of fermentation at a moisture content of 55%. Simultaneously, protease activity peaked at 45% moisture content after 120 h, while amylase activity was maximized at 55% moisture content after 96 h. The microstructure result indicated that most of the starch granules degraded after 144 h of fermentation at a moisture content of 55%, exhibiting a smooth outer layer of wheat bran. Furthermore, fermented bran showed a significant rise in total phenols, peaking at 96 h at a moisture content of 55%. Flavonoid content also reached its maximum after 72 h of fermentation at 55% moisture content. The content of alkylresorcinols in fermented wheat bran changed slightly under different moisture content and fermentation time conditions, which was consistent with the change in pH value. The DPPH radical scavenging rate was optimal when the moisture content was 55% after 96 h. The ABTS radical scavenging rate, hydroxyl radical scavenging rate, and reducing ability were optimal at 55% moisture content after 120 h. These findings demonstrate that the optimal conditions for the SSF of wheat bran using Rhizopus oryzae involve maintaining the moisture at 55%, suggesting that this method is effective for enhancing the value of wheat bran.
Collapse
Affiliation(s)
| | | | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China; (H.R.); (T.W.)
| |
Collapse
|
203
|
Mirzazadeh M, Bagheri H, Rasi F, Mirzazadeh N, Alam Z, Akhavan-Mahdavi S. Optimization of Instant Beverage Powder Containing Propolis Extract Nanoliposomes. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2024; 2024:9099501. [PMID: 39687482 PMCID: PMC11649347 DOI: 10.1155/ijfo/9099501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Propolis is a natural resinous complex mixture produced by honeybees that contain various bioactive compounds. However, these bioactive compounds are chemically unstable and their absorption in the gastrointestinal tract is influenced by their solubility and stability. Encapsulation technology has been employed to increase their bioavailability and protect them against hostile conditions. Nanoliposomes are nanoscale lipid-based vesicles that can encapsulate various bioactive compounds, including propolis extracts. Therefore, in this study, propolis extract was encapsulated by nanoliposome technique and used in instant drink formulation. Nanoliposome characterization was done regarding particle size (255 ± 0.21 nm), zeta potential (-37.6 ± 1.14 mV), and encapsulation efficiency (73.71 ± 0.94). Response surface methodology (RSM) was employed to determine the effect of nanoliposome concentration (0%-5%) on the beverage characteristics including Brix, acidity, hygroscopicity, water solubility index, total phenol content, total microbial count, and sensory analyses. RSM predicted that a 3.19% nanoliposome would provide the overall optimum region for preparing the beverage with the best characteristics. Therefore, nanoliposome containing propolis can be successfully used in the enrichment of the beverage formulation by maintaining the sensory characteristics and improving its quality.
Collapse
Affiliation(s)
- Mehdi Mirzazadeh
- Department of Food Science and Technology, Faculty of Agriculture, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran
| | - Hadiseh Bagheri
- Department of Food Science and Technology, Sari Branch, Islamic Azad University, Sari, Iran
| | - Fatemeh Rasi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Nasim Mirzazadeh
- Department of Food Science Engineering, Islamic Azad University Pharmaceutical Sciences Branch, Tehran, Iran
| | - Zahra Alam
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Sahar Akhavan-Mahdavi
- Department of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
204
|
Wójciak M, Drozdowski P, Skalska-Kamińska A, Zagórska-Dziok M, Ziemlewska A, Nizioł-Łukaszewska Z, Latalska M. Protective, Anti-Inflammatory, and Anti-Aging Effects of Soy Isoflavones on Skin Cells: An Overview of In Vitro and In Vivo Studies. Molecules 2024; 29:5790. [PMID: 39683947 PMCID: PMC11643064 DOI: 10.3390/molecules29235790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/01/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Isoflavones are found in numerous plant species within the Leguminosae family; however, soy isoflavones are particularly significant in practice and have been extensively studied in recent years. The health-promoting potential of orally administered soy isoflavones is widely documented in the scientific literature, and many review articles have been developed to highlight their significance. However, it should be noted that soy-isoflavone-rich extracts and isolated soy isoflavones, such as genistein and daidzein, are also often applied topically as ingredients in many formulations, including face creams, tonics, and emulsions. New delivery systems are continuously being developed to enhance the skin permeability of isoflavones, thus improving their efficacy. In this context, their direct activity on skin cells is an important aspect of scientific research. The anti-inflammatory, protective, and antioxidant properties of isoflavones and soy extracts make them promising cosmetic ingredients with anti-aging potential because inflammation and the accumulation of reactive oxygen species (ROS) can lead to structural and functional changes in skin cells, accelerating the aging process. This review provides an overview of research on the impact of the application of soy isoflavone extract and soy-derived isoflavones on skin cells, with a focus on the documented molecular mechanisms underlying their effects. This study aims to offer essential insights to aid in the development of functional cosmetics and future clinical applications.
Collapse
Affiliation(s)
- Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Piotr Drozdowski
- Department of Plastic Surgery, Specialist Medical Centre, 57-320 Polanica-Zdrój, Poland
| | | | - Martyna Zagórska-Dziok
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.)
| | - Aleksandra Ziemlewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.)
| | - Zofia Nizioł-Łukaszewska
- Department of Technology of Cosmetic and Pharmaceutical Products, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; (M.Z.-D.); (A.Z.); (Z.N.-Ł.)
| | - Małgorzata Latalska
- Department of General and Pediatric Ophthalmology, Medical University of Lublin, 20-079 Lublin, Poland;
| |
Collapse
|
205
|
Feng Y, Li HP. Optimizing collagen-based biomaterials for periodontal regeneration: clinical opportunities and challenges. Front Bioeng Biotechnol 2024; 12:1469733. [PMID: 39703793 PMCID: PMC11655217 DOI: 10.3389/fbioe.2024.1469733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
Periodontal disease (PD) is a chronic inflammatory condition that affects the teeth and their supporting tissues, ultimately culminating in tooth loss. Currently, treatment modalities, such as systemic and local administration of antibiotics, serve to mitigate the progression of inflammation yet fall short in restoring the original anatomical structure and physiological function of periodontal tissues. Biocompatible material-based tissue engineering seems to be a promising therapeutic strategy for treating PD. Collagen, a component of the extracellular matrix commonly used for tissue engineering, has been regarded as a promising biogenic material for tissue regeneration owing to its high cell-activating and biocompatible properties. The structural and chemical similarities between collagen and components of the oral tissue extracellular matrix render it a promising candidate for dental regeneration. This review explored the properties of collagen and its current applications in periodontal regeneration. We also discussed the recent progression in collagen therapies and preparation techniques. The review also scrutinizes the pros and cons associated with the application of collagen-based biomaterials in PD treatment, aiming to pave the way for future applications of collagen-based biomaterials in the management of PD.
Collapse
Affiliation(s)
- Ye Feng
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hong-Peng Li
- Kunshan Hospital of Chinese Medicine, Affiliated Hospital of Yangzhou University, Kunshan, China
| |
Collapse
|
206
|
Gupta N, Koley A, Banerjee S, Ghosh A, Hoque RR, Balachandran S. Nanomaterial-mediated strategies for enhancing bioremediation of polycyclic aromatic hydrocarbons: A systematic review. HYBRID ADVANCES 2024; 7:None. [PMID: 39758813 PMCID: PMC11698305 DOI: 10.1016/j.hybadv.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 01/07/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive organic pollutants in the environment that are formed as an outcome of partial combustion of organic matter. PAHs pose a significant threat to ecological systems and human health due to their cytotoxic and genotoxic effects. Therefore, an immediate need for effective PAH remediation methods is crucial. Although nanomaterials are effective for remediation of PAHs, concerns regarding environmental compatibility and sustainability remains. Therefore, this study emphasizes integration of nanomaterials with bioremediation methods, which might offer a more sustainable and ecofriendly approach to PAHs remediation. A systematic search was conducted through scholarly databases from 2013 to 2023. A total of 360 articles were scrutinized, among which 26 articles were selected that resonated with the application of nano-bioremediation. These literatures comprise both comparative analysis of bioremediation only as well as nano-bioremediation. There is an elevation of 18.9 % in PAHs removal of liquid-phase samples, when comparing bioremediation (52.2 %) with nano-bioremediation (71.1 %). A consistent trend was observed in soil samples, with bioremediation and nano-bioremediation that successfully remove PAHs, with 60.8 % and 75.1 % respectively, indicating a 14.3 % improvement. Furthermore, the review elaborated on the various features of nanomaterials that led to their efficiency in the bioremediation of PAH. The review also discussed the strategies of nano-bioremediation namely nanomaterial-assisted microbial degradation, nanomaterial-assisted enzyme-enhanced microbial activity, nanomaterial-immobilized microbial cells, nanomaterial-facilitated electron transfer, and even some eco-green approaches to remediate PAHs, like biogenic nanomaterial for PAHs.
Collapse
Affiliation(s)
- Nitu Gupta
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | - Apurba Koley
- Department of Environmental Studies, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Sandipan Banerjee
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 165 00, Czech Republic
| | - Anudeb Ghosh
- Department of Environmental Studies, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Raza Rafiqul Hoque
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | | |
Collapse
|
207
|
Liu MY, He T, Wang XP, Feng H, Li XF, Xu F, Wu HM. Based on LC-MS and network pharmacology, the quality components, and anti-hypertensive mechanisms of three types of tea were studied. J Food Sci 2024; 89:8276-8295. [PMID: 39654443 DOI: 10.1111/1750-3841.17541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/27/2024] [Indexed: 12/28/2024]
Abstract
Liquid chromatography-mass spectrometry (LC-MS) was used to identify and analyze the main components of Da Hong Pao, Zunyi black tea, and Yunnan Pu'er tea extracts, explore the effects of brewing times on chemical composition, and analyze the differential components using chemometrics. Subsequently, network pharmacology and molecular docking techniques were employed to explore the potential active ingredients and mechanisms of action in combating hypertension (HTN). This study identified eight key chemical constituents of the three teas, with significant differences in their contents. Yunnan Pu'er tea exhibited superior endurance for multiple infusions compared to the other teas. The research results clearly distinguished the three teas, with key components contributing to quality disparities identified as PCA, GC, gallic acid, and caffeine. The tea exerts anti-HTN effects through multiple pathways. The results of eight chemical components and core targets related to HTN exhibited favorable binding affinities. Our study suggested that Da Hong Pao, Zunyi black tea, and Yunnan Pu'er tea exhibit certain quality differences, and the overall quality of Yunnan Pu'er tea surpasses that of the other teas, though specific differences require further investigation. Moreover, the eight identified components from the three teas are all active components in combating HTN, and network pharmacology comprehensively elucidates the mechanism of tea's anti-hypertensive effect. These findings provide more potential key targets for the treatment of HTN by drinking tea. PRACTICAL APPLICATION: Eight common components were identified in Da Hong Pao, Zunyi black tea, and Yunnan Pu'er water extract, with significant differences in content. Yunnan Pu'er has better overall quality compared to Da Hong Pao and Zunyi black tea. The study provides more potential key targets for the treatment of hypertension by drinking tea.
Collapse
Affiliation(s)
- Mi-Yan Liu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, P. R. China
| | - Ting He
- Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, P. R. China
| | - Xiang-Pei Wang
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, P. R. China
| | - Hua Feng
- Department of Modern Agriculture, Zunyi Vocational and Technical College, Zunyi, P. R. China
| | - Xiao-Fen Li
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, P. R. China
| | - Feng Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, P. R. China
| | - Hong-Mei Wu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, P. R. China
| |
Collapse
|
208
|
Bourdo K, Fadel C, Giorgi M, Gajda A, Bilecka M, Poapolathep A, Łebkowska-Wieruszewska B. Pharmacokinetics and tissue residues of colistin following intravenous, and single and repeated oral dosing in domestic geese (Anser anser domesticus). Vet J 2024; 308:106245. [PMID: 39306270 DOI: 10.1016/j.tvjl.2024.106245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/23/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Colistin, also known as polymyxin E, is a member of the polymyxin group of antibiotics. It is approved in Europe to treat enteric infections caused by Gram-negative bacteria, such as Escherichia coli, in poultry, although the similarity of infections between species make it likely used off-label in geese as well.This study investigated the pharmacokinetics and tissue residues of colistin in geese through in vivo experiments. The study involved longitudinal open studies on 16 healthy adult male geese, divided into three phases separated by one-month washout period. Geese were administered colistin via intravenous (IV, 1 mg/kg), single oral (PO, 30 mg/kg), and multiple oral (SID, 2.5 mg/kg for five consecutive days) routes, with blood samples drawn at specific intervals. Tissue samples were also collected at pre-assigned times for subsequent analysis. Colistin levels in geese plasma were quantified using a fully validated UHPLC-MS/MS method. Plasma concentrations could be quantified up to 24 h for the single PO (n= 2) and IV (n= 4) routes, and up to 10 h (n= 6) from the last dose administered for the multiple PO route (n=6). The bioavailability was significantly low, averaging 3 %. The terminal half-life in geese was 2.18 h following IV administration, similar to values found in other avian species. Following IV administration, clearance and volume of distribution values were 0.11 mL⋅h⁻¹⋅g⁻¹ and 0.41 mL⋅g⁻¹, respectively. The body extraction ratio was low at 0.2 %, indicating minimal hepatic and renal elimination of colistin. Multiple oral doses showed no plasma accumulation, and tissue levels consistently remained below the maximum residue limit (MRL) set for food-producing animals. This study highlights the minimal systemic bioavailability and tissue penetration of colistin in geese, consistent with findings in other poultry and mammals. Future research should focus on intestinal colistin content in geese to optimize dosing strategies and minimize anti-microbial resistance.
Collapse
Affiliation(s)
- Krzysztof Bourdo
- Department of Pharmacology, Toxicology and Environmental Protection, University of Life Sciences, Lublin, Poland.
| | - Charbel Fadel
- Department of Veterinary Medicine, Lebanese University, Beirut, Lebanon; Department of Veterinary Sciences, University of Pisa, Pisa, Italy.
| | - Mario Giorgi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy.
| | - Anna Gajda
- Department of Pharmacology and Toxicology, National Veterinary Institute-National Research Institute in Puławy, Poland.
| | - Magdalena Bilecka
- Department of Pharmacology and Toxicology, National Veterinary Institute-National Research Institute in Puławy, Poland.
| | - Amnart Poapolathep
- Department of Veterinary Pharmacology, Kasetsart University, Bangkok, Thailand.
| | - Beata Łebkowska-Wieruszewska
- Department of Pharmacology, Toxicology and Environmental Protection, University of Life Sciences, Lublin, Poland.
| |
Collapse
|
209
|
Sandjong Sayon DR, Fakih A, Mercier F, Kondjoyan N, Krystalli E, Pissaridi K, Meurillon M, Thomopoulos R, Ratel J, Engel E. Impact of formulation and home storage conditions on the content of furan and derivatives in powdered infant formula. Food Res Int 2024; 198:115263. [PMID: 39643378 DOI: 10.1016/j.foodres.2024.115263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
While autoxidation of Polyunsaturated Fatty Acids (PUFAs) is a potential source of furan and its derivatives, the regulatory obligation to enrich powdered infant formulae (PIF) with some of these compounds might raise safety issues. The aim of this study was to investigate the impact of formulation and home storage conditions on the generation of furan and its derivatives in PIF. Furan, 2-methylfuran (2-MF) and 3-methylfuran (3-MF) were monitored by a validated SHS-GC-Q Exactive-Orbitrap MS method in six PIF formulated with high or low concentrations of different PUFAs (ALA, ARA, DHA), pro-oxidants (iron) and anti-oxidants (vitamins) and stored for 21 days under more or less oxidizing home storage conditions, including temperature (19 °C or 40 °C) and oxygen exposure (protected or not from ambient air). For the three compounds, the quality of the measurements in PIF was first confirmed with suitable linearity, limits of quantification, precision and recoveries. In a second step, the impact of the formulation was evaluated on six PIF commercial samples differing significantly in their composition in ALA, ARA, DHA, iron and/or vitamin E and C. While furan was quantifiable (2.8 µg/kg) in only one PIF with high content of DHA and iron and low level of vitamins, 2-MF was only quantifiable in two other PIF which were distinguished by a 15 to 20 % higher ALA content and 3-MF was not detected in any of the six PIF studied. In a third step, the effect of storage conditions was studied on the six PIF and the increase in storage temperature to 40 °C led to an increase of up to 33 % in the 2-MF concentration in the two PIF formulations where it was quantifiable. Nevertheless, the estimation of the Margin of Exposure (MOE) showed that the risk related to furan and its derivatives could be ruled out regardless of the formulation or storage conditions. Finally, in order to explore other derivatives and to investigate the mechanisms involved in the generation of furan compounds in PIF, a suspect screening approach was implemented on the SHS-GC-Q Exactive-Orbitrap MS data. It made it possible on the one hand to point out two additional furan derivatives in PIF, 2-ethylfuran and 2-pentylfuran. On the other hand, it enabled to discuss the oxidation pathways involved in the generation of furan compounds in PIF from profiling of known PUFA oxidation markers also detected in the samples.
Collapse
Affiliation(s)
- Donnelle Roline Sandjong Sayon
- French National Research Institute for Agriculture, Food and Environment (INRAE), UR QuaPA, MASS Group, Saint-Genès-Champanelle, France
| | - Aya Fakih
- French National Research Institute for Agriculture, Food and Environment (INRAE), UR QuaPA, MASS Group, Saint-Genès-Champanelle, France
| | - Frederic Mercier
- French National Research Institute for Agriculture, Food and Environment (INRAE), UR QuaPA, MASS Group, Saint-Genès-Champanelle, France
| | - Nathalie Kondjoyan
- French National Research Institute for Agriculture, Food and Environment (INRAE), UR QuaPA, MASS Group, Saint-Genès-Champanelle, France
| | | | | | - Maïa Meurillon
- INRAE, UR QuaPA, IT Group, Saint-Genès-Champanelle, France
| | - Rallou Thomopoulos
- INRAE, Institut Agro, University of Montpellier, UMR IATE, Montpellier, France
| | - Jeremy Ratel
- French National Research Institute for Agriculture, Food and Environment (INRAE), UR QuaPA, MASS Group, Saint-Genès-Champanelle, France
| | - Erwan Engel
- French National Research Institute for Agriculture, Food and Environment (INRAE), UR QuaPA, MASS Group, Saint-Genès-Champanelle, France.
| |
Collapse
|
210
|
Sun W, Yang Y, Wang C, Liu M, Wang J, Qiao S, Jiang P, Sun C, Jiang S. Epigallocatechin-3-gallate at the nanoscale: a new strategy for cancer treatment. PHARMACEUTICAL BIOLOGY 2024; 62:676-690. [PMID: 39345207 PMCID: PMC11443569 DOI: 10.1080/13880209.2024.2406779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
CONTEXT Epigallocatechin-3-gallate (EGCG), the predominant catechin in green tea, has shown the potential to combat various types of cancer cells through its ability to modulate multiple signaling pathways. However, its low bioavailability and rapid degradation hinder its clinical application. OBJECTIVE This review explores the potential of nanoencapsulation to enhance the stability, bioavailability, and therapeutic efficacy of EGCG in cancer treatment. METHODS We searched the PubMed database from 2019 to the present, using 'epigallocatechin gallate', 'EGCG', and 'nanoparticles' as search terms to identify pertinent literature. This review examines recent nano-engineering technology advancements that encapsulate EGCG within various nanocarriers. The focus was on evaluating the types of nanoparticles used, their synthesis methods, and the technologies applied to optimize drug delivery, diagnostic capabilities, and therapeutic outcomes. RESULTS Nanoparticles improve the physicochemical stability and pharmacokinetics of EGCG, leading to enhanced therapeutic outcomes in cancer treatment. Nanoencapsulation allows for targeted drug delivery, controlled release, enhanced cellular uptake, and reduced premature degradation of EGCG. The studies highlighted include those where EGCG-loaded nanoparticles significantly inhibited tumor growth in various models, demonstrating enhanced penetration and efficacy through active targeting mechanisms. CONCLUSIONS Nanoencapsulation of EGCG represents a promising approach in oncology, offering multiple therapeutic benefits over its unencapsulated form. Although the results so far are promising, further research is necessary to fully optimize the design of these nanosystems to ensure their safety, efficacy, and clinical viability.
Collapse
Affiliation(s)
- Wenxue Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Translational Pharmaceutical Laboratory, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Yizhuang Yang
- Department of Pharmacy, Guilin Medical University, Guilin, China
| | - Cuiyun Wang
- Department of Pharmacy, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Mengmeng Liu
- Department of Pharmacy, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Jianhua Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sen Qiao
- Hepatological Surgery Department, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
211
|
Yao W, Zhang Y, Zhang G. Marine peptides as potential anti-aging agents: Preparation, characterization, mechanisms of action, and future perspectives. Food Chem 2024; 460:140413. [PMID: 39033641 DOI: 10.1016/j.foodchem.2024.140413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/19/2024] [Accepted: 07/08/2024] [Indexed: 07/23/2024]
Abstract
Aging is a universal biological process characterized by a decline in physiological functions, leading to increased susceptibility to diseases. With global aging trends, understanding and mitigating the aging process is paramount. Recent studies highlight marine peptides as promising bioactive substances with potential anti-aging properties. This review critically examines the potential of marine peptides as novel food ingredients in anti-aging, exploring their sources, preparation methods, physicochemical properties, and the underlying mechanisms through which they impact the aging process. Marine peptides exhibit significant potential in targeting aging, extending lifespan, and enhancing healthspan. They act through mechanisms such as reducing oxidative stress and inflammation, modulating mitochondrial dysfunction, inducing autophagy, maintaining extracellular matrix homeostasis, and regulating longevity-related pathways. Despite challenges in stability, bioavailability, and scalability, marine peptides offer significant potential in health, nutraceuticals, and pharmaceuticals, warranting further research and development in anti-aging.
Collapse
Affiliation(s)
- Wanzi Yao
- Department of Food Safety and Health, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yifeng Zhang
- Department of Food Safety and Health, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Gaiping Zhang
- Department of Food Safety and Health, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University, Zhengzhou 450046, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Longhu Laboratory of Advanced Immunology, Zhengzhou 450046, China.
| |
Collapse
|
212
|
Bera S, Mitra R, Singh J. Recent advancement in protected delivery methods for carotenoid: a smart choice in modern nutraceutical formulation concept. Biotechnol Genet Eng Rev 2024; 40:4532-4588. [PMID: 37198919 DOI: 10.1080/02648725.2023.2213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Carotenoids are fat-soluble bio pigments often responsible for red, orange, pink and yellow coloration of fruits and vegetables. They are commonly referred as nutraceutical which is an alternative to pharmaceutical drugs claiming to have numerous physiological benefits. However their activity often get disoriented by photonic exposure, temperature and aeration rate thus leading to low bioavailability and bio accessibility. Most of the market value for carotenoids revolves around food and cosmetic industries as supplement where they have been continuously exposed to rigorous physico-chemical treatment. Though several encapsulation techniques are now in practice to improve stability of carotenoids, the factors like shelf life during storage and controlled release from the delivery vehicle always appeared to be a bottleneck in this field. In this situation, different technologies in nanoscale is showing promising result for carotenoid encapsulation and delivery as they provide greater mass per surface area and protects most of their bioactivities. However, safety concerns related to carrier material and process must be evaluated crucially. Thus, the aim of this review was to collect and correlate technical information concerning the parameters playing pivotal role in characterization and stabilization of designed vehicles for carotenoids delivery. This comprehensive study predominantly focused on experiments carried out in past decade explaining how researchers have fabricated bioprocess engineering in amalgamation with nano techniques to improve the bioavailability for carotenoids. Furthermore, it will help the readers to understand the cognisance of carotenoids in nutraceutical market for their trendy application in food, feed and cosmeceutical industries in contemporary era.
Collapse
Affiliation(s)
- Surojit Bera
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ruchira Mitra
- International College, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Joginder Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
213
|
Tamtaji OR, Ostadian A, Homayoonfal M, Nejati M, Mahjoubin-Tehran M, Nabavizadeh F, Ghelichi E, Mohammadzadeh B, Karimi M, Rahimian N, Mirzaei H. Cerium(IV) oxide:silver/graphene oxide (CeO2:Ag/GO) nanoparticles modulate gene expression and inhibit colorectal cancer cell growth: a pathway-centric therapeutic approach. Cancer Nanotechnol 2024; 15:62. [DOI: 10.1186/s12645-024-00300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/18/2024] [Indexed: 01/06/2025] Open
|
214
|
Nguyen TH, Wang SL, Nguyen VB. Recent advances on polydeoxyribonucleotide extraction and its novel application in cosmeceuticals. Int J Biol Macromol 2024; 282:137051. [PMID: 39486723 DOI: 10.1016/j.ijbiomac.2024.137051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
Polydeoxyribonucleotide (PDRN) is a registered DNA-derived proprietary drug containing a mixture of DNA fragments of molecular weights of 50 and 1500 kDa extracted mainly from salmon with a highly pure active substance (>95 %). It has many valuable medicinal effects and multi-functions related to cosmeceuticals. In-vivo tests and even clinical trials have confirmed this substance as non-toxic. Its promising bioactivities and safety profile have prompted increasing research and discovery of this active ingredient. However, most previous review papers have only focused on the bioactivities of PDRN in medicine and mainly evaluated the efficiency of salmon-derived sources. Only one review has elucidated the capacity of PDRN as promising anti-aging without mentioning other effects in cosmeceuticals. Thus, an overview of novel sources for the extraction of PDRN and their functions in the cosmeceuticals field is lacking, and is the main topic of discussion in this review. Besides general information about PDRN, this review evaluated the advantages and disadvantages of different novel sources and procedures for PDRN extraction. The bioactivities of PDRN regarding cosmeceuticals are also elucidated comprehensively. This review aims to supply worthy scientific information for further studies on PDRN extraction and its bioactivity in cosmeceuticals.
Collapse
Affiliation(s)
- Thi Hanh Nguyen
- Doctoral Program in Applied Sciences, Tamkang University, New Taipei City 25137, Taiwan; Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan.
| | - Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Viet Nam.
| |
Collapse
|
215
|
Bahrami S, Babaei N, Esmaeili Gouvarchin Ghaleh H, Mohajeri Borazjani J, Farzanehpour M. Anti-inflammatory activity of Ziziphus jujuba hydroalcoholic extract in acetic acid-induced ulcerative colitis model. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 21:481-489. [PMID: 39485260 DOI: 10.1515/jcim-2024-0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 11/03/2024]
Abstract
OBJECTIVES Ulcerative colitis (UC) is a common gastrointestinal (GI) disorder characterized by chronic inflammation. Current treatments primarily focus on symptom management, but they have inherent limitations. Global attention is increasingly directed towards exploring herbal remedies as complementary approaches. This study aims to investigate the effects of the hydroalcoholic extract of jujuba on an experimental model of ulcerative colitis. METHODS In this study, 15 male BALB/c mice were divided into three experimental groups. The first group served as the untreated UC model, acting as the positive control (PC). The second group received treatment with the hydroalcoholic extract of Ziziphus jujuba, while the third group was treated with mesalamine. UC was induced by injecting 100 μL of 4 % acetic acid (AA) intra-rectally several times. Treatment commenced after the onset of symptoms such as diarrhea and bloody stools. The mice were eventually euthanized ethically, and their spleen and intestinal tissues were collected for analysis. Evaluations included the Disease Activity Index (DAI), myeloperoxidase activity (MPO), nitric oxide (NO) levels, cytokine levels (IL-1β, IL-6, TNF-α), and gene expression (iNOS, COX-2, and cytokines). RESULTS The hydroalcoholic extract of the jujuba plant significantly reduced MPO, NO, the DAI, and the production and expression of inflammatory cytokines, as well as the genes iNOS and COX-2, in the group receiving this extract compared to the positive control group (p<0.05). CONCLUSIONS The study demonstrates that the hydroalcoholic extract of Ziziphus jujuba significantly reduces inflammation markers such as TNF-α, NO, MPO, IL-1β, and IL-6 in a mouse model of ulcerative colitis. Additionally, it downregulates the expression of pro-inflammatory genes, including iNOS and COX-2. These findings suggest that Z. jujuba extract has potential as an effective anti-inflammatory treatment for managing ulcerative colitis symptoms.
Collapse
Affiliation(s)
- Shabnam Bahrami
- Department of Molecular Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Nahid Babaei
- Department of Molecular Cell Biology and Genetics, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Hadi Esmaeili Gouvarchin Ghaleh
- Department of Immunology, 48417 Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences , Tehran, Iran
| | - Jaleh Mohajeri Borazjani
- Department of Fisheries and Natural Resources, Bushehr Branch, Islamic Azad University, Bushehr, Iran
| | - Mahdieh Farzanehpour
- Department of Immunology, 48417 Applied Virology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences , Tehran, Iran
| |
Collapse
|
216
|
Ashique S, Mukherjee T, Mohanty S, Garg A, Mishra N, Kaushik M, Bhowmick M, Chattaraj B, Mohanto S, Srivastava S, Taghizadeh-Hesary F. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 18:101300. [DOI: 10.1016/j.jafr.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
|
217
|
Čolić M, Kraljević Pavelić S, Peršurić Ž, Agaj A, Bulog A, Pavelić K. Enhancing the bioavailability and activity of natural antioxidants with nanobubbles and nanoparticles. Redox Rep 2024; 29:2333619. [PMID: 38577911 PMCID: PMC11000614 DOI: 10.1080/13510002.2024.2333619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
KEY POLICY HIGHLIGHTSNanobubbles and nanoparticles may enhance the polyphenols' bioavailabilityNanobubbles may stimulate the activation of Nrf2 and detox enzymesArmoured oxygen nanobubbles may enhance radiotherapy or chemotherapy effects.
Collapse
Affiliation(s)
| | | | - Željka Peršurić
- Faculty of Medicine, Juraj Dobrila University of Pula, Pula, Croatia
| | - Andrea Agaj
- Faculty of Medicine, Juraj Dobrila University of Pula, Pula, Croatia
| | - Aleksandar Bulog
- Teaching Institute for Public Health of Primorsko-Goranska County, Rijeka, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Krešimir Pavelić
- Faculty of Medicine, Juraj Dobrila University of Pula, Pula, Croatia
| |
Collapse
|
218
|
Zumaraga MP, Desmarchelier C, Gleize B, Nowicki M, Ould-Ali D, Landrier JF, Borel P. Identification of Genetic Polymorphisms Associated with Interindividual Variability of Vitamin A Concentration in Adipose Tissue of Healthy Male Adults. J Nutr 2024; 154:3693-3703. [PMID: 39442757 DOI: 10.1016/j.tjnut.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Adipose tissue vitamin A (VA), that is, mainly retinol (RET) and its esters, comes from preformed VA and proVA carotenoids present in our food. Adipose tissue VA acts as hormonal cue maintaining essential aspects of adipocyte biology, which includes fat mobilization and catabolism, energy balance, and glucose homeostasis, and it is thus of particular interest to study its determinants, including genetic ones. OBJECTIVES This study aimed to identify genetic variations associated with adipose tissue VA concentration. METHODS Forty-two healthy male adults received, in a randomized crossover design, 3 test meals. Periumbilical adipose tissue samples were collected on 6 occasions, that is, at fast and 8 h after consumption of each meal. RET concentration was measured in both plasma and the adipose tissue following saponification. Participants were genotyped using whole-genome microarrays. A total of 1305 single nucleotide polymorphism (SNPs) in or near 27 candidate genes were included for univariate analysis. Partial least squares (PLS) regression was carried out to find the best combination of SNPs associated with the interindividual variability in adipose tissue RET concentration. RESULTS Adipose tissue RET concentration was not associated with plasma RET concentrations (r = -0.184, P = 0.28). Interindividual variability of adipose tissue RET concentration was high (coefficient of variation = 62%). Twenty-nine SNPs were significantly (P < 0.05) associated with adipose tissue RET concentration and a PLS regression model identified 16 SNPs as explanatory variables of this concentration. The SNPs were in or near peroxisome proliferator activated receptor gamma, retinoid X receptor alpha, signaling receptor and transporter of retinol, cluster of differentiation 36, free fatty acid receptor 4, aldehyde dehydrogenase 1 family member A1, monoglyceride lipase, diacylglycerol O-acyltransferase 2, and polycystic kidney disease 1-like 2. CONCLUSIONS A combination of 16 SNPs has been associated with the interindividual of adipose tissue VA concentration in humans. This trial was registered at clinicaltrials.gov as NCT02100774.
Collapse
Affiliation(s)
- Mark Pretzel Zumaraga
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France; Department of Science and Technology-Food and Nutrition Research Institute, Bicutan, Taguig City, Philippines
| | - Charles Desmarchelier
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France; Direction générale de la recherche et de l'innovation, Paris, France
| | | | - Marion Nowicki
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France
| | - Djaffar Ould-Ali
- Plastic & Anesthetic Surgery Department, Clinique Internationale du Parc Monceau, Paris, France
| | | | - Patrick Borel
- C2VN, Aix Marseille Univ, INRAE, INSERM, Marseille, France.
| |
Collapse
|
219
|
Ashique S, Mukherjee T, Mohanty S, Garg A, Mishra N, Kaushik M, Bhowmick M, Chattaraj B, Mohanto S, Srivastava S, Taghizadeh-Hesary F. Blueberries in focus: Exploring the phytochemical potentials and therapeutic applications. JOURNAL OF AGRICULTURE AND FOOD RESEARCH 2024; 18:101300. [DOI: https:/doi.org/10.1016/j.jafr.2024.101300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
|
220
|
Jyoti, Castillo A, Jurado‐Sánchez B, Pumera M, Escarpa A. Active Quantum Biomaterials-Enhanced Microrobots for Food Safety. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404248. [PMID: 39449211 PMCID: PMC11673522 DOI: 10.1002/smll.202404248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/22/2024] [Indexed: 10/26/2024]
Abstract
Timely disruptive tools for the detection of pathogens in foods are needed to face global health and economic challenges. Herein, the utilization of quantum biomaterials-enhanced microrobots (QBEMRs) as autonomous mobile sensors designed for the precise detection of endotoxins originating from Salmonella enterica (S. enterica) as an indicator species for food-borne contamination globally is presented. A fluorescent molecule-labeled affinity peptide functions as a specific probe, is quenched upon binding to the surface of QBEMRs. Owing to its selective affinity for endotoxin, in the presence of S. enterica the fluorescence is restored and easy to observe and quantifies optical color change to indicate the presence of Salmonella. The devised approach is designed to achieve highly sensitive detection of the S. enterica serovar Typhimurium endotoxin with exquisite selectivity through the utilization of QBEMRs. Notably, no fluorescence signal is observed in the presence of endotoxins bearing similar structural characteristics, highlighting the selectivity of the approach during food sample analysis. Technically, the strategy is implemented in microplate readers to extend microrobots-based approaches to the routine laboratory. This new platform can provide fast and anticipated results in food safety.
Collapse
Affiliation(s)
- Jyoti
- Department of Analytical Chemistry, Physical Chemistry, and Chemical EngineeringUniversidad de AlcalaAlcala de HenaresMadridE‐28802Spain
- Future Energy and Innovation LaboratoryCentral European Institute of TechnologyBrno University of Technology (CEITEC‐BUT)Brno61200Czech Republic
| | - Alberto‐Rodríguez Castillo
- Department of Analytical Chemistry, Physical Chemistry, and Chemical EngineeringUniversidad de AlcalaAlcala de HenaresMadridE‐28802Spain
| | - Beatriz Jurado‐Sánchez
- Department of Analytical Chemistry, Physical Chemistry, and Chemical EngineeringUniversidad de AlcalaAlcala de HenaresMadridE‐28802Spain
- Chemical Research Institute “Andres M. Del Río,”Universidad de AlcalaAlcala de HenaresMadridE‐28802Spain
| | - Martin Pumera
- Future Energy and Innovation LaboratoryCentral European Institute of TechnologyBrno University of Technology (CEITEC‐BUT)Brno61200Czech Republic
- Advanced Nanorobots & Multiscale Robotics LaboratoryFaculty of Electrical Engineering and Computer ScienceVSB‐Technical University of Ostrava17. Listopadu 2172/15Ostrava70800Czech Republic
- Department of Medical ResearchChina Medical University HospitalChina Medical UniversityNo. 91 Hsueh‐Shih RoadTaichung40402Taiwan
| | - Alberto Escarpa
- Department of Analytical Chemistry, Physical Chemistry, and Chemical EngineeringUniversidad de AlcalaAlcala de HenaresMadridE‐28802Spain
- Chemical Research Institute “Andres M. Del Río,”Universidad de AlcalaAlcala de HenaresMadridE‐28802Spain
| |
Collapse
|
221
|
Chen Y, Huang Y, Gan Q, Zhang W, Sun H, Zhu L, Wang W. Characterization of tea polysaccharides from Tieguanyin oolong tea and their hepatoprotective effects via AMP-activated protein kinase-mediated signaling pathways. J Food Sci 2024; 89:10064-10078. [PMID: 39636766 DOI: 10.1111/1750-3841.17575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/26/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
In the present study, we succeeded in extracting tea polysaccharide (TPS) from Tieguanyin oolong tea, and the TPS was characterized. TPS is an acidic heteropolysaccharide containing rhamnose, arabinose, galactose, glucose (Glc), xylose, mannose, galacturonic acid, and guluronic acid. We found that TPS supplementation partially reversed the elevated levels of serum alanine aminotransferase, total cholesterol, and low-density lipoprotein cholesterol in high-fat diet (HD)-induced nonalcoholic fatty liver disease (NAFLD) mice (p < 0.05), and hepatic steatosis and impaired Glc tolerance were also ameliorated. After HD intervention, the activity of Adenosine 5'-monophosphate-activated protein kinase (AMPK) and its downstream genes, including Sirtuin 1 (SIRT1), sterol regulatory element-binding protein-1c (SREBP1c), acetyl-coenzyme A carboxylase 1 (ACC1), and adipose triglyceride lipase (ATGL), was significantly inhibited (p < 0.05). TPS can increase the expression of these genes. The hepatoprotective effects of TPS in AMPK-/- mice almost completely disappeared. Moreover, the expression levels of SIRT1, SREBP1c, ACC1, and ATGL did not significantly change after TPS supplementation (p > 0.05). Therefore, our findings suggest that TPS protects the liver from hepatic glucolipid metabolism disorders in HD-induced NAFLD mice by activating AMPK-mediated signaling pathways.
Collapse
Affiliation(s)
- Yiqin Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yanxin Huang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Department of Nutrition, The 95th Hospital of Putian, Putian, Fujian, China
| | - Qiaorong Gan
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Wenhui Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Han Sun
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Lingling Zhu
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
222
|
Tan Y, Chang SKC. Phenolics in soymilk manufactured from black and Proto soybeans by two continuous-ultrahigh-temperature-processing technologies inhibit DU145-prostate cancer cell proliferation through apoptosis. J Food Sci 2024; 89:9936-9954. [PMID: 39495590 DOI: 10.1111/1750-3841.17489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/01/2024] [Accepted: 10/06/2024] [Indexed: 11/06/2024]
Abstract
Plant genotypes and processing technologies affect health properties of foods. How thermal processes with different sterilization values influence polyphenols in soymilk manufactured from different genotypes, particularly black soybean has not been well characterized. This study's aims were to investigate how one- and two-phase ultrahigh temperature (UHT) processing technologies, with wide differences of lethality (F0 158.5 and 6.35, respectively), affected anti-prostate cancer DU145-cell properties of black soymilk compared to light-yellow-Proto soymilk. Phenolics were extracted from soymilk and used for chemical, cell cycle and apoptosis analyses. Total isoflavones and genistein in black soymilk were significantly higher than Proto soymilk by either processing methods. Compared to one-phase processing, two-phase produced higher gallic acid in both soybeans, and higher oxygen radical absorbance capacity (ORAC) in black soymilk. Soymilk processed from both genotypes by both UHT methods inhibited DU145 cells. Two-phase-UHT processed black soymilk was more effective than one-phase UHT-processed soymilk. IC50 values (mg/mL) of black and yellow soy extracts against prostate cancer cells differed only by 11%-25%, which were lower than the differences of total isoflavone (29%-33%) or genistein (>50% between two beans). The mechanism by which soymilk inhibited DU145 cell proliferation was through apoptosis as evidenced by cell cycle analyses and expressions of caspase-3, Bcl-2, and PARP-1 proteins. Antioxidant properties, isoflavones, and phenolic acids were negatively correlated with prostate-cancer-cell inhibition IC50 (p < 0.05) with ORAC having the highest coefficient (r = -0.98). Overall, two-phase-UHT processing of soybean would produce soymilk products with a higher health benefit than a one-phase UHT method. PRACTICAL APPLICATION: This study characterized the potential prostate cancer prevention effect of soymilk's phenolic extract in black soybean and compared with yellow soybean. The crude extract can be prepared much less costly than purified isoflavones and has potential to be developed into a dietary supplement. This study shows differences of soymilks made by continuous high-temperature processing of two soybean types and can serve as a scientific foundation for future clinical research and commercialization.
Collapse
Affiliation(s)
- Yingying Tan
- Department of Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, P. R. China
| | - Sam K C Chang
- Department of Biochemistry, Nutrition and Health Promotion, Mississippi State University, Starkville, Mississippi, USA
- Experimental Seafood Processing Laboratory, Coastal Research and Extension Center, Biloxi, Mississippi, USA
| |
Collapse
|
223
|
Zou Y, Mao Z, Zhao C, Fan Z, Yang H, Xia A, Zhang X. Fish skin dressing for wound regeneration: A bioactive component review of omega-3 PUFAs, collagen and ECM. Int J Biol Macromol 2024; 283:137831. [PMID: 39566781 DOI: 10.1016/j.ijbiomac.2024.137831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/07/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Wound healing is a complex biological process that involves several stages, including hemostasis, inflammation, proliferation, and remodeling. Traditional wound dressings, to a certain extent, can provide wound protection but are limited in promoting wound healing, reducing scar formation, and preventing bacterial infections. In recent years, with the advancement of research in biomedical materials, fish skin dressings have become a research hotspot in the field of tissue regeneration due to their remarkable biocompatibility and precious bioactive components. However, current research on fish skin dressings remains focused on clinical treatment. To further deepen and promote the development of fish skin dressings, we put emphasis on discussing main bioactive components in fish skin. This article has reviewed the advantages of fish skin dressings in wound regeneration, especially the promotive effects of its main bioactive components-Omega-3 polyunsaturated fatty acids, collagen derived from fish skin, and the extracellular matrix of fish skin-on the wound healing process. Besides, by critically summarizing the research issues of each bioactive component, this review assists researchers in better defining the next direction of research, thereby designing the optimal dressing for different types of wounds.
Collapse
Affiliation(s)
- Ying Zou
- Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China
| | - Zongtao Mao
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Chenyu Zhao
- Department of China Medical University-The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Zhonghao Fan
- Department of China Medical University-The Queen's University of Belfast Joint College, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Anqi Xia
- School of Intelligent Medicine, China Medical University, Shenyang 110122, China
| | - Xudong Zhang
- Shengjing Hospital of China Medical University, Shenyang 110000, Liaoning, China.
| |
Collapse
|
224
|
Kargı-Gemici E, Şengelen A, Aksüt Y, Akyol O, Şengiz-Erhan S, Bay M, Önay-Uçar E, Selcan A, Demirgan S. Cerium oxide nanoparticles (nanoceria) pretreatment attenuates cell death in the hippocampus and cognitive dysfunction due to repeated isoflurane anesthesia in newborn rats. Neurotoxicology 2024; 105:82-93. [PMID: 39216603 DOI: 10.1016/j.neuro.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
General anesthetics exposure, particularly prolonged or repeated exposure, is a crucial cause of neurological injuries. Notably, isoflurane (ISO), used in pediatric anesthesia practice, is toxic to the developing brain. The relatively weak antioxidant system at early ages needs antioxidant support to protect the brain against anesthesia. Cerium oxide nanoparticles (CeO2-NPs, nanoceria) are nano-antioxidants and stand out due to their unique surface chemistry, high stability, and biocompatibility. Although CeO2-NPs have been shown to exhibit neuroprotective and cognitive function-facilitating effects, there are no reports on their protective effects against anesthesia-induced neurotoxicity and cognitive impairments. Herein, Wistar albino rat pups were exposed to ISO (1.5 %, 3-h) at postnatal day (P)7+P9+P11, and the protective properties of CeO2-NP pretreatment (0.5 mg/kg, intraperitoneal route) were investigated for the first time. The control group at P7+9+11 received 50 % O2 (3-h) instead of ISO. Exposure to nanoceria one-hour before ISO protected hippocampal neurons of the developing rat brain against apoptosis [determined by hematoxylin-eosin (HE) staining, immunohistochemistry (IHC) analysis with caspase-3, and immunoblotting with Bax/Bcl2, cleaved caspase-3 and PARP1] oxidative stress, and inflammation [determined by immunoblotting with 4-hydroxynonenal (4HNE), nuclear factor kappa-B (NF-κB), and tumor necrosis factor-alpha (TNF-α)]. CeO2-NP pretreatment also reduced ISO-induced learning (at P28-32) and memory (at P33) deficits evaluated by Morris Water Maze. However, memory deficits and thigmotactic behaviors were detected in the agent-control group; elimination of these harmful effects will be possible with dose studies, thus providing evidence supporting safer use. Overall, our findings support pretreatment with nanoceria application as a simple strategy that might be used for pediatric anesthesia practice to protect infants and children from ISO-induced cell death and learning and memory deficits.
Collapse
Affiliation(s)
- Ezgi Kargı-Gemici
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye.
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye.
| | - Yunus Aksüt
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye; Department of Molecular Biology and Genetics, Basic Medical Sciences, School of Medicine, Koç University, Istanbul, Turkiye.
| | - Onat Akyol
- Clinic of Anesthesiology and Reanimation, Istanbul Florence Nightingale Hospital, Istanbul, Turkiye.
| | - Selma Şengiz-Erhan
- Clinic of Pathology, University of Health Sciences, Prof. Dr. Cemil Taşçıoğlu City Hospital, Istanbul, Turkiye.
| | - Mehmet Bay
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye.
| | - Evren Önay-Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, Turkiye.
| | - Ayşin Selcan
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye.
| | - Serdar Demirgan
- Clinic of Anesthesiology and Reanimation, University of Health Sciences, Bağcılar Training and Research Hospital, Istanbul, Turkiye; Department of Molecular Biology and Genetics, Institute of Graduate Studies in Sciences, Istanbul University, Istanbul, Turkiye.
| |
Collapse
|
225
|
Sun S, Meng K, Zhao W. Storage quality of amylose-lycopene complexes and the establishment of a shelf life prediction model. J Food Sci 2024; 89:8608-8627. [PMID: 39503315 DOI: 10.1111/1750-3841.17519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 12/28/2024]
Abstract
To study the changes in the storage quality of amylose-lycopene complexes (ALCs), the color, antioxidant activity, lycopene content, and configuration changes of ALCs during different storage periods were analyzed. A shelf life prediction model was established to reveal the stability changes of the complexes. The results showed that the cis-isomer percentage of lycopene in ALCs increased significantly from 11.82% to 13.76%. The lycopene isomers were in the order of 5-Z > All-E > 9-Z > 13-Z. Correlation analysis indicated that the content of lycopene was a key factor affecting the quality of ALCs. ALCs followed zero-order and first-order degradation kinetics at 5°C-25°C and 35°C-45°C, respectively. The degradation degree of lycopene was negatively correlated with temperature, with half-lives and one-tenth decay periods of 32.37 days and 6.48 days (5°C) significantly higher than 10.78 days and 1.63 days (45°C). The activation energy required for the reaction of ALCs was as high as 106.29 kJ/mol, indicating greater stability. On this basis, an ALCs shelf life prediction model was established, with a relative error of 0.06%-5.03% between the predicted and actual values. The results indicated that ALCs had good color, antioxidant activity, lycopene content, and configuration stability, and that higher temperatures had a greater impact on lycopene. The study provides theoretical reference for the quality safety of ALCs.
Collapse
Affiliation(s)
- Shidong Sun
- School of Food Science and Engineering, Zhengzhou University of Science and Technology, Zhengzhou, China
| | - Kaili Meng
- School of Laboratory Medicine, Zhengzhou Medical and Health Vocational College, Zhengzhou, China
| | - Wenhong Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
226
|
Ijod G, Nawawi NIM, Sulaiman R, Adzahan NM, Anwar F, Azman EM. Blanching-Induced Changes in Polyphenol Oxidase, Antioxidants and Phenolic Profile of Mangosteen Pericarp. Food Technol Biotechnol 2024; 62:465-479. [PMID: 39830870 PMCID: PMC11740744 DOI: 10.17113/ftb.62.04.24.8513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 11/19/2024] [Indexed: 01/22/2025] Open
Abstract
Research background Anthocyanin pigments in mangosteen pericarp can serve as natural colourants; however, their stability is compromised by enzymatic browning caused by polyphenol oxidase (PPO). Thus, this study aims to investigate how hot water and steam blanching affect the PPO activity, phenolic profile and antioxidant properties of mangosteen pericarp. Experimental approach Fresh mangosteen pericarp was blanched in hot water or steam at 100 °C for 0, 30, 60, 90 and 120 s and the residual PPO activity, total phenolic content (TPC), total anthocyanins, antioxidant activity, browning index and colour properties were evaluated. Additionally, the phenolic compounds were identified using liquid chromatography-mass spectrometry (LC-MS). Results and conclusions Zero-order reaction kinetics (R2>0.800) showed that residual PPO activity was significantly (p<0.05) reduced in both blanched and steamed mangosteen pericarp. As expected, PPO was inactivated more rapidly in hot water (t 1/2=59.0 s) than in steam blanching (t 1/2=121.1 s). However, the principal component analysis (PCA) showed that steam blanching for 90 s was the most efficient method, preserving the highest levels of antioxidant capacity, expressed as Trolox equivalents (TE; 9135 µmol/g), Fe(III)-reducing power, expressed as TE, (9729 µmol/g), total anthocyanins (3.03 mg/g), and TPC, expressed as gallic acid equivalents (1057 mg/g). Overall, steam blanching for 90 s was the most efficient method because it best preserved the phenolic compounds and is also a cost-effective method compared to hot water, which needs to be replaced after a few applications. Novelty and scientific contribution This is the first study to report the effects of blanching on the anthocyanins mainly present in mangosteen pericarp, in particular cyanidin-3-O-sophoroside (C3S) and cyanidin-3-O-glucoside (C3G), using high-performance liquid chromatography (HPLC) and LC-MS. This study makes a significant scientific contribution to the food industry by providing suitable blanching methods to preserve the quality of bioactive compounds, especially anthocyanins in mangosteen pericarp, which can be used as a natural colourant.
Collapse
Affiliation(s)
- Giroon Ijod
- Department of Food Technology, Faculty of Food Science and Technology, Jalan Universiti 1, 43400, Universiti Putra Malaysia, Selangor, Malaysia
| | - Nur Izzati Mohamed Nawawi
- Department of Food Technology, Faculty of Food Science and Technology, Jalan Universiti 1, 43400, Universiti Putra Malaysia, Selangor, Malaysia
| | - Rabiha Sulaiman
- Department of Food Technology, Faculty of Food Science and Technology, Jalan Universiti 1, 43400, Universiti Putra Malaysia, Selangor, Malaysia
| | - Noranizan Mohd Adzahan
- Department of Food Technology, Faculty of Food Science and Technology, Jalan Universiti 1, 43400, Universiti Putra Malaysia, Selangor, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Jalan Universiti 1, 43400, Universiti Putra Malaysia, Selangor, Malaysia
- Institute of Chemistry, University of Sargodha, University Road, Sargodha-40100, Pakistan
| | - Ezzat Mohamad Azman
- Department of Food Technology, Faculty of Food Science and Technology, Jalan Universiti 1, 43400, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
227
|
Long T, Tang X, Liang C, Wu B, Huang B, Lan Y, Xu H, Liu S, Long Y. Detecting bioactive compound contents in Dancong tea using VNIR-SWIR hyperspectral imaging and KRR model with a refined feature wavelength method. Food Chem 2024; 460:140579. [PMID: 39126740 DOI: 10.1016/j.foodchem.2024.140579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/13/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024]
Abstract
Hyperspectral imaging (HSI) provides opportunity for non-destructively detecting bioactive compounds contents of tea leaves and high detection accuracy require extracting effective features from the complex hyperspectral data. In this paper, we proposed a feature wavelength refinement method called interval band selecting-competitive adaptive reweighted sampling-fusing (IBS-CARS-Fusing) to extract feature wavelengths from visible-near-infrared (VNIR) and short-wave-near-infrared (SWIR) hyperspectral images. Combined with the proposed IBS-CARS-Fusing method, a kernel ridge regression (KRR) model was established to predict the contents of bioactive compounds including chlorophyll a, chlorophyll b, carotenoids, tea polyphenols, and amino acids in Dancong tea. It was revealed that the IBS-CARS-Fusing method can improve Rp2 of KRR model for these bioactive compounds by 4.77%, 4.60%, 6.74%, 15.52%, and 13.10%, respectively, and Rp2 of the model reached high values of 0.9500, 0.9481, 0.8946, 0.8882, and 0.8622. Additionally, a leaf compound mass per area thermal map was used to visualize the spatial distribution of the compounds.
Collapse
Affiliation(s)
- Teng Long
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xinyu Tang
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Changjiang Liang
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Binfang Wu
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Areas, Jiaying Univertity, Meizhou 514015, China
| | - Binshan Huang
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yubin Lan
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Haitao Xu
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shaoqun Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yongbing Long
- College of Electronic Engineering (College of Artificial Intelligence), South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
228
|
Xu L, Liu Y, Jiao Y, Zhong K, Li J, Guan Y, Wei H, Lou W, Ge J. Enzyme-free method for preparation of sturgeon extracts with antioxidant, hepatoprotective and immune-enhancing functions. Food Chem 2024; 459:140327. [PMID: 38986199 DOI: 10.1016/j.foodchem.2024.140327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Sturgeon has a long lifespan and slow evolutionary rate due to their powerful endogenous antioxidant system. This work aimed to assess the in vitro and in vivo antioxidant activity of sturgeon extracts from both muscle and roe. The extraction process without enzyme hydrolysis is not only simple, but also can produce extracts with better free radicals scavenging abilities than enzymatic hydrolysates in both cellular and in vivo experiments. Moreover, in mouse models with liver injury and immunosuppression treatment, the sturgeon extracts demonstrated strong hepatoprotective and immune-enhancing functions, comparable to vitamin C and ginseng extract supplements, which were attributed to abundant antioxidant peptides of the extracts. The 15 isolated peptides exhibited diverse free radical scavenging ability. Therefore, the sturgeon extracts showed high potential to be applied in food and biomedical industries.
Collapse
Affiliation(s)
- Lijun Xu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Yu Liu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| | - Yi Jiao
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Kangrong Zhong
- Guizhou Province Qianxun Biotechnology Co., Ltd, Guizhou 556000, People's Republic of China
| | - Jinming Li
- Guizhou Province Qianxun Biotechnology Co., Ltd, Guizhou 556000, People's Republic of China
| | - Yongjian Guan
- Guizhou Province Qianxun Biotechnology Co., Ltd, Guizhou 556000, People's Republic of China
| | - Huaning Wei
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, People's Republic of China.
| | - Wenyong Lou
- Lab of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, People's Republic of China.
| | - Jun Ge
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518107, People's Republic of China.
| |
Collapse
|
229
|
Huang H, Huang H, Yang J, Yang H, Dai J, Li Z, Yao W, Guo X. Synthesis of P, N-dopped carbon nanosheets for highly sensitive fluorescence analysis of nitrofuran antibiotics in fish. Food Chem 2024; 459:140445. [PMID: 39024887 DOI: 10.1016/j.foodchem.2024.140445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
The misuse of antibiotics has caused serious impacts on food safety and human health, making it crucial to develop rapidly and highly sensitive methods for detecting trace nitrofuran antibiotics (NFs). In this study, phosphorus, nitride-doped carbon nanosheets (PN/CNs) were synthesized using a simple hydrothermal method based on graphitic carbon nitride. This prepared material showed excellent water solubility and stable optical properties. A new fluorescence sensing platform based on PN/CNs was constructed for the highly sensitive detection of four NFs. This sensitivity was mainly attributed to the fluorescence resonance energy transfer (FRET) mechanism. The limits of detection for nitrofurazone, nitrofurantoin, furazolidone and furaltadone were determined to be 13.41, 15.24, 16.37 and 19.94 nM, respectively. The high sensitivity and selectivity of PN/CNs for these four NFs were thoroughly evaluated by the Stern-Volmer equation and FRET quenching efficiency. This proposed method exhibited high sensitivity and can be successfully applied to detect NFs in fish.
Collapse
Affiliation(s)
- Huiqun Huang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Hongyuan Huang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Jie Yang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Huan Yang
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Jing Dai
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Zhuo Li
- Tobacco Science Institute of Jiangxi Province, Nanchang 330000, China.
| | - Wen Yao
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| | - Xinrong Guo
- Dongguan Key Laboratory of Public Health Laboratory Science, School of Public Health, Guangdong Medical University, Dongguan 523808, People's Republic of China.
| |
Collapse
|
230
|
Freitas M, Ribeiro D, Janela JS, Varela CL, Costa SC, da Silva ET, Fernandes E, Roleira FMF. Plant-derived and dietary phenolic cinnamic acid derivatives: Anti-inflammatory properties. Food Chem 2024; 459:140080. [PMID: 38986205 DOI: 10.1016/j.foodchem.2024.140080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Cinnamic acids are aromatic acids primarily found in plants and plant-derived food. Phenolic cinnamic acids, with one or more hydroxyl groups in the aromatic ring, often contribute to the biological activities attributed to these compounds. The presence of hydroxyl groups and a carboxyl group makes cinnamic acids very hydrophilic, preventing them from crossing biological membranes and exerting their biological activities. To alleviate this condition, a panel of synthetic modifications have been made leading to a diverse set of phenolic cinnamic structures. In this review, an overview of the natural phenolic cinnamic acid derivatives and their plant sources (more than 200) is described. The synthetic approaches to obtain the referred derivatives (more than 200) namely esters and amides are reviewed. Further, their anti-inflammatory activity (more than 70 compounds) is scrutinized. Finally, future directions will be indicated to translate the research on phenolic cinnamic derivatives into potentially effective anti-inflammatory drugs.
Collapse
Affiliation(s)
- Marisa Freitas
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal.
| | - Daniela Ribeiro
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal; Faculdade de Ciências Agrárias e do Ambiente da Universidade dos Açores, Portugal.
| | - João S Janela
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Carla L Varela
- Univ Coimbra, CERES, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
| | - Saul C Costa
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Elisiário Tavares da Silva
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal.
| | - Fernanda M F Roleira
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| |
Collapse
|
231
|
Hsu BY, Lin CH, Kao TH. Development of a Rapid UPLC Method for Analysis of Carotenoids in Goji Berry Extract and Evaluation of Their Transformation Affected by Saponification. Molecules 2024; 29:5684. [PMID: 39683844 DOI: 10.3390/molecules29235684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Goji berry (Lycium barbarum L.), also known as wolfberry, is a traditional Chinese medicinal herb widely utilized as a functional food ingredient throughout East Asia. In this study, we developed a rapid high performance liquid chromatography-diode array detection (HPLC-DAD) method for the simultaneous separation of carotenoids in goji berries. This method successfully separates 17 carotenoids and their esters within 21 min using a Sunrise C30 column, with detection at 450 nm, a flow rate of 1.3 mL/min, and a column temperature of 25 °C. Method validation showed intra-day precision ranging from 0.97% to 6.21% and inter-day precision from 0.99% to 7.01%, demonstrating this method effectively minimizes analysis time while providing high separation efficiency and sensitivity. Goji berries extracted with a mixture of n-hexane/ethanol/acetone (1:1:1, v/v/v) and then saponified with a 40% potassium hydroxide methanol solution can completely convert carotenoid esters into free monomer forms. The highest carotenoid content in goji berry was all-trans-zeaxanthin (1721.94 ± 81.01 μg/g), followed by 9- or 9'-cis-zeaxanthin (79.53 ± 3.92 μg/g), 15- or 15'-cis-zeaxanthin (43.71 ± 2.17 μg/g), 9- or 9'-cis-zeaxanthin (36.51 ± 1.81 μg/g), all-trans-β-cryptoxanthin (25.76 ± 1.55 μg/g), all-trans-β-carotene (5.71 ± 0.83 μg/g), and 13- or 13'-cis-β-carotene (0.86 ± 0.13 μg/g).
Collapse
Affiliation(s)
- Bo-Yang Hsu
- Department of Food Science, National Ilan University, Yilan County 260, Taiwan
| | - Chia-Hui Lin
- Department of Food Science, Fu Jen University, New Taipei City 242, Taiwan
| | - Tsai-Hua Kao
- Department of Food Science, Fu Jen University, New Taipei City 242, Taiwan
| |
Collapse
|
232
|
Kwan SH, Esteves F, Davis E, Gonzalez de Mejia E. Chemical characterization and DPP IV inhibitory capacity of purified adzuki bean β-vignin digest in comparison to soybean β-conglycinin and in vitro effect of β-vignin on diabetic-related outcomes. Food Chem 2024; 467:142285. [PMID: 39644661 DOI: 10.1016/j.foodchem.2024.142285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/10/2024] [Accepted: 11/27/2024] [Indexed: 12/09/2024]
Abstract
Adzuki bean (AB) is a legume with a low glycemic index and is traditionally used in Asian cultures to modulate type 2 diabetes (T2D). Our objectives were to characterize the functional peptides from purified AB β-vignin after simulated gastrointestinal digestion in comparison to soybean β-conglycinin, to evaluate their DPP IV inhibitory capacity, and to determine in vitro the effect of digested AB β-vignin on diabetic-related outcomes using HepG2 cells in healthy and insulin-resistant states. Five peptides (215-742 Da) from AB β-vignin and five peptides (215-447 Da) from β-conglycinin were identified to exhibit bioactivity as DPP IV inhibitors. Molecular docking demonstrated peptides could bind to DPP IV at the same binding site as a diabetic medication, linagliptin. Digested AB β-vignin significantly increased (p < 0.05) hepatic glucose uptake (> 290 %) via DPP IV inhibition (> 40 %) in healthy and insulin-resistant states. IRS-1, Akt-1, and Glut 2 increased after treating cells with digested AB β-vignin in healthy and insulin-resistant states.
Collapse
Affiliation(s)
- Shu Hang Kwan
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Frida Esteves
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA; Tecnologico de Monterrey, Monterrey, Mexico
| | - Emily Davis
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA
| | - Elvira Gonzalez de Mejia
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA; Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Champaign, IL 61801, USA.
| |
Collapse
|
233
|
Islam MM, Jung DE, Shin WS, Oh MH. Colistin Resistance Mechanism and Management Strategies of Colistin-Resistant Acinetobacter baumannii Infections. Pathogens 2024; 13:1049. [PMID: 39770308 PMCID: PMC11728550 DOI: 10.3390/pathogens13121049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The emergence of antibiotic-resistant Acinetobacter baumannii (A. baumannii) is a pressing threat in clinical settings. Colistin is currently a widely used treatment for multidrug-resistant A. baumannii, serving as the last line of defense. However, reports of colistin-resistant strains of A. baumannii have emerged, underscoring the urgent need to develop alternative medications to combat these serious pathogens. To resist colistin, A. baumannii has developed several mechanisms. These include the loss of outer membrane lipopolysaccharides (LPSs) due to mutation of LPS biosynthetic genes, modification of lipid A (a constituent of LPSs) structure through the addition of phosphoethanolamine (PEtN) moieties to the lipid A component by overexpression of chromosomal pmrCAB operon genes and eptA gene, or acquisition of plasmid-encoded mcr genes through horizontal gene transfer. Other resistance mechanisms involve alterations of outer membrane permeability through porins, the expulsion of colistin by efflux pumps, and heteroresistance. In response to the rising threat of colistin-resistant A. baumannii, researchers have developed various treatment strategies, including antibiotic combination therapy, adjuvants to potentiate antibiotic activity, repurposing existing drugs, antimicrobial peptides, nanotechnology, photodynamic therapy, CRISPR/Cas, and phage therapy. While many of these strategies have shown promise in vitro and in vivo, further clinical trials are necessary to ensure their efficacy and widen their clinical applications. Ongoing research is essential for identifying the most effective therapeutic strategies to manage colistin-resistant A. baumannii. This review explores the genetic mechanisms underlying colistin resistance and assesses potential treatment options for this challenging pathogen.
Collapse
Affiliation(s)
- Md Minarul Islam
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea;
| | - Da Eun Jung
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea;
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Man Hwan Oh
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea;
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
234
|
Owczarek K, Caban M, Sosnowska D, Kajszczak D, Lewandowska U. The Anti-Metastatic Potential of Aronia Leaf Extracts on Colon Cancer Cells. Nutrients 2024; 16:4110. [PMID: 39683504 DOI: 10.3390/nu16234110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/15/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES Numerous studies have demonstrated the health benefits of polyphenols found in aronia fruits; however, little is known about how aronia leaf polyphenols impact colorectal cancer (CRC). This study aimed to evaluate the in vitro anti-metastatic and anti-invasive activity of crude aronia leaf extract (ACE) and purified phenolic-rich aronia leaf extract (APE) against two CRC cell lines (SW-480 and HT-29). METHODS Migration and invasion potential of ACE and APE were evaluated. Moreover, ELISA and gelatin zymography were performed to detect translational and activity changes in CRC cells after aronia extracts treatment. RESULTS We found that a 100 µg/mL concentration of ACE and APE almost entirely downregulated the migration and invasion of SW-480 cells, showing greater effectiveness than HT-29 cells. The observed inhibition was concentration-dependent and statistically significant. Additionally, extracts reduced the product of MMP-2 and MMP-9 gene expression at the protein level and simultaneously inhibited the activity of both MMPs. An APE at 300 µg/mL for SW-480 and 600 µg/mL for HT-29 resulted in a notable reduction in MMP-2 protein synthesis by 72% and 50%, respectively. In contrast, MMP-9 protein synthesis decreased by 48% and 59% in HT-29 cells treated with 300 µg/mL and 600 µg/mL of ACE, respectively. The levels of gelatinase activity were similar for both CRC lines, and the APE tested at a concentration of 300 µg/mL reached almost the IC50 value after 48 h of incubation. CONCLUSIONS Based on the presented results, we provided an experimental foundation for future in vitro and in vivo studies on the potential effects and activities of aronia leaves.
Collapse
Affiliation(s)
- Katarzyna Owczarek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Miłosz Caban
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| | - Dorota Sosnowska
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland
| | - Dominika Kajszczak
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 90-530 Lodz, Poland
| | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
235
|
Dejeu IL, Vicaș LG, Marian E, Ganea M, Frenț OD, Maghiar PB, Bodea FI, Dejeu GE. Innovative Approaches to Enhancing the Biomedical Properties of Liposomes. Pharmaceutics 2024; 16:1525. [PMID: 39771504 PMCID: PMC11728823 DOI: 10.3390/pharmaceutics16121525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/31/2024] [Accepted: 11/25/2024] [Indexed: 01/16/2025] Open
Abstract
Liposomes represent a promising class of drug delivery systems that enhance the therapeutic efficacy and safety of various pharmaceutical agents. Also, they offer numerous advantages compared to traditional drug delivery methods, including targeted delivery to specific sites, controlled release, and fewer side effects. This review meticulously examines the methodologies employed in the preparation and characterization of liposomal formulations. With the rising incidence of adverse drug reactions, there is a pressing need for innovative delivery strategies that prioritize selectivity, specificity, and safety. Nanomedicine promises to revolutionize diagnostics and treatments, addressing current limitations and improving disease management, including cancer, which remains a major global health challenge. This paper aims to conduct a comprehensive study on the interest of biomedical research regarding nanotechnology and its implications for further applications.
Collapse
Affiliation(s)
- Ioana Lavinia Dejeu
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Laura Grațiela Vicaș
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Eleonora Marian
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Mariana Ganea
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Olimpia Daniela Frenț
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga Street, 410028 Oradea, Romania; (I.L.D.); (E.M.); (M.G.); (O.D.F.)
| | - Paula Bianca Maghiar
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - Flaviu Ionut Bodea
- Doctoral School of Biomedical Science, University of Oradea, 1 University Street, 410087 Oradea, Romania; (P.B.M.); (F.I.B.)
| | - George Emanuiel Dejeu
- Department of Surgical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 10 Piata 1 Decembrie Street, 410073 Oradea, Romania;
| |
Collapse
|
236
|
Zhuang X, Shi W, Shen T, Cheng X, Wan Q, Fan M, Hu D. Research Updates and Advances on Flavonoids Derived from Dandelion and Their Antioxidant Activities. Antioxidants (Basel) 2024; 13:1449. [PMID: 39765778 PMCID: PMC11672681 DOI: 10.3390/antiox13121449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
As a common medicinal and edible plant, dandelion plays a crucial and significant role in the fields of traditional Chinese medicines, functional foods, healthcare products, daily chemicals, and feed additives, which are closely related to its rich chemical constituents and remarkable biological activities. Modern studies have demonstrated that dandelion contains all kinds of bioactive constituents, including flavonoids, amino acids, fatty acids, organic acids, phenolic acids, coumarins, lignans, polysaccharides, phytosterols, terpenes, glycoproteins, oligosaccharides, alkaloids, etc. Meanwhile, dandelion has been proven to possess antioxidant, antibacterial, anti-inflammatory, antitumor, antivirus, hypoglycemic, and hypolipidemic properties, as well as the ability to regulate hormone levels and protect some visceral organs. Among them, flavonoids derived from dandelion and their antioxidant activities have received considerable attention. This study reviews dandelion flavonoids and their in vitro and in vivo antioxidant activities by consulting and organizing relevant domestic and international works of literature to provide a scientific and theoretical basis for further research, development, and utilization of dandelion.
Collapse
Affiliation(s)
- Xiaocui Zhuang
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| | - Wei Shi
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| | - Tao Shen
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| | - Xiaoyang Cheng
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| | - Qilin Wan
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| | - Minxia Fan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China;
| | - Dongbao Hu
- School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China; (X.Z.); (W.S.); (T.S.); (X.C.); (Q.W.)
| |
Collapse
|
237
|
Shi X, Yang X, He S, Duan T, Liang X, Ma S, Gong J. Ultrasonic Extraction of Polysaccharides from Dendrobium officinale Leaf: Kinetics, In Vitro Activities, and Characterization. Foods 2024; 13:3737. [PMID: 39682810 DOI: 10.3390/foods13233737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
This study explored the kinetics of ultrasonic extraction of polysaccharides (DOLP) from Dendrobium officinale leaf (DOL), evaluated the in vitro bioactivity of DOL extracts and DOLP, and characterized the DOLP. A kinetic model was developed based on Fick's second law. A technique utilizing 400 W for 50 min was employed for the ultrasonic extraction of DOLP, with an optimal solid-liquid ratio established at 1:40 (g/mL). DOL extracts dried using different methods exhibited varying antioxidant activity and inhibitory effects against α-amylase and α-glucosidase. An in vitro study revealed that DOL extracts obtained through vacuum freeze drying demonstrated significantly stronger antioxidant activity, while those derived through microwave drying showed superior inhibitory effects against α-amylase and α-glucosidase compared to the other two drying methods. Furthermore, it was observed that the in vitro bioactivity of DOLP (purity: 74.07 ± 0.52%) was significantly lower than that of DOL extracts. Nevertheless, DOLP (5.0 mg/mL) demonstrated a scavenging ability reaching 64.86% of VC for DPPH radical and 67.14% of VC for ·OH radical, and the inhibition of DOLP (10 mg/mL) on α-amylase and α-glucosidase reached 58.40% and 38.28% of the acarbose, respectively. The findings revealed that DOLP are predominantly composed of mannose, glucose, galactose, and arabinose in a distinctive molar ratio of 89.00:16.33:4.78:1.
Collapse
Affiliation(s)
- Xuerong Shi
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuzhong Yang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shaotong He
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ting Duan
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xin Liang
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Shuzhen Ma
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jijun Gong
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Changsha 410004, China
| |
Collapse
|
238
|
Chen Y, Shen Z, Tao C, Kong D, Liu C, Shen W, Lee HK, Tang S. Enzyme-Assisted Solid-Phase Microextraction Coupled with a DNA Nanowalker for Dual-Amplified Detection of Chloramphenicol in Animal-Derived Food Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39568346 DOI: 10.1021/acs.jafc.4c07497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Chloramphenicol (CAP), an aminoalcohol antibiotic, exerts its action on bacterial ribosomes, thereby obstructing protein synthesis. However, the use of CAP in husbandry may lead to its excessive accumulation in animal-derived food products. This presents potential risks to consumer health. This study developed a novel dual-amplification fluorescence detection method by integrating enzyme-assisted solid-phase microextraction (SPME) with a Fe3O4@Au NP-based DNA nanowalker for the detection of CAP in food. The combination of a quartz rod-based SPME biosensor and DNA nanowalker effectively eliminated matrix interference, enabling the conversion of CAP and enhancement of detection signals through two cyclic amplification processes. The strategy demonstrated high sensitivity with a limit of detection of 28.1 aM as well as a wide linear range from 0.1 fM to 1 nM (with R2 > 0.99). This method also demonstrates robust stability and accuracy in detecting trace amounts of CAP in both authentic and prepared positive samples.
Collapse
Affiliation(s)
- Yitong Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, PR China
| | - Zhuoyue Shen
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, PR China
| | - Chunxu Tao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, PR China
| | - Dezhao Kong
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, PR China
| | - Chang Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, PR China
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, PR China
| | - Hian Kee Lee
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, PR China
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, PR China
| |
Collapse
|
239
|
Zhao L, Wang L, Wang N, Gao X, Zhang B, Zhao Y, Wang N. Cooking Alters the Metabolites of Onions and Their Ability to Protect Nerve Cells from Lead Damage. Foods 2024; 13:3707. [PMID: 39594122 PMCID: PMC11593875 DOI: 10.3390/foods13223707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Onions (Allium cepa L.) are nutritious vegetables; however, variations in processing methods can influence their chemical composition and functional properties. Raw processing and cooking are the two main food-processing methods for onions, but it is not clear what kind of changes these two methods cause. In the present study, ultrahigh-resolution liquid chromatography-mass spectrometry (UHPLC-MS) was utilized to observe the changes in onion composition during cooking and to investigate the protective effects of raw and cooked onion extracts against lead damage in vitro and at the cellular level. Many compounds were identified, including amino acids, nucleosides, flavonoids, and organosulfur compounds. Cooking causes changes in the content of numerous amino acids (e.g., DL-glutamine) in onions and increases nucleoside content (e.g., 5'-S-methyl-5'-thioadenosine, adenine). Both raw and cooked onion extracts can reduce neuronal cell damage caused by lead exposure, but cooking increased the free radical scavenging (e.g., DPPH, ABTS, hydroxyl radicals) and chelating of lead ions (up to about 25%) of the onion extracts. In conclusion, cooking can cause changes in the chemical composition of onions and increase their antioxidant and lead chelating capacity.
Collapse
Affiliation(s)
- Li Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
| | - Liping Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
| | - Nan Wang
- College of Food Sciences and Engineering, Ningbo University, Ningbo 315211, China;
| | - Xinchang Gao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
| | - Bin Zhang
- Health Science Center, Ningbo University, Ningbo 315211, China;
| | - Yufen Zhao
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ning Wang
- Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China; (L.Z.); (L.W.); (X.G.)
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
240
|
Karthika A, Sudhakar C, Karuppasamy P, Tamilselvi B, Meena S, Anantharaju KS, Tan KB, Murthy HCA. Green synthesized CaO decorated ternary CaO/g-C 3N 4/PVA nanocomposite modified glassy carbon electrode for enhanced electrochemical detection of caffeic acid. Sci Rep 2024; 14:28714. [PMID: 39567594 PMCID: PMC11579478 DOI: 10.1038/s41598-024-80146-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/15/2024] [Indexed: 11/22/2024] Open
Abstract
A highly selective, sensitive caffeic acid (CA) detection based on calcium oxide nanoparticles (CaO NPs) derived from extract of Moringa oleifera leaves decorated graphitic carbon nitride covalently grafted poly vinyl alcohol (CaO/g-C3N4/PVA) nanocomposite modified glassy carbon electrode (GCE) was studied. A facile sonochemical method was adapted to synthesis nanomaterials and characterized by HR-TEM (High resolution transmission electron microscopy), FT-IR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), FE-SEM (Field emission scanning electron microscopy), EDX (Energy dispersive X-ray analysis), Mapping and BET (Brunauer-Emmett-Teller) analysis, and electrochemical techniques. The nanocomposite modified GCE exhibited an excellent catalytic performance to the oxidation of CA under optimized conditions owing to better electron transfer efficiency, conductivity and high surface area of the electrode material. The present electrochemical sensor showed high selectivity towards the determination of 10 µM CA in the presence of 100-fold higher concentrations of interferents. The modified CA sensor exhibited a wide sensing linear range from 0.01 µM to 70 µM and the detection limit (LOD) was found to be 0.0024 µM (S/N = 3) in 0.1 M phosphate buffer saline (PBS) as a supporting electrolyte at pH 7.0. The fabricated CA sensor provides an excellent stability, reproducibility and selectivity for the determination of CA. The modified CA sensor was applied to real blood plasma samples and obtained good recovery (97.6-100.1%) results.
Collapse
Affiliation(s)
- Annamalai Karthika
- Department of Chemistry, Thiagarajar College, Madurai, 625 009, Tamilnadu, India
| | - C Sudhakar
- Department of Chemistry, K.P. National College of Arts and Science, Batlagundu, 624202, India
| | | | - Baluchamy Tamilselvi
- Department of Chemistry, K.L.N. College of Engineering, Pottapalayam, 630612, Tamilnadu, India
| | - Subramaniam Meena
- Department of Chemistry, Dayananda Sagar College of Engineering, Bangalore, 560111, Karnataka, India
| | | | - K B Tan
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, 43400, Selangor, Malaysia.
| | - H C Ananda Murthy
- School of Applied Sciences, Papua New Guinea University of Technology, Lae, 411, Morobe Province, Papua New Guinea, Papua New Guinea.
- Department of Prosthodontics, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha Dental College & Hospital, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
241
|
da Silva VRF, da Silva GB, Manica D, Deolindo CTP, Bagatini MD, Kempka AP. Phytotherapeutic potential of Campomanesia xanthocarpa (Mart.) O. Berg: antitumor effects in vitro and in silico, with emphasis on SK-MEL-28 melanoma cells-a study on leaf and fruit infusions. In Silico Pharmacol 2024; 12:105. [PMID: 39569036 PMCID: PMC11574240 DOI: 10.1007/s40203-024-00286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
The study investigated the efficacy of Campomanesia xanthocarpa infusions on human melanoma cells (SK-MEL-28). The phytochemical profile revealed 18 phenolic compounds in the leaf infusion and 9 in the fruit infusion. After 24 h of treatment, the infusions demonstrated antineoplastic effects, reducing cell viability at all tested concentrations for the leaf infusion. For the fruit infusion, a significant reduction in cell viability was observed specifically at the 800 μg/mL concentration. Fluorescence microscopy and mitochondrial membrane potential results indicated that the leaf infusion was more effective in reducing cell viability and mitochondrial function in SK-MEL-28 cells, possibly due to its greater variety of phenolic compounds compared to the fruit infusion. The leaf infusion also induced higher production of intracellular reactive oxygen species compared to the fruit infusion. Protein sulfhydryl levels were reduced for the leaf infusion. Epigallocatechin gallate, Isoquercitrin, Rutin, Kaempferol-3-O-rutinoside, Chlorogenic acid, and Ellagic acid were identified as the main compounds with activity against SK-MEL-28 cells. Molecular docking analysis underscored factors such as affinity, cavity size, binding mode, and contact residues with specific compounds chosen for their favorable properties in targeting BRAF, CDK4, CDK6, MEK1, and MEK2. The variability in binding affinities may directly influence the compounds' ability to inhibit different signaling pathways related to cancer cell growth and proliferation. The results suggest that phenolic compounds from C. xanthocarpa extracts have therapeutic potential and could contribute to melanoma therapies. Supplementary information The online version contains supplementary material available at 10.1007/s40203-024-00286-1.
Collapse
Affiliation(s)
- Vanessa Ruana Ferreira da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC Brazil
| | - Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC Brazil
| | - Daiane Manica
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC Brazil
| | - Carolina Turnes Pasini Deolindo
- Ministry of AgricultureLivestock, and Food Supply, Federal Agricultural Defense Laboratory, São José, SC Brazil
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianópolis, SC Brazil
| | - Margarete Dulce Bagatini
- Postgraduate Program in Biochemistry, Federal University of Santa Catarina, Florianópolis, SC Brazil
- Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC Brazil
| | - Aniela Pinto Kempka
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC Brazil
- Department of Food Engineering and Chemical Engineering, Santa Catarina State University, Fernando de Noronha Street, BR 282, Km 573.5, Pinhalzinho, SC 89870-000 Brazil
| |
Collapse
|
242
|
Rieseberg TP, Holzhausen A, Bierenbroodspot MJ, Zhang W, Abreu IN, de Vries J. Conserved carotenoid pigmentation in reproductive organs of Charophyceae. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230372. [PMID: 39343025 PMCID: PMC11449214 DOI: 10.1098/rstb.2023.0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 06/19/2024] [Indexed: 10/01/2024] Open
Abstract
Sexual reproduction in Charophyceae abounds in complex traits. Their gametangia develop as intricate structures, with oogonia spirally surrounded by envelope cells and richly pigmented antheridia. The red-probably protectant-pigmentation of antheridia is conserved across Charophyceae. Chara tomentosa is, however, unique in exhibiting this pigmentation and also in vegetative tissue. Here, we investigated the two sympatric species, C. tomentosa and Chara baltica, and compared their molecular chassis for pigmentation. Using reversed phase C30 high performance liquid chromatography (RP-C30-HPLC), we uncover that the major pigments are β-carotene, δ-carotene and γ-carotene; using headspace solid-phase microextraction coupled to gas chromatography equipped with a mass spectrometer (HS-SPME-GC-MS), we pinpoint that the unusually large carotenoid pool in C. tomentosa gives rise to diverse volatile apocarotenoids, including abundant 6-methyl-5-hepten-2-one. Based on transcriptome analyses, we uncover signatures of the unique biology of Charophycaee and genes for pigment production, including monocyclized carotenoids. The rich carotenoid pool probably serves as a substrate for diverse carotenoid-derived metabolites, signified not only by (i) the volatile apocarotenoids we detected but (ii) the high expression of a gene coding for a cytochrome P450 enzyme related to land plant proteins involved in the biosynthesis of carotenoid-derived hormones. Overall, our data shed light on a key protection strategy of sexual reproduction in the widespread group of macroalgae. The genetic underpinnings of this are shared across hundreds of millions of years of plant and algal evolution. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Tim P Rieseberg
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
| | - Anja Holzhausen
- Department of Crop Physiology, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Betty Heimann-Str. 5 , Halle (Saale) 06120, Germany
| | - Maaike J Bierenbroodspot
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
| | - Wanchen Zhang
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
| | - Ilka N Abreu
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
- Department of Plant Biochemistry, Albrecht Haller Institute of Plant Science, Justus-von-Liebig-Weg, University of Goettingen , Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Goettingen Metabolomics and Lipidomics Laboratory, Justus-von-Liebig Weg 11, University of Goettingen , Goettingen 37077, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
- Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
- Department of Applied Bioinformatics, Campus Institute Data Science, University of Goettingen , Goettingen 37077, Germany
| |
Collapse
|
243
|
Zhang W, Bai X, Guo J, Yang J, Yu B, Chen J, Wang J, Zhao D, Zhang H, Liu M. Hyperspectral imaging for in situ visual assessment of Industrial-Scale ginseng. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124700. [PMID: 38925038 DOI: 10.1016/j.saa.2024.124700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
In industrial production, the timely assessment of ginseng-derived ingredients is crucial and requires nondestructive techniques for identifying and analyzing composition. Hyperspectral imaging (HSI) effectively visualizes the three-dimensional spatial distribution of phytochemicals in dried ginseng. This study explores the in-situ prediction and visualization of moisture content (MC) and ginsenoside content (GC) in thermally processed ginseng using dual-band HSI. We collected hyperspectral images from 216 raw ginseng samples, which underwent dimensionality reduction, noise reduction, and feature enhancement via Principal Component Analysis (PCA) and Minimum Noise Separation (MNF). Linear regression models were developed following these pretreatments and evaluated using a validation set. The PCA-based models demonstrated superior performance over those based on MNF, especially in predicting GC in the near-infrared (NIR) spectrum. Similarly, models predicting MC in the visible spectrum showed favorable results. HSI enables rapid generation of distribution maps, facilitating real-time imaging for commercial applications. Repeated drying cycles and increased duration primarily affect the textural characteristics and visible color of the ginseng surface, without significantly altering its intrinsic properties. The deployment of this predictive model alongside real-time content inversion using HSI technology holds promise for integrating visual and intelligent quality monitoring in the trade of valuable herbal commodities.
Collapse
Affiliation(s)
- Wei Zhang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.
| | - Xueyuan Bai
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jianying Guo
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Jin Yang
- Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
| | - Bo Yu
- Baishan Lincun Traditional Chinese Medicine Development CO., Ltd, Jingyu, China
| | - Jiaqi Chen
- Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
| | - Jinyu Wang
- Changchun Institute of Optics, Precision Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - He Zhang
- The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Meichen Liu
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
244
|
Wang Y, Gu L, Zhang H, Wang J, Wang X, Li Y, Chai S, Xu C. Therapeutic potential of mackerel-derived peptides and the synthetic tetrapeptide TVGF for sleep disorders in a light-induced anxiety zebrafish model. Front Pharmacol 2024; 15:1475432. [PMID: 39600360 PMCID: PMC11589825 DOI: 10.3389/fphar.2024.1475432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Introduction Anxiety-like insomnia is a known risk factor for the onset and worsening of certain neurological diseases, including Alzheimer's disease. Due to the adverse effects of current anti-insomnia medications, such as drug dependence and limited safety, researchers are actively exploring natural bioactive compounds to mitigate anxiety-like insomnia with fewer side effects. Mackerel (Pneumatophorus japonicus), a traditional Chinese medicine, is known for its tonic effects and is commonly used to treat neurasthenia. The use of mackerel protein extract has been shown to effectively improve symptoms of light-induced anxiety-like insomnia in a zebrafish model. Methods This study examines the effects of mackerel bone peptides (MW < 1 kDa, MBP1) and the synthetic peptide Thr-Val-Gly-Phe (TVGF) on light-induced anxiety-like insomnia in zebrafish. The evaluation is conducted through behavioral observation, biochemical marker analysis, and gene transcriptome profiling. Results MBP1 significantly alleviated abnormal hyperactivity and restored neurotransmitter levels (dopamine and γ-aminobutyric acid) to normal. Moreover, it mitigated oxidative stress by reducing reactive oxygen species production and malonaldehyde levels, while enhancing antioxidant enzyme activities (superoxide dismutase and catalase). This was further attributed to the regulation of lipid accumulation and protein homeostasis. Furthermore, MBP1 ameliorated sleep disturbances primarily by restoring normal expression levels of genes involved in circadian rhythm (per2 and sik1) and visual function (opn1mw2, zgc:73075, and arr3b). Molecular docking analysis indicated that TVGF exhibited good affinity for receptors linked to sleep disturbances, including IL6, HTR1A, and MAOA. TVGF exhibited sedative effects in behavioral assays, mainly mediated by regulating the normal expression of genes associated with circadian rhythm (cry1bb, cry1ba, per2, per1b and sik1), visual function (opn1mw1, gnb3b, arr3b, gnat2), purine metabolism (pnp5a), and stress recovery (fkbp5). Discussion These findings suggest that MBP1 and TVGF could be promising therapies for light-induced anxiety-like insomnia in humans, offering safer alternatives to current medications. Additionally, the regulation of genes related to circadian rhythm and visual perception may be a key mechanism by which MBP1 and TVGF effectively relieve anxiety-like insomnia.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pharmacy, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Lei Gu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haijing Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Junbao Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- R&D department, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- R&D department, Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai, China
- R&D department, National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, China
| | - Yu Li
- Department of Pharmacy, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shiwei Chai
- Department of Pharmacy, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine and National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Changhua Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- R&D department, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai, China
- R&D department, Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai, China
- R&D department, National R&D Branch Center for Freshwater Aquatic Products Processing Technology, Shanghai, China
| |
Collapse
|
245
|
Gaudin K, Valls-Fonayet J, Cordazzo R, Serafin W, Lafon E, Gaubert A, Richard T, Cluzet S. Separation of polyphenols by HILIC methods with diode array detection, charged aerosol detection and mass spectrometry: Application to grapevine extracts rich in stilbenoids. J Chromatogr A 2024; 1736:465422. [PMID: 39383622 DOI: 10.1016/j.chroma.2024.465422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 10/11/2024]
Abstract
The characterization of plant extracts is usually accomplished by reverse-phase liquid chromatography, but the development of new complementary approaches, such as HILIC, offers an orthogonal method. In this study, five HILIC stationary phases were evaluated to assess their ability to retain polyphenols. They were selected to cover the main different HILIC mechanisms: bare silica; silica with ethylene bridge; neutral amide; amino; zwitterionic. A total of 31 polyphenol standards were used for the screening, including 9 stilbenes, 8 flavonoids, 6 anthocyanins, and 8 phenolic acids. Three different detections were tested: diode array detector, charged aerosol detector and mass spectrometry. Results indicated that silica supports were not suitable for retaining polyphenols, with no or low retention observed except for anthocyanins. The effectiveness of stationary phases in retention of phenolics following the order related to increased retention: zwitterionic, amide, and amino. The choice of mobile phase also influenced retention. Mobile phases containing TFA as pH modifier limited retention, while formic acid was found to be more effective for polyphenol retention. Ammonium buffers also improved retention but often compromised peak shape. pH changes mainly impacted ionizable compounds, such as phenolic acids, by increasing their retention when they were ionized. DAD was wellsuited for detecting polyphenols that possess aromatic rings, though peak wavelengths depend on the structures of the polyphenols. CAD, while less sensitive than DAD and MS, provided an almost similar response for structurally related compounds, even with gradient elution. MS was the preferred detector for quantification when resolution between compounds was challenging, as it is often the case with natural extracts. The study successfully demonstrated that best HILIC conditions were obtained using an amino stationary phase composed of a polyethylenimine and formic acid-based mobile phase. These conditions were successfully applied to the analysis of stilbenoid-rich extracts from different parts of the vine. The elution order of stilbenoids followed the degree of polymerization. With CAD, the chromatographic profile was more representative of sample composition. It was demonstrated for the first time the interest of a combination of HILIC and CAD for analyzing stilbenes, offering a complementary approach to the classic RP analysis.
Collapse
Affiliation(s)
- Karen Gaudin
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France.
| | - Josep Valls-Fonayet
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France; Bordeaux Metabolome, MetaboHUB, F-33140 Villenave d'Ornon, France
| | - Rémy Cordazzo
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| | - Wiktoria Serafin
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| | - Emma Lafon
- Laboratoire de Chimie Analytique, Collège Sciences la Santé, UFR des Sciences Pharmaceutiques, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Alexandra Gaubert
- Laboratoire de Chimie Analytique, Collège Sciences la Santé, UFR des Sciences Pharmaceutiques, University of Bordeaux, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
| | - Tristan Richard
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France; Bordeaux Metabolome, MetaboHUB, F-33140 Villenave d'Ornon, France
| | - Stéphanie Cluzet
- Univ. Bordeaux, Bordeaux INP, INRAE, OENO, UMR 1366, ISVV, F-33140 Villenave d'Ornon, France
| |
Collapse
|
246
|
Li W, Wu S, Zhang W. Insights into the Formation of Chlorinated Polycyclic Aromatic Hydrocarbons Related to Chlorine in Salt-Tolerant Rice: Profiles in Market Samples, Effects of Saline Cultivation, and Household Cooking. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24833-24846. [PMID: 39440816 DOI: 10.1021/acs.jafc.4c06295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Halogenated polycyclic aromatic hydrocarbons (XPAHs) present potential risk owing to their greater toxicity than PAHs. This study aimed to explore their profiles in commercial salt-tolerant rice, effects of saline cultivation (0‰ and 3‰ saline conditions), and formation during home cooking. A validated SPE-GC-MS/MS method was used to analyze PAHs and XPAHs in 16 commercial salt-tolerant rice samples. The PAH24 and XPAH18 concentrations were 6.95-32.73 μg kg-1 and 0.013-0.593 μg kg-1, respectively. Chlorinated PAHs (ClPAHs) were significantly greater in salt-tolerant rice (0.14 μg kg-1) than in normal rice (0.048 μg kg-1). During cooking, a notable increase (210-1120%) in ClPAHs and a significant correlation (r = 0.70-0.81, p < 0.05) between newly formed ClPAHs and their parent PAHs were observed, suggesting cooking-induced chlorination of PAHs. Moreover, chlorine radical-induced chlorination of PAHs may be the primary mechanism involved. These findings highlight increased exposure to ClPAHs due to saline cultivation and cooking and provide new insight into ClPAH formation from household cooking.
Collapse
Affiliation(s)
- Wei Li
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shimin Wu
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, 58 Renmin Road, Haikou, Hainan 570228, China
| |
Collapse
|
247
|
Song Z, Xu X, Chen X, Chang J, Li J, Cheng J, Zhang B. Multi-omics analysis provides insights into the mechanism underlying fruit color formation in Capsicum. FRONTIERS IN PLANT SCIENCE 2024; 15:1448060. [PMID: 39568454 PMCID: PMC11576296 DOI: 10.3389/fpls.2024.1448060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Fruit color is a crucial attribute of fruit quality in peppers (Capsicum spp.). However, few studies have focused on the mechanism of color formation in immature pepper fruits. In this study, the light-yellow color observed in immature CSJ009 fruits compared to CSJ010 could be attributed to decreased chlorophyll and carotenoid pigments. Through integrated analysis of the transcriptome and metabolome of CSJ009 and CSJ010, we identified 23,930 differentially expressed genes (DEGs) and 345 differentially accumulated metabolites (DAMs). Furthermore, integrated analysis revealed a strong correlation between the HCT-like gene and metabolite MWS0178 (chlorogenic acid). Paraffin section assay revealed that the epidermal cells of immature CSJ010 fruits exhibited a more compact arrangement with significantly greater length than those of CSJ009. Quantitative determination of carotenoids showed that lutein emerged as the predominant carotenoid in immature pepper fruits. Additionally, missense mutation of LCYB2 is likely to lead to a decrease in β-carotene content in immature CSJ009 fruits, whereas CCS may directly catalyze the conversion of lycopene to β-carotene in mature fruits. The null mutation in CCS promoted the biosynthesis of β,ϵ-branch carotenoids leading to lutein being the most abundant carotenoid found in orange CSJ010 fruits. These findings provide important insights into the mechanism underlying color formation in pepper fruits and establish a foundation for the further exploration of color-related genes.
Collapse
Affiliation(s)
- Zhao Song
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiaowan Xu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xiao Chen
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jingjing Chang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jing Li
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jiaowen Cheng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Baige Zhang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
248
|
Kusnadi K, Herdiana Y, Rochima E, Putra ON, Mohd Gazzali A, Muchtaridi M. Collagen-Based Nanoparticles as Drug Delivery System in Wound Healing Applications. Int J Nanomedicine 2024; 19:11321-11341. [PMID: 39524919 PMCID: PMC11550700 DOI: 10.2147/ijn.s485588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Background Conventional wound dressings often adhere to wounds and can cause secondary injury due to their lack of anti-inflammatory and antibacterial properties. In contrast, collagen-based nanoparticles (NPs) as drug delivery systems exhibit both biocompatibility and biodegradability, presenting a promising avenue for accelerating wound healing processes. Aims of Study This review aims to provide a comprehensive overview of the mechanisms involved in wound healing, description of the attributes of ideal wound dressings, understanding of wound healing efficacy of collagen, exploring NPs-mediated drug delivery mechanisms in wound therapy, detailing the synthesis and fabrication techniques of collagen-based NPs, and delineating the applications of various collagen-based NPs infused wound dressings on wound healing. Methodology This review synthesizes relevant literature from reputable databases such as Scopus, Science Direct, Google Scholar, and PubMed. Results A diverse array of collagen-based NPs, including nanopolymers, metal NPs, nanoemulsions, nanoliposomes, and nanofibers, demonstrate pronounced efficacy in promoting wound closure and tissue regeneration. The incorporation of collagen-based NPs has not only become an agent for the delivery of therapeutics but also actively contributes to the wound healing cascade. Conclusion In conclusion, In brief, the use of collagen-based NPs presents a compelling strategy for expediting wound healing processes.
Collapse
Affiliation(s)
- Kusnadi Kusnadi
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Department of Pharmacy, Politeknik Harapan Bersama, Tegal, Central Java, 52147, Indonesia
| | - Yedi Herdiana
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
| | - Emma Rochima
- Department of Fishery, Faculty of Fisheries and Marine Sciences, Universitas Padjadjaran, Sumedang, West Java, 45363, Indonesia
| | - Okta Nama Putra
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Research Center for Agroindustry, National Research and Innovation Agency (BRIN), Cibinong, Jawa Barat, 16911, Indonesia
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Gelugor, Penang, 11800, Malaysia
| | - Muchtaridi Muchtaridi
- Department of Pharmacy Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, 45363, Indonesia
- Research Collaboration Centre for Radiopharmaceuticals Theranostic, National Research and Innovation Agency (BRIN), Sumedang, West Java, 45363, Indonesia
| |
Collapse
|
249
|
Javadi S, Habibi D. Comparative study of cerium-manganese ratios in the design of Ce-Mn-binuclear LDH-based Cu complex: a potent nanocatalyst for the green synthesis of spiro[acridine-9,3'-indole]triones. Sci Rep 2024; 14:26578. [PMID: 39496631 PMCID: PMC11535474 DOI: 10.1038/s41598-024-75724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 10/08/2024] [Indexed: 11/06/2024] Open
Abstract
The Ce-Mn binuclear LDH was prepared at four different molar ratios of Ce to Mn (1:1, 1:2, 1:3, and 1:4), modified with both 3-chloropropyltrimethoxysilane (CPTMS) and N-amino-phthalimide (NAP), complexed with Cu(II), and characterized by the FT-IR, ICP, XPS, XRD, BET, UV/Vis, EDX, SEM, SEM-mapping, TEM, and TGA-DTA techniques. The ICP, XPS, BET, and UV-vis techniques showed that the 1:4 molar ratio of Ce to Mn is the best, therefore it was used as a heterogeneous nanocatalyst for the green synthesis of fourteen spiro[acridine-indole]triones from the three-component condensation reaction of isatin, aniline, and 1,3-diketone in mild reaction conditions. The advantages of this method include the absence of harmful organic solvents, easy separation of the catalyst and products, and rapid achievement of excellent yields. Furthermore, the activity of the catalyst was maintained even after four consecutive runs without a significant loss of activity.
Collapse
Affiliation(s)
- Samira Javadi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Davood Habibi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
250
|
Liang T, Jing P, He J. Nano techniques: an updated review focused on anthocyanin stability. Crit Rev Food Sci Nutr 2024; 64:11985-12008. [PMID: 37574589 DOI: 10.1080/10408398.2023.2245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Anthocyanins (ACNs) are one of the subgroups of flavonoids and getting intensive attraction due to the nutritional values. However, their application of ACNs is limited due to their poor stability and bioavailability. Accordingly, nanoencapsulation has been developed to enhance its stability and bio-efficacy. This review focuses on the nano-technique applications of delivery systems that be used for ACNs stabilization, with an emphasis on physicochemical stability and health benefits. ACNs incorporated with delivery systems in forms of nano-particles and fibrils can achieve advanced functions, such as improved stability, enhanced bioavailability, and controlled release. Also, the toxicological evaluation of nano delivery systems is summarized. Additionally, this review summarizes the challenges and suggests the further perspectives for the further application of ACNs delivery systems in food and medical fields.
Collapse
Affiliation(s)
- Tisong Liang
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Shanghai Food Safety and Engineering Technology Research Center, Bor S. Luh Food Safety Research Center, Key Lab of Urban Agriculture (South), School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Jian He
- Yili Innovation Center, Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, China
| |
Collapse
|