201
|
Cleland TL, Wilson R, Kim C, Jain NB. What's New in Orthopaedic Rehabilitation. J Bone Joint Surg Am 2020; 102:1923-1929. [PMID: 32947594 DOI: 10.2106/jbjs.20.01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Travis L Cleland
- Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, Ohio
| | - Richard Wilson
- Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, Ohio
| | - Chong Kim
- Department of Physical Medicine and Rehabilitation, MetroHealth Medical Center, Cleveland, Ohio
| | - Nitin B Jain
- Department of Physical Medicine and Rehabilitation, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
202
|
Mengsteab PY, Otsuka T, McClinton A, Shemshaki NS, Shah S, Kan HM, Obopilwe E, Vella AT, Nair LS, Laurencin CT. Mechanically superior matrices promote osteointegration and regeneration of anterior cruciate ligament tissue in rabbits. Proc Natl Acad Sci U S A 2020; 117:28655-28666. [PMID: 33144508 PMCID: PMC7682397 DOI: 10.1073/pnas.2012347117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The gold standard treatment for anterior cruciate ligament (ACL) reconstruction is the use of tendon autografts and allografts. Limiting factors for this treatment include donor site morbidity, potential disease transmission, and variable graft quality. To address these limitations, we previously developed an off-the-shelf alternative, a poly(l-lactic) acid (PLLA) bioengineered ACL matrix, and demonstrated its feasibility to regenerate ACL tissue. This study aims to 1) accelerate the rate of regeneration using the bioengineered ACL matrix by supplementation with bone marrow aspirate concentrate (BMAC) and growth factors (BMP-2, FGF-2, and FGF-8) and 2) increase matrix strength retention. Histological evaluation showed robust tissue regeneration in all groups. The presence of cuboidal cells reminiscent of ACL fibroblasts and chondrocytes surrounded by an extracellular matrix rich in anionic macromolecules was up-regulated in the BMAC group. This was not observed in previous studies and is indicative of enhanced regeneration. Additionally, intraarticular treatment with FGF-2 and FGF-8 was found to suppress joint inflammation. To increase matrix strength retention, we incorporated nondegradable fibers, polyethylene terephthalate (PET), into the PLLA bioengineered ACL matrix to fabricate a "tiger graft." The tiger graft demonstrated the greatest peak loads among the experimental groups and the highest to date in a rabbit model. Moreover, the tiger graft showed superior osteointegration, making it an ideal bioengineered ACL matrix. The results of this study illustrate the beneficial effect bioactive factors and PET incorporation have on ACL regeneration and signal a promising step toward the clinical translation of a functional bioengineered ACL matrix.
Collapse
Affiliation(s)
- Paulos Y Mengsteab
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - Takayoshi Otsuka
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
| | - Aneesah McClinton
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Surgery, University of Connecticut School of Medicine, Farmington, CT, 06030
| | - Nikoo Saveh Shemshaki
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
| | - Shiv Shah
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269
| | - Ho-Man Kan
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
| | - Elifho Obopilwe
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030
| | - Anthony T Vella
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Lakshmi S Nair
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269
| | - Cato T Laurencin
- Connecticut Convergence Institute for Translation in Regenerative Engineering, University of Connecticut Health, Farmington, CT 06030;
- Raymond and Beverly Sackler Center for Biological, Physical and Engineering Sciences, University of Connecticut Health, Farmington, CT 06030
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030
| |
Collapse
|
203
|
Tang Y, Mo Y, Xin D, Zeng L, Yue Z, Xu C. β-ecdysterone alleviates osteoarthritis by activating autophagy in chondrocytes through regulating PI3K/AKT/mTOR signal pathway. Am J Transl Res 2020; 12:7174-7186. [PMID: 33312358 PMCID: PMC7724317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
PURPOSE To investigate the therapeutic effects of β-ecdysterone on osteoarthritis (OA) and the underlying mechanism. METHODS OA model was established on rats by injecting MIA. ELSA was used to determine the concentration of IL-1β, IL-6, NO and TNF-α in the chondrocytes and cartilage tissues. Immunofluorescence assay was used to determine the expression of collagen II in the chondrocytes. The survival rate of chondrocytes was evaluated by MTT assay. The apoptosis of chondrocytes was checked by AO/PI staining and flow cytometry assay. The expression level of Atg7, PI3K and caspase-3 was evaluated by qRT-PCR. Western Blot was used determine the expression of PI3K, p-AKT1, AKT1, p-mTOR, mTOR, p70S6K, p-p70S6K, LC3I, LC3II and caspase-3. HE staining was used to check the pathological state of cartilage tissues. RESULTS Chondrocytes were tolerable to rapamycin, 3-methyladenine and β-ecdysterone at the concentration of 10 mM, 100 nM and 40 μM, respectively. The apoptosis of chondrocytes was inhibited by rapamycin and β-ecdysterone, and induced by 3-methyladenine. PI3K, p-AKT1, p-mTOR, p-p70S6K and caspase-3 were down-regulated by rapamycin and β-ecdysterone, and up-regulated by 3-methyladenine in both the chondrocytes and the cartilage tissues. The expression of Atg7 and LC3II/LC3I were regulated in a opposite way. The inflammation state was improved by rapamycin and β-ecdysterone both the chondrocytes and the cartilage tissues. HE staining results showed that the pathological state of cartilage tissues was alleviated by β-ecdysterone. CONCLUSION β-ecdysterone might alleviate osteoarthritis by activating autophagy in chondrocytes through regulating PI3K/AKT/mTOR signal pathway.
Collapse
Affiliation(s)
- Yanghua Tang
- Department of Orthopedics, Xiaoshan Hospital of Traditional Chinese MedicineNo. 156 Yucai Road, Xiaoshan District, Hangzhou, Zhejiang Province, China
| | - Yafeng Mo
- Department of Orthopedics, Third Clinical College of Zhejiang Chinese Medical UniversityNo. 548 Binwen Road, Binjiang District, Hangzhou, Zhejiang Province, China
| | - Dawei Xin
- Department of Orthopedics, Xiaoshan Hospital of Traditional Chinese MedicineNo. 156 Yucai Road, Xiaoshan District, Hangzhou, Zhejiang Province, China
| | - Linru Zeng
- Department of Orthopedics, Xiaoshan Hospital of Traditional Chinese MedicineNo. 156 Yucai Road, Xiaoshan District, Hangzhou, Zhejiang Province, China
| | - Zhenshuang Yue
- Department of Orthopedics, Xiaoshan Hospital of Traditional Chinese MedicineNo. 156 Yucai Road, Xiaoshan District, Hangzhou, Zhejiang Province, China
| | - Canda Xu
- Department of Orthopedics, Xiaoshan Hospital of Traditional Chinese MedicineNo. 156 Yucai Road, Xiaoshan District, Hangzhou, Zhejiang Province, China
| |
Collapse
|
204
|
Karsdal MA, Kraus VB, Shevell D, Bay-Jensen AC, Schattenberg J, Rambabu Surabattula R, Schuppan D. Profiling and targeting connective tissue remodeling in autoimmunity - A novel paradigm for diagnosing and treating chronic diseases. Autoimmun Rev 2020; 20:102706. [PMID: 33188918 DOI: 10.1016/j.autrev.2020.102706] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 08/16/2020] [Indexed: 12/14/2022]
Abstract
Connective tissue (ConT) remodeling is an essential process in tissue regeneration, where a balanced replacement of old tissue by new tissue occurs. This balance is disturbed in chronic diseases, often autoimmune diseases, usually resulting in the buld up of fibrosis and a gradual loss of organ function. During progression of liver, lung, skin, heart, joint, skeletal and kidney diseasesboth ConT formation and degradation are elevated, which is tightly linked to immune cell activation and a loss of specific cell types and extracellular matrix (ECM) structures that are required for normal organ function. Here, we address the balance of key general and organ specific components of the ECM during homeostasis and in disease, with a focus on collagens, which are emerging as both structural and signaling molecules harbouring neoepitopes and autoantigens that are released during ConT remodeling. Specific collagen molecular signatures of ConT remodeling are linked to disease activity and stage, and to prognosis across different organs. These signatures accompany and further drive disease progression, and often become detectable before clinical disease manifestation (illness). Recent advances allow to quantify and define the nature of ConT remodeling via blood-based assays that measure the levels of well-defined collagen fragments, reflecting different facets of ConT formation and degradation, and associated immunological processes. These novel serum assays are becoming important tools of precision medicine, to detect various chronic and autoimmune diseases before their clinical manifestation, and to non-invasively monitor the efficacy of a broad range of pharmacological interventions.
Collapse
Affiliation(s)
- Morten Asser Karsdal
- Nordic Bioscience, Biomarkers & Research A/S, Herlev, Metabolic Liver Research Program, Denmark
| | - Virginia Byers Kraus
- Duke Molecular Physiology Institute and Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Diane Shevell
- Clinical Biomarkers and Immunology, Bristol-Myers Squibb, Westfield, NJ, USA
| | | | | | - R Rambabu Surabattula
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Mainz, Germany
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Mainz, Germany; Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
205
|
Sabha M, Siaton BC, Hochberg MC. Lorecivivint, an intra-articular potential disease-modifying osteoarthritis drug. Expert Opin Investig Drugs 2020; 29:1339-1346. [PMID: 33096010 DOI: 10.1080/13543784.2020.1842357] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Osteoarthritis (OA) is the most common form of arthritis. Knee OA is associated with joint pain, activity limitation, physical disability, reduced health-related quality of life, and increased mortality. To date, all pharmacologic treatments for OA are directed toward pain management. Lorecivivint (LOR) is an investigational agent that has potential as a disease-modifying osteoarthritis drug (DMOAD). It modulates the Wnt signaling pathway by inhibiting CDC-like kinase 2 and dual-specificity tyrosine phosphorylation-regulated kinase 1 A which are molecular regulators in Wnt signaling, chondrogenesis, and inflammation. Areas covered: This paper discusses the current pharmacologic guidelines for the treatment of knee OA and illuminates the potential of a new agent, Lorecivivint, as a disease-modifying osteoarthritis drug (DMOAD). Efficacy and safety and the challenges for this novel agent come under the spotlight. Expert opinion: LOR may be a potential DMOAD for the treatment of patients with knee OA. While the Phase 2A trial did not meet its primary endpoint, preplanned analyses did identify a target population for further evaluation of its potential as a DMOAD. Phase 3 trials are ongoing, but this intra-articular drug is currently considered safe and well tolerated, with no significant reported systemic side effects.
Collapse
Affiliation(s)
- Marwa Sabha
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Bernadette C Siaton
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine , Baltimore, MD, USA
| | - Marc C Hochberg
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine , Baltimore, MD, USA.,Division of Gerontology, Department of Epidemiology and Public Health, University of Maryland School of Medicine , Baltimore, USA
| |
Collapse
|
206
|
Brett A, Bowes MA, Conaghan PG, Ladel C, Guehring H, Moreau F, Eckstein F. Automated MRI assessment confirms cartilage thickness modification in patients with knee osteoarthritis: post-hoc analysis from a phase II sprifermin study. Osteoarthritis Cartilage 2020; 28:1432-1436. [PMID: 32860991 DOI: 10.1016/j.joca.2020.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 08/10/2020] [Accepted: 08/17/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Sprifermin is under investigation as a potential disease-modifying osteoarthritis drug. Previously, 2-year results from the FORWARD study showed significant dose-dependent modification of cartilage thickness in the total femorotibial joint (TFTJ), medial and lateral femorotibial compartments (MFTC, LFTC), and central medial and lateral TFTJ subregions, by quantitative magnetic resonance imaging (qMRI) using manual segmentation. OBJECTIVE To determine whether qMRI findings from FORWARD could be reproduced by an independent method of automated segmentation using an identical dataset and similar anatomical regions in a post-hoc analysis. METHOD Cartilage thickness was assessed at baseline and 6, 12, 18 and 24 months, using automated cartilage segmentation with active appearance models, a supervised machine learning method. Images were blinded for treatment and timepoint. Treatment effect was assessed by observed and adjusted changes using a linear mixed model for repeated measures. RESULTS Based on automated segmentation, statistically significant, dose-dependent structural modification of cartilage thickness was observed over 2 years with sprifermin vs placebo for TFTJ (overall treatment effect and dose response, both P < 0.001), MFTC (P = 0.004 and P = 0.044), and LFTC (both P < 0.001) regions. For highest dose, in the central medial tibial (P = 0.008), central lateral tibial (P < 0.001) and central lateral femoral (P < 0.001) regions. CONCLUSIONS Cartilage thickness assessed by automated segmentation provided a consistent dose response in structural modification compared with manual segmentation. This is the first time that two independent quantification methods of image analysis have reached the same conclusions in an interventional trial, strengthening the conclusions that sprifermin modifies structural progression in knee osteoarthritis.
Collapse
Affiliation(s)
| | | | - P G Conaghan
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds & NIHR Leeds Biomedical Research Centre, Leeds, UK.
| | - C Ladel
- Merck KGaA, Darmstadt, Germany.
| | | | | | - F Eckstein
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University Salzburg & Nuremberg, Salzburg, Austria; Chondrometrics GmbH, Ainring, Germany.
| |
Collapse
|
207
|
Abstract
The prevalence of osteoarthritis (OA) and the burden associated with the disease are steadily increasing worldwide, representing a major public health challenge for the coming decades. The lack of specific treatments for OA has led to it being recognized as a serious disease that has an unmet medical need. Advances in the understanding of OA pathophysiology have enabled the identification of a variety of potential therapeutic targets involved in the structural progression of OA, some of which are promising and under clinical investigation in randomized controlled trials. Emerging therapies include those targeting matrix-degrading proteases or senescent chondrocytes, promoting cartilage repair or limiting bone remodelling, local low-grade inflammation or Wnt signalling. In addition to these potentially disease-modifying OA drugs (DMOADs), several targets are being explored for the treatment of OA-related pain, such as nerve growth factor inhibitors. The results of these studies are expected to considerably reshape the landscape of OA management over the next few years. This Review describes the pathophysiological processes targeted by emerging therapies for OA, along with relevant clinical data and discussion of the main challenges for the further development of these therapies, to provide context for the latest advances in the field of pharmaceutical therapies for OA.
Collapse
|
208
|
Tryfonidou MA, de Vries G, Hennink WE, Creemers LB. "Old Drugs, New Tricks" - Local controlled drug release systems for treatment of degenerative joint disease. Adv Drug Deliv Rev 2020; 160:170-185. [PMID: 33122086 DOI: 10.1016/j.addr.2020.10.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) and chronic low back pain (CLBP) caused by intervertebral disc (IVD) degeneration are joint diseases that have become major causes for loss of quality of life worldwide. Despite the unmet need, effective treatments other than invasive, and often ineffective, surgery are lacking. Systemic administration of drugs entails suboptimal local drug exposure in the articular joint and IVD. This review provides an overview of the potency of biomaterial-based drug delivery systems as novel treatment modality, with a focus on the biological effects of drug release systems that have reached translation at the level of in vivo models and relevant ex vivo models. These studies have shown encouraging results of biomaterial-based local delivery of several types of drugs, mostly inhibitors of inflammatory cytokines or other degenerative factors. Prevention of inflammation and degeneration and pain relief was achieved, although mainly in small animal models, with interventions applied at an early disease stage. Less convincing data were obtained with the delivery of regenerative factors. Multidisciplinary efforts towards tackling the discord between in vitro and in vivo release, combined with adaptations in the regulatory landscape may be needed to enhance safe and expeditious introduction of more and more effective controlled release-based treatments with the OA and CLBP patients.
Collapse
|
209
|
Vincent TL. Of mice and men: converging on a common molecular understanding of osteoarthritis. THE LANCET. RHEUMATOLOGY 2020; 2:e633-e645. [PMID: 32989436 PMCID: PMC7511206 DOI: 10.1016/s2665-9913(20)30279-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite an increasing burden of osteoarthritis in developed societies, target discovery has been slow and there are currently no approved disease-modifying osteoarthritis drugs. This lack of progress is due in part to a series of misconceptions over the years: that osteoarthritis is an inevitable consequence of ageing, that damaged articular cartilage cannot heal itself, and that osteoarthritis is driven by synovial inflammation similar to that seen in rheumatoid arthritis. Molecular interrogation of disease through ex-vivo tissue analysis, in-vitro studies, and preclinical models have radically reshaped the knowledge landscape. Inflammation in osteoarthritis appears to be distinct from that seen in rheumatoid arthritis. Recent randomised controlled trials, using treatments repurposed from rheumatoid arthritis, have largely been unsuccessful. Genome-wide studies point to defects in repair pathways, which accords well with recent promise using growth factor therapies or Wnt pathway antagonism. Nerve growth factor has emerged as a robust target in osteoarthritis pain in phase 2-3 trials. These studies, both positive and negative, align well with those in preclinical surgical models of osteoarthritis, indicating that pathogenic mechanisms identified in mice can lead researchers to valid human targets. Several novel candidate pathways are emerging from preclinical studies that offer hope of future translational impact. Enhancing trust between industry, basic, and clinical scientists will optimise our collective chance of success.
Collapse
Affiliation(s)
- Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis, Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
210
|
Roflumilast prevents lymphotoxin α (TNF-β)-induced inflammation activation and degradation of type 2 collagen in chondrocytes. Inflamm Res 2020; 69:1191-1199. [PMID: 32990777 DOI: 10.1007/s00011-020-01404-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/04/2020] [Accepted: 09/15/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Osteoarthritis (OA) is a chronic disease accompanied by severe inflammation. The inflammation activation in the chondrocytes and the degradation of the extracellular matrix were reported to be involved in the progress of OA. Roflumilast is a selective PDE4 inhibitor used for treating chronic obstructive pulmonary disease (COPD) and exerts significant anti-inflammation effects. The present study aims to investigate the effects of Roflumilast on tumor necrosis factor-β (TNF-β)-induced inflammation activation and degradation of type 2 collagen in chondrocytes. METHODS TNF-β was used to establish the in-vitro inflammation model on ATDC5 chondrocytes. Quantitative real-time polymerase chain reaction (QRT-PCR) and western blot were used to determine the expression level of tumor necrosis factor receptor 2 (TNFR2), cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), matrix metalloproteinase 3 (MMP-3), matrix metalloproteinase 13 (MMP-13), type 2 collagen and nuclear factor kappa B (NF-κB) p65. The release of prostaglandin E2 (PGE2), MMP-3, and MMP-13 were evaluated by ELISA. The production of NO was determined by DAF-FM DA staining and the function of the NF-κB promoter was evaluated by Luciferase activity assay. RESULTS TNFR2 and COX-2 were upregulated and the release of PGE2 was promoted by TNF-β stimulation, which were all inhibited by Roflumilast. Roflumilast suppressed the promoted iNOS expression and NO production induced by TNF-β. MMP-3 and MMP-13 were up-regulated, and type 2 collagen was down-regulated by TNF-β stimulation, which were all reversed by Roflumilast. Roflumilast inhibited the promoted releasing of Interleukin-8 (IL-8) and Interleukin-12 (IL-12), expression of up-regulated NF-κB, and activation of NF-κB transcriptional activity induced by TNF-β. CONCLUSION Roflumilast may prevent TNF-β-induced inflammation activation and degradation of type 2 collagen in chondrocytes.
Collapse
|
211
|
Attur M, Krasnokutsky S, Zhou H, Samuels J, Chang G, Bencardino J, Rosenthal P, Rybak L, Huebner JL, Kraus VB, Abramson SB. The combination of an inflammatory peripheral blood gene expression and imaging biomarkers enhance prediction of radiographic progression in knee osteoarthritis. Arthritis Res Ther 2020; 22:208. [PMID: 32912331 PMCID: PMC7488029 DOI: 10.1186/s13075-020-02298-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Predictive biomarkers of progression in knee osteoarthritis are sought to enable clinical trials of structure-modifying drugs. A peripheral blood leukocyte (PBL) inflammatory gene signature, MRI-based bone marrow lesions (BML) and meniscus extrusion scores, meniscal lesions, and osteophytes on X-ray each have been shown separately to predict radiographic joint space narrowing (JSN) in subjects with symptomatic knee osteoarthritis (SKOA). In these studies, we determined whether the combination of the PBL inflammatory gene expression and these imaging findings at baseline enhanced the prognostic value of either alone. METHODS PBL inflammatory gene expression (increased mRNA for IL-1β, TNFα, and COX-2), routine radiographs, and 3T knee MRI were assessed in two independent populations with SKOA: an NYU cohort and the Osteoarthritis Initiative (OAI). At baseline and 24 months, subjects underwent standardized fixed-flexion knee radiographs and knee MRI. Medial JSN (mJSN) was determined as the change in medial JSW. Progressors were defined by an mJSN cut-point (≥ 0.5 mm/24 months). Models were evaluated by odds ratios (OR) and area under the receiver operating characteristic curve (AUC). RESULTS We validated our prior finding in these two independent (NYU and OAI) cohorts, individually and combined, that an inflammatory PBL inflammatory gene expression predicted radiographic progression of SKOA after adjustment for age, sex, and BMI. Similarly, the presence of baseline BML and meniscal lesions by MRI or semiquantitative osteophyte score on X-ray each predicted radiographic medial JSN at 24 months. The combination of the PBL inflammatory gene expression and medial BML increased the AUC from 0.66 (p = 0.004) to 0.75 (p < 0.0001) and the odds ratio from 6.31 to 19.10 (p < 0.0001) in the combined cohort of 473 subjects. The addition of osteophyte score to BML and PBL inflammatory gene expression further increased the predictive value of any single biomarker. A causal analysis demonstrated that the PBL inflammatory gene expression and BML independently influenced mJSN. CONCLUSION The use of the PBL inflammatory gene expression together with imaging biomarkers as combinatorial predictive biomarkers, markedly enhances the identification of radiographic progressors. The identification of the SKOA population at risk for progression will help in the future design of disease-modifying OA drug trials and personalized medicine strategies.
Collapse
Affiliation(s)
- Mukundan Attur
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA. .,Division of Rheumatology, Rheumatology Research laboratory, NYU Langone Orthopedic Hospital, 301 East 17th Street, Suite 1612, New York, NY, 10003, USA.
| | | | - Hua Zhou
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA
| | - Jonathan Samuels
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Gregory Chang
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jenny Bencardino
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA.,Division of Musculoskeletal Imaging, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Pamela Rosenthal
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Leon Rybak
- Applied Bioinformatics Laboratories, NYU Grossman School of Medicine, New York, NY, USA
| | | | | | - Steven B Abramson
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
212
|
Tenforde AS, Cortez B, Baker J, Borg-Stein J, Wasfy M, Baggish AL, Zafonte R. Prevalence of total hip and knee arthroplasty in former National Football League players: comparison with the general US population and other populations of professional athletes. BMJ Open Sport Exerc Med 2020; 6:e000833. [PMID: 33062305 PMCID: PMC7520548 DOI: 10.1136/bmjsem-2020-000833] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2020] [Indexed: 01/03/2023] Open
Abstract
Objectives: To evaluate the prevalence of total hip arthroplasty (THA) and total knee arthroplasty (TKA) in a population of former National Football League (NFL) players. Methods: Participants were 3913 former NFL players (participation in years 1960–2019) who completed either an online or mailed survey that included self-reported TKA and THA, year(s) of surgery and date of birth. The prevalence of TKA and THA was reported by age category and compared to published cohorts of athlete populations and general population of non-athletes in the USA. Results: 12.3% and 8.1% of sample reported TKA and THA, respectively. The prevalence of both TKA and THA was higher in former NFL players compared to US non-athletes across all ages. Prevalence of TKA was not statistically higher than in other former athlete cohorts but performed at younger ages. The prevalence of TKA and THA was higher than in other cohorts of former NFL players. Conclusion: Former NFL players had higher prevalence of arthroplasty than the general population, suggesting prior participation in American-style football may contribute to elevated risk for arthroplasty at younger ages. Understanding risk factors in style of play, lifestyle and other contributors is important to improve joint health of this population.
Collapse
Affiliation(s)
- Adam S Tenforde
- Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA.,Football Player Health Study, Harvard Medical School, Boston, Massachusetts, USA
| | - Bryan Cortez
- Football Player Health Study, Harvard Medical School, Boston, Massachusetts, USA
| | - Jillian Baker
- Football Player Health Study, Harvard Medical School, Boston, Massachusetts, USA
| | - Joanne Borg-Stein
- Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA.,Football Player Health Study, Harvard Medical School, Boston, Massachusetts, USA
| | - Meagan Wasfy
- Football Player Health Study, Harvard Medical School, Boston, Massachusetts, USA.,Massachusetts General Hospital, Cardiovascular Research Program, Boston, Massachusetts, USA
| | - Aaron L Baggish
- Football Player Health Study, Harvard Medical School, Boston, Massachusetts, USA.,Massachusetts General Hospital, Cardiovascular Research Program, Boston, Massachusetts, USA
| | - Ross Zafonte
- Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, USA.,Football Player Health Study, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
213
|
Xie Y, Su N, Yang J, Tan Q, Huang S, Jin M, Ni Z, Zhang B, Zhang D, Luo F, Chen H, Sun X, Feng JQ, Qi H, Chen L. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther 2020; 5:181. [PMID: 32879300 PMCID: PMC7468161 DOI: 10.1038/s41392-020-00222-7] [Citation(s) in RCA: 473] [Impact Index Per Article: 94.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022] Open
Abstract
Growing evidences suggest that the fibroblast growth factor/FGF receptor (FGF/FGFR) signaling has crucial roles in a multitude of processes during embryonic development and adult homeostasis by regulating cellular lineage commitment, differentiation, proliferation, and apoptosis of various types of cells. In this review, we provide a comprehensive overview of the current understanding of FGF signaling and its roles in organ development, injury repair, and the pathophysiology of spectrum of diseases, which is a consequence of FGF signaling dysregulation, including cancers and chronic kidney disease (CKD). In this context, the agonists and antagonists for FGF-FGFRs might have therapeutic benefits in multiple systems.
Collapse
Affiliation(s)
- Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Nan Su
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jing Yang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Qiaoyan Tan
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Shuo Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Min Jin
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhenhong Ni
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Bin Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fengtao Luo
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Hangang Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xianding Sun
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Jian Q Feng
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Huabing Qi
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma, Burns and Combined Injury, Trauma Center, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
214
|
Nakamura A, Ali SA, Kapoor M. Antisense oligonucleotide-based therapies for the treatment of osteoarthritis: Opportunities and roadblocks. Bone 2020; 138:115461. [PMID: 32485363 DOI: 10.1016/j.bone.2020.115461] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 10/24/2022]
Abstract
Osteoarthritis (OA) is a debilitating disease with no approved disease-modifying therapies. Among the challenges for developing treatment is achieving targeted drug delivery to affected joints. This has contributed to the failure of several drug candidates for the treatment of OA. Over the past 20 years, significant advances have been made in antisense oligonucleotide (ASO) technology for achieving targeted delivery to tissues and cells both in vitro and in vivo. Since ASOs are able to bind specific gene regions and regulate protein translation, they are useful for correcting aberrant endogenous mechanisms associated with certain diseases. ASOs can be delivered locally through intra-articular injection, and can enter cells through natural cellular uptake mechanisms. Despite this, ASOs have yet to be successfully tested in clinical trials for the treatment of OA. Recent chemical modification to ASOs have further improved cellular uptake and reduced toxicity. Among these are locked nucleic acid (LNA)-based ASOs, which have shown promising results in clinical trials for diseases such as hepatitis and dyslipidemia. Recently, LNA-based ASOs have been tested both in vitro and in vivo for their therapeutic potential in OA, and some have shown promising joint-protective effects in preclinical OA animal models. In order to accelerate the testing of ASO therapies in a clinical trial setting for OA, further investigation into delivery mechanisms is required. In this review article, we discuss opportunities for viral-, particle-, biomaterial-, and chemical modification-based therapies, which are currently in preclinical testing. We also address potential roadblocks in the clinical translation of ASO-based therapies for the treatment of OA, such as the limitations associated with OA animal models and the challenges with drug toxicity. Taken together, we review what is known and what would be useful to accelerate translation of ASO-based therapies for the treatment of OA.
Collapse
Affiliation(s)
- Akihiro Nakamura
- Arthritis Program, University Health Network, Toronto, Ontario, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Ontario, Canada; Division of Rheumatology, University Health Network, Toronto Western Hospital, Toronto, Ontario, Canada
| | - Shabana Amanda Ali
- Arthritis Program, University Health Network, Toronto, Ontario, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Bone & Joint Center, Department of Orthopaedic Surgery, Henry Ford Health System, Detroit, MI, USA
| | - Mohit Kapoor
- Arthritis Program, University Health Network, Toronto, Ontario, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada.
| |
Collapse
|
215
|
Roemer FW, Kraines J, Aydemir A, Wax S, Hochberg MC, Crema MD, Guermazi A. Evaluating the structural effects of intra-articular sprifermin on cartilage and non-cartilaginous tissue alterations, based on sqMRI assessment over 2 years. Osteoarthritis Cartilage 2020; 28:1229-1234. [PMID: 32619609 DOI: 10.1016/j.joca.2020.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Sprifermin (recombinant human fibroblast growth factor-18), a potential disease-modifying osteoarthritis (OA) drug, demonstrated dose-dependent effects on femorotibial cartilage thickness (by quantitative magnetic resonance imaging [MRI]) in the phase II FORWARD study. This post-hoc analysis evaluated the potential effects of sprifermin on several articular structures in the whole joint over 24 months using semi-quantitative MRI assessment. DESIGN Patients aged 40-85 years with symptomatic radiographic knee OA, Kellgren-Lawrence grade 2 or 3, and medial minimum joint space width ≥2.5 mm in the target knee were randomized (1:1:1:1:1) to receive three double-blinded, once-weekly, intra-articular injections of sprifermin 30 μg or 100 μg or placebo every 6 (q6mo) or 12 months. 1.5- or 3 T MRIs were read using the Whole-Organ Magnetic Resonance Imaging Score (WORMS) system at baseline and 24 months. Change from baseline at 24 months on compartment and/or whole knee level was assessed for cartilage morphology, bone marrow lesions (BMLs), and osteophytes by delta-subregional and delta-sum (DSM) approaches. Menisci, Hoffa-synovitis, and effusion-synovitis were also evaluated for worsening. RESULTS 549 patients were included. Dose-dependent treatment effects from baseline to 24 months were observed on cartilage morphology (sprifermin 100 μg q6mo vs placebo; mean DSM (95% confidence interval [CI]) -0.6 (-1.5, 0.2); less cartilage worsening) in the entire knee and BMLs sprifermin 100 μg q6mo vs placebo; mean DSM (95% CI) -0.2 (-0.5, 0.1) in the patellofemoral compartment. No effects over 24 months were observed on osteophytes, menisci, Hoffa-synovitis or effusion-synovitis. CONCLUSIONS Positive effects associated with sprifermin were observed for cartilage morphology changes, and BML improvement. There were no meaningful negative or positive effects associated with sprifermin in the other joint tissues examined.
Collapse
Affiliation(s)
- F W Roemer
- Boston University School of Medicine, Boston, MA, USA; University of Erlangen-Nuremberg, Erlangen, Germany.
| | - J Kraines
- EMD Serono, Inc., Billerica, MA, USA, a business of Merck KGaA, Darmstadt, Germany
| | - A Aydemir
- EMD Serono, Inc., Billerica, MA, USA, a business of Merck KGaA, Darmstadt, Germany
| | - S Wax
- EMD Serono, Inc., Billerica, MA, USA, a business of Merck KGaA, Darmstadt, Germany
| | - M C Hochberg
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - M D Crema
- Boston University School of Medicine, Boston, MA, USA; Institute of Sports Imaging, French National Institute of Sports, Paris, France
| | - A Guermazi
- Boston University School of Medicine, Boston, MA, USA; Department of Radiology, VA Boston Healthcare System, West Roxbury, MA, 02132, USA
| |
Collapse
|
216
|
Tissue distribution of sprifermin (recombinant human fibroblast growth factor 18) in the rat following intravenous and intra-articular injection. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100068. [DOI: 10.1016/j.ocarto.2020.100068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 11/17/2022] Open
|
217
|
Thorup AS, Dell'Accio F, Eldridge SE. Lessons from joint development for cartilage repair in the clinic. Dev Dyn 2020; 250:360-376. [PMID: 32738003 DOI: 10.1002/dvdy.228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
More than 250 years ago, William Hunter stated that when cartilage is destroyed it never recovers. In the last 20 years, the understanding of the mechanisms that lead to joint formation and the knowledge that some of these mechanisms are reactivated in the homeostatic responses of cartilage to injury has offered an unprecedented therapeutic opportunity to achieve cartilage regeneration. Very large investments in ambitious clinical trials are finally revealing that, although we do not have perfect medicines yet, disease modification is a feasible possibility for human osteoarthritis.
Collapse
Affiliation(s)
- Anne-Sophie Thorup
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Francesco Dell'Accio
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Suzanne E Eldridge
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
218
|
The Anti-ADAMTS-5 Nanobody ® M6495 Protects Cartilage Degradation Ex Vivo. Int J Mol Sci 2020; 21:ijms21175992. [PMID: 32825512 PMCID: PMC7503673 DOI: 10.3390/ijms21175992] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 12/19/2022] Open
Abstract
Osteoarthritis (OA) is associated with cartilage breakdown, brought about by ADAMTS-5 mediated aggrecan degradation followed by MMP-derived aggrecan and type II collagen degradation. We investigated a novel anti-ADAMTS-5 inhibiting Nanobody® (M6495) on cartilage turnover ex vivo. Bovine cartilage (BEX, n = 4), human osteoarthritic - (HEX, n = 8) and healthy—cartilage (hHEX, n = 1) explants and bovine synovium and cartilage were cultured up to 21 days in medium alone (w/o), with pro-inflammatory cytokines (oncostatin M (10 ng/mL) + TNFα (20 ng/mL) (O + T), IL-1α (10 ng/mL) or oncostatin M (50 ng/mL) + IL-1β (10 ng/mL)) with or without M6495 (1000−0.46 nM). Cartilage turnover was assessed in conditioned medium by GAG (glycosaminoglycan) and biomarkers of ADAMTS-5 driven aggrecan degradation (huARGS and exAGNxI) and type II collagen degradation (C2M) and formation (PRO-C2). HuARGS, exAGNxI and GAG peaked within the first culture week in pro-inflammatory stimulated explants. C2M peaked from day 14 by O + T and day 21 in co-culture experiments. M6495 dose dependently decreased huARGS, exAGNxI and GAG after pro-inflammatory stimulation. In HEX C2M was dose-dependently reduced by M6495. M6495 showed no effect on PRO-C2. M6495 showed cartilage protective effects by dose-dependently inhibiting ADAMTS-5 mediated cartilage degradation and inhibiting overall cartilage deterioration in ex vivo cartilage cultures.
Collapse
|
219
|
Fibroblast growth factor signalling in osteoarthritis and cartilage repair. Nat Rev Rheumatol 2020; 16:547-564. [PMID: 32807927 DOI: 10.1038/s41584-020-0469-2] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 12/12/2022]
Abstract
Regulated fibroblast growth factor (FGF) signalling is a prerequisite for the correct development and homeostasis of articular cartilage, as evidenced by the fact that aberrant FGF signalling contributes to the maldevelopment of joints and to the onset and progression of osteoarthritis. Of the four FGF receptors (FGFRs 1-4), FGFR1 and FGFR3 are strongly implicated in osteoarthritis, and FGFR1 antagonists, as well as agonists of FGFR3, have shown therapeutic efficacy in mouse models of spontaneous and surgically induced osteoarthritis. FGF18, a high affinity ligand for FGFR3, is the only FGF-based drug currently in clinical trials for osteoarthritis. This Review covers the latest advances in our understanding of the molecular mechanisms that regulate FGF signalling during normal joint development and in the pathogenesis of osteoarthritis. Strategies for FGF signalling-based treatment of osteoarthritis and for cartilage repair in animal models and clinical trials are also introduced. An improved understanding of FGF signalling from a structural biology perspective, and of its roles in skeletal development and diseases, could unlock new avenues for discovery of modulators of FGF signalling that can slow or stop the progression of osteoarthritis.
Collapse
|
220
|
Sprifermin (recombinant human FGF18) is internalized through clathrin- and dynamin-independent pathways and degraded in primary chondrocytes. Exp Cell Res 2020; 395:112236. [PMID: 32798495 DOI: 10.1016/j.yexcr.2020.112236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
Sprifermin is a human recombinant fibroblast growth factor 18 (rhFGF18) in clinical development for knee osteoarthritis. Previously, we demonstrated that sprifermin exerts an anabolic effect on chondrocytes in 3D culture with cyclic but not permanent exposure. Here, we hypothesized that permanent exposure to sprifermin de-sensitizes the cells. To test this, a combination of Western-blot and cell staining methods was used. We demonstrate that sprifermin is transiently internalized in chondrocytes along with a transient increase in ERK1/2 activation. We also show that sprifermin is intracellularly degraded, probably together with its receptor FGFR3, thus preventing further stimulation. However, incubation without sprifermin re-sensitizes the cells. Finally, we show that sprifermin endocytosis is clathrin- and dynamin-independent and that receptor activation is not necessary for sprifermin's endocytosis. In this study, we link the role of endocytosis to the cell response and elucidate for the first time a de-sensitization phenomenon to a FGF.
Collapse
|
221
|
Bacon K, LaValley MP, Jafarzadeh SR, Felson D. Does cartilage loss cause pain in osteoarthritis and if so, how much? Ann Rheum Dis 2020; 79:1105-1110. [PMID: 32381567 PMCID: PMC10406023 DOI: 10.1136/annrheumdis-2020-217363] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 04/21/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVES Although treatment development in osteoarthritis (OA) focuses on chondroprotection, it is unclear how much preventing cartilage loss reduces joint pain. It is also unclear how nociceptive tissues may be involved. METHODS Using data from the Osteoarthritis Initiative, we quantified the relation between cartilage loss and worsening knee pain after adjusting for bone marrow lesions (BMLs) and synovitis, and examined how much these factors mediated this association. 600 knee MRIs were scored at baseline, 12 months and 24 months for quantitative and semiquantitative measures of OA structural features. We focused on change in medial cartilage thickness using an amount similar to that seen in recent trials. Linear models calculated mean change in Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain score with cartilage loss, adjusted for baseline BMLs, synovitis and covariates. Mediation analysis tested whether change in synovitis or BMLs mediated the cartilage loss-pain association. We carried out a subanalysis for knees with non-zero baseline WOMAC pain scores and another for non-valgus knees. RESULTS Cartilage thickness loss was significantly associated with a small degree of worsening in pain over 24 months. For example, a loss of 0.1 mm of cartilage thickness over 2 years was associated with a 0.32 increase in WOMAC pain (scale 0-20). The association of cartilage thickness loss with pain was mediated by synovitis change but not by BML change. Subanalysis results were similar. CONCLUSIONS Cartilage thickness loss is associated with only a small amount of worsening knee pain, an association mediated in part by worsening synovitis. Demonstrating that chondroprotection reduces knee pain will be extremely challenging and is perhaps unachievable.
Collapse
Affiliation(s)
- Kathryn Bacon
- Rheumatology, Boston University, Boston, Massachusetts, USA
| | | | - S Reza Jafarzadeh
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - David Felson
- Section of Rheumatology, Boston University School of Medicine, Boston, Massachusetts, USA
- Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester and NIHR Manchester Musculoskeletal Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
222
|
Primorac D, Molnar V, Rod E, Jeleč Ž, Čukelj F, Matišić V, Vrdoljak T, Hudetz D, Hajsok H, Borić I. Knee Osteoarthritis: A Review of Pathogenesis and State-Of-The-Art Non-Operative Therapeutic Considerations. Genes (Basel) 2020; 11:E854. [PMID: 32722615 PMCID: PMC7464436 DOI: 10.3390/genes11080854] [Citation(s) in RCA: 222] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/11/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Being the most common musculoskeletal progressive condition, osteoarthritis is an interesting target for research. It is estimated that the prevalence of knee osteoarthritis (OA) among adults 60 years of age or older is approximately 10% in men and 13% in women, making knee OA one of the leading causes of disability in elderly population. Today, we know that osteoarthritis is not a disease characterized by loss of cartilage due to mechanical loading only, but a condition that affects all of the tissues in the joint, causing detectable changes in tissue architecture, its metabolism and function. All of these changes are mediated by a complex and not yet fully researched interplay of proinflammatory and anti-inflammatory cytokines, chemokines, growth factors and adipokines, all of which can be measured in the serum, synovium and histological samples, potentially serving as biomarkers of disease stage and progression. Another key aspect of disease progression is the epigenome that regulates all the genetic expression through DNA methylation, histone modifications, and mRNA interference. A lot of work has been put into developing non-surgical treatment options to slow down the natural course of osteoarthritis to postpone, or maybe even replace extensive surgeries such as total knee arthroplasty. At the moment, biological treatments such as platelet-rich plasma, bone marrow mesenchymal stem cells and autologous microfragmented adipose tissue containing stromal vascular fraction are ordinarily used. Furthermore, the latter two mentioned cell-based treatment options seem to be the only methods so far that increase the quality of cartilage in osteoarthritis patients. Yet, in the future, gene therapy could potentially become an option for orthopedic patients. In the following review, we summarized all of the latest and most important research in basic sciences, pathogenesis, and non-operative treatment.
Collapse
Affiliation(s)
- Dragan Primorac
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Eberly College of Science, The Pennsylvania State University, University Park, State College, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Medical School, University of Split, 21000 Split, Croatia
- School of Medicine, Faculty of Dental Medicine and Health, University “Josip Juraj Strossmayer”, 31000 Osijek, Croatia
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96 450 Coburg, Germany
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| | - Vilim Molnar
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Eduard Rod
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Željko Jeleč
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Nursing, University North, 48 000 Varaždin, Croatia
| | - Fabijan Čukelj
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Split, 21000 Split, Croatia
| | - Vid Matišić
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
| | - Trpimir Vrdoljak
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Department of Orthopedics, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Damir Hudetz
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- School of Medicine, JJ Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Orthopedics, Clinical Hospital “Sveti Duh”, 10000 Zagreb, Croatia
| | - Hana Hajsok
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Zagreb, 10000 Zagreb, Croatia
| | - Igor Borić
- St. Catherine Specialty Hospital, 49210 Zabok/10000 Zagreb, Croatia; (V.M.); (E.R.); (Ž.J.); (F.Č.); (V.M.); (T.V.); (D.H.); (H.H.); (I.B.)
- Medical School, University of Split, 21000 Split, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School, University of Mostar, 88000 Mostar, Bosnia and Herzegovina
| |
Collapse
|
223
|
Abstract
Being the most common musculoskeletal progressive condition, osteoarthritis is an interesting target for research. It is estimated that the prevalence of knee osteoarthritis (OA) among adults 60 years of age or older is approximately 10% in men and 13% in women, making knee OA one of the leading causes of disability in elderly population. Today, we know that osteoarthritis is not a disease characterized by loss of cartilage due to mechanical loading only, but a condition that affects all of the tissues in the joint, causing detectable changes in tissue architecture, its metabolism and function. All of these changes are mediated by a complex and not yet fully researched interplay of proinflammatory and anti-inflammatory cytokines, chemokines, growth factors and adipokines, all of which can be measured in the serum, synovium and histological samples, potentially serving as biomarkers of disease stage and progression. Another key aspect of disease progression is the epigenome that regulates all the genetic expression through DNA methylation, histone modifications, and mRNA interference. A lot of work has been put into developing non-surgical treatment options to slow down the natural course of osteoarthritis to postpone, or maybe even replace extensive surgeries such as total knee arthroplasty. At the moment, biological treatments such as platelet-rich plasma, bone marrow mesenchymal stem cells and autologous microfragmented adipose tissue containing stromal vascular fraction are ordinarily used. Furthermore, the latter two mentioned cell-based treatment options seem to be the only methods so far that increase the quality of cartilage in osteoarthritis patients. Yet, in the future, gene therapy could potentially become an option for orthopedic patients. In the following review, we summarized all of the latest and most important research in basic sciences, pathogenesis, and non-operative treatment.
Collapse
|
224
|
Abstract
PURPOSE OF REVIEW The decreased contact area, edge loading, and increased stress in the adjacent area cartilage resulting from chondral defects are believed to predispose this tissue to degenerative changes that have significant economic implications, especially when considering its progression to osteoarthritis of the knee. Growth factors are considered therapeutic possibilities to enhance healing of chondral injuries and modify the progression to degenerative arthritis. Thus, the purposes of this review are to first to summarize important points for defect preparation and recent advances in techniques for marrow stimulation and second, and to identify specific growth factors and cytokines that have the capacity to advance cartilage regeneration and the treatment of osteoarthritis in light of recent laboratory and clinical studies. RECENT FINDINGS TGF-β, BMP-2, BMP-7, IGF-1, as IL-1 receptor antagonist, and recombinant human FGF-18 are some of the promising growth factor/cytokine treatments with pioneering and evolving clinical developments. The bulk of the review describes and discusses these developments in light of fundamental basic science. It is crucial to also understand the other underlying advances made in the surgical management of cartilage defects prior to onset of OA. These advances are in techniques for defect preparation and marrow stimulation, a common cartilage repair procedure used in combination with growth factor/cytokine augmentation. Multiple growth factor/cytokine modulation therapies are currently undergoing clinical trial investigation including Invossa (currently in phase III study), Kineret (currently in phase I study), and Sprifermin (currently in phase II study) for the treatment of symptomatic osteoarthritis.
Collapse
|
225
|
Collins JE, Katz JN. Structural change following treatment for meniscal tear and osteoarthritis - the jury is still out. Osteoarthritis Cartilage 2020; 28:867-869. [PMID: 32243993 DOI: 10.1016/j.joca.2020.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/02/2020] [Indexed: 02/02/2023]
Affiliation(s)
- J E Collins
- Orthopedic and Arthritis Center for Outcomes Research, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| | - J N Katz
- Orthopedic and Arthritis Center for Outcomes Research, Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
226
|
Roemer FW, Demehri S, Omoumi P, Link TM, Kijowski R, Saarakkala S, Crema MD, Guermazi A. State of the Art: Imaging of Osteoarthritis—Revisited 2020. Radiology 2020; 296:5-21. [DOI: 10.1148/radiol.2020192498] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
227
|
Katz JN, Neogi T, Callahan LF, Block JA, Conaghan PG, Simon LS, Kraus VB, Hochberg MC. Disease modification in osteoarthritis; pathways to drug approval. OSTEOARTHRITIS AND CARTILAGE OPEN 2020; 2:100059. [PMID: 36474586 PMCID: PMC9718177 DOI: 10.1016/j.ocarto.2020.100059] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Objective To summarize proceedings of a workshop convened to discuss advances in disease modifying osteoarthritis (OA) drugs and regulatory challenges in bringing these drugs to market. Design Summary of a one day workshop held in Washington, DC in May 2019. Results Attendees presented data documenting the prevalence, cost and disability burden of OA; recent documentation of disease modification without concomitant clinical benefit in trials of disease modifying drugs; regulatory considerations pertinent to disease modifying therapy; and methodologic approaches to addressing these regulatory considerations. Conclusions The research, pharmaceutical and regulatory communities must continue to collaborate on defining pathways for approval of disease modifying osteoarthritis drugs that document effects on clinical endpoints (such as pain, function or joint replacement) as well as on bone, cartilage and other structures.
Collapse
Affiliation(s)
- Jeffrey N. Katz
- Brigham and Women's Hospital, Orthopaedics and Rheumatology, 75 Francis Street, Hale 5016, Boston, MA 2115, USA
| | - Tuhina Neogi
- Boston University School of Medicine, Rheumatology, 650 Albany St., Clin Epi Unit, Suite X-200, Boston, Massachusetts 02118, USA
| | - Leigh F. Callahan
- University of North Carolina School of Medicine, Department of Orthopaedics, 3102 Bioinformatics Building, CB #7055, Chapel Hill, NC 27516, USA
| | - Joel A. Block
- Rush University Medical Center, Rush Medical College, Section of Rheumatology, 1611 W. Harrison St., Suite 510, Chicago, IL 60612-3854, USA
| | - Philip G. Conaghan
- University of Leeds, Leeds Institute of Rheumatic & MSK Medicine, 2nd Floor, Chapel Allerton Hospital, Chapeltown Road, Leeds, W Yorks LS74SA, UK
| | | | - Virginia Byers Kraus
- Duke Molecular Physiology Institute and Medicine, 300 N Duke St., Durham, NC 27701, USA
| | - Marc C. Hochberg
- University of Maryland School of Medicine, 620 W. Lexington St., Baltimore, MD 21201, USA
| |
Collapse
|
228
|
Abstract
Osteoarthritis (OA) is one of the most debilitating diseases and is associated with a high personal and socioeconomic burden. So far, there is no therapy available that effectively arrests structural deterioration of cartilage and bone or is able to successfully reverse any of the existing structural defects. Efforts to identify more tailored treatment options led to the development of strategies that enabled the classification of patient subgroups from the pool of heterogeneous phenotypes that display distinct common characteristics. To this end, the classification differentiates the structural endotypes into cartilage and bone subtypes, which are predominantly driven by structure-related degenerative events. In addition, further classifications have highlighted individuals with an increased inflammatory contribution (inflammatory phenotype) and pain-driven phenotypes as well as senescence and metabolic syndrome phenotypes. Most probably, it will not be possible to classify individuals by a single definite subtype, but it might help to identify groups of patients with a predominant pathology that would more likely benefit from a specific drug or cell-based therapy. Current clinical trials addressed mainly regeneration/repair of cartilage and bone defects or targeted pro-inflammatory mediators by intra-articular injections of drugs and antibodies. Pain was treated mostly by antagonizing nerve growth factor (NGF) activity and its receptor tropomyosin-related kinase A (TrkA). Therapies targeting metabolic disorders such as diabetes mellitus and senescence/aging-related pathologies are not specifically addressing OA. However, none of these therapies has been proven to modify disease progression significantly or successfully prevent final joint replacement in the advanced disease stage. Within this review, we discuss the recent advances in phenotype-specific treatment options and evaluate their applicability for use in personalized OA therapy.
Collapse
Affiliation(s)
- Susanne Grässel
- Department of Orthopedic Surgery, Exp. Orthopedics, ZMB/Biopark 1, Am Biopark 9, University of Regensburg, Regensburg, 93053, Germany
| | - Dominique Muschter
- Department of Orthopedic Surgery, Exp. Orthopedics, ZMB/Biopark 1, Am Biopark 9, University of Regensburg, Regensburg, 93053, Germany
| |
Collapse
|
229
|
Said O, Schock J, Krämer N, Thüring J, Hitpass L, Schad P, Kuhl C, Abrar D, Truhn D, Nebelung S. An MRI-compatible varus-valgus loading device for whole-knee joint functionality assessment based on compartmental compression: a proof-of-concept study. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 33:839-854. [PMID: 32314105 PMCID: PMC8302563 DOI: 10.1007/s10334-020-00844-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/27/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Beyond static assessment, functional techniques are increasingly applied in magnetic resonance imaging (MRI) studies. Stress MRI techniques bring together MRI and mechanical loading to study knee joint and tissue functionality, yet prototypical axial compressive loading devices are bulky and complex to operate. This study aimed to design and validate an MRI-compatible pressure-controlled varus-valgus loading device that applies loading along the joint line. METHODS Following the device's thorough validation, we demonstrated proof of concept by subjecting a structurally intact human cadaveric knee joint to serial imaging in unloaded and loaded configurations, i.e. to varus and valgus loading at 7.5 kPa (= 73.5 N), 15 kPa (= 147.1 N), and 22.5 kPa (= 220.6 N). Following clinical standard (PDw fs) and high-resolution 3D water-selective cartilage (WATSc) sequences, we performed manual segmentations and computations of morphometric cartilage measures. We used CT and radiography (to quantify joint space widths) and histology and biomechanics (to assess tissue quality) as references. RESULTS We found (sub)regional decreases in cartilage volume, thickness, and mean joint space widths reflective of areal pressurization of the medial and lateral femorotibial compartments. DISCUSSION Once substantiated by larger sample sizes, varus-valgus loading may provide a powerful alternative stress MRI technique.
Collapse
Affiliation(s)
- Oliver Said
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Justus Schock
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital Düsseldorf, University Dusseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
- Institute of Computer Vision and Imaging, RWTH University Aachen, Aachen, Germany
| | - Nils Krämer
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Johannes Thüring
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Lea Hitpass
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Philipp Schad
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Christiane Kuhl
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
| | - Daniel Abrar
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital Düsseldorf, University Dusseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Daniel Truhn
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, Aachen, Germany
- Institute of Computer Vision and Imaging, RWTH University Aachen, Aachen, Germany
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital Düsseldorf, University Dusseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
230
|
Sprifermin (rhFGF18) versus vehicle induces a biphasic process of extracellular matrix remodeling in human knee OA articular cartilage ex vivo. Sci Rep 2020; 10:6011. [PMID: 32265494 PMCID: PMC7138815 DOI: 10.1038/s41598-020-63216-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Sprifermin, recombinant human fibroblast growth factor 18 (rhFGF18), induces cartilage regeneration in knees of patients with osteoarthritis (OA). We hypothesized that a temporal multiphasic process of extracellular matrix (ECM) degradation and formation underlie this effect. We aimed to characterize the temporal ECM remodeling of human knee OA articular cartilage in response to sprifermin treatment. Articular cartilage explants from patients with knee OA (npatients = 14) were cultured for 70 days, with permanent exposure to sprifermin (900, 450, 225 ng/mL), FGF18 (450 ng/mL), insulin-like growth factor-1 (100 ng/mL, positive control) or vehicle (nreplicates/treatment/patient = 2). Metabolic activity (AlamarBlue) and biomarkers of type IIB collagen (PIIBNP) formation (Pro-C2 enzyme-linked immunosorbent assay [ELISA]) and aggrecanase-mediated aggrecan neo-epitope NITEGE (AGNx1 ELISA) were quantified once a week. At end of culture (day 70), gene expression (quantitative reverse transcription polymerase chain reaction) and proteoglycan content (Safranin O/Fast green staining) were quantified. The cartilage had continuously increased metabolic activity, when treated with sprifermin/FGF18 compared to vehicle. During days 7-28 PIIBNP was decreased and NITEGE was increased, and during days 35-70 PIIBNP was increased. At end of culture, the cartilage had sustained proteoglycan content and relative expression of ACAN < COL2A1 < SOX9 < COL1A1, indicating that functional chondrocytes remained in the explants. Sprifermin induces a temporal biphasic cartilage remodeling in human knee OA articular cartilage explants, with early-phase increased aggrecanase activity and late-phase increased type II collagen formation.
Collapse
|
231
|
Cowan KJ, Kleinschmidt-Dörr K, Gigout A, Moreau F, Kraines J, Townsend R, Dolgos H, DeMartino J. Translational strategies in drug development for knee osteoarthritis. Drug Discov Today 2020; 25:1054-1064. [PMID: 32251777 DOI: 10.1016/j.drudis.2020.03.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/03/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
Abstract
Osteoarthritis (OA) is a common disease worldwide with large unmet medical needs. To bring innovative treatments to OA patients, we at Merck have implemented a comprehensive strategy for drug candidate evaluation. We have a clear framework for decision-making in our preclinical pipeline, to design our clinical proof-of-concept trials for OA patients. We have qualified our strategy to define and refine dose and dosing regimen, for treatments administered either systemically or intra-articularly (IA). We do this through preclinical in vitro and in vivo studies, and by back-translating results from clinical studies in OA patients.
Collapse
Affiliation(s)
| | | | | | - Flavie Moreau
- EMD Serono Research and Development Institute, Billerica, MA, USA (A business of Merck, Darmstadt, Germany)
| | - Jeff Kraines
- EMD Serono Research and Development Institute, Billerica, MA, USA (A business of Merck, Darmstadt, Germany)
| | - Robert Townsend
- EMD Serono Research and Development Institute, Billerica, MA, USA (A business of Merck, Darmstadt, Germany)
| | | | - Julie DeMartino
- EMD Serono Research and Development Institute, Billerica, MA, USA (A business of Merck, Darmstadt, Germany)
| |
Collapse
|
232
|
Eckstein F, Kraines JL, Aydemir A, Wirth W, Maschek S, Hochberg MC. Intra-articular sprifermin reduces cartilage loss in addition to increasing cartilage gain independent of location in the femorotibial joint: post-hoc analysis of a randomised, placebo-controlled phase II clinical trial. Ann Rheum Dis 2020; 79:525-528. [PMID: 32098758 PMCID: PMC7147175 DOI: 10.1136/annrheumdis-2019-216453] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/08/2020] [Accepted: 01/25/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVES In the phase II FGF-18 Osteoarthritis Randomized Trial with Administration of Repeated Doses (FORWARD) study, sprifermin demonstrated cartilage modification in the total femorotibial joint and in both femorotibial compartments by MRI in patients with knee osteoarthritis. Here, we evaluate whether sprifermin reduces cartilage loss and increases cartilage thickness, independent of location. METHODS Patients were randomised 1:1:1:1:1 to three once-weekly intra-articular injections of 30 µg sprifermin every 6 months (q6mo); 30 µg sprifermin every 12 months (q12mo); 100 µg sprifermin q6mo; 100 µg sprifermin q12mo; or placebo. Post-hoc analysis using thinning/thickening scores and ordered values evaluated femorotibial cartilage thickness change from baseline to 24 months independent of location. Changes were indirectly compared with those of Osteoarthritis Initiative healthy subjects. RESULTS Thinning scores were significantly lower for sprifermin 100 µg q6mo versus placebo (mean (95% CI) difference: 334 µm (114 to 554)), with a cartilage thinning score similar to healthy subjects. Thickening scores were significantly greater for sprifermin 100 µg q6mo, 100 µg q12mo and 30 µg q6mo versus placebo (mean (95% CI) difference: 425 µm (267 to 584); 450 µm (305 to 594) and 139 µm (19 to 259), respectively) and more than doubled versus healthy subjects. CONCLUSIONS Sprifermin increases cartilage thickness, and substantially reduces cartilage loss, expanding FORWARD primary results. TRIAL REGISTRATION NUMBER NCT01919164.
Collapse
Affiliation(s)
- Felix Eckstein
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Ainring, Germany
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Jeffrey L Kraines
- Global Clinical Development - Immunology, EMD Serono Research and Development Institute, Inc, Billerica, Massachusetts, USA
| | - Aida Aydemir
- Global Biostatistics and Epidemiology, EMD Serono Reserach and Development Institute, Inc, Billerica, Massachusetts, USA
| | - Wolfgang Wirth
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Ainring, Germany
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, Salzburg, Austria
| | - Susanne Maschek
- Department of Imaging and Functional Musculoskeletal Research, Institute of Anatomy & Cell Biology, Paracelsus Medical University, Salzburg, Austria
- Chondrometrics GmbH, Ainring, Germany
| | - Marc C Hochberg
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
233
|
Cao P, Li Y, Tang Y, Ding C, Hunter DJ. Pharmacotherapy for knee osteoarthritis: current and emerging therapies. Expert Opin Pharmacother 2020; 21:797-809. [PMID: 32100600 DOI: 10.1080/14656566.2020.1732924] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Peihua Cao
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yamin Li
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yujin Tang
- Department of Orthopedic Surgery, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Changhai Ding
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - David J. Hunter
- Clinical Research Centre, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Rheumatology, Royal North Shore Hospital and Institute of Bone and Joint Research, Kolling Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
234
|
Pathomechanisms of Posttraumatic Osteoarthritis: Chondrocyte Behavior and Fate in a Precarious Environment. Int J Mol Sci 2020; 21:ijms21051560. [PMID: 32106481 PMCID: PMC7084733 DOI: 10.3390/ijms21051560] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023] Open
Abstract
Traumatic injuries of the knee joint result in a wide variety of pathomechanisms, which contribute to the development of so-called posttraumatic osteoarthritis (PTOA). These pathogenetic processes include oxidative stress, excessive expression of catabolic enzymes, release of damage-associated molecular patterns (DAMPs), and synovial inflammation. The present review focuses on the underlying pathomechanisms of PTOA and in particular the behavior and fate of the surviving chondrocytes, comprising chondrocyte metabolism, regulated cell death, and phenotypical changes comprising hypertrophy and senescence. Moreover, possible therapeutic strategies, such as chondroanabolic stimulation, anti-oxidative and anti-inflammatory treatment, as well as novel therapeutic targets are discussed.
Collapse
|
235
|
Bao B, Zhu H. Placebo treatment with minimal adverse effects and low cost is ideal for management of osteoarthritis: A commentary on "The efficacy and safety of extracorporeal shockwave therapy in knee osteoarthritis: A systematic review and meta-analysis". Int J Surg 2020; 76:3. [PMID: 32068182 DOI: 10.1016/j.ijsu.2020.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/06/2020] [Accepted: 02/06/2020] [Indexed: 10/25/2022]
Affiliation(s)
- Bingbo Bao
- Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hongyi Zhu
- Department of Orthopaedic Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
236
|
Katz JN. Structural Modification in Osteoarthritis: Dawn of a New Day? Ann Intern Med 2020; 172:147-148. [PMID: 31887741 DOI: 10.7326/m19-3809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Jeffrey N Katz
- Brigham and Women's Hospital, Harvard Medical School, and Harvard School of Public Health, Boston, Massachusetts (J.N.K.)
| |
Collapse
|
237
|
Yan H, Hu Y, Akk A, Rai MF, Pan H, Wickline SA, Pham CT. Induction of WNT16 via Peptide-mRNA Nanoparticle-Based Delivery Maintains Cartilage Homeostasis. Pharmaceutics 2020; 12:pharmaceutics12010073. [PMID: 31963412 PMCID: PMC7022671 DOI: 10.3390/pharmaceutics12010073] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/27/2019] [Accepted: 01/13/2020] [Indexed: 01/02/2023] Open
Abstract
Osteoarthritis (OA) is a progressive joint disease that causes significant disability and pain and for which there are limited treatment options. We posit that delivery of anabolic factors that protect and maintain cartilage homeostasis will halt or retard OA progression. We employ a peptide-based nanoplatform to deliver Wingless and the name Int-1 (WNT) 16 messenger RNA (mRNA) to human cartilage explants. The peptide forms a self-assembled nanocomplex of approximately 65 nm in size when incubated with WNT16 mRNA. The complex is further stabilized with hyaluronic acid (HA) for enhanced cellular uptake. Delivery of peptide-WNT16 mRNA nanocomplex to human cartilage explants antagonizes canonical β-catenin/WNT3a signaling, leading to increased lubricin production and decreased chondrocyte apoptosis. This is a proof-of-concept study showing that mRNA can be efficiently delivered to articular cartilage, an avascular tissue that is poorly accessible even when drugs are intra-articularly (IA) administered. The ability to accommodate a wide range of oligonucleotides suggests that this platform may find use in a broad range of clinical applications.
Collapse
Affiliation(s)
- Huimin Yan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.Y.); (Y.H.)
- John Cochran Veterans Affairs Medical Center, St. Louis, MO 63106, USA
| | - Ying Hu
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.Y.); (Y.H.)
- John Cochran Veterans Affairs Medical Center, St. Louis, MO 63106, USA
| | - Antonina Akk
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.Y.); (Y.H.)
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Hua Pan
- Department of Cardiovascular Sciences, University of South Florida, Tampa, FL 33620, USA;
| | - Samuel A. Wickline
- Department of Cardiovascular Sciences, University of South Florida, Tampa, FL 33620, USA;
- Correspondence: (S.A.W.); (C.T.N.P.)
| | - Christine T.N. Pham
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (H.Y.); (Y.H.)
- John Cochran Veterans Affairs Medical Center, St. Louis, MO 63106, USA
- Correspondence: (S.A.W.); (C.T.N.P.)
| |
Collapse
|