201
|
Abstract
Changes in bone architecture and metabolism with aging increase the likelihood of osteoporosis and fracture. Age-onset osteoporosis is multifactorial, with contributory extrinsic and intrinsic factors including certain medical problems, specific prescription drugs, estrogen loss, secondary hyperparathyroidism, microenvironmental and cellular alterations in bone tissue, and mechanical unloading or immobilization. At the histological level, there are changes in trabecular and cortical bone as well as marrow cellularity, lineage switching of mesenchymal stem cells to an adipogenic fate, inadequate transduction of signals during skeletal loading, and predisposition toward senescent cell accumulation with production of a senescence-associated secretory phenotype. Cumulatively, these changes result in bone remodeling abnormalities that over time cause net bone loss typically seen in older adults. Age-related osteoporosis is a geriatric syndrome due to the multiple etiologies that converge upon the skeleton to produce the ultimate phenotypic changes that manifest as bone fragility. Bone tissue is dynamic but with tendencies toward poor osteoblastic bone formation and relative osteoclastic bone resorption with aging. Interactions with other aging physiologic systems, such as muscle, may also confer detrimental effects on the aging skeleton. Conversely, individuals who maintain their BMD experience a lower risk of fractures, disability, and mortality, suggesting that this phenotype may be a marker of successful aging. © 2023 American Physiological Society. Compr Physiol 13:4355-4386, 2023.
Collapse
Affiliation(s)
- Robert J Pignolo
- Department of Medicine, Divisions of Geriatric Medicine and Gerontology, Endocrinology, and Hospital Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.,The Department of Physiology and Biomedical Engineering, and the Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
202
|
Zhang J, Treyer V, Sun J, Zhang C, Gietl A, Hock C, Razansky D, Nitsch RM, Ni R. Automatic analysis of skull thickness, scalp-to-cortex distance and association with age and sex in cognitively normal elderly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524484. [PMID: 36711717 PMCID: PMC9882276 DOI: 10.1101/2023.01.19.524484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Personalized neurostimulation has been a potential treatment for many brain diseases, which requires insights into brain/skull geometry. Here, we developed an open source efficient pipeline BrainCalculator for automatically computing the skull thickness map, scalp-to-cortex distance (SCD), and brain volume based on T 1 -weighted magnetic resonance imaging (MRI) data. We examined the influence of age and sex cross-sectionally in 407 cognitively normal older adults (71.9±8.0 years, 60.2% female) from the ADNI. We demonstrated the compatibility of our pipeline with commonly used preprocessing packages and found that BrainSuite Skullfinder was better suited for such automatic analysis compared to FSL Brain Extraction Tool 2 and SPM12- based unified segmentation using ground truth. We found that the sphenoid bone and temporal bone were thinnest among the skull regions in both females and males. There was no increase in regional minimum skull thickness with age except in the female sphenoid bone. No sex difference in minimum skull thickness or SCD was observed. Positive correlations between age and SCD were observed, faster in females (0.307%/y) than males (0.216%/y) in temporal SCD. A negative correlation was observed between age and whole brain volume computed based on brain surface (females -1.031%/y, males -0.998%/y). In conclusion, we developed an automatic pipeline for MR-based skull thickness map, SCD, and brain volume analysis and demonstrated the sex-dependent association between minimum regional skull thickness, SCD and brain volume with age. This pipeline might be useful for personalized neurostimulation planning.
Collapse
Affiliation(s)
- Junhao Zhang
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich & University of Zurich, 8093 Zurich, Switzerland
| | - Valerie Treyer
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
- Department of Nuclear Medicine, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Junfeng Sun
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Anton Gietl
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
- Neurimmune, Schlieren, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering, ETH Zurich & University of Zurich, 8093 Zurich, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
- Neurimmune, Schlieren, Switzerland
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, 8952 Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich & University of Zurich, 8093 Zurich, Switzerland
- Zentrum für Neurowissenschaften Zurich, Zurich, Switzerland
| |
Collapse
|
203
|
Gao J, Ren P, Gong H. Morphological and mechanical alterations in articular cartilage and subchondral bone during spontaneous hip osteoarthritis in guinea pigs. Front Bioeng Biotechnol 2023; 11:1080241. [PMID: 36756384 PMCID: PMC9900117 DOI: 10.3389/fbioe.2023.1080241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/09/2023] [Indexed: 01/24/2023] Open
Abstract
Objectives: This study aimed to investigate the morphological and mechanical changes in articular cartilage and subchondral bone during spontaneous hip osteoarthritis in guinea pigs. Materials and methods: Hip joints of guinea pigs were investigated at 1, 3, 6, and 9 months of age (hereafter denoted as 1 M, 3 M, 6 M, and 9 M, respectively; n = 7 in each group). Morphological and mechanical alterations during spontaneous hip osteoarthritis in guinea pigs were investigated. The alterations included the micromechanical properties of articular cartilage (stiffness and creep deformation), microstructure of the subchondral bone (bone mineral density, bone volume fraction, trabecular thickness, trabecular number, and trabecular separation), micromorphology of the articular cartilage, and surface nanostructure (grain size and roughness) of the articular cartilage and subchondral bone. Results: Micromechanical properties of articular cartilage in 1 M showed the lowest stiffness and highest creep deformation with no significant differences in stiffness or creep deformation amongst 3 M, 6 M, and 9 M. Articular cartilage thickness decreased with age. The earliest degeneration of articular cartilage occurred at 6 months of age, characterised by surface unevenness and evident chondrocytes reduction in micromorphology, as well as increased grain size and decreased roughness in nanostructure. No degeneration at micro- or nanostructure of subchondral bone was observed before 9 months. Conclusion: Morphological degeneration of cartilage occurred before degeneration of mechanical properties. Meanwhile, degeneration of cartilage occurred before degeneration of subchondral bone during hip osteoarthritis. The current study provided novel insights into the structural and micromechanical interaction of hip osteoarthritis, which can serve as a theoretical basis for understanding the formation and progression of osteoarthritis.
Collapse
Affiliation(s)
- Jiazi Gao
- Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, China
| | - Pengling Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - He Gong
- Department of Engineering Mechanics, Nanling Campus, Jilin University, Changchun, China,*Correspondence: He Gong,
| |
Collapse
|
204
|
Long-Term Cola Intake Does Not Cause Evident Pathological Alterations in the Femoral Bone Microstructure: An Animal Study in Adult Mice. Nutrients 2023; 15:nu15030583. [PMID: 36771291 PMCID: PMC9920312 DOI: 10.3390/nu15030583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Short-term animal experiments and association studies in humans have shown that cola intake may have a detrimental impact on bone mineral density (BMD); however, other bone parameters have not been investigated. This study examined the effects of long-term cola consumption on the femoral bone microstructure using adult mice (n = 32) as an animal model, which were divided into water and cola groups depending on whether they received water or cola along with a standard rodent diet for 6 months. Micro-computed tomography revealed that cola intake did not significantly affect all measured parameters characterizing trabecular bone mass and microarchitecture, as well as cortical microarchitecture and geometry in both sexes, although a slight deterioration of these parameters was noted. Cola consumption also resulted in a slightly, statistically insignificant worsening of bone mechanical properties. In contrast to female mice, males receiving cola had a lower area of primary osteons' vascular canals. Nevertheless, long-term cola intake did not cause evident pathological alterations in the femur of adult mice, possibly due to a balanced diet and no restriction of physical activity. Therefore, the adverse effects of cola consumption on BMD, the only bone parameter studied so far, may be caused by other risk and lifestyle factors.
Collapse
|
205
|
García-Alvarez F, Estella R, Albareda J. Non-vertebral hydatidosis in bone: Difficulties in management. Jt Dis Relat Surg 2023; 34:58-62. [PMID: 36700264 PMCID: PMC9903126 DOI: 10.52312/jdrs.2023.825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/13/2022] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES This study presents our experience in surgical treatment of extravertebral bone hydatidosis and aims to investigate the utility of specific immunoglobulin E (IgE) in diagnosis and prognosis of the disease. PATIENTS AND METHODS Between January 1990 and December 2019, a total of 10 patients (6 males, 4 females; mean age: 47.2±14.7 years; range, 27 to 71 years) with non-vertebral bone hydatidosis surgically treated in our hospital were retrospectively included. Curettage or wide resection was performed in all cases, followed by medical antihelminthic therapy. Specific IgE p2 was studied in seven patients during and at final follow-up. RESULTS At the time of diagnosis, secondary infection of the cyst was observed as the initial symptom in two patients mimicking an abscess and, in both cases, more surgeries were required without final healing. In two cases, over five specific IgE presented a false negative at the time of diagnosis and it was not correlated with clinical evolution in three cases over seven. In six cases, diagnosis was obtained before surgery. In treatment, pelvic disease had the worst prognosis (none healed) and bacterial overinfection was a common complication after surgery. At the final follow-up, only two femoral cases (20%) were free of disease. Other four cases (three in iliac bone, one in proximal femur) needed several surgeries without healing. The other four patients showed no progression or refused a new surgical treatment. CONCLUSION Location, bone defect, when it is possible to perform a radical surgery, and associated bacterial overinfection after surgery make cystic hydatidosis in bone an infection very difficult to treat definitively in humans. Negative specific IgE does not exclude bone hydatidosis.
Collapse
Affiliation(s)
- Felícito García-Alvarez
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Clínico Universitario Lozano Blesa, 50.009 Zaragoza, Spain
| | - Rubén Estella
- Department of Orthopaedic Surgery and Traumatology, Hospital Clínico “Lozano Blesa”, Zaragoza, Spain
,
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Jorge Albareda
- Department of Orthopaedic Surgery and Traumatology, Hospital Clínico “Lozano Blesa”, Zaragoza, Spain
,
Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
,
Department of Surgery, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
206
|
Variational autoencoder-based estimation of chronological age and changes in morphological features of teeth. Sci Rep 2023; 13:704. [PMID: 36639691 PMCID: PMC9839705 DOI: 10.1038/s41598-023-27950-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
This study led to the development of a variational autoencoder (VAE) for estimating the chronological age of subjects using feature values extracted from their teeth. Further, it determined how given teeth images affected the estimation accuracy. The developed VAE was trained with the first molar and canine tooth images, and a parallel VAE structure was further constructed to extract common features shared by the two types of teeth more effectively. The encoder of the VAE was combined with a regression model to estimate the age. To determine which parts of the tooth images were more or less important when estimating age, a method of visualizing the obtained regression coefficient using the decoder of the VAE was developed. The developed age estimation model was trained using data from 910 individuals aged 10-79. This model showed a median absolute error (MAE) of 6.99 years, demonstrating its ability to estimate age accurately. Furthermore, this method of visualizing the influence of particular parts of tooth images on the accuracy of age estimation using a decoder is expected to provide novel insights for future research on explainable artificial intelligence.
Collapse
|
207
|
Sato M, Shah FA. Contributions of Resin Cast Etching to Visualising the Osteocyte Lacuno-Canalicular Network Architecture in Bone Biology and Tissue Engineering. Calcif Tissue Int 2023; 112:525-542. [PMID: 36611094 PMCID: PMC10106349 DOI: 10.1007/s00223-022-01058-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 01/09/2023]
Abstract
Recent years have witnessed an evolution of imaging technologies towards sophisticated approaches for visualising cells within their natural environment(s) and for investigating their interactions with other cells, with adjacent anatomical structures, and with implanted biomaterials. Resin cast etching (RCE) is an uncomplicated technique involving sequential acid etching and alkali digestion of resin embedded bone to observe the osteocyte lacuno-canalicular network using scanning electron microscopy. This review summarises the applicability of RCE to bone and the bone-implant interface. Quantitative parameters such as osteocyte size, osteocyte density, and number of canaliculi per osteocyte, and qualitative metrics including osteocyte shape, disturbances in the arrangement of osteocytes and canaliculi, and physical communication between osteocytes and implant surfaces can be investigated. Ageing, osteoporosis, long-term immobilisation, spinal cord injury, osteoarthritis, irradiation, and chronic kidney disease have been shown to impact osteocyte lacuno-canalicular network morphology. In addition to titanium, calcium phosphates, and bioactive glass, observation of direct connectivity between osteocytes and cobalt chromium provides new insights into the osseointegration potential of materials conventionally viewed as non-osseointegrating. Other applications include in vivo and in vitro testing of polymer-based tissue engineering scaffolds and tissue-engineered ossicles, validation of ectopic osteochondral defect models, ex vivo organ culture of whole bones, and observing the effects of gene dysfunction/deletion on the osteocyte lacuno-canalicular network. Without additional contrast staining, any resin embedded specimen (including clinical biopsies) can be used for RCE. The multitude of applications described here attest to the versatility of RCE for routine use within correlative analytical workflows, particularly in biomaterials science.
Collapse
Affiliation(s)
- Mari Sato
- Oral Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
208
|
Tarantino F, Buongiorno L, Luca BPD, Stellacci A, Landro MD, Sebastiani GV, Cazzato G, Baldassarra SL, Nuzzolese E, Marrone M. Identification of Skeletal Remains Using Genetic Profiling: A Case Linking Italy and Poland. Genes (Basel) 2023; 14:134. [PMID: 36672875 PMCID: PMC9858830 DOI: 10.3390/genes14010134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023] Open
Abstract
Forensic genetics is a rapidly evolving science thanks to the growing variety of genetic markers, the establishment of faster, less error-prone sequencing technologies, and the engineering of bioinformatics models, methods, and structures. In the early 2000s, the need emerged to create an international genetic database for forensic purposes. This paper describes a judicial investigation of skeletal remains to identify the subject using various methods. The anthropological examination of the remains allowed identification of the Caucasoid (European) ethnic group, a height of 156 ± 4 cm, and an age between 47 and 50 years. The genetic profiles obtained from typing several microsatellites made it possible to evaluate the compatibility between the skeletal remains and the suspected decedent. To identify the remains, the two extrapolated genetic profiles were compared. The case described highlights the central role of forensic genetics in identifying skeleton remains by means of comparison.
Collapse
Affiliation(s)
- Francesca Tarantino
- Section of Legal Medicine, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Luigi Buongiorno
- Section of Legal Medicine, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Benedetta Pia De Luca
- Section of Legal Medicine, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Alessandra Stellacci
- Section of Legal Medicine, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Michele Di Landro
- Section of Legal Medicine, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Gabriele Vito Sebastiani
- Section of Legal Medicine, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Gerardo Cazzato
- Section of Molecular Pathology, Department of Emergency and Organ Transplantation (DETO), University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Stefania Lonero Baldassarra
- Section of Legal Medicine, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Emilio Nuzzolese
- Section of Legal Medicine, Department of Public Health Sciences and Pediatrics, University of Turin, 10121 Turin, Italy
| | - Maricla Marrone
- Section of Legal Medicine, Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
209
|
Varotto E, Cafarelli FP, Maglietta F, Moraes C, Ricci P, Galassi FM. Morpho-radiological and brain endocast analysis in the study of Hyperostosis Frontalis Interna (HFI): A combined approach. PLoS One 2023; 18:e0281727. [PMID: 36877697 PMCID: PMC9987830 DOI: 10.1371/journal.pone.0281727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 01/24/2023] [Indexed: 03/07/2023] Open
Abstract
The purpose of this study is to anatomically evaluate the impact on the patient intra vitam of an endocranial condition on a late 20th century skull housed in the Section of Legal Medicine of the University of Foggia (Foggia, Apulia, Italy). After performing a retrospective diagnosis, the condition is framed in the broader context of studies on this pathology. An anthropological and radiological analysis (X-ray and CT scan imaging) made it possible to confirm the preliminary information and to detail the osteological diagnosis of HFI. In order to assess the impact on the cerebral surface of the endocranial growth a 3D endocast was obtained using the Software OrtogOnBlender. The skull is demonstrated to have belonged to a female senile individual known, from limited documentary evidence, to have suffered from a psychiatric condition during her life. The final diagnosis is hyperostosis frontalis interna (HFI), Type D. Although a direct correlation between the demonstrated intracranial bony growth and the onset of the patient's psychiatric condition is difficult to retrospectively ascertain, the pressure exerted on this female individual's frontal lobe may have contributed to further degenerative behavioural changes in the last years of her life. This case adds to previous knowledge, especially from the palaeopathological literature, on this condition and, for the first time, presents a neuroanatomical approach to assess the global impact of the disease.
Collapse
Affiliation(s)
- Elena Varotto
- Archaelogy, College of Humanities, Arts and Social Sciences, Flinders University, Adelaide, SA, Australia
- FAPAB Research Center, Avola (SR), Sicily, Italy
- * E-mail:
| | - Francesco Pio Cafarelli
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Apulia, Italy
| | - Francesca Maglietta
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Apulia, Italy
| | - Cícero Moraes
- Ortogonline Treinamento em Desenvolvimento Profissional e Consultoria LTDA, Sinop, MT, Brazil
| | - Pietrantonio Ricci
- Department of Medical and Surgical Sciences, Institute of Legal Medicine, “Magna Graecia” University, Catanzaro, Italy
| | - Francesco Maria Galassi
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
210
|
Li Q, Wang R, Zhang Z, Wang H, Lu X, Zhang J, Kong APS, Tian XY, Chan HF, Chung ACK, Cheng JCY, Jiang Q, Lee WYW. Sirt3 mediates the benefits of exercise on bone in aged mice. Cell Death Differ 2023; 30:152-167. [PMID: 36153410 PMCID: PMC9883264 DOI: 10.1038/s41418-022-01053-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 02/01/2023] Open
Abstract
Exercise in later life is important for bone health and delays the progression of osteoporotic bone loss. Osteocytes are the major bone cells responsible for transforming mechanical stimuli into cellular signals through their highly specialized lacunocanalicular networks (LCN). Osteocyte activity and LCN degenerate with aging, thus might impair the effectiveness of exercise on bone health; however, the underlying mechanism and clinical implications remain elusive. Herein, we showed that deletion of Sirt3 in osteocytes could impair the formation of osteocyte dendritic processes and inhibit bone gain in response to exercise in vivo. Mechanistic studies revealed that Sirt3 regulates E11/gp38 through the protein kinase A (PKA)/cAMP response element-binding protein (CREB) signaling pathway. Additionally, the Sirt3 activator honokiol enhanced the sensitivity of osteocytes to fluid shear stress in vitro, and intraperitoneal injection of honokiol reduced bone loss in aged mice in a dose-dependent manner. Collectively, Sirt3 in osteocytes regulates bone mass and mechanical responses through the regulation of E11/gp38. Therefore, targeting Sirt3 could be a novel therapeutic strategy to prevent age-related bone loss and augment the benefits of exercise on the senescent skeleton.
Collapse
Affiliation(s)
- Qiangqiang Li
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
| | - Rongliang Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhe Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Haixing Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaomin Lu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jiajun Zhang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Alice Pik-Shan Kong
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiao Yu Tian
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hon-Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Arthur Chi-Kong Chung
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jack Chun-Yiu Cheng
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, PR China.
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China.
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Center of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
211
|
O'Mahoney TG, Lowe T, Chamberlain AT, Sellers WI. Endostructural and periosteal growth of the human humerus. Anat Rec (Hoboken) 2023; 306:60-78. [PMID: 36054304 PMCID: PMC10086792 DOI: 10.1002/ar.25048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 01/31/2022] [Accepted: 03/22/2022] [Indexed: 01/29/2023]
Abstract
The growth and development of long bones are of considerable interests in the fields of comparative anatomy and palaeoanthropology, as evolutionary changes and adaptations to specific physical activity patterns are expected to be revealed during bone ontogeny. Traditionally, the cross-sectional geometry of long bones has been examined at discrete locations usually placed at set intervals or fixed percentage distances along the midline axis of the bone shaft. More recently, the technique of morphometric mapping has enabled the continuous analysis of shape variation along the shaft. Here we extend this technique to the full sequence of late fetal and postnatal development of the humeral shaft in a modern human population sample, with the aim of establishing the shape changes during growth and their relationship with the development of the arm musculature and activity patterns. A sample of modern human humeri from individuals of age ranging from 24 weeks in utero to 18 years was imaged using microtomography at multiple resolutions and custom Matlab scripts. Standard biomechanical properties, cortical thickness, surface curvature, and pseudo-landmarks were extracted along radial vectors spaced at intervals of 1° at each 0.5% longitudinal increment measured along the shaft axis. Heat maps were also generated for cortical thickness and surface curvature. The results demonstrate that a whole bone approach to analysis of cross-sectional geometry is more desirable where possible, as there is a continuous pattern of variation along the shaft. It is also possible to discriminate very young individuals and adolescents from other groups by relative cortical thickness, and also by periosteal surface curvature.
Collapse
Affiliation(s)
- Thomas George O'Mahoney
- School of Life SciencesAnglia Ruskin UniversityCambridgeUK
- School of Earth and Environmental SciencesUniversity of ManchesterManchesterUK
| | - Tristan Lowe
- Henry Moseley X‐Ray Imaging FacilityUniversity of ManchesterManchesterUK
| | | | | |
Collapse
|
212
|
Pigolkin YI, Zhandarov KA, Gornostaev DV, Yagmurov OD, Sheptulin DA. [Dissection technique for organs of the neck in hanging]. Sud Med Ekspert 2023; 66:52-55. [PMID: 37192460 DOI: 10.17116/sudmed20236603152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The aim of this study is to develop a comprehensive dissection technique to examine the deep structures of the neck in hanging, including extraction of the cervical spine and investigation of the removed segment with access to vertebral arteries and spinal cord. Its advantages include the unnecessity of any special instruments usage, the short period of time, which is necessary for performing dissection techniques, as well as the possible detailed examination of the spine, spinal cord and vertebral arteries. The improved dissection technique simplifies the diagnosis of injuries and increases the objectivity of the forensic medical examination in hanging.
Collapse
Affiliation(s)
- Yu I Pigolkin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - K A Zhandarov
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - D V Gornostaev
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Bureau of Forensic Medical Expertise, Moscow, Russia
| | - O D Yagmurov
- Bureau of Forensic Medical Expertise, St. Petersburg, Russia
| | - D A Sheptulin
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
213
|
Wang H, Wang J, Li K, Gao L, Wang A, Wei S, Lyu L, Zhang C. The effect of different gravity fields on mass transfer in the rat bone lacunar-canalicular system. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
214
|
Allahyari P, Silani M, Yaghoubi V, Milovanovic P, Schmidt FN, Busse B, Qwamizadeh M. On the fracture behavior of cortical bone microstructure: The effects of morphology and material characteristics of bone structural components. J Mech Behav Biomed Mater 2023; 137:105530. [PMID: 36334581 DOI: 10.1016/j.jmbbm.2022.105530] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/29/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
Bone encompasses a complex arrangement of materials at different length scales, which endows it with a range of mechanical, chemical, and biological capabilities. Changes in the microstructure and characteristics of the material, as well as the accumulation of microcracks, affect the bone fracture properties. In this study, two-dimensional finite element models of the microstructure of cortical bone were considered. The eXtended Finite Element Method (XFEM) developed by Abaqus software was used for the analysis of the microcrack propagation in the model as well as for local sensitivity analysis. The stress-strain behavior obtained for the different introduced models was substantially different, confirming the importance of bone tissue microstructure for its failure behavior. Considering the role of interfaces, the results highlighted the effect of cement lines on the crack deflection path and global fracture behavior of the bone microstructure. Furthermore, bone micromorphology and areal fraction of cortical bone tissue components such as osteons, cement lines, and pores affected the bone fracture behavior; specifically, pores altered the crack propagation path since increasing porosity reduced the maximum stress needed to start crack propagation. Therefore, cement line structure, mineralization, and areal fraction are important parameters in bone fracture. The parameter-wise sensitivity analysis demonstrated that areal fraction and strain energy release rate had the greatest and the lowest effect on ultimate strength, respectively. Furthermore, the component-wise sensitivity analysis revealed that for the areal fraction parameter, pores had the greatest effect on ultimate strength, whereas for the other parameters such as elastic modulus and strain energy release rate, cement lines had the most important effect on the ultimate strength. In conclusion, the finding of the current study can help to predict the fracture mechanisms in bone by taking the morphological and material properties of its microstructure into account.
Collapse
Affiliation(s)
- P Allahyari
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - M Silani
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - V Yaghoubi
- Structural Integrity & Composites, Faculty of Aerospace Engineering, Delft University of Technology, 2629 HS, Delft, Netherlands
| | - P Milovanovic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, 11000, Belgrade, Serbia
| | - F N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - B Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany
| | - M Qwamizadeh
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529, Hamburg, Germany.
| |
Collapse
|
215
|
Wölfel EM, Lademann F, Hemmatian H, Blouin S, Messmer P, Hofbauer LC, Busse B, Rauner M, Jähn-Rickert K, Tsourdi E. Reduced Bone Mass and Increased Osteocyte Tartrate-Resistant Acid Phosphatase (TRAP) Activity, But Not Low Mineralized Matrix Around Osteocyte Lacunae, Are Restored After Recovery From Exogenous Hyperthyroidism in Male Mice. J Bone Miner Res 2023; 38:131-143. [PMID: 36331133 DOI: 10.1002/jbmr.4736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Hyperthyroidism causes secondary osteoporosis through favoring bone resorption over bone formation, leading to bone loss with elevated bone fragility. Osteocytes that reside within lacunae inside the mineralized bone matrix orchestrate the process of bone remodeling and can themselves actively resorb bone upon certain stimuli. Nevertheless, the interaction between thyroid hormones and osteocytes and the impact of hyperthyroidism on osteocyte cell function are still unknown. In a preliminary study, we analyzed bones from male C57BL/6 mice with drug-induced hyperthyroidism, which led to mild osteocytic osteolysis with 1.14-fold larger osteocyte lacunae and by 108.33% higher tartrate-resistant acid phosphatase (TRAP) activity in osteocytes of hyperthyroid mice compared to euthyroid mice. To test whether hyperthyroidism-induced bone changes are reversible, we rendered male mice hyperthyroid by adding levothyroxine into their drinking water for 4 weeks, followed by a weaning period of 4 weeks with access to normal drinking water. Hyperthyroid mice displayed cortical and trabecular bone loss due to high bone turnover, which recovered with weaning. Although canalicular number and osteocyte lacunar area were similar in euthyroid, hyperthyroid and weaned mice, the number of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL)-positive osteocytes was 100% lower in the weaning group compared to euthyroid mice and the osteocytic TRAP activity was eightfold higher in hyperthyroid animals. The latter, along with a 3.75% lower average mineralization around the osteocyte lacunae in trabecular bone, suggests osteocytic osteolysis activity that, however, did not result in significantly enlarged osteocyte lacunae. In conclusion, we show a recovery of bone microarchitecture and turnover after reversal of hyperthyroidism to a euthyroid state. In contrast, osteocytic osteolysis was initiated in hyperthyroidism, but its effects were not reversed after 4 weeks of weaning. Due to the vast number of osteocytes in bone, we speculate that even minor individual cell functions might contribute to altered bone quality and mineral homeostasis in the setting of hyperthyroidism-induced bone disease. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eva Maria Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Franziska Lademann
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Haniyeh Hemmatian
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Phaedra Messmer
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elena Tsourdi
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany
| |
Collapse
|
216
|
Martín-González C, Godoy-Reyes AM, Abreu-González P, Fernández-Rodríguez CM, Martín-Ponce E, Sánchez-Pérez MJ, Alvisa-Negrín JC, Rodríguez-Gaspar M, González-Reimers E. Sclerostin, vascular risk factors, and brain atrophy in excessive drinkers. Front Hum Neurosci 2023; 17:1084756. [PMID: 36895513 PMCID: PMC9989031 DOI: 10.3389/fnhum.2023.1084756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Objective Heavy alcohol consumption causes several organic complications, including vessel wall calcification. Vascular damage may be involved in the development of brain atrophy and cognitive impairment. Recently, sclerostin (whose levels may be altered in alcoholics) has emerged as a major vascular risk factor. The objective of the present study is to analyze the prevalence of vascular calcifications in alcoholics, and the relationships of these lesions with brain atrophy, as well as the role of sclerostin on these alterations. Patients and methods A total of 299 heavy drinkers and 32 controls were included. Patients underwent cranial computed tomography, and several indices related to brain atrophy were calculated. In addition, patients and controls underwent plain radiography and were evaluated for the presence or absence of vascular calcium deposits, cardiovascular risk factors, liver function, alcohol intake, serum sclerostin, and routine laboratory variables. Results A total of 145 (48.47%) patients showed vascular calcium deposits, a proportion significantly higher than that observed in controls (χ2 = 16.31; p < 0.001). Vascular calcium deposits were associated with age (t = 6.57; p < 0.001), hypertension (t = 5.49; p < 0.001), daily ethanol ingestion (Z = 2.18; p = 0.029), duration of alcohol consumption (Z = 3.03; p = 0.002), obesity (χ2 = 4.65; p = 0.031), total cholesterol (Z = 2.04; p = 0.041), triglycerides (Z = 2.05; p = 0.04), and sclerostin levels (Z = 2.64; p = 0.008). Calcium deposits were significantly related to Bifrontal index (Z = 2.20; p = 0.028) and Evans index (Z = 2.25; p = 0.025). Serum sclerostin levels were related to subcortical brain atrophy, assessed by cella media index (Z = 2.43; p = 0.015) and Huckmann index (ρ = 0.204; p = 0.024). Logistic regression analyses disclosed that sclerostin was the only variable independently related to brain atrophy assessed by altered cella media index. Sclerostin was also related to the presence of vascular calcifications, although this relationship was displaced by age if this variable was also included. Conclusion Prevalence of vascular calcification in alcoholics is very high. Vascular calcium deposits are related to brain atrophy. Serum sclerostin is strongly related to brain shrinkage and also shows a significant relationship with vascular calcifications, only displaced by advanced age.
Collapse
Affiliation(s)
- Candelaria Martín-González
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
| | - Ana María Godoy-Reyes
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
| | - Pedro Abreu-González
- Departamento de Ciencias Médicas Básicas, Unidad de Fisiología, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Camino María Fernández-Rodríguez
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
| | - Esther Martín-Ponce
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
| | - María José Sánchez-Pérez
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
| | - Julio César Alvisa-Negrín
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
| | - Melchor Rodríguez-Gaspar
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
| | - Emilio González-Reimers
- Departamento de Medicina Interna, Universidad de La Laguna, Servicio de Medicina Interna, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
| |
Collapse
|
217
|
Yao S, Du Z, Xiao L, Yan F, Ivanovski S, Xiao Y. Morphometric Changes of Osteocyte Lacunar in Diabetic Pig Mandibular Cancellous Bone. Biomolecules 2022; 13:biom13010049. [PMID: 36671434 PMCID: PMC9856050 DOI: 10.3390/biom13010049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Osteocytes play an important role in bone metabolism. The interactions of osteocytes with the surrounding microenvironment can alter cellular and lacunar morphological changes. However, objective quantification of osteocyte lacunae is challenging due to their deep location in the bone matrix. This project established a novel method for the analytical study of osteocytes/lacunae, which was then used to evaluate the osteocyte morphological changes in diabetic pig mandibular bone. Eight miniature pigs were sourced, and diabetes was randomly induced in four animals using streptozotocin (STZ) administration. The mandibular tissues were collected and processed. The jawbone density was evaluated with micro-CT. Osteocyte lacunae were effectively acquired and identified using backscattered electron scanning microscopy (BSE). A significantly decreased osteocyte lacunae size was found in the diabetic group. Using the acid etching method, it was demonstrated that the area of osteocyte and lacunae, and the pericellular areas were both significantly reduced in the diabetes group. In conclusion, a standard and relatively reliable method for analyzing osteocyte/lacunae morphological changes under compromised conditions has been successfully established. This method demonstrates that diabetes can significantly decrease osteocyte/lacunae size in a pig's mandibular cancellous bone.
Collapse
Affiliation(s)
- Sheng Yao
- School of Mechanical, Medical and Process Engineering, Center of Biomedical Technology, Queensland University of Technology, Brisbane, QLD 4059, Australia
- The First Hospital of Wuhan, Wuhan 430033, China
| | - Zhibin Du
- School of Mechanical, Medical and Process Engineering, Center of Biomedical Technology, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Center of Biomedical Technology, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Fuhua Yan
- Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Saso Ivanovski
- School of Dentistry, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Center of Biomedical Technology, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, QLD 4059, Australia
- School of Medicine and Dentistry & Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
- Correspondence:
| |
Collapse
|
218
|
Wang JS, Wein MN. Pathways Controlling Formation and Maintenance of the Osteocyte Dendrite Network. Curr Osteoporos Rep 2022; 20:493-504. [PMID: 36087214 PMCID: PMC9718876 DOI: 10.1007/s11914-022-00753-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss the molecular mechanisms involved in osteocyte dendrite formation, summarize the similarities between osteocytic and neuronal projections, and highlight the importance of osteocyte dendrite maintenance in human skeletal disease. RECENT FINDINGS It is suggested that there is a causal relationship between the loss of osteocyte dendrites and the increased osteocyte apoptosis during conditions including aging, microdamage, and skeletal disease. A few mechanisms are proposed to control dendrite formation and outgrowth, such as via the regulation of actin polymerization dynamics. This review addresses the impact of osteocyte dendrites in bone health and disease. Recent advances in multi-omics, in vivo and in vitro models, and microscopy-based imaging have provided novel approaches to reveal the underlying mechanisms that regulate dendrite development. Future therapeutic approaches are needed to target the process of osteocyte dendrite formation.
Collapse
Affiliation(s)
- Jialiang S Wang
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc N Wein
- Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
| |
Collapse
|
219
|
Jadzic J, Tomanovic N, Djukic D, Zivkovic V, Nikolic S, Djuric M, Milovanovic P, Djonic D. Micro-scale assessment of bone quality changes in adult cadaveric men with congestive hepatopathy. Histochem Cell Biol 2022; 158:583-593. [PMID: 35849203 DOI: 10.1007/s00418-022-02128-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 12/13/2022]
Abstract
Congestive hepatopathy (CH) is a chronic liver disease (CLD) caused by impaired hepatic venous blood outflow, most frequently resulting from congestive heart failure. Although it is known that heart failure and CLDs contribute to increased risk for age-related fractures, an assessment of CH-induced skeletal alterations has not been made to date. The aim of our study was to characterize changes in bone quality in adult male cadavers with pathohistologically confirmed CH compared with controls without liver disease. The anterior mid-transverse part of the fifth lumbar vertebral body was collected from 33 adult male cadavers (age range 43-89 years), divided into the CH group (n = 15) and the control group (n = 18). We evaluated trabecular and cortical micro-architecture and bone mineral content (using micro-computed tomography), bone mechanical competence (using Vickers micro-hardness tester), vertebral cellular indices (osteocyte lacunar network and bone marrow adiposity), and osteocytic sclerostin and connexin 43 expression levels (using immunohistochemistry staining and analysis). Deterioration in trabecular micro-architecture, reduced trabecular and cortical mineral content, and decreased Vickers microhardness were noted in the CH group (p < 0.05). Reduced total number of osteocytes and declined connexin 43 expression levels (p < 0.05) implied that harmed mechanotransduction throughout the osteocyte network might be present in CH. Moreover, elevated expression levels of sclerostin by osteocytes could indicate the role of sclerostin in mediating low bone formation in individuals with CH. Taken together, these micro-scale bone alterations suggest that vertebral strength could be compromised in men with CH, implying that vertebral fracture risk assessment and subsequent therapy may need to be considered in these patients. However, further research is required to confirm the clinical relevance of our findings.
Collapse
Affiliation(s)
- Jelena Jadzic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr. Subotica no. 4/II, 11000, Belgrade, Serbia
| | - Nada Tomanovic
- Institute of Pathology, Faculty of Medicine, University of Belgrade, Dr. Subotica no. 1, Belgrade, Serbia
| | - Danica Djukic
- Institute of Forensic Medicine, Faculty of Medicine , University of Belgrade, Deligradska no. 31a, Belgrade, Serbia
| | - Vladimir Zivkovic
- Institute of Forensic Medicine, Faculty of Medicine , University of Belgrade, Deligradska no. 31a, Belgrade, Serbia
| | - Slobodan Nikolic
- Institute of Forensic Medicine, Faculty of Medicine , University of Belgrade, Deligradska no. 31a, Belgrade, Serbia
| | - Marija Djuric
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr. Subotica no. 4/II, 11000, Belgrade, Serbia
| | - Petar Milovanovic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr. Subotica no. 4/II, 11000, Belgrade, Serbia
| | - Danijela Djonic
- Center of Bone Biology, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Dr. Subotica no. 4/II, 11000, Belgrade, Serbia.
| |
Collapse
|
220
|
Wölfel EM, Fiedler IAK, Dragoun Kolibova S, Krug J, Lin MC, Yazigi B, Siebels AK, Mushumba H, Wulff B, Ondruschka B, Püschel K, Glüer CC, Jähn-Rickert K, Busse B. Human tibial cortical bone with high porosity in type 2 diabetes mellitus is accompanied by distinctive bone material properties. Bone 2022; 165:116546. [PMID: 36113843 DOI: 10.1016/j.bone.2022.116546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/09/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022]
Abstract
Diabetes mellitus is a metabolic disease affecting bone tissue at different length-scales. Higher fracture risk in diabetic patients is difficult to detect with common clinical fracture risk assessment due to normal or high bone mineral density in diabetic patients. The observed higher fracture risk despite normal to high areal bone mineral density in diabetic patients points towards impaired bone material quality. Here, we analyze tibial bone from individuals with type 2 diabetes mellitus using a multiscale-approach, which includes clinical and laboratory-based bone quality measures. Tibial cortical bone tissue from individuals with type 2 diabetes mellitus (T2DM) and age-matched healthy controls (n = 15 each) was analyzed with in situ impact indentation, dual energy X-ray absorptiometry (DXA), high resolution peripheral microcomputed tomography (HR-pQCT), micro-computed tomography (microCT), cyclic indentation, quantitative backscattered electron microscopy (qBEI), vibrational spectroscopy (Raman), nanoindentation, and fluorescence spectroscopy. With this approach, a high cortical porosity subgroup of individuals with T2DM was discriminated from two study groups: individuals with T2DM and individuals without T2DM, while both groups were associated with similar cortical porosity quantified by means of microCT. The high porosity T2DM group, but not the T2DM group, showed compromised bone quality expressed by altered cyclic indentation properties (transversal direction) in combination with a higher carbonate-to-amide I ratio in endocortical bone. In addition, in the T2DM group with high cortical porosity group, greater cortical pore diameter was identified with HR-pQCT and lower tissue mineral density using microCT, both compared to T2DM group. Micromechanical analyses of cross-sectioned osteons (longitudinal direction) with cyclic indentation, qBEI, and nanoindentation showed no differences between the three groups. High tibial cortical porosity in T2DM can be linked to locally altered bone material composition. As the tibia is an accessible skeletal site for fracture risk assessment in the clinics (CT, indentation), our findings may contribute to further understanding the site-specific structural and compositional factors forming the basis of bone quality in diabetes mellitus. Refined diagnostic strategies are needed for a comprehensive fracture risk assessment in diabetic bone disease.
Collapse
Affiliation(s)
- Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Sofie Dragoun Kolibova
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Johannes Krug
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Mei-Chun Lin
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Bashar Yazigi
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Anna K Siebels
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Herbert Mushumba
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Birgit Wulff
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany
| | - Claus C Glüer
- Sektion Biomedizinische Bildgebung, Klinik für Radiologie und Neuroradiologie, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Christian-Albrechts-Universitat zu Kiel, MOIN CC, 24118 Kiel, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, 22529 Hamburg, Germany.
| |
Collapse
|
221
|
Pei S, Zhou Y, Li Y, Azar T, Wang W, Kim DG, Liu XS. Instrumented nanoindentation in musculoskeletal research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:38-51. [PMID: 35660010 DOI: 10.1016/j.pbiomolbio.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Musculoskeletal tissues, such as bone, cartilage, and muscle, are natural composite materials that are constructed with a hierarchical structure ranging from the cell to tissue level. The component differences and structural complexity, together, require comprehensive multiscale mechanical characterization. In this review, we focus on nanoindentation testing, which is used for nanometer to sub-micrometer length scale mechanical characterization. In the following context, we will summarize studies of nanoindentation in musculoskeletal research, examine the critical factors that affect nanoindentation testing results, and briefly summarize other commonly used techniques that can be conjoined with nanoindentation for synchronized imaging and colocalized characterization.
Collapse
Affiliation(s)
- Shaopeng Pei
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Yilu Zhou
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Yihan Li
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Tala Azar
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Wenzheng Wang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States; Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Do-Gyoon Kim
- Division of Orthodontics, College of Dentistry, The Ohio State University, Columbus, OH, 43210, USA
| | - X Sherry Liu
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States.
| |
Collapse
|
222
|
Qian W, Schmidt R, Turner JA, Bare SP, Lappe JM, Recker RR, Akhter MP. A pilot study on the nanoscale properties of bone tissue near lacunae in fracturing women. Bone Rep 2022; 17:101604. [PMID: 35874169 PMCID: PMC9304727 DOI: 10.1016/j.bonr.2022.101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
The goal of this study is to investigate the causes of osteoporosis-related skeletal fragility in postmenopausal women. We hypothesize that bone fragility in these individuals is largely due to mineral, and/or intrinsic material properties in the osteocyte lacunar/peri-lacunar regions of bone tissue. Innovative measurements with nanoscale resolution, including scanning electron microscope (SEM), an atomic force microscope that is integrated with infrared spectroscopy (AFM-IR), and nanoindentation, were used to characterize osteocyte lacunar and peri-lacunar properties in bone biopsies from fracturing (Cases) and matched (Age, BMD), non-fracturing (Controls) postmenopausal healthy women. In the peri-lacunar space, the nanoindentation results show that the modulus and hardness of the Controls are lower than the Cases. The AFM-IR results conclusively show that the mineral matrix, maturity (peak) (except in outer/far regions in Controls) were greater in Controls than in Cases. Furthermore, these results indicate that while mineral-to-matrix area ratio tend to be greater, the mineral maturity and crystallinity peak ratio "near" lacunae is greater than at regions "far" or more distance from lacunae in the Controls only. Due to the heterogeneity of bone structure, additional measurements are needed to provide more convincing evidence of altered lacunar characteristics and changes in the peri-lacunar bone as mechanisms related to postmenopausal women and fragility. Such findings would motivate new osteocyte-targeted treatments to reduce fragility fracture risks in these groups.
Collapse
Affiliation(s)
- Wen Qian
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, United States of America
| | - Roman Schmidt
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, United States of America
| | - Joseph A. Turner
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588-0526, United States of America
| | - Sue P. Bare
- Osteoporosis Research Center, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Joan M. Lappe
- Osteoporosis Research Center, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Robert R. Recker
- Osteoporosis Research Center, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| | - Mohammed P. Akhter
- Osteoporosis Research Center, Creighton University School of Medicine, Omaha, NE 68178, United States of America
| |
Collapse
|
223
|
Morgan B, Prakash K, Mayberry JC, Brickley MB. Thoracic trauma: Clinical and paleopathological perspectives. INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2022; 39:50-63. [PMID: 36219928 DOI: 10.1016/j.ijpp.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/14/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Although trauma is one of the most significant areas of study in paleopathology, most studies focus on fractures of single anatomical elements. Paleopathological research on regional trauma, such as of the thorax, is rare. This paper explores the causes, complications, and consequences of adult thoracic trauma using clinical data in order to inform paleopathological research. MATERIALS AND METHODS Trends in paleopathological thoracic trauma literature were assessed by evaluating publications from Bioarchaeology International, International Journal of Osteoarchaeology, International Journal of Paleopathology, and American Journal of Biological Anthropology. Clinical publications on thoracic trauma throughout time were also assessed through a PubMed search, and modern prevalence data was found through trauma databases such as the National Trauma Databank. RESULTS Consideration of thoracic trauma involving concomitant injuries is a recent trend in clinical literature and patient care, but paleopathological research on thoracic trauma has been limited. Since thoracic fractures tend to occur in conjunction with other injuries, assessing them together is critical to the interpretation of trauma in the past. CONCLUSIONS Clinical research into thoracic fractures and concomitant injuries provides valuable data for paleopathological research. Evaluating the likelihood and consequences of concomitant injury in skeletal remains provides a more robust understanding of trauma in the past and its impact on past lifeways. SIGNIFICANCE This paper provides a review of current clinical and paleopathological literature on thoracic trauma and demonstrates the importance of moving beyond the analysis of fractures or trauma of single anatomical elements. LIMITATIONS Thoracic bones are often taphonomically altered and differentially preserved leading to difficulty in identifying and interpreting fractures. SUGGESTIONS FOR FURTHER RESEARCH Practical application of the data presented here to archaeological samples will help to advance paleopathological understandings of thoracic trauma.
Collapse
Affiliation(s)
- Brianne Morgan
- McMaster University, Department of Anthropology, Hamilton, Ontario L8S 4L9, Canada.
| | - Karanvir Prakash
- Virginia Commonwealth University, Department of Orthopedic Surgery, Richmond, VA, USA.
| | - John C Mayberry
- University of Washington, Department of Surgery, Seattle, WA 98195, USA.
| | - Megan B Brickley
- McMaster University, Department of Anthropology, Hamilton, Ontario L8S 4L9, Canada.
| |
Collapse
|
224
|
Jadzic J, Zagorac S, Djuric M, Djonic D. Hip structure analysis and femoral osteodensitometry in aged postmenopausal women with hip osteoarthritis and femoral neck fracture. INTERNATIONAL ORTHOPAEDICS 2022; 46:2747-2755. [PMID: 36222881 DOI: 10.1007/s00264-022-05602-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE Osteoarthritis (OA), osteoporosis, and bone fractures are frequent aging-related conditions. Regardless of the growing research interest in the effects of hip OA on femoral fracture risk, data about the region specificity of osteodensitometric and hip structure analysis (HSA) parameters of the proximal femora are lacking in aged postmenopausal women with hip OA compared to individuals with femoral neck fragility fracture. METHODS This study included 76 postmenopausal women admitted for total hip arthroplasty due to non-traumatic femoral neck fracture (FN_Fx group, n = 39) and hip osteoarthritis (OA group, n = 37). RESULTS Osteodensitometric parameters differed significantly between the OA and FN_Fx groups, depicting lower bone mineral density in the FN_Fx group (p < 0.05). The most significant increase in these parameters was registered in the intertrochanteric region of the OA group. Moreover, the OA-induced changes in HSA-derived parameters displayed significant regional heterogeneity, with the intertrochanteric region showing the most notable difference between OA and FN_Fx group. CONCLUSION Our data may indicate that OA displayed the most prominent positive effect on the intertrochanteric femoral region, revealing the regional heterogeneity in structural geometry and biomechanical indices of proximal femora in OA individuals. Since we did not observe significant differences in the femoral neck region, we may speculate that OA does not have a substantial protective effect on the femoral neck fracture risk in aged postmenopausal women.
Collapse
Affiliation(s)
- Jelena Jadzic
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Dr Subotica no. 4/II, 11000, Belgrade, Serbia
| | - Slavisa Zagorac
- University Clinic for Orthopedic Surgery and Traumatology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Marija Djuric
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Dr Subotica no. 4/II, 11000, Belgrade, Serbia
| | - Danijela Djonic
- Center of Bone Biology, Faculty of Medicine, University of Belgrade, Dr Subotica no. 4/II, 11000, Belgrade, Serbia.
| |
Collapse
|
225
|
Alghadir AH, Khan M. Factors affecting pain and physical functions in patients with knee osteoarthritis: An observational study. Medicine (Baltimore) 2022; 101:e31748. [PMID: 36451427 PMCID: PMC9704912 DOI: 10.1097/md.0000000000031748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Knee osteoarthritis (KOA) is more common as people age and have a higher body mass index (BMI). We must know the role of various factors in pain and physical functions in patients with KOA. Therefore, the present study sought to examine the factors associated with pain and physical functions in individuals with KOA. This cross-sectional observational study included patients with KOA (n = 125; 57 men, 68 women; mean age 52.9 years). Using the visual analogue scale and a reduced version of the Western Ontario McMaster Universities Osteoarthritis Index, pain severity and physical functions were assessed. Demographic factors such as age, BMI, sex, and Kellgren-Lawrence (K/L) radiographic grade of KOA were analyzed. Age (R = 0.263, P < .001), BMI (R = 0.379, P < .001), and K/L grade (R = 0.844, P < .001) were significantly associated with knee pain. Similarly, age (R = 0.310, P < .001), BMI (R = 0.374, P < .001), and K/L grade (R = 0.862, P < .001) were associated with physical functions. No significant association of sex with pain (R = 0.071, P = .440) and physical functions (R = 0.055, P = .545) was observed. Age, BMI, and K/L grade explained 71% and 74% of knee pain and physical functions, respectively. Age, BMI, and radiographic (K/L) grades were associated with pain and physical functions in patients with KOA. K/L grade was the most significant predictor of pain and physical functions in KOA.
Collapse
Affiliation(s)
- Ahmad H Alghadir
- Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | | |
Collapse
|
226
|
Krishna G, Singh I. Trepanation revisited in COVID-19 era: A perspective on craniotomy during current pandemic, surgical technique, and complications avoidance. Surg Neurol Int 2022; 13:552. [PMID: 36600771 PMCID: PMC9805615 DOI: 10.25259/sni_674_2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Background Craniotomy creates maximum aerosols threatening the health care workers (HCWs) of operation room. The technique of trepanation and measures to avoid complications has never been described in the literature. The time taken for craniotomy by different instruments has also never been compared. Methods The study included only COVID-positive patients who underwent surgery. Craniotomy was performed using trephine, pneumatic/power drill (PD), and Hudson brace-Gigli saw (HB-GS). Trepanation as done in 32 patients. The generation of aerosols and time taken for craniotomy by these instruments was observed. The droplet spread over a waterproof graph paper of 10 × 10 sq. cm was calculated in 13 cases of all the three craniotomy methods. The technique of trepanation and maneuvers to overcome complications was discussed. Results There was a gross difference in aerosol production and soiling of the surgical drapes, floor, surgeon's glove, gowns, face shield, goggles, etc. The average number of droplet aerosol in trepanation group was 4.76, 23.6 in drill and 21.3 in Gigli saw method. The average time taken for trepanation, PD, and HB-GS craniotomy was 4.8, 22.8, and 24.4 min, respectively. One mortality secondary to COVID was noted. All the HCWs assisting trepanation were negative for COVID-19 during postoperative follow-up of 7 days. However, 13 members of the surgical team which assisted in electric drill and HB-GS methods were COVID-positive. Conclusion Trepanation should be the preferred method of craniotomy during COVID-19 pandemic as it is associated with the least aerosolization and is the most time efficient.
Collapse
Affiliation(s)
- Gopal Krishna
- Corresponding author: Gopal Krishna, Department of Neurosurgery, Pt B.D. Sharma University of Health Sciences, Rohtak, Haryana, India.
| | | |
Collapse
|
227
|
Faienza MF, Pontrelli P, Brunetti G. Type 2 diabetes and bone fragility in children and adults. World J Diabetes 2022; 13:900-911. [PMID: 36437868 PMCID: PMC9693736 DOI: 10.4239/wjd.v13.i11.900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/17/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022] Open
Abstract
Type 2 diabetes (T2D) is a global epidemic disease. The prevalence of T2D in adolescents and young adults is increasing alarmingly. The mechanisms leading to T2D in young people are similar to those in older patients. However, the severity of onset, reduced insulin sensitivity and defective insulin secretion can be different in subjects who develop the disease at a younger age. T2D is associated with different complications, including bone fragility with consequent susceptibility to fractures. The purpose of this systematic review was to describe T2D bone fragility together with all the possible involved pathways. Numerous studies have reported that patients with T2D show preserved, or even increased, bone mineral density compared with controls. This apparent paradox can be explained by the altered bone quality with increased cortical bone porosity and compr-omised mechanical properties. Furthermore, reduced bone turnover has been described in T2D with reduced markers of bone formation and resorption. These findings prompted different researchers to highlight the mechanisms leading to bone fragility, and numerous critical altered pathways have been identified and studied. In detail, we focused our attention on the role of microvascular disease, advanced glycation end products, the senescence pathway, the Wnt/β-catenin pathway, the osteoprotegerin/receptor-activator of nuclear factor kappa B ligand, osteonectin and fibroblast growth factor 23. The understanding of type 2 myeloid bone fragility is an important issue as it could suggest possible interventions for the prevention of poor bone quality in T2D and/or how to target these pathways when bone disease is clearly evident.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Biomedical Sciences and Human Oncology, Pediatric Unit, University of Bari Aldo Moro, Bari 70124, Italy
| | - Paola Pontrelli
- Division of Nephrology, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Bari 70124, Italy
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari 70125, Italy
| |
Collapse
|
228
|
Soldati E, Roseren F, Guenoun D, Mancini L, Catelli E, Prati S, Sciutto G, Vicente J, Iotti S, Bendahan D, Malucelli E, Pithioux M. Multiscale Femoral Neck Imaging and Multimodal Trabeculae Quality Characterization in an Osteoporotic Bone Sample. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8048. [PMID: 36431532 PMCID: PMC9694313 DOI: 10.3390/ma15228048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Although multiple structural, mechanical, and molecular factors are definitely involved in osteoporosis, the assessment of subregional bone mineral density remains the most commonly used diagnostic index. In this study, we characterized bone quality in the femoral neck of one osteoporotic patients as compared to an age-matched control subject, and so used a multiscale and multimodal approach including X-ray computed microtomography at different spatial resolutions (pixel size: 51.0, 4.95 and 0.9 µm), microindentation and Fourier transform infrared spectroscopy. Our results showed abnormalities in the osteocytes lacunae volume (358.08 ± 165.00 for the osteoporotic sample vs. 287.10 ± 160.00 for the control), whereas a statistical difference was found neither for shape nor for density. The osteoporotic femoral head and great trochanter reported reduced elastic modulus (Es) and hardness (H) compared to the control reference (−48% (p < 0.0001) and −34% (p < 0.0001), respectively for Es and H in the femoral head and −29% (p < 0.01) and −22% (p < 0.05), respectively for Es and H in the great trochanter), whereas the corresponding values in the femoral neck were in the same range. The spectral analysis could distinguish neither subregional differences in the osteoporotic sample nor between the osteoporotic and healthy samples. Although, infrared spectroscopic measurements were comparable among subregions, and so regardless of the bone osteoporotic status, the trabecular mechanical properties were comparable only in the femoral neck. These results illustrate that bone remodeling in osteoporosis is a non-uniform process with different rates in different bone anatomical regions, hence showing the interest of a clear analysis of the bone microarchitecture in the case of patients’ osteoporotic evaluation.
Collapse
Affiliation(s)
- Enrico Soldati
- Aix Marseille University, CNRS, IUSTI, 13453 Marseille, France
- Aix Marseille University, CNRS, CRMBM, 13385 Marseille, France
- Aix Marseille University, CNRS, ISM, 13288 Marseille, France
| | - Flavy Roseren
- Aix Marseille University, CNRS, ISM, 13288 Marseille, France
| | - Daphne Guenoun
- Aix Marseille University, CNRS, ISM, 13288 Marseille, France
- Aix Marseille University, APHM, CNRS, ISM, Sainte Marguerite Hospital, Institute for Locomotion, Department of Radiology, 13274 Marseille, France
| | - Lucia Mancini
- Elettra-Sincrotrone Trieste S.C.p.A, SS 14–km 1535 in Area Science Park, Basovizza, 34149 Trieste, Italy
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, 1000 Ljubljana, Slovenia
| | - Emilio Catelli
- University of Bologna, Department of Chemistry “G. Ciamician”, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Silvia Prati
- University of Bologna, Department of Chemistry “G. Ciamician”, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Giorgia Sciutto
- University of Bologna, Department of Chemistry “G. Ciamician”, Ravenna Campus, Via Guaccimanni, 42, 48121 Ravenna, Italy
| | - Jerome Vicente
- Aix Marseille University, CNRS, IUSTI, 13453 Marseille, France
| | - Stefano Iotti
- Università di Bologna, Department of Pharmacy and Biotechnology (FaBit), Via Zamboni 33, 40126 Bologna, Italy
- National Institute of Biostructures and Biosystems, Viale delle Medaglie d’Oro 305, 00136 Roma, Italy
| | - David Bendahan
- Aix Marseille University, CNRS, CRMBM, 13385 Marseille, France
| | - Emil Malucelli
- Università di Bologna, Department of Pharmacy and Biotechnology (FaBit), Via Zamboni 33, 40126 Bologna, Italy
| | - Martine Pithioux
- Aix Marseille University, CNRS, ISM, 13288 Marseille, France
- Aix Marseille University, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13274 Marseille, France
| |
Collapse
|
229
|
Dorfman JD. Near Hanging: Evaluation and Management. Chest 2022; 163:855-860. [PMID: 36372303 PMCID: PMC9647002 DOI: 10.1016/j.chest.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/12/2022] Open
Abstract
Prior to the COVID-19 pandemic, the incidence of self-harm was already on the rise. Hanging/suffocation accounted for 50% of the increase in suicide attempts and remains the second leading cause of death from self-harm in the United States. Studies on the management of near-hanging patients are lacking, and most published literature is retrospective. Following airway and circulation assessment, clinical examination and imaging, namely CT angiography, remain the standard for identifying the injuries associated with near hanging: cervical spine fracture, blunt cerebrovascular injury, laryngeal injury, and injury to the trachea and oropharynx. These injuries, however, are uncommon, and each occur in < 5% of patients in most series. In a large series of critically ill near-hanging patients, > 50% survived to hospital discharge; however, cardiac arrest predicted a poor outcome. The management of asphyxia-related arrest remains controversial. Targeted temperature management has only been studied in a single large multicenter trial, which was retrospective. Given the significant selection bias of targeted temperature management in the treatment of the most ill patients, no firm recommendations can be made. Finally, for survivors, the underlying mental health issues must be addressed to avoid recurrent suicide attempts. Thirty percent of patients in a large near-hanging series were admitted for their second suicide attempt.
Collapse
Affiliation(s)
- Jon D Dorfman
- Division of Trauma and Surgical Critical Care, UMass Memorial, Worcester, MA.
| |
Collapse
|
230
|
Savic I, Farver C, Milovanovic P. Pathogenesis of Pulmonary Calcification and Homologies with Biomineralization in Other Tissues. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1496-1505. [PMID: 36030837 DOI: 10.1016/j.ajpath.2022.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/18/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Lungs often present tissue calcifications and even ossifications, both in the context of high or normal serum calcium levels. Precise mechanisms governing lung calcifications have not been explored. Herein, we emphasize recent advances about calcification processes in other tissues (especially vascular and bone calcifications) and discuss potential sources of calcium precipitates in the lungs, involvement of mineralization promoters and crystallization inhibitors, as well as specific cytokine milieu and cellular phenotypes characteristic for lung diseases, which may be involved in pulmonary calcifications. Further studies are necessary to demonstrate the exact mechanisms underlying calcifications in the lungs, document homologies in biomineralization processes between various tissues in physiological and pathologic conditions, and unravel any locally specific characteristics of mineralization processes that may be targeted to reduce or prevent functionally relevant lung calcifications without negatively affecting the skeleton.
Collapse
Affiliation(s)
- Ivana Savic
- Institute of Pathology, University of Belgrade Faculty of Medicine, Belgrade, Serbia
| | - Carol Farver
- Department of Pathology, Cleveland Clinic, Cleveland, Ohio
| | - Petar Milovanovic
- Laboratory of Bone Biology and Bioanthropology, Institute of Anatomy, University of Belgrade Faculty of Medicine, Belgrade, Serbia; Center of Bone Biology, University of Belgrade Faculty of Medicine, Belgrade, Serbia.
| |
Collapse
|
231
|
Wang H, Gao L, Chen X, Zhang C. Study on mass transfer in the bone lacunar-canalicular system under different gravity fields. J Bone Miner Metab 2022; 40:940-950. [PMID: 36350408 DOI: 10.1007/s00774-022-01373-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/22/2022] [Indexed: 11/11/2022]
Abstract
INTRODUCTION The bone lacunar-canalicular system (LCS) is an important microstructural basis for signaling and material transport in bone tissue, guaranteeing normal physiological processes in tissues. Spaceflight astronauts and elderly osteoporosis are related to its function, so it is necessary to reveal the mass transfer laws in bone microstructure under different gravity fields to provide insight for effective clinical treatment. MATERIALS AND METHODS Using the natural LCS structure of bovine tibial cortical bone as the object, the mass transfer experiments on cortical bone were conducted by using sodium fluorescein tracer through different frequency pulsating pressure provided by dynamic perfusion loading device and different high G environments provided by high-speed centrifuge to analyze the mass transfer laws under different gravity fields and different pulsating pressures. RESULTS The fluorescence intensity of lacunae within the osteon was lower the farther away from the Haversian canal. As the gravity field magnitude increased, the fluorescence intensity within each lacuna enhanced, and the more distant the lacunae from the Haversian canal, the greater the fluorescence intensity enhancement. High-frequency pulsating pressure simulated high-intensity exercise in humans can improve mass transfer efficiency in the LCS. CONCLUSION High-intensity exercise may greatly increase solute molecules, nutrients, and signaling molecules in osteocytes and improve the activity of osteocytes. Hypergravity can enhance the transport of solute molecules, nutrients, and signaling molecules in the LCS, especially promoting mass transfer to deep layer lacunae. Conversely, mass transfer to deep layer lacunae may be inhibited under microgravity, causing bone loss and ultimately leading to osteoporosis.
Collapse
Affiliation(s)
- Hao Wang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Lilan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Xuyi Chen
- Characteristic Medical Center of People's Armed Police Forces, Institute of Brain Trauma and Neurological Diseases of the Armed Police Force, Tianjin, People's Republic of China.
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
232
|
Wölfel EM, Schmidt FN, Vom Scheidt A, Siebels AK, Wulff B, Mushumba H, Ondruschka B, Püschel K, Scheijen J, Schalkwijk CG, Vettorazzi E, Jähn-Rickert K, Gludovatz B, Schaible E, Amling M, Rauner M, Hofbauer LC, Zimmermann EA, Busse B. Dimorphic Mechanisms of Fragility in Diabetes Mellitus: the Role of Reduced Collagen Fibril Deformation. J Bone Miner Res 2022; 37:2259-2276. [PMID: 36112316 DOI: 10.1002/jbmr.4706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 08/25/2022] [Accepted: 09/10/2022] [Indexed: 11/06/2022]
Abstract
Diabetes mellitus (DM) is an emerging metabolic disease, and the management of diabetic bone disease poses a serious challenge worldwide. Understanding the underlying mechanisms leading to high fracture risk in DM is hence of particular interest and urgently needed to allow for diagnosis and treatment optimization. In a case-control postmortem study, the whole 12th thoracic vertebra and cortical bone from the mid-diaphysis of the femur from male individuals with type 1 diabetes mellitus (T1DM) (n = 6; 61.3 ± 14.6 years), type 2 diabetes mellitus (T2DM) (n = 11; 74.3 ± 7.9 years), and nondiabetic controls (n = 18; 69.3 ± 11.5) were analyzed with clinical and ex situ imaging techniques to explore various bone quality indices. Cortical collagen fibril deformation was measured in a synchrotron setup to assess changes at the nanoscale during tensile testing until failure. In addition, matrix composition was analyzed including determination of cross-linking and non-crosslinking advanced glycation end-products like pentosidine and carboxymethyl-lysine. In T1DM, lower fibril deformation was accompanied by lower mineralization and more mature crystalline apatite. In T2DM, lower fibril deformation concurred with a lower elastic modulus and tendency to higher accumulation of non-crosslinking advanced glycation end-products. The observed lower collagen fibril deformation in diabetic bone may be linked to altered patterns mineral characteristics in T1DM and higher advanced glycation end-product accumulation in T2DM. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eva M Wölfel
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Felix N Schmidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Vom Scheidt
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Macroscopic and Clinical Anatomy, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Anna K Siebels
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Birgit Wulff
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Herbert Mushumba
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Ondruschka
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Püschel
- Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jean Scheijen
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Casper G Schalkwijk
- Department of Internal Medicine, Cardiovascular Research Institute Maastricht (CARIM) School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| | - Eik Vettorazzi
- Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bernd Gludovatz
- School of Mechanical and Manufacturing Engineering, University of New South Wales (UNSW Sydney), Sydney, New South Wales, Australia
| | - Eric Schaible
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martina Rauner
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Healthy Aging, Technische Universität Dresden Medical Center, Dresden, Germany.,Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Elizabeth A Zimmermann
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Interdisciplinary Competence Center for Interface Research (ICCIR), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
233
|
Yu Z, Wu Y, Zhang R, Li Y, Zang S, Liu J. Increased risk of non-alcoholic fatty liver disease fibrosis is closely associated with osteoporosis in women but not in men with type 2 diabetes. Endocr Connect 2022; 11:e220174. [PMID: 36129166 PMCID: PMC9578104 DOI: 10.1530/ec-22-0174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
Background This study aimed to investigate the association of non-alcoholic fatty liver disease (NAFLD) and liver fibrosis with osteoporosis in postmenopausal women and men over 50 years of age with type 2 diabetes (T2DM). Methods In this study, 1243 patients with T2DM (T2DM with coexistent NAFLD, n = 760; T2DM with no NAFLD, n = 483) were analysed. Non-invasive markers, NAFLD fibrosis score (NFS) and fibrosis index based on four factors (FIB-4), were applied to evaluate NAFLD fibrosis risk. Results There was no significant difference in bone mineral density (BMD) between the NAFLD group and the non-NAFLD group or between males and females after adjusting for age, BMI and gender. In postmenopausal women, there was an increased risk of osteoporosis (odds ratio (OR): 4.41, 95% CI: 1.04-18.70, P = 0.039) in the FIB-4 high risk group compared to the low risk group. Similarly, in women with high risk NFS, there was an increased risk of osteoporosis (OR: 5.98, 95% CI: 1.40-25.60, P = 0.043) compared to the low risk group. Among men over 50 years old, there was no significant difference in bone mineral density between the NAFLD group and the non-NAFLD group and no significant difference between bone mineral density and incidence of osteopenia or osteoporosis among those with different NAFLD fibrosis risk. Conclusion There was a significant association of high risk for NAFLD liver fibrosis with osteoporosis in postmenopausal diabetic women but not men. In clinical practice, gender-specific evaluation of osteoporosis is needed in patients with T2DM and coexistent NAFLD.
Collapse
Affiliation(s)
- Zhiyan Yu
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yueyue Wu
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Rui Zhang
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Yue Li
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Shufei Zang
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Jun Liu
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
234
|
Cirovic A, Jadzic J, Djukic D, Djonic D, Zivkovic V, Nikolic S, Djuric M, Milovanovic P. Increased Cortical Porosity, Reduced Cortical Thickness, and Reduced Trabecular and Cortical Microhardness of the Superolateral Femoral Neck Confer the Increased Hip Fracture Risk in Individuals with Type 2 Diabetes. Calcif Tissue Int 2022; 111:457-465. [PMID: 35871240 PMCID: PMC9308472 DOI: 10.1007/s00223-022-01007-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/06/2022] [Indexed: 11/12/2022]
Abstract
Individuals with diabetes mellitus type 2 (T2DM) have approximately 30% increased risk of hip fracture; however, the main cause of the elevated fracture risk in those subjects remains unclear. Moreover, micromechanical and microarchitectural properties of the superolateral femoral neck-the common fracture-initiating site-are still unknown. We collected proximal femora of 16 men (eight with T2DM and eight controls; age: 61 ± 10 years) at autopsy. After performing post-mortem bone densitometry (DXA), the superolateral neck was excised and scanned with microcomputed tomography (microCT). We also conducted Vickers microindentation testing. T2DM and control subjects did not differ in age (p = 0.605), body mass index (p = 0.114), and femoral neck bone mineral density (BMD) (p = 0.841). Cortical porosity (Ct.Po) was higher and cortical thickness (Ct.Th) was lower in T2DM (p = 0.044, p = 0.007, respectively). Of trabecular microarchitectural parameters, only structure model index (p = 0.022) was significantly different between T2DM subjects and controls. Control group showed higher cortical (p = 0.002) and trabecular bone microhardness (p = 0.005). Increased Ct.Po and decreased Ct.Th in T2DM subjects increase the propensity to femoral neck fracture. Apart from the deteriorated cortical microarchitecture, decreased cortical and trabecular microhardness suggests altered bone composition of the superolateral femoral neck cortex and trabeculae in T2DM. Significantly deteriorated cortical microarchitecture of the superolateral femoral neck is not recognized by standard DXA measurement of the femoral neck.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Jelena Jadzic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Danica Djukic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Danijela Djonic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Vladimir Zivkovic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Slobodan Nikolic
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Marija Djuric
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Petar Milovanovic
- Faculty of Medicine, Institute of Anatomy, Center of Bone Biology, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia.
| |
Collapse
|
235
|
Vladimirova M, Amudzhiyan D, Momchilova T, Becheva MV. Use of contraceptives by Roma women from Plovdiv region. Folia Med (Plovdiv) 2022; 64:782-786. [PMID: 36876529 DOI: 10.3897/folmed.64.e67757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 05/05/2021] [Indexed: 03/07/2023] Open
Abstract
INTRODUCTION The share of unwanted pregnancies and voluntary abortions among women from Central and Eastern Europe is still quite high, and Bulgaria is no exception to this statistic. This might be accounted for by the low frequency of use of contraceptives or their improper use. Our country is home to a variety of ethnic groups, with Roma being one of the most numerous, ranking third in population behind Bulgarians and Turks. This determines the influence of this ethnic group on the demographic indicators of the country.
Collapse
|
236
|
Reid RAG, Davies C, Cunningham C. The developing juvenile distal tibia: Radiographic identification of distinct ontogenetic phases and structural trajectories. J Anat 2022; 242:191-212. [PMID: 36219719 PMCID: PMC9877483 DOI: 10.1111/joa.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/02/2022] [Accepted: 09/29/2022] [Indexed: 02/01/2023] Open
Abstract
A novel combination of radiographic colour gradient mapping and radiographic absorptiometry was utilised to examine 96 human distal tibiae from 54 individuals ranging in age-at-death from the foetal to 23 years. The purpose of this was to identify previously undocumented changes in the internal organisation during the development of the distal tibia and determine whether these changes could be described as distinct phases. Previous studies have demonstrated a rudimentary structural organisation in other skeletal elements that mirror more mature patterns of bone organisation. Results showed that the perinatal tibia did not exhibit a rudimentary structural pattern similar to the architecture observed within the late adolescent tibia. This lack of early internal organisation is hypothesised to be related to the rudimentary ossification process that is being laid down around a pre-existing vascular template which will be subsequently modified by locomotive forces. Between birth and 2 years of age, the tibia exhibited a period of regression where radiodensity decreased in comparison to the perinatal tibia. This period of regression was postulated to be due to a combination of factors including changing locomotive forces, weaning and growth resulting in a stage of development which is extremely demanding on calcium liberation from the skeleton. After 2 years of age, the distal tibia demonstrated refinement where radiographic trajectories progressively developed into patterns consistent with adult trabecular organisation. These trajectories are linked to the forces associated with the bipedal gait, suggesting a strong influence of biomechanical forces on the development of the distal tibia.
Collapse
Affiliation(s)
| | - Catriona Davies
- Centre for Anatomy and Human IdentificationUniversity of DundeeDundeeUK
| | - Craig Cunningham
- Centre for Anatomy and Human IdentificationUniversity of DundeeDundeeUK
| |
Collapse
|
237
|
Shen Y, Wang N, Zhang Q, Liu Y, Wu Q, He Y, Wang Y, Wang X, Zhao Q, Zhang Q, Qin L, Zhang Q. Jin-Tian-Ge ameliorates ovariectomy-induced bone loss in rats and modulates osteoblastogenesis and osteoclastogenesis in vitro. Chin Med 2022; 17:78. [PMID: 36195960 PMCID: PMC9533506 DOI: 10.1186/s13020-022-00627-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tiger bone, which had been one of the most famous traditional Chinese medicine for 2000 years, was originate from the skeleton of Panthera tigris L., and had the actions of anti-inflammatory, analgesic, immune-regulatory and promoting healing of bone fracture, and was used for the treatment of osteoporosis and rheumatoid arthritis. Jin-Tian-Ge (JTG), the artificial tiger bone powder, were prepared from skeletons of several farmed animals to substitute the natural tiger bone, and has been used for the treatment of osteoporosis in clinical practice. However, the characteristic and mechanism of action of JTG for the therapy of osteoporosis need to be further evidenced by using modern pharmacological methods. The aim of this work is to investigate the bone-protective effects of JTG, and explore the possible underlying mechanism. METHODS Ovariectomy (OVX) rats were orally administrated JTG or estradiol valerate (EV) for 12 weeks. We investigated the pharmacodynamic effects of JTG on anti-bone loss in OVX rats, and also investigated the role of JTG in promoting osteogenesis and inhibiting osteoclast differentiation. RESULTS JTG increased the bone mineral density (BMD), improved the bone microarchitecture and biomechanical properties in ovariectomized rast, whereas reversed the bone high turnover in OVX rats as evidenced by serum biochemical markers in OVX rats. JTG increased osteogenic differentiation of BMSCs in vitro, and up-regulated the expression of the key proteins of BMP and Wnt/β-catenin pathways. JTG also inhibited the osteoclastogenesis of BMM as evidenced by the alteration of the TRAP activity, F-actin construction and the expression of nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), c-Fos, Cathepsin K (Ctsk) and matrix metallopeptidase 9 (MMP9) of OCs induced with RANKL and LPS, reduced the expression and phosphorylation of NF-κB in OCs. CONCLUSIONS JTG prevented bone loss in OVX rats and increased osteogenic differentiation of BMSCs through regulation of the BMP and Wnt/β-catenin pathway, inhibited osteoclastogenesis by suppressing the NF-κB pathway, suggesting that JTG had the potentials for prevention and treatment of osteoporosis by modulating formation and differentiation of osteoblast and osteoclast.
Collapse
Affiliation(s)
- Yi Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China
| | - Na Wang
- Ginwa Enterprise (Group) INC, Xi'an, 710069, China
| | - Qi Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China
| | - Yuling Liu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China
| | - Qudi Wu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China
| | - Yuqiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yang Wang
- Zhejiang Traditional Chinese Medicine & Health Industry Group CO., LTD, Hangzhou, 310016, China
| | - Xiaoyan Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China
| | - Qiming Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China
| | - Quanlong Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China.
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China.
| | - Qiaoyan Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Binwen Road 584, 310053, Hangzhou, People's Republic of China.
| |
Collapse
|
238
|
Driscoll K, Butani MS, Gultian KA, McSweeny A, Patel JM, Vega SL. Plant Tissue Parenchyma and Vascular Bundles Selectively Regulate Stem Cell Mechanosensing and Differentiation. Cell Mol Bioeng 2022; 15:439-450. [PMID: 36444354 PMCID: PMC9700532 DOI: 10.1007/s12195-022-00737-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/09/2022] [Indexed: 11/03/2022] Open
Abstract
Introduction Plant tissues are plentiful, diverse, and due to convergent evolution are structurally similar to many animal tissues. Decellularized plant tissues feature microtopographies that resemble cancellous bone (porous parenchyma) and skeletal muscle (fibrous vascular bundles). However, the use of plant tissues as an inexpensive and abundant biomaterial for controlling stem cell behavior has not been widely explored. Methods Celery plant tissues were cut cross-sectionally (porous parenchyma) or longitudinally (fibrous vascular bundles) and decellularized. Human mesenchymal stem cells (MSCs) were then cultured atop plant tissues and confocal imaging of single cells was used to evaluate the early effects of microtopography on MSC adhesion, morphology, cytoskeletal alignment, Yes-associated protein (YAP) signaling, and downstream lineage commitment to osteogenic or myogenic phenotypes. Results Microtopography was conserved post plant tissue decellularization and MSCs attached and proliferated on plant tissues. MSCs cultured on porous parenchyma spread isotropically along the periphery of plant tissue pores. In contrast, MSCs cultured on vascular bundles spread anisotropically and aligned in the direction of fibrous vascular bundles. Differences in microtopography also influenced MSC nuclear YAP localization and actin anisotropy, with higher values observed on fibrous tissues. When exposed to osteogenic or myogenic culture medium, MSCs on porous parenchyma had a higher percentage of cells stain positive for bone biomarker alkaline phosphatase, whereas myoblast determination protein 1 (MyoD) was significantly upregulated for MSCs on fibrous vascular bundles. Conclusions Together, these results show that plant tissues are an abundant biomaterial with defined microarchitecture that can reproducibly regulate MSC morphology, mechanosensing, and differentiation. Supplementary Information The online version of this article contains supplementary material available 10.1007/s12195-022-00737-9.
Collapse
Affiliation(s)
- Kathryn Driscoll
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028 USA
| | - Maya S. Butani
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028 USA
| | - Kirstene A. Gultian
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028 USA
| | - Abigail McSweeny
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028 USA
| | - Jay M. Patel
- Department of Veterans Affairs, Atlanta VA Medical Center, Decatur, GA 30033 USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329 USA
| | - Sebastián L. Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028 USA
| |
Collapse
|
239
|
Atomic force microscopy (AFM) and its applications to bone-related research. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 176:52-66. [DOI: 10.1016/j.pbiomolbio.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/19/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
240
|
Bolger MW, Romanowicz GE, Bigelow EMR, Ward FS, Ciarelli A, Jepsen KJ, Kohn DH. Divergent mechanical properties of older human male femora reveal unique combinations of morphological and compositional traits contributing to low strength. Bone 2022; 163:116481. [PMID: 35817317 DOI: 10.1016/j.bone.2022.116481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 12/01/2022]
Abstract
Bone strength is generally thought to decline with aging and prior work has compared traits between younger and older cohorts to identify the structural and compositional changes that contribute to fracture risk with age. However, for men, the majority of individuals do not fracture a bone in their lifetime. While fracture occurrence is multifactorial, the absence of fracture in the majority of males suggests that some individuals maintain bone strength or do not lose enough strength to fracture, whereas others do lose strength with aging. Consequently, not all structural and material changes observed with age may lead to strength-decline. We propose that consideration of different subgroups of older individuals will provide a more precise understanding of which structural and material changes directly contribute to strength-decline. We identified subgroups using latent profile analysis (LPA), which is a clustering-based algorithm that takes multiple continuous variables into account. Human cadaveric male femoral diaphyses (n = 33, 26-89 years) were subjected to whole bone and tissue-level mechanical tests. Morphological traits, porosity, and cortical tissue mineral density (Ct.TMD) were obtained, as were measures of enzymatic cross-links and the advanced glycation end product, pentosidine (PEN). A univariate analysis first identified a younger cohort (YNG, n = 11) and older cohort (n = 22). LPA was then conducted using three mechanical traits (whole bone strength, tissue-level strength, and tissue-level post-yield strain), resulting in a further stratification of the older group into two similarly aged groups (p = 0.558), but one with higher (OHM, n = 16) and another with lower mechanical properties (OLM, n = 6). The OLM group exhibited lower whole bone strength (p = 0.016), tissue-level strength (p < 0.001), and tissue-level post-yield strain (p < 0.001) compared to the YNG group. Meanwhile, the OHM only exhibited significantly lower tissue-level post-yield strain (p < 0.001), compared to the YNG group. Between the two older groups, the OHM group exhibited higher whole bone strength (p = 0.037), tissue-level strength (p = 0.006), and tissue-level post-yield strain (p = 0.012) than the OLM group. Probing the morphological and compositional relationships among the three groups, both OHM and OLM exhibited increased PEN content (p < 0.001, p = 0.008 respectively) and increased Log(cortical pore score) relative to YNG (p = 0.003, p < 0.001 respectively). Compared to the OHM group, the OLM also exhibited increased marrow area (p = 0.049), water content (p = 0.048), and decreased Ct.TMD (p = 0.005). The key traits that were unique to the OLM group compared to YNG were decreased Ct.TMD (p < 0.001) and increased Log(porosity) (p = 0.002). There were many properties that differed between the younger and older groups, but not all were associated with reduced mechanical properties, highlighting the relative importance of certain age-related traits such as porosity, Ct.TMD, water content, and marrow area that were unique to the OLM group. Overall, this work supports the hypothesis that there are subgroups of men showing different strength-decline trajectories with aging and establishes a basis for refining our understanding of which age-related changes are directly contributing to decreased strength.
Collapse
Affiliation(s)
- Morgan W Bolger
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Genevieve E Romanowicz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA
| | - Erin M R Bigelow
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Ferrous S Ward
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA; Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - Antonio Ciarelli
- Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA; Department of Mechanical Engineering, College of Engineering, University of Michigan, MI, USA
| | - Karl J Jepsen
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA; Department of Orthopaedic Surgery, Michigan Medicine, University of Michigan, MI, USA
| | - David H Kohn
- Department of Biomedical Engineering, College of Engineering, University of Michigan, MI, USA; Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, MI, USA.
| |
Collapse
|
241
|
Figus C, Stephens NB, Sorrentino R, Bortolini E, Arrighi S, Lugli F, Marciani G, Oxilia G, Romandini M, Silvestrini S, Baruffaldi F, Belcastro MG, Bernardini F, Erjavec I, Festa A, Hajdu T, Mateovics‐László O, Novak M, Pap I, Szeniczey T, Tuniz C, Ryan TM, Benazzi S. Human talar ontogeny: Insights from morphological and trabecular changes during postnatal growth. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2022; 179:211-228. [PMCID: PMC9804293 DOI: 10.1002/ajpa.24596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 08/11/2023]
Abstract
Objectives The study of the development of human bipedalism can provide a unique perspective on the evolution of morphology and behavior across species. To generate new knowledge of these mechanisms, we analyze changes in both internal and external morphology of the growing human talus in a sample of modern human juveniles using an innovative approach. Materials and Methods The sample consists of high‐resolution microCT scans of 70 modern juvenile tali, aged between 8 postnatal weeks and 10 years old, from a broad chronological range from Middle/Late Neolithic, that is, between 4800 and 4500 BCE, to the 20th century. We applied geometric morphometric and whole‐bone trabecular analysis (bone volume fraction, degree of anisotropy, trabecular number, thickness, and spacing) to all specimens to identify changes in the external and internal morphology during growth. Morphometric maps were also generated. Results During the first year of life, the talus has an immature and globular shape, with a dense, compact, and rather isotropic trabecular architecture, with numerous trabeculae packed closely together. This pattern changes while children acquire a more mature gait, and the talus tends to have a lower bone volume fraction, a higher anisotropy, and a more mature shape. Discussion The changes in talar internal and external morphologies reflect the different loading patterns experienced during growth, gradually shifting from an “unspecialized” morphology to a more complex one, following the development of bipedal gait. Our research shows that talar plasticity, even though genetically driven, may show mechanical influences and contribute to tracking the main locomotor milestones.
Collapse
Affiliation(s)
- Carla Figus
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Nicholas B. Stephens
- Department of AnthropologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Rita Sorrentino
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Eugenio Bortolini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
- Human Ecology and Archaeology (HUMANE)BarcelonaSpain
| | - Simona Arrighi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Federico Lugli
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Giulia Marciani
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Gregorio Oxilia
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Matteo Romandini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Sara Silvestrini
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Fabio Baruffaldi
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences – BigeaUniversity of BolognaBolognaItaly
| | - Federico Bernardini
- Department of Humanistic StudiesUniversità Ca'FoscariVeneziaItaly
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
| | - Igor Erjavec
- Laboratory for Mineralized TissueCentre for Translational and Clinical ResearchZagrebCroatia
| | - Anna Festa
- Laboratory of Medical TechnologyIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Tamás Hajdu
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | | | - Mario Novak
- Centre for Applied BioanthropologyInstitute for Anthropological ResearchZagrebCroatia
| | - Ildikó Pap
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
- Department of AnthropologyHungarian Natural History MuseumBudapestHungary
- Department of Biological Anthropology, Institute of Biology, Faculty of Science and InformaticsSzeged UniversitySzegedHungary
| | - Tamás Szeniczey
- Department of Biological Anthropology, Institute of Biology, Faculty of ScienceEötvös Loránd UniversityBudapestHungary
| | - Claudio Tuniz
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
- Centre for Archaeological ScienceUniversity of WollongongWollongongAustralia
| | - Timothy M. Ryan
- Department of AnthropologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Stefano Benazzi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| |
Collapse
|
242
|
Automating the decision making process of Todd’s age estimation method from the pubic symphysis with explainable machine learning. Inf Sci (N Y) 2022. [DOI: 10.1016/j.ins.2022.08.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
243
|
Cirovic A, Cirovic A, Djukic D, Djonic D, Zivkovic V, Nikolic S, Djuric M, Milovanovic P. Three-dimensional mapping of cortical porosity and thickness along the superolateral femoral neck in older women. Sci Rep 2022; 12:15544. [PMID: 36109611 PMCID: PMC9477875 DOI: 10.1038/s41598-022-19866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022] Open
Abstract
Although several studies have analyzed inter-individual differences in the femoral neck cortical microstructure, intra-individual variations have not been comprehensively evaluated. By using microCT, we mapped cortical pore volume fraction (Ct.Po) and thickness (Ct.Th) along the superolateral femoral neck in 14 older women (age: 77.1 ± 9.8 years) to identify subregions and segments with high porosity and/or low thickness-potential "critical" spots where a fracture could start. We showed that Ct.Po and Ct.Th significantly differed between basicervical, midcervical, and subcapital subregions of the femoral neck (p < 0.001), where the subcapital subregion showed the lowest mean Ct.Th and the highest mean Ct.Po. These cortical parameters also varied substantially with age and with the location of the analyzed microsegments along the individual's neck (p < 0.001), showing multiple microsegments with high porosity and/or low thickness. Although the highest ratio of these microsegments was found in the subcapital subregion, they were also present at other examined subregions, which may provide an anatomical basis for explaining the fracture initiation at various sites of the superolateral neck. Given that fractures likely start at structurally and mechanically weaker spots, intra-individual variability in Ct.Po and Ct.Th should be considered and the average values for the entire femoral neck should be interpreted with caution.
Collapse
Affiliation(s)
- Aleksandar Cirovic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Ana Cirovic
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Danica Djukic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Danijela Djonic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Vladimir Zivkovic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Slobodan Nikolic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Forensic Medicine, University of Belgrade, Deligradska 31a, Belgrade, Serbia
| | - Marija Djuric
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia
| | - Petar Milovanovic
- Faculty of Medicine, Center of Bone Biology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia.
- Faculty of Medicine, Institute of Anatomy, Laboratory of Bone Biology and Bioanthropology, University of Belgrade, Dr Subotica 4/2, Belgrade, Serbia.
| |
Collapse
|
244
|
Liu F, Hu K, Al-Qudsy LH, Wu LQ, Wang Z, Xu HY, Yang H, Yang PF. Aging exacerbates the morphological and mechanical response of mineralized collagen fibrils in murine cortical bone to disuse. Acta Biomater 2022; 152:345-354. [PMID: 36087867 DOI: 10.1016/j.actbio.2022.08.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/25/2022] [Accepted: 08/28/2022] [Indexed: 11/17/2022]
Abstract
Mineralized collagen fibrils (MCFs) are the fundamental building blocks of bone tissue and contribute significantly to the mechanical behavior of bone. However, it is still largely unknown how the collagen network in bone responds to aging and the disuse normally accompanying it. Utilizing atomic force microscopy, nanoindentation and Raman spectroscopy, age-related alterations in the microstructure and mechanical properties of murine cortical tibia at multiple scales were investigated in this study. The potential difference in the responses of bone to disuse at different ages was studied. The results indicated that the age- and disuse-related alterations in bone initiate from MCFs in the bone matrix. The D-periodic spacing, radial elastic modulus of a single MCF and the mineral-to-matrix ratio on the cortical bone surface were larger in aged mice than in adult mice. Disuse, on the other hand, mainly has a major influence on aged mice, particularly on the morphology and mechanical properties of MCFs, but it only has modest effects on adult bone. These findings revealed insights into the morphological and mechanical adaptation of mineralized collagen fibrils in murine cortical bone to aging and disuse. STATEMENT OF SIGNIFICANCE: Bone is a complex structured composite material consisting of an interwoven framework of collagen fibrils reinforced by mineral particles and embedded in an extrafibrillar mineralized matrix. Utilizing atomic force microscopy, nanoindentation and Raman spectroscopy, this study suggests that the effects of aging, as well as the accompanying disuse, on the morphology and mechanical properties of bone initiate from the mineralized collagen fibril level. More interestingly, the MCF in the bone of aged mice seems to be more sensitive to disuse than that in adult mice. These findings significantly further the current understanding of the adaptation process of bone to aging at the mineralized collagen fibril level and provide direct insights into the physiological response of bone to aging and the abnormal mechanical environment.
Collapse
Affiliation(s)
- Fa Liu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ke Hu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Luban H Al-Qudsy
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Lan-Qin Wu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhe Wang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hui-Yun Xu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Peng-Fei Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
245
|
Viryani NM, Soelistijo SA. Perioperative management of closed fracture subtrochanteric femur sinistra in type 2 diabetes mellitus with multiple comorbid: A case report. Int J Surg Case Rep 2022; 98:107536. [PMID: 36029658 PMCID: PMC9428833 DOI: 10.1016/j.ijscr.2022.107536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 10/27/2022] Open
|
246
|
Quantifying how altered lacunar morphology and perilacunar tissue properties influence local mechanical environment of osteocyte lacunae using finite element modeling. J Mech Behav Biomed Mater 2022; 135:105433. [DOI: 10.1016/j.jmbbm.2022.105433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 11/23/2022]
|
247
|
Buettmann EG, Goldscheitter GM, Hoppock GA, Friedman MA, Suva LJ, Donahue HJ. Similarities Between Disuse and Age-Induced Bone Loss. J Bone Miner Res 2022; 37:1417-1434. [PMID: 35773785 PMCID: PMC9378610 DOI: 10.1002/jbmr.4643] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 06/17/2022] [Accepted: 06/24/2022] [Indexed: 11/07/2022]
Abstract
Disuse and aging are known risk factors associated with low bone mass and quality deterioration, resulting in increased fracture risk. Indeed, current and emerging evidence implicate a large number of shared skeletal manifestations between disuse and aging scenarios. This review provides a detailed overview of current preclinical models of musculoskeletal disuse and the clinical scenarios they seek to recapitulate. We also explore and summarize the major similarities between bone loss after extreme disuse and advanced aging at multiple length scales, including at the organ/tissue, cellular, and molecular level. Specifically, shared structural and material alterations of bone loss are presented between disuse and aging, including preferential loss of bone at cancellous sites, cortical thinning, and loss of bone strength due to enhanced fragility. At the cellular level bone loss is accompanied, during disuse and aging, by increased bone resorption, decreased formation, and enhanced adipogenesis due to altered gap junction intercellular communication, WNT/β-catenin and RANKL/OPG signaling. Major differences between extreme short-term disuse and aging are discussed, including anatomical specificity, differences in bone turnover rates, periosteal modeling, and the influence of subject sex and genetic variability. The examination also identifies potential shared mechanisms underlying bone loss in aging and disuse that warrant further study such as collagen cross-linking, advanced glycation end products/receptor for advanced glycation end products (AGE-RAGE) signaling, reactive oxygen species (ROS) and nuclear factor κB (NF-κB) signaling, cellular senescence, and altered lacunar-canalicular connectivity (mechanosensation). Understanding the shared structural alterations, changes in bone cell function, and molecular mechanisms common to both extreme disuse and aging are paramount to discovering therapies to combat both age-related and disuse-induced osteoporosis. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Evan G Buettmann
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Galen M Goldscheitter
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Gabriel A Hoppock
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Michael A Friedman
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
248
|
Baliso A, Heathfield LJ, Gibbon VE. Forensic human identification: retrospective investigation of anthropological assessments in the Western Cape, South Africa. Int J Legal Med 2022; 137:793-807. [PMID: 35908103 DOI: 10.1007/s00414-022-02870-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/14/2022] [Indexed: 11/24/2022]
Abstract
The identification of unknown persons, particularly those who are decomposed or burnt, is a global challenge. Forensic Anthropology Cape Town (FACT) is a service provider that assists the South African state with the identification of human remains. However, empirical data pertaining to anthropologically analysed forensic cases in the Western Cape Province of South Africa are lacking. Therefore, anthropological data pertaining to the forensic cases submitted to FACT between 2006 and 2018 from Forensic Pathology Services were retrospectively reviewed (n = 172). This study also sought to assess demographic, traumatic and pathological factors that impacted successful identification. Most decedents were male (67%) and older than 35 years (54%). While ante-mortem trauma was observed in 41% of decedents, the lack of medical records on ante-mortem injuries hindered the use of this information for identification. Positive identifications were reached for 37% of decedents, and of these, anthropological estimations were correct in 98% of cases for sex, 84% of cases for age at death and 100% of cases for stature. Considering globally accepted accuracies of 70-80%, these estimations were considered highly accurate, suggesting the anthropological methods used are suited to the population. However, 63% of cases remained unidentified, and this study showed that skeletal completeness and pathological conditions were the main factors that hindered demographic estimations. Lastly, not all unidentified bodies in the province were referred to FACT; given the highly accurate estimations, these data advocate for the routine, if not mandatory, use of forensic anthropology services for skeletonised remains in South Africa, with the overall purpose of positively impacting human identification. To improve identification rates globally, these data highlight the value of retrospective and region-specific studies to identify strengths and weaknesses in the system.
Collapse
Affiliation(s)
- Athi Baliso
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Laura Jane Heathfield
- Division of Forensic Medicine and Toxicology, Department of Pathology, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Victoria Elaine Gibbon
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
249
|
Yajima A, Tsuchiya K, Kuro-O M, Urena P, Tominaga Y, Okada M, Ichimori T, Tomosugi T, Hiramitsu T, Murata T, Nakamura M, Sasaki M, Ito A, Nitta K. Renal hyperparathyroidism. VITAMINS AND HORMONES 2022; 120:305-343. [PMID: 35953115 DOI: 10.1016/bs.vh.2022.04.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The number of the patients with chronic kidney disease is now increasing in the world. The pathophysiology of renal hyperparathyroidism is closely associated with Klotho-FGF-endocrine axes, which must be solved definitively as early as possible. It was revealed that the expression of fgf23 is activated by calciprotein particles, which induces vascular ossification. And it is well known that phosphorus overload directly increases parathyroid hormone and hyperparathyroid bone disease develops in those subjects. On the other hand, low turnover bone disease is often recently. Both the patients with chronic kidney disease suffering from hyperparathyroid bone disease or low turnover bone disease are associated with increased fracture risk. Micropetrosis may be one of the causes of increased fracture risk in the subjects with low turnover bone disease. In this chapter, we now describe the diagnosis, pathophysiology and treatments of renal hyperparathyroidism.
Collapse
Affiliation(s)
- Aiji Yajima
- Department of Anatomy, Cell Biology and Physiology, Indiana University, School of Medicine, Indianapolis, IN, United States; Department of Urology, Tokyo, Teishin Hospital, Tokyo, Japan; Department Blood Purification, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan.
| | - Ken Tsuchiya
- Department Blood Purification, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| | - Makoto Kuro-O
- Division of Anti-aging Medicine, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Pablo Urena
- Division of Nephrology, Clinique du Landy, Saint Ouen, France
| | - Yoshihiro Tominaga
- Department of Endocrine Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Manabu Okada
- Department of Endocrine Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Toshihiro Ichimori
- Department of Endocrine Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Toshihide Tomosugi
- Department of Endocrine Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Takahisa Hiramitsu
- Department of Endocrine Surgery, Nagoya Daini Red Cross Hospital, Nagoya, Japan
| | - Taro Murata
- Department of Urology, Tokyo, Teishin Hospital, Tokyo, Japan
| | - Masaki Nakamura
- Department of Nephrology and Urology, NTT East Kanto Hospital, Tokyo, Japan
| | - Masahiko Sasaki
- Department of Urology, Tokyo, Teishin Hospital, Tokyo, Japan
| | - Akemi Ito
- Ito Bone Histomorphometry Institute, Niigata, Japan
| | - Kosaku Nitta
- Department of Medicine, Kidney Center, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
250
|
Ledoux C, Boaretti D, Sachan A, Müller R, Collins CJ. Clinical Data for Parametrization of In Silico Bone Models Incorporating Cell-Cytokine Dynamics: A Systematic Review of Literature. Front Bioeng Biotechnol 2022; 10:901720. [PMID: 35910035 PMCID: PMC9335409 DOI: 10.3389/fbioe.2022.901720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
In silico simulations aim to provide fast, inexpensive, and ethical alternatives to years of costly experimentation on animals and humans for studying bone remodeling, its deregulation during osteoporosis and the effect of therapeutics. Within the varied spectrum of in silico modeling techniques, bone cell population dynamics and agent-based multiphysics simulations have recently emerged as useful tools to simulate the effect of specific signaling pathways. In these models, parameters for cell and cytokine behavior are set based on experimental values found in literature; however, their use is currently limited by the lack of clinical in vivo data on cell numbers and their behavior as well as cytokine concentrations, diffusion, decay and reaction rates. Further, the settings used for these parameters vary across research groups, prohibiting effective cross-comparisons. This review summarizes and evaluates the clinical trial literature that can serve as input or validation for in silico models of bone remodeling incorporating cells and cytokine dynamics in post-menopausal women in treatment, and control scenarios. The GRADE system was used to determine the level of confidence in the reported data, and areas lacking in reported measures such as binding site occupancy, reaction rates and cell proliferation, differentiation and apoptosis rates were highlighted as targets for further research. We propose a consensus for the range of values that can be used for the cell and cytokine settings related to the RANKL-RANK-OPG, TGF-β and sclerostin pathways and a Levels of Evidence-based method to estimate parameters missing from clinical trial literature.
Collapse
Affiliation(s)
- Charles Ledoux
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | | | - Akanksha Sachan
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Caitlyn J. Collins
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
- Department for Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VI,United States
- *Correspondence: Caitlyn J. Collins,
| |
Collapse
|