201
|
Olesen MV, Needham EK, Pakkenberg B. The Optical Fractionator Technique to Estimate Cell Numbers in a Rat Model of Electroconvulsive Therapy. J Vis Exp 2017:55737. [PMID: 28715378 PMCID: PMC5612052 DOI: 10.3791/55737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Stereological methods are designed to describe quantitative parameters without making assumptions about size, shape, orientation and distribution of cells or structures. These methods have been revolutionary for quantitative analysis of the mammalian brain, in which volumetric cell populations are too high to count manually, and stereology is now the technique of choice whenever estimates of three-dimensional quantities need to be extracted from measurements on two-dimensional sections. All stereological methods are in principle unbiased; however, they rely on proper knowledge about the structure of interest and the characteristics of the tissue. Stereology is based on Systematic Uniformly Random Sampling (SURS), with adjustment of sampling to the most efficient level in respect to precision, providing reliable, quantitative information about the whole structure of interest. Here we present the optical fractionator in conjunction with BrdU immunohistochemistry to estimate the production and survival of newly-formed neurons in the granule cell layer (including the sub-granular zone) of the rat hippocampus following electroconvulsive stimulation, which is among the most potent stimulators of neurogenesis. The optical fractionator technique is designed to provide estimates of the total number of cells from thick sections sampled from the full structure. Thick sections provide the opportunity to observe cells in their full 3-D extent and thus, allow for easy and robust cell classification based on morphological criteria. When correctly implemented, the sensitivity and efficiency of the optical fractionator provides accurate estimates with a fixed and predetermined precision.
Collapse
Affiliation(s)
| | - Esther Kjær Needham
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital
| | - Bente Pakkenberg
- Research Laboratory for Stereology and Neuroscience, Bispebjerg-Frederiksberg Hospital; Institute of Clinical Medicine, Department of Health and Medical Sciences, University of Copenhagen
| |
Collapse
|
202
|
Abstract
Adult hippocampal neurogenesis (AHN) occurs in humans and every other mammalian species examined. Evidence that AHN is stimulated by a variety of treatments and behaviors with anxiolytic properties has sparked interest in harnessing AHN to treat anxiety disorders. However, relatively little is known about the mechanisms through which AHN modulates fear and anxiety. In this review, we consider evidence that AHN modulates fear and anxiety by altering the processing of and memory for traumatic experiences. Based on studies of the role of AHN in Pavlovian fear conditioning, we conclude that AHN modulates the consequences of aversive experience by influencing 1) the efficiency of hippocampus-dependent memory acquisition; 2) generalization of hippocampal fear memories; 3) long-term retention of hippocampal aversive memories; and 4) the nonassociative effects of acute aversive experience. The preclinical literature suggests that stimulation of AHN is likely to have therapeutically relevant consequences, including reduced generalization and long-term retention of aversive memories. However, the literature also identifies four caveats that must be addressed if AHN-based therapies are to achieve therapeutic benefits without significant side effects.
Collapse
Affiliation(s)
- Michael R Drew
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, TX, USA.
| | - Kylie A Huckleberry
- Center for Learning and Memory and Department of Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
203
|
Pinar C, Fontaine CJ, Triviño-Paredes J, Lottenberg CP, Gil-Mohapel J, Christie BR. Revisiting the flip side: Long-term depression of synaptic efficacy in the hippocampus. Neurosci Biobehav Rev 2017. [PMID: 28624435 DOI: 10.1016/j.neubiorev.2017.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Synaptic plasticity is widely regarded as a putative biological substrate for learning and memory processes. While both decreases and increases in synaptic strength are seen as playing a role in learning and memory, long-term depression (LTD) of synaptic efficacy has received far less attention than its counterpart long-term potentiation (LTP). Never-the-less, LTD at synapses can play an important role in increasing computational flexibility in neural networks. In addition, like learning and memory processes, the magnitude of LTD can be modulated by factors that include stress and sex hormones, neurotrophic support, learning environments, and age. Examining how these factors modulate hippocampal LTD can provide the means to better elucidate the molecular underpinnings of learning and memory processes. This is in turn will enhance our appreciation of how both increases and decreases in synaptic plasticity can play a role in different neurodevelopmental and neurodegenerative conditions.
Collapse
Affiliation(s)
- Cristina Pinar
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Christine J Fontaine
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Juan Triviño-Paredes
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Carina P Lottenberg
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada; Faculty of Medical Sciences of Santa Casa de São Paulo, Sao Paulo, SP, Brazil
| | - Joana Gil-Mohapel
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R Christie
- Division of Medical Sciences and UBC Island Medical Program, University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
204
|
Newborn dopaminergic neurons are associated with the migration and differentiation of SVZ-derived neural progenitors in a 6-hydroxydopamin-injected mouse model. Neuroscience 2017; 352:64-78. [DOI: 10.1016/j.neuroscience.2017.03.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/27/2017] [Accepted: 03/26/2017] [Indexed: 12/15/2022]
|
205
|
MiR-338-3p regulates neuronal maturation and suppresses glioblastoma proliferation. PLoS One 2017; 12:e0177661. [PMID: 28493990 PMCID: PMC5426787 DOI: 10.1371/journal.pone.0177661] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/01/2017] [Indexed: 12/17/2022] Open
Abstract
Neurogenesis is a highly-regulated process occurring in the dentate gyrus that has been linked to learning, memory, and antidepressant efficacy. MicroRNAs (miRNAs) have been previously shown to play an important role in the regulation of neuronal development and neurogenesis in the dentate gyrus via modulation of gene expression. However, this mode of regulation is both incompletely described in the literature thus far and highly multifactorial. In this study, we designed sensors and detected relative levels of expression of 10 different miRNAs and found miR-338-3p was most highly expressed in the dentate gyrus. Comparison of miR-338-3p expression with neuronal markers of maturity indicates miR-338-3p is expressed most highly in the mature neuron. We also designed a viral “sponge” to knock down in vivo expression of miR-338-3p. When miR-338-3p is knocked down, neurons sprout multiple primary dendrites that branch off of the soma in a disorganized manner, cellular proliferation is upregulated, and neoplasms form spontaneously in vivo. Additionally, miR-338-3p overexpression in glioblastoma cell lines slows their proliferation in vitro. Further, low miR-338-3p expression is associated with increased mortality and disease progression in patients with glioblastoma. These data identify miR-338-3p as a clinically relevant tumor suppressor in glioblastoma.
Collapse
|
206
|
Anacker C, Hen R. Adult hippocampal neurogenesis and cognitive flexibility - linking memory and mood. Nat Rev Neurosci 2017; 18:335-346. [PMID: 28469276 DOI: 10.1038/nrn.2017.45] [Citation(s) in RCA: 652] [Impact Index Per Article: 93.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adult hippocampal neurogenesis has been implicated in cognitive processes, such as pattern separation, and in the behavioural effects of stress and antidepressants. Young adult-born neurons have been shown to inhibit the overall activity of the dentate gyrus by recruiting local interneurons, which may result in sparse contextual representations and improved pattern separation. We propose that neurogenesis-mediated inhibition also reduces memory interference and enables reversal learning both in neutral situations and in emotionally charged ones. Such improved cognitive flexibility may in turn help to decrease anxiety-like and depressive-like behaviour.
Collapse
Affiliation(s)
- Christoph Anacker
- Department of Psychiatry, Columbia University and Research Foundation for Mental Hygiene, New York State Psychiatric Institute, 1051 Riverside Drive, New York 10032, New York, USA
| | - René Hen
- Department of Psychiatry, Columbia University and Research Foundation for Mental Hygiene, New York State Psychiatric Institute, 1051 Riverside Drive, New York 10032, New York, USA.,Department of Neuroscience, Columbia University, Kolb Annex, 40 Haven Ave, New York 10032, New York, USA.,Department of Pharmacology, Columbia University, 630 West 168th Street, New York 10032, New York, USA
| |
Collapse
|
207
|
Bettio LEB, Rajendran L, Gil-Mohapel J. The effects of aging in the hippocampus and cognitive decline. Neurosci Biobehav Rev 2017; 79:66-86. [PMID: 28476525 DOI: 10.1016/j.neubiorev.2017.04.030] [Citation(s) in RCA: 346] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023]
Abstract
Aging is a natural process that is associated with cognitive decline as well as functional and social impairments. One structure of particular interest when considering aging and cognitive decline is the hippocampus, a brain region known to play an important role in learning and memory consolidation as well as in affective behaviours and mood regulation, and where both functional and structural plasticity (e.g., neurogenesis) occur well into adulthood. Neurobiological alterations seen in the aging hippocampus including increased oxidative stress and neuroinflammation, altered intracellular signalling and gene expression, as well as reduced neurogenesis and synaptic plasticity, are thought to be associated with age-related cognitive decline. Non-invasive strategies such as caloric restriction, physical exercise, and environmental enrichment have been shown to counteract many of the age-induced alterations in hippocampal signalling, structure, and function. Thus, such approaches may have therapeutic value in counteracting the deleterious effects of aging and protecting the brain against age-associated neurodegenerative processes.
Collapse
Affiliation(s)
- Luis E B Bettio
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Luckshi Rajendran
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Joana Gil-Mohapel
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; UBC Island Medical program, University of Victoria, Victoria, BC, Canada.
| |
Collapse
|
208
|
Abstract
As the world's population continues to age, an understanding of the aging brain becomes increasingly crucial. This review focuses on several recent ideas and findings in the study of neurocognitive aging, specifically focusing on episodic memory, and discusses how they can be considered and used to guide us moving forward. Topics include dysfunction in neural circuits, the roles of neurogenesis and inhibitory signaling, vulnerability in the entorhinal cortex, individual differences, and comorbidities. These avenues of study provide a brief overview of promising themes in the field and together provide a snapshot of what we believe will be important emerging topics in selective vulnerabilities in the aging brain.
Collapse
Affiliation(s)
- Zachariah Reagh
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Michael Yassa
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| |
Collapse
|
209
|
Fan XW, Liu HH, Wang HB, Chen F, Yang Y, Chen Y, Guan SK, Wu KL. Electroacupuncture Improves Cognitive Function and Hippocampal Neurogenesis after Brain Irradiation. Radiat Res 2017; 187:672-681. [PMID: 28375680 DOI: 10.1667/rr14561.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Cognitive impairments after brain irradiation seriously affect quality of life for patients, and there is currently no effective treatment. In this study using an irradiated rat model, the role of electroacupuncture was investigated for treatment of radiation-induced brain injury. Animals received 10 Gy exposure to the entire brain, and electroacupuncture was administered 3 days before irradiation as well as up to 2 weeks postirradiation. Behavioral tests were performed one month postirradiation, and rats were then sacrificed for histology or molecular studies. Electroacupuncture markedly improved animal performance in the novel place recognition test. In the emotion test, electroacupuncture reduced defecation during the open-field test, and latency to consumption of food in the novelty suppressed feeding test. Brain irradiation inhibited the generation of immature neurons, but did not cause neural stem cell loss. Electroacupuncture partially restored hippocampal neurogenesis. Electroacupuncture decreased the amount of activated microglia and increased resting microglia in the hippocampus after irradiation. In addition, electroacupuncture promoted mRNA and protein expression of brain-derived neurotrophic factor (BDNF) in the hippocampus. In conclusion, electroacupuncture could improve cognitive function and hippocampal neurogenesis after irradiation, and the protective effect of electroacupuncture was associated with the modulation of microglia and upregulation of BDNF in the hippocampus.
Collapse
Affiliation(s)
- Xing-Wen Fan
- a Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032; Departments of.,b Oncology and
| | - Huan-Huan Liu
- d Department of Radiology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China 200092
| | - Hong-Bing Wang
- a Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032; Departments of.,b Oncology and
| | - Fu Chen
- c Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China, 200032; and
| | - Yu Yang
- a Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032; Departments of
| | - Yan Chen
- c Integrative Medicine and Neurobiology, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, Shanghai, China, 200032; and
| | - Shi-Kuo Guan
- a Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032; Departments of
| | - Kai-Liang Wu
- a Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China, 200032; Departments of.,b Oncology and
| |
Collapse
|
210
|
Hueston CM, Cryan JF, Nolan YM. Stress and adolescent hippocampal neurogenesis: diet and exercise as cognitive modulators. Transl Psychiatry 2017; 7:e1081. [PMID: 28375209 PMCID: PMC5416690 DOI: 10.1038/tp.2017.48] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/04/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023] Open
Abstract
Adolescence is a critical period for brain maturation. Deciphering how disturbances to the central nervous system at this time affect structure, function and behavioural outputs is important to better understand any long-lasting effects. Hippocampal neurogenesis occurs during development and continues throughout life. In adulthood, integration of these new cells into the hippocampus is important for emotional behaviour, cognitive function and neural plasticity. During the adolescent period, maturation of the hippocampus and heightened levels of hippocampal neurogenesis are observed, making alterations to neurogenesis at this time particularly consequential. As stress negatively affects hippocampal neurogenesis, and adolescence is a particularly stressful time of life, it is important to investigate the impact of stressor exposure at this time on hippocampal neurogenesis and cognitive function. Adolescence may represent not only a time for which stress can have long-lasting effects, but is also a critical period during which interventions, such as exercise and diet, could ameliorate stress-induced changes to hippocampal function. In addition, intervention at this time may also promote life-long behavioural changes that would aid in fostering increased hippocampal neurogenesis and cognitive function. This review addresses both the acute and long-term stress-induced alterations to hippocampal neurogenesis and cognition during the adolescent period, as well as changes to the stress response and pubertal hormones at this time which may result in differential effects than are observed in adulthood. We hypothesise that adolescence may represent an optimal time for healthy lifestyle changes to have a positive and long-lasting impact on hippocampal neurogenesis, and to protect against stress-induced deficits. We conclude that future research into the mechanisms underlying the susceptibility of the adolescent hippocampus to stress, exercise and diet and the consequent effect on cognition may provide insight into why adolescence may be a vital period for correct conditioning of future hippocampal function.
Collapse
Affiliation(s)
- C M Hueston
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - J F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| | - Y M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
211
|
Active Dentate Granule Cells Encode Experience to Promote the Addition of Adult-Born Hippocampal Neurons. J Neurosci 2017; 37:4661-4678. [PMID: 28373391 DOI: 10.1523/jneurosci.3417-16.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 01/09/2023] Open
Abstract
The continuous addition of new dentate granule cells (DGCs), which is regulated exquisitely by brain activity, renders the hippocampus plastic. However, how neural circuits encode experiences to affect the addition of adult-born neurons remains unknown. Here, we used endoscopic Ca2+ imaging to track the real-time activity of individual DGCs in freely behaving mice. For the first time, we found that active DGCs responded to a novel experience by increasing their Ca2+ event frequency preferentially. This elevated activity, which we found to be associated with object exploration, returned to baseline by 1 h in the same environment, but could be dishabituated via introduction to a novel environment. To transition seamlessly between environments, we next established a freely controllable virtual reality system for unrestrained mice. We again observed increased firing of active neurons in a virtual enriched environment. Interestingly, multiple novel virtual experiences increased the number of newborn neurons accumulatively compared with a single experience. Finally, optogenetic silencing of existing DGCs during novel environmental exploration perturbed experience-induced neuronal addition. Our study shows that the adult brain conveys novel, enriched experiences to increase the addition of adult-born hippocampal neurons by increasing the firing of active DGCs.SIGNIFICANCE STATEMENT Adult brains are constantly reshaping themselves from synapses to circuits as we encounter novel experiences from moment to moment. Importantly, this reshaping includes the addition of newborn hippocampal neurons. However, it remains largely unknown how our circuits encode experience-induced brain activity to govern the addition of new hippocampal neurons. By coupling in vivo Ca2+ imaging of dentate granule neurons with a novel, unrestrained virtual reality system for rodents, we discovered that a new experience increased firing of active dentate granule neurons rapidly and robustly. Exploration in multiple novel virtual environments, compared with a single environment, promoted dentate activation and enhanced the addition of new hippocampal neurons accumulatively. Finally, silencing this activation optogenetically during novel experiences perturbed experience-induced neuronal addition.
Collapse
|
212
|
García-Fuster MJ, Parsegian A, Watson SJ, Akil H, Flagel SB. Adolescent cocaine exposure enhances goal-tracking behavior and impairs hippocampal cell genesis selectively in adult bred low-responder rats. Psychopharmacology (Berl) 2017; 234:1293-1305. [PMID: 28210781 PMCID: PMC5792824 DOI: 10.1007/s00213-017-4566-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022]
Abstract
RATIONALE Environmental challenges during adolescence, such as drug exposure, can cause enduring behavioral and molecular changes that contribute to life-long maladaptive behaviors, including addiction. Selectively bred high-responder (bHR) and low-responder (bLR) rats represent a unique model for assessing the long-term impact of adolescent environmental manipulations, as they inherently differ on a number of addiction-related traits. bHR rats are considered "addiction-prone," whereas bLR rats are "addiction-resilient," at least under baseline conditions. Moreover, relative to bLRs, bHR rats are more likely to attribute incentive motivational value to reward cues, or to "sign-track." OBJECTIVES We utilized bHR and bLR rats to determine whether adolescent cocaine exposure can alter their inborn behavioral and neurobiological profiles, with a specific focus on Pavlovian conditioned approach behavior (i.e., sign- vs. goal-tracking) and hippocampal neurogenesis. METHODS bHR and bLR rats were administered cocaine (15 mg/kg) or saline for 7 days during adolescence (postnatal day, PND 33-39) and subsequently tested for Pavlovian conditioned approach behavior in adulthood (PND 62-75), wherein an illuminated lever (conditioned stimulus) was followed by the response-independent delivery of a food pellet (unconditioned stimulus). Behaviors directed toward the lever and the food cup were recorded as sign- and goal-tracking, respectively. Hippocampal cell genesis was evaluated on PND 77 by immunohistochemistry. RESULTS Adolescent cocaine exposure impaired hippocampal cell genesis (proliferation and survival) and enhanced the inherent propensity to goal-track in adult bLR, but not bHR, rats. CONCLUSIONS Adolescent cocaine exposure elicits long-lasting changes in stimulus-reward learning and enduring deficits in hippocampal neurogenesis selectively in adult bLR rats.
Collapse
Affiliation(s)
- M. Julia García-Fuster
- IUNICS/IdISPa, University of the Balearic Islands, Palma de Mallorca, Spain,Corresponding author: M. Julia García-Fuster. IUNICS/IdISPa, University of the Balearic Islands, Cra. Valldemossa km 7.5, E-07122 Palma de Mallorca, Spain. Phone: +34 971 259992. Fax: +34 971 259501.
| | - Aram Parsegian
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, USA
| | - Stanley J. Watson
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, USA,Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Huda Akil
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, USA,Department of Psychiatry, University of Michigan, Ann Arbor, USA
| | - Shelly B. Flagel
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, USA,Department of Psychiatry, University of Michigan, Ann Arbor, USA
| |
Collapse
|
213
|
Kondo H, Uchida M, Ichihashi Y, Suzuki A, Hayashi S, Iinuma M, Azuma K, Kubo KY. Maternal occlusal disharmony during pregnancy induces spatial memory deficits associated with the suppression of hippocampal neurogenesis in adult mouse offspring. PEDIATRIC DENTAL JOURNAL 2017. [DOI: 10.1016/j.pdj.2016.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
214
|
Brozka H, Pistikova A, Radostova D, Vales K, Svoboda J, Grzyb AN, Stuchlik A. Adult neurogenesis reduction by a cytostatic treatment improves spatial reversal learning in rats. Neurobiol Learn Mem 2017; 141:93-100. [PMID: 28359853 DOI: 10.1016/j.nlm.2017.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/25/2017] [Indexed: 01/07/2023]
Abstract
Adult neurogenesis in the dentate gyrus adds a substantial number of new functional neurons to the hippocampus network in rodents. To date, however, the function of these new granule cells remains unclear. We conducted an experiment to assess the contribution of adult neurogenesis in the dentate gyrus to acquisition and reversal learning in a task that predominantly requires generalization of a rule. Young adult male Long-Evans rats were repeatedly administered either a cytostatic temozolomide or saline for a period of four weeks (3 injections per week). Post treatment, animals were injected with bromodeoxyuridine to quantify adult neurogenesis in the dentate gyrus. For behavioral assessment we used hippocampus-dependent active place avoidance with reversal in a Carousel maze. Animals first learned to avoid a 60° sector on the rotating arena. Afterwards, sector was relocated to the opposite side of the rotating arena (reversal). The administration of temozolomide significantly improved the reversal performance compared to saline-treated rats. Our results suggest a significant, level-dependent, improvement of reversal learning in animals with reduced adult neurogenesis in hippocampus.
Collapse
Affiliation(s)
- Hana Brozka
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Adela Pistikova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| | - Dominika Radostova
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Karel Vales
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic; National Institute of Mental Health, Klecany, Czech Republic
| | - Jan Svoboda
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Anna N Grzyb
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany; CRTD-Center for Regenerative Therapies Dresden, Technische Universität Dresden, Germany
| | - Ales Stuchlik
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic.
| |
Collapse
|
215
|
Staples MC, Fannon MJ, Mysore KK, Dutta RR, Ongjoco AT, Quach LW, Kharidia KM, Somkuwar SS, Mandyam CD. Dietary restriction reduces hippocampal neurogenesis and granule cell neuron density without affecting the density of mossy fibers. Brain Res 2017; 1663:59-65. [PMID: 28284897 DOI: 10.1016/j.brainres.2017.02.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 02/04/2017] [Accepted: 02/27/2017] [Indexed: 11/25/2022]
Abstract
The hippocampal formation undergoes significant morphological and functional changes after prolonged caloric and dietary restriction (DR). In this study we tested whether prolonged DR results in deleterious alterations in hippocampal neurogenesis, density of granule cell neurons and mossy fibers, all of which support plasticity in the dentate gyrus. Young adult animals either experienced free access to food (control condition), or every-other-day feeding regimen (DR condition) for 3months. The number of Ki-67 cells and 28-day old 5-bromo-2'-deoxyuridine (BrdU) cells were quantified in the dorsal and ventral dentate gyrus to determine the effect of DR on cellular proliferation and survival of neural progenitor cells in the anatomically defined regions of the dentate gyrus. The density of granule cell neurons and synaptoporin were also quantified to determine the effect of DR on granule cell neurons and mossy fiber projections in the dentate gyrus. Our results show that DR increases cellular proliferation and concurrently reduces survival of newly born neurons in the ventral dentate gyrus without effecting the number of cells in the dorsal dentate gyrus. DR reduced density of granule cell neurons in the dorsal dentate gyrus. These alterations in the number of granule cell neurons did not affect mossy fiber density in DR animals, which was visualized as no differences in synaptoporin expression. Our findings demonstrate that granule cell neurons in the dentate gyrus are vulnerable to chronic DR and that the reorganization of granule cells in the dentate gyrus subregions is not producing concomitant alterations in dentate gyrus neuronal circuitry with this type of DR.
Collapse
Affiliation(s)
- Miranda C Staples
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - McKenzie J Fannon
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Karthik K Mysore
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Rahul R Dutta
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Alexandria T Ongjoco
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Leon W Quach
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Khush M Kharidia
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Sucharita S Somkuwar
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Chitra D Mandyam
- Veterans Medical Research Foundation, VA San Diego Healthcare System, La Jolla, CA, USA.
| |
Collapse
|
216
|
EphA4 Regulates Neuroblast and Astrocyte Organization in a Neurogenic Niche. J Neurosci 2017; 37:3331-3341. [PMID: 28258169 DOI: 10.1523/jneurosci.3738-16.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 11/21/2022] Open
Abstract
Significant migration cues are required to guide and contain newly generated rodent subventricular zone (SVZ) neuroblasts as they transit along the lateral ventricles and then through the anterior forebrain to their ultimate site of differentiation in the olfactory bulbs (OBs). These cues enforce strict neuroblast spatial boundaries within the dense astroglial meshwork of the SVZ and rostral migratory stream (RMS), yet are permissive to large-scale neuroblast migration. Therefore, the molecular mechanisms that define these cues and control dynamic interactions between migratory neuroblasts and surrounding astrocytes are of particular interest. We found that deletion of EphA4 and specifically ablation of EphA4 kinase activity resulted in misaligned neuroblasts and disorganized astrocytes in the RMS/SVZ, linking EphA4 forward signaling to SVZ and RMS spatial organization, orientation, and regulation. In addition, within a 3 week period, there was a significant reduction in the number of neuroblasts that reached the OB and integrated into the periglomerular layer, revealing a crucial role for EphA4 in facilitating efficient neuroblast migration to the OB. Single-cell analysis revealed that EPHA4 and its EFN binding partners are expressed by subpopulations of neuroblasts and astrocytes within the SVZ/RMS/OB system resulting in a cell-specific mosaic, suggesting complex EphA4 signaling involving both homotypic and heterotypic cell-cell interactions. Together, our studies reveal a novel molecular mechanism involving EphA4 signaling that functions in stem cell niche organization and ultimately neuroblast migration in the anterior forebrain.SIGNIFICANCE STATEMENT The subventricular zone neurogenic stem cell niche generates highly migratory neuroblasts that transit the anterior forebrain along a defined pathway to the olfactory bulb. Postnatal and adult brain organization dictates strict adherence to a narrow migration corridor. Subventricular zone neuroblasts are aligned in tightly bundled chains within a meshwork of astrocytes; however, the cell-cell cues that organize this unique, cell-dense migration pathway are largely unknown. Our studies show that forward signaling through the EphA4 tyrosine kinase receptor, mediated by ephrins expressed by subpopulations of neuroblasts and astrocytes, is required for compact, directional organization of neuroblasts and astrocytes within the pathway and efficient transit of neuroblasts through the anterior forebrain to the olfactory bulb.
Collapse
|
217
|
White ER, Pinar C, Bostrom CA, Meconi A, Christie BR. Mild Traumatic Brain Injury Produces Long-Lasting Deficits in Synaptic Plasticity in the Female Juvenile Hippocampus. J Neurotrauma 2017; 34:1111-1123. [DOI: 10.1089/neu.2016.4638] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Emily R. White
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | - Cristina Pinar
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | - Crystal A. Bostrom
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | - Alicia Meconi
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
| | - Brian R. Christie
- Division of Medical Sciences and Neuroscience Graduate Program, University of Victoria, Victoria, British Columbia, Canada
- Centre for Brain Health and Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
218
|
Gilbert ME, Goodman JH, Gomez J, Johnstone AFM, Ramos RL. Adult hippocampal neurogenesis is impaired by transient and moderate developmental thyroid hormone disruption. Neurotoxicology 2017; 59:9-21. [PMID: 28048979 PMCID: PMC11242631 DOI: 10.1016/j.neuro.2016.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 11/28/2022]
Abstract
The hippocampus maintains a capacity for neurogenesis throughout life, a capacity that is reduced in models of adult onset hypothyroidism. The effects of developmental thyroid hormone (TH) insufficiency on neurogenesis in the adult hippocampus, however, has not been examined. Graded degrees of TH insufficiency were induced in pregnant rat dams by administration of 0, 3 or 10ppm of 6-propylthiouracil (PTU) in drinking water from gestational day (GD) 6 until weaning. Body, brain, and hippocampal weight were reduced on postnatal day (PN) 14, 21, 78 and hippocampal volume was smaller at the 10 but not 3ppm dose level. A second experiment examined adult hippocampal neurogenesis following developmental or adult onset hypothyroidism. Two male offspring from 0 and 3ppm exposed dams were either maintained on control water or exposed to 3ppm PTU to create 4 distinct treatment conditions (Control-Control; Control-PTU, PTU-Control, PTU-PTU) based on developmental and adult exposures. Beginning on the 28th day of adult exposure to 0 or 3ppm PTU, bromodeoxyuridine (BrdU, 50mg/kg, ip) was administered twice daily for 5days, and one male from each treatment was sacrificed 24h and 28days after the last BrdU dose and brains processed for immunohistochemistry. Although no volume changes were seen in the hippocampus of the neonate at 3ppm, thinning of the granule cell layer emerged in adulthood. Developmental TH insufficiency produced a reduction in newly born cells, reducing BrdU+ve cells at 1 with no further reduction at 28-days post-BrdU. Similar findings were obtained using the proliferative cell marker Ki67. Neuronal differentiations was also altered with fewer doublecortin (Dcx) expressing cells and a higher proportion of immature Dcx phenotypes seen after developmental but not adult TH insufficiency. An impaired capacity for neurogenesis may contribute to impairments in synaptic plasticity and cognitive deficits previously reported by our laboratory and others following moderate degrees of developmental TH insufficiency induced by this PTU model.
Collapse
Affiliation(s)
- M E Gilbert
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - J H Goodman
- Department of Developmental Neurobiology, NY State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA; Departments of Physiology and Pharmacology and Neurology, SUNY Downstate Medical Center Brooklyn, NY 11203, USA
| | - J Gomez
- Department of Developmental Neurobiology, NY State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314, USA
| | - A F M Johnstone
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - R L Ramos
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY 11568, USA
| |
Collapse
|
219
|
Yang Z, Li M, Hu X, Xiang B, Deng W, Wang Q, Wang Y, Zhao L, Ma X, Sham PC, Northoff G, Li T. Rare damaging variants in DNA repair and cell cycle pathways are associated with hippocampal and cognitive dysfunction: a combined genetic imaging study in first-episode treatment-naive patients with schizophrenia. Transl Psychiatry 2017; 7:e1028. [PMID: 28195569 PMCID: PMC5438026 DOI: 10.1038/tp.2016.291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 11/13/2016] [Accepted: 11/27/2016] [Indexed: 02/05/2023] Open
Abstract
Schizophrenia is a complex neurodevelopmental disorder where changes in both hippocampus and memory-related cognitive functions are central. However, the exact relationship between neurodevelopmental-genetic factors and hippocampal-cognitive dysfunction remains unclear. The general aim of our study is to link the occurrence of rare damaging mutations involved in susceptibility gene pathways to the structure and function of hippocampus in order to define genetically and phenotypically based subgroups in schizophrenia. In the present study, by analyzing the exome sequencing and magnetic resonance imaging data in 94 first-episode treatment-naive schizophrenia patients and 134 normal controls, we identified that a cluster of rare damaging variants (RDVs) enriched in DNA repair and cell cycle pathways was present only in a subgroup including 39 schizophrenic patients. Furthermore, we found that schizophrenic patients with this RDVs show increased resting-state functional connectivity (rsFC) between left hippocampus (especially for left dentate gyrus) and left inferior parietal cortex, as well as decreased rsFC between left hippocampus and cerebellum. Moreover, abnormal rsFC was related to the deficits of spatial working memory (SWM; that is known to recruit the hippocampus) in patients with the RDVs. Taken together, our data demonstrate for the first time, to our knowledge, that damaging rare variants of genes in DNA repair and cell cycle pathways are associated with aberrant hippocampal rsFC, which was further relative to cognitive deficits in first-episode treatment-naive schizophrenia. Therefore, our data provide some evidence for the occurrence of phenotypic alterations in hippocampal and SWM function in a genetically defined subgroup of schizophrenia.
Collapse
Affiliation(s)
- Z Yang
- The State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - M Li
- The State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - X Hu
- Biobank, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - B Xiang
- The State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - W Deng
- The State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Q Wang
- The State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y Wang
- The State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - L Zhao
- The State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - X Ma
- The State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - P C Sham
- Centre for Genomic Sciences and Department of Psychiatry, University of Hong Kong, Pokfulam, China
| | - G Northoff
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - T Li
- The State Key Laboratory of Biotherapy, Psychiatric Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- The Mental Health Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
220
|
Samaddar S, Vazquez K, Ponkia D, Toruno P, Sahbani K, Begum S, Abouelela A, Mekhael W, Ahmed Z. Transspinal direct current stimulation modulates migration and proliferation of adult newly born spinal cells in mice. J Appl Physiol (1985) 2017; 122:339-353. [DOI: 10.1152/japplphysiol.00834.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 11/22/2022] Open
Abstract
Direct current electrical fields have been shown to be a major factor in the regulation of cell proliferation, differentiation, migration, and survival, as well as in the maturation of dividing cells during development. During adulthood, spinal cord cells are continuously produced in both animals and humans, and they hold great potential for neural restoration following spinal cord injury. While the effects of direct current electrical fields on adult-born spinal cells cultured ex vivo have recently been reported, the effects of direct current electrical fields on adult-born spinal cells in vivo have not been characterized. Here, we provide convincing findings that a therapeutic form of transspinal direct current stimulation (tsDCS) affects the migration and proliferation of adult-born spinal cells in mice. Specifically, cathodal tsDCS attracted the adult-born spinal cells, while anodal tsDCS repulsed them. In addition, both tsDCS polarities caused a significant increase in cell number. Regarding the potential mechanisms involved, both cathodal and anodal tsDCS caused significant increases in expression of brain-derived neurotrophic factor, while expression of nerve growth factor increased and decreased, respectively. In the spinal cord, both anodal and cathodal tsDCS increased blood flow. Since blood flow and angiogenesis are associated with the proliferation of neural stem cells, increased blood flow may represent a major factor in the modulation of newly born spinal cells by tsDCS. Consequently, we propose that the method and novel findings presented in the current study have the potential to facilitate cellular, molecular, and/or bioengineering strategies to repair injured spinal cords. NEW & NOTEWORTHY Our results indicate that transspinal direct current stimulation (tsDCS) affects the migratory pattern and proliferation of adult newly born spinal cells, a cell population which has been implicated in learning and memory. In addition, our results suggest a potential mechanism of action regarding the functional effects of applying direct current. Thus tsDCS may represent a novel method by which to manipulate the migration and cell number of adult newly born cells and restore functions following brain or spinal cord injury.
Collapse
Affiliation(s)
- Sreyashi Samaddar
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Kizzy Vazquez
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Dipen Ponkia
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Pedro Toruno
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Karim Sahbani
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Sultana Begum
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Ahmed Abouelela
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
| | - Wagdy Mekhael
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
- The Graduate Center, The City University of New York, New York, New York
| | - Zaghloul Ahmed
- Department of Physical Therapy, College of Staten Island Center for Developmental Neuroscience, Staten Island, New York; and
- The Graduate Center, The City University of New York, New York, New York
| |
Collapse
|
221
|
Holschbach MA, Lonstein JS. Motherhood and infant contact regulate neuroplasticity in the serotonergic midbrain dorsal raphe. Psychoneuroendocrinology 2017; 76:97-106. [PMID: 27898359 PMCID: PMC5272870 DOI: 10.1016/j.psyneuen.2016.10.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 10/03/2016] [Accepted: 10/25/2016] [Indexed: 12/22/2022]
Abstract
The adult brain shows remarkable neuroplasticity in response to hormones and the socioemotional modifications that they influence. In females with reproductive and maternal experience, this neuroplasticity includes the birth and death of cells in several forebrain regions involved in maternal caregiving and postpartum affective state. Such plasticity in midbrain sites critical for these behavioral and emotional processes has never been examined, though. By visualizing bromodeoxyuridine (BrdU) to label mitotic cells, NeuroD for neuronal precursors, and TUNEL to identify dying cells, we found that the midbrain dorsal raphe nucleus (DR, the source of most ascending serotoninergic projections) exhibited significant neuroplasticity in response to motherhood. Specifically, BrdU analyses revealed that DR newborn cell survival (but not proliferation) was regulated by reproductive state, such that cells born early postpartum were less likely to survive 12 days to reach the late postpartum period compared to cells born during late pregnancy that survived 12 days to reach the early postpartum period. Many of the surviving cells in the DR were NeuN immunoreactive, suggesting a neuronal phenotype. Consistent with these findings, late postpartum rats had fewer NeuroD-immunoreactive DR cells than early postpartum rats. Maternal experience contributed to the late postpartum reduction in DR newborn cell survival because removing the litter at parturition increased cell survival as well as reduced cell death. Unlike cytogenesis in the maternal hippocampus, which is reduced by circulating glucocorticoids, DR newborn cell survival was unaffected by postpartum adrenalectomy. These effects of reproductive state and motherhood on DR plasticity were associated with concurrent changes in DR levels of serotonin's precursor, 5-HTP, and its metabolite, 5-HIAA. Our results demonstrate for the first time that cytogenesis occurs in the midbrain DR of any adult mammal, that DR plasticity is influenced by female reproductive state and maternal experience, and that this plasticity is accompanied by changes in DR serotonergic function. Because serotonin is critical for postpartum caregiving behaviors and maternal affective state, plasticity in the DR may contribute to the neurochemical changes necessary for successful motherhood.
Collapse
Affiliation(s)
- M Allie Holschbach
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA.
| | - Joseph S Lonstein
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
222
|
Levy JM, Nicoll RA. Membrane-associated guanylate kinase dynamics reveal regional and developmental specificity of synapse stability. J Physiol 2017; 595:1699-1709. [PMID: 27861918 DOI: 10.1113/jp273147] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/24/2016] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS The membrane-associated guanylate kinase (MAGUK) family of synaptic scaffolding proteins anchor glutamate receptors at CNS synapses. MAGUK removal via RNAi-mediated knockdown in the CA1 hippocampal region in immature animals causes rapid and lasting reductions in glutamatergic transmission. In mature animals, the same manipulation has little acute effect. The hippocampal dentate gyrus, a region with ongoing adult neurogenesis, is sensitive to MAGUK loss in mature animals, behaving like an immature CA1. Over long time courses, removal of MAGUKs in CA1 causes reductions in glutamatergic transmission, indicating that synapses in mature animals require MAGUKs for anchoring glutamate receptors, but are much more stable. These results demonstrate regional and developmental control of synapse stability and suggest the existence of a sensitive period of heightened hippocampal plasticity in CA1 of pre-adolescent rodents, and in dentate gyrus throughout maturity. ABSTRACT Fast excitatory transmission in the brain requires localization of glutamate receptors to synapses. The membrane-associated guanylate kinase (MAGUK) family of synaptic scaffolding proteins is critical for localization of glutamate receptors to synapses. Although the MAGUKs are well-studied in reduced preparations and young animals, few data exist on their role in adult animals. Here, we present a detailed developmental study of the role of the MAGUKs during rat development. We first confirmed by knockdown experiments that MAGUKs are essential for glutamatergic transmission in young animals and cultured slices, and an increase in postsynaptic density protein 95 (PSD-95) by overexpression caused correlated increases in glutamatergic transmission. We found that CA1 synapses in adults, in contrast, were largely unaffected by overexpression of MAGUKs, and although adult CA1 synapses required MAGUKs to the same degree as synapses in young animals, this was only apparent over long time scales of knockdown. We additionally showed that overexpression of MAGUKs is likely to function to accelerate the developmental strengthening of excitatory transmission. Finally, we showed that adult dentate gyrus appears similar to immature CA1, demonstrating regional and developmental control of MAGUK dynamics. Together, these results demonstrate a period of juvenile instability at CA1 synapses, followed by a period of adult stability in which synapses are acutely unaffected by changes in MAGUK abundance.
Collapse
Affiliation(s)
- Jonathan M Levy
- Neuroscience Graduate Program, University of California San Francisco, CA, 94158, USA.,Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA, 94158, USA
| | - Roger A Nicoll
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, CA, 94158, USA
| |
Collapse
|
223
|
Nassan M, Li Q, Croarkin PE, Chen W, Colby CL, Veldic M, McElroy SL, Jenkins GD, Ryu E, Cunningham JM, Leboyer M, Frye MA, Biernacka JM. A genome wide association study suggests the association of muskelin with early onset bipolar disorder: Implications for a GABAergic epileptogenic neurogenesis model. J Affect Disord 2017; 208:120-129. [PMID: 27769005 DOI: 10.1016/j.jad.2016.09.049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Although multiple genes have been implicated in bipolar disorder (BD), they explain only a small proportion of its heritability. Identifying additional BD risk variants may be impaired by phenotypic heterogeneity, which is usually not taken into account in genome-wide association studies (GWAS). BD with early age at onset is a more homogeneous familial form of the disorder associated with greater symptom severity. METHODS We conducted a GWAS of early-onset BD (onset of mania/hypomania ≤19 years old) in a discovery sample of 419 cases and 1034 controls and a replication sample of 181 cases and 777 controls. These two samples were meta-analyzed, followed by replication of one signal in a third independent sample of 141 cases and 746 controls. RESULTS No single nucleotide polymorphism (SNP) associations were genome-wide significant in the discovery sample. Of the top 15 SNPs in the discovery analysis, rs114034759 in the muskelin (MKLN1) gene was nominally significant in the replication analysis, and was among the top associations in the meta-analysis (p=2.63E-06, OR=1.9). In the third sample, this SNP was again associated with early-onset BD (p=0.036, OR=1.6). Gene expression analysis showed that the rs114034759 risk allele is associated with decreased hippocampal MKLN1 expression. LIMITATIONS The sample sizes of the early-onset BD subgroups were relatively small. CONCLUSIONS Our results suggest MKLN1 is associated with early-onset BD. MKLN1 regulates cellular trafficking of GABA-A receptors, which is involved in synaptic transmission and plasticity, and is implicated in the mechanism of action of a group of antiepileptic mood stabilizers. These results therefore indicate that GABAergic neurotransmission may be implicated in early-onset BD. We propose that an increase in GABA-A receptors in the hippocampus in BD patients due to lower MKLN1 expression might increase the excitability during the GABA-excited early phase of young neurons, leading to an increased risk of developing a manic/hypomanic episode. Further studies are needed to test this model.
Collapse
Affiliation(s)
- Malik Nassan
- Department of Psychiatry & Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States.
| | - Qingqin Li
- Janssen Research & Development, LLC, Titusville, NJ, United States
| | - Paul E Croarkin
- Department of Psychiatry & Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Wenan Chen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Colin L Colby
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Marin Veldic
- Department of Psychiatry & Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Susan L McElroy
- Lindner Center of HOPE, Mason, OH and Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Gregory D Jenkins
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Euijung Ryu
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
| | - Julie M Cunningham
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Marion Leboyer
- Université Paris-Est Créteil Val de Marne, Créteil, France
| | - Mark A Frye
- Department of Psychiatry & Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States
| | - Joanna M Biernacka
- Department of Psychiatry & Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, United States; Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States.
| |
Collapse
|
224
|
Nickell CRG, Peng H, Hayes DM, Chen KY, McClain JA, Nixon K. Type 2 Neural Progenitor Cell Activation Drives Reactive Neurogenesis after Binge-Like Alcohol Exposure in Adolescent Male Rats. Front Psychiatry 2017; 8:283. [PMID: 29326611 PMCID: PMC5736541 DOI: 10.3389/fpsyt.2017.00283] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 11/30/2017] [Indexed: 12/17/2022] Open
Abstract
Excessive alcohol consumption during adolescence remains a significant health concern as alcohol drinking during adolescence increases the likelihood of an alcohol use disorder in adulthood by fourfold. Binge drinking in adolescence is a particular problem as binge-pattern consumption is the biggest predictor of neurodegeneration from alcohol and adolescents are particularly susceptible to the damaging effects of alcohol. The adolescent hippocampus, in particular, is highly susceptible to alcohol-induced structural and functional effects, including volume and neuron loss. However, hippocampal structure and function may recover with abstinence and, like in adults, a reactive burst in hippocampal neurogenesis in abstinence may contribute to that recovery. As the mechanism of this reactive neurogenesis is not known, the current study investigated potential mechanisms of reactive neurogenesis in binge alcohol exposure in adolescent, male rats. In a screen for cell cycle perturbation, a dramatic increase in the number of cells in all phases of the cycle was observed at 7 days following binge ethanol exposure as compared to controls. However, the proportion of cells in each phase was not different between ethanol-exposed rats and controls, indicating that cell cycle dynamics are not responsible for the reactive burst in neurogenesis. Instead, the marked increase in hippocampal proliferation was shown to be due to a twofold increase in proliferating progenitor cells, specifically an increase in cells colabeled with the progenitor cell marker Sox2 and S-phase (proliferation) marker, BrdU, in ethanol-exposed rats. To further characterize the individual subtypes of neural progenitor cells (NPCs) affected by adolescent binge ethanol exposure, a fluorescent quadruple labeling technique was utilized to differentiate type 1, 2a, 2b, and 3 progenitor cells simultaneously. At one week into abstinence, animals in the ethanol exposure groups had an increase in proliferating type 2 (intermediate progenitors) and type 3 (neuroblast) progenitors but not type 1 neural stem cells. These results together suggest that activation of type 2 NPCs out of quiescence is likely the primary mechanism for reactive hippocampal neurogenesis following adolescent alcohol exposure.
Collapse
Affiliation(s)
- Chelsea R Geil Nickell
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Hui Peng
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Dayna M Hayes
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Kevin Y Chen
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Justin A McClain
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Kimberly Nixon
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
225
|
Sailor KA, Schinder AF, Lledo PM. Adult neurogenesis beyond the niche: its potential for driving brain plasticity. Curr Opin Neurobiol 2016; 42:111-117. [PMID: 28040643 DOI: 10.1016/j.conb.2016.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 12/14/2022]
Abstract
Adult neurogenesis emerges as a tremendous form of plasticity with the continuous addition and loss of neurons in the adult brain. It is unclear how preexisting adult circuits generated during development are capable of modifying existing connections to accommodate the thousands of new synapses formed and exchanged each day. Here we first make parallels with sensory deprivation studies and its ability to induce preexisting non-neurogenic adult circuits to undergo massive reorganization. We then review recent studies that show high structural and synaptic plasticity in circuits directly connected to adult-born neurons. Finally, we propose future directions in the field to decipher how host circuits can accommodate new neuron integration and to determine the impact of adult neurogenesis on global brain plasticity.
Collapse
Affiliation(s)
- Kurt A Sailor
- Laboratory for Perception and Memory, Pasteur Institute, F-75015 Paris, France; Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée (UMR3571), F-75015 Paris, France
| | - Alejandro F Schinder
- Laboratory of Neuronal Plasticity, Leloir Institute (IIBBA - CONICET), Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina
| | - Pierre-Marie Lledo
- Laboratory for Perception and Memory, Pasteur Institute, F-75015 Paris, France; Centre National de la Recherche Scientifique (CNRS), Unité de Recherche Associée (UMR3571), F-75015 Paris, France.
| |
Collapse
|
226
|
Becker S. Neurogenesis and pattern separation: time for a divorce. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016; 8. [PMID: 28026915 DOI: 10.1002/wcs.1427] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/09/2016] [Accepted: 09/30/2016] [Indexed: 01/08/2023]
Abstract
The generation of new neurons in the adult mammalian brain has led to numerous theories as to their functional significance. One of the most widely held views is that adult neurogenesis promotes pattern separation, a process by which overlapping patterns of neural activation are mapped to less overlapping representations. While a large body of evidence supports a role for neurogenesis in high interference memory tasks, it does not support the proposed function of neurogenesis in mediating pattern separation. Instead, the adult-generated neurons seem to generate highly overlapping and yet distinct distributed representations for similar events. One way in which these immature, highly plastic, hyperactive neurons may contribute to novel memory formation while avoiding interference is by virtue of their extremely sparse connectivity with incoming perforant path fibers. Another intriguing proposal, awaiting empirical confirmation, is that the young neurons' recruitment into memory formation is gated by a novelty/mismatch mechanism mediated by CA3 or hilar back-projections. Ongoing research into the intriguing link between neurogenesis, stress-related mood disorders, and age-related neurodegeneration may lead to promising neurogenesis-based treatments for this wide range of clinical disorders. WIREs Cogn Sci 2017, 8:e1427. doi: 10.1002/wcs.1427 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Suzanna Becker
- Department of Psychology Neuroscience and Behaviour, McMaster University, Hamilton, Canada
| |
Collapse
|
227
|
Bioorthogonal chemical imaging of metabolic activities in live mammalian hippocampal tissues with stimulated Raman scattering. Sci Rep 2016; 6:39660. [PMID: 28000773 PMCID: PMC5175176 DOI: 10.1038/srep39660] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/25/2016] [Indexed: 12/22/2022] Open
Abstract
Brain is an immensely complex system displaying dynamic and heterogeneous metabolic activities. Visualizing cellular metabolism of nucleic acids, proteins, and lipids in brain with chemical specificity has been a long-standing challenge. Recent development in metabolic labeling of small biomolecules allows the study of these metabolisms at the global level. However, these techniques generally require nonphysiological sample preparation for either destructive mass spectrometry imaging or secondary labeling with relatively bulky fluorescent labels. In this study, we have demonstrated bioorthogonal chemical imaging of DNA, RNA, protein and lipid metabolism in live rat brain hippocampal tissues by coupling stimulated Raman scattering microscopy with integrated deuterium and alkyne labeling. Heterogeneous metabolic incorporations for different molecular species and neurogenesis with newly-incorporated DNA were observed in the dentate gyrus of hippocampus at the single cell level. We further applied this platform to study metabolic responses to traumatic brain injury in hippocampal slice cultures, and observed marked upregulation of protein and lipid metabolism particularly in the hilus region of the hippocampus within days of mechanical injury. Thus, our method paves the way for the study of complex metabolic profiles in live brain tissue under both physiological and pathological conditions with single-cell resolution and minimal perturbation.
Collapse
|
228
|
Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT. Human adult neurogenesis across the ages: An immunohistochemical study. Neuropathol Appl Neurobiol 2016; 42:621-638. [PMID: 27424496 PMCID: PMC5125837 DOI: 10.1111/nan.12337] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/08/2016] [Indexed: 12/12/2022]
Abstract
AIMS Neurogenesis in the postnatal human brain occurs in two neurogenic niches; the subventricular zone (SVZ) in the wall of the lateral ventricles and the subgranular zone (SGZ) of the hippocampus. The extent to which this physiological process continues into adulthood is an area of ongoing research. This study aimed to characterize markers of cell proliferation and assess the efficacy of antibodies used to identify neurogenesis in both neurogenic niches of the human brain. METHODS Cell proliferation and neurogenesis were simultaneously examined in the SVZ and SGZ of 23 individuals aged 0.2-59 years, using immunohistochemistry and immunofluorescence in combination with unbiased stereology. RESULTS There was a marked decline in proliferating cells in both neurogenic niches in early infancy with levels reaching those seen in the adjacent parenchyma by 4 and 1 year of age, in the SVZ and SGZ, respectively. Furthermore, the phenotype of these proliferating cells in both niches changed with age. In infants, proliferating cells co-expressed neural progenitor (epidermal growth factor receptor), immature neuronal (doublecortin and beta III tubulin) and oligodendrocytic (Olig2) markers. However, after 3 years of age, microglia were the only proliferating cells found in either niche or in the adjacent parenchyma. CONCLUSIONS This study demonstrates a marked decline in neurogenesis in both neurogenic niches in early childhood, and that the sparse proliferating cells in the adult brain are largely microglia.
Collapse
Affiliation(s)
- C V Dennis
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - L S Suh
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
- Dementia Research Unit, School of Medical Sciences, University of New South Wales, Kensington, NSW, Australia
| | - M L Rodriguez
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - J J Kril
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| | - G T Sutherland
- Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
229
|
Ghourichaee SS, Powell EM, Leach JB. Enhancement of human neural stem cell self-renewal in 3D hypoxic culture. Biotechnol Bioeng 2016; 114:1096-1106. [PMID: 27869294 DOI: 10.1002/bit.26224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 10/19/2016] [Accepted: 11/15/2016] [Indexed: 12/16/2022]
Abstract
The pathology of neurological disorders is associated with the loss of neuronal and glial cells that results in functional impairments. Human neural stem cells (hNSCs), due to their self-renewing and multipotent characteristics, possess enormous tissue-specific regenerative potential. However, the efficacy of clinical applications is restricted due to the lack of standardized in vitro cell production methods with the capability of generating hNSC populations with well-defined cellular compositions. At any point, a population of hNSCs may include undifferentiated stem cells, intermediate and terminally differentiated progenies, and dead cells. Due to the plasticity of hNSCs, environmental cues play crucial roles in determining the cellular composition of hNSC cultures over time. Here, we investigated the independent and synergistic effect of three important environmental factors (i.e., culture dimensionality, oxygen concentration, and growth factors) on the survival, renewal potential, and differentiation of hNSCs. Our experimental design included two dimensional (2D) versus three dimensional (3D) cultures and normoxic (21% O2 ) versus hypoxic (3% O2 ) conditions in the presence and absence of epidermal growth factor (EGF) and fibroblast growth factor-2 (FGF-2). Additionally, we discuss the feasibility of mathematical models that predict hNSC growth and differentiation under these culture conditions by adopting a negative feedback regulatory term. Our results indicate that the synergistic effect of culture dimensionality and hypoxic oxygen concentration in the presence of growth factors enhances the proliferation of viable, undifferentiated hNSCs. Moreover, the same synergistic effect in the absence of growth factors promotes the differentiation of hNSCs. Biotechnol. Bioeng. 2017;114: 1096-1106. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sasan Sharee Ghourichaee
- Department of Chemical, Biochemical & Environmental Engineering, UMBC, 1000 Hilltop Circle, Baltimore, Maryland, 21250
| | - Elizabeth M Powell
- Departments of Anatomy and Neurobiology, Psychiatry, and Bioengineering, University of Maryland School of Medicine, Baltimore, Maryland
| | - Jennie B Leach
- Department of Chemical, Biochemical & Environmental Engineering, UMBC, 1000 Hilltop Circle, Baltimore, Maryland, 21250
| |
Collapse
|
230
|
Luczynski P, Whelan SO, O'Sullivan C, Clarke G, Shanahan F, Dinan TG, Cryan JF. Adult microbiota-deficient mice have distinct dendritic morphological changes: differential effects in the amygdala and hippocampus. Eur J Neurosci 2016; 44:2654-2666. [PMID: 27256072 PMCID: PMC5113767 DOI: 10.1111/ejn.13291] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 04/28/2016] [Accepted: 05/31/2016] [Indexed: 12/30/2022]
Abstract
Increasing evidence implicates the microbiota in the regulation of brain and behaviour. Germ-free mice (GF; microbiota deficient from birth) exhibit altered stress hormone signalling and anxiety-like behaviours as well as deficits in social cognition. Although the mechanisms underlying the ability of the gut microbiota to influence stress responsivity and behaviour remain unknown, many lines of evidence point to the amygdala and hippocampus as likely targets. Thus, the aim of this study was to determine if the volume and dendritic morphology of the amygdala and hippocampus differ in GF versus conventionally colonized (CC) mice. Volumetric estimates revealed significant amygdalar and hippocampal expansion in GF compared to CC mice. We also studied the effect of GF status on the level of single neurons in the basolateral amygdala (BLA) and ventral hippocampus. In the BLA, the aspiny interneurons and pyramidal neurons of GF mice exhibited dendritic hypertrophy. The BLA pyramidal neurons of GF mice had more thin, stubby and mushroom spines. In contrast, the ventral hippocampal pyramidal neurons of GF mice were shorter, less branched and had less stubby and mushroom spines. When compared to controls, dentate granule cells of GF mice were less branched but did not differ in spine density. These findings suggest that the microbiota is required for the normal gross morphology and ultrastructure of the amygdala and hippocampus and that this neural remodelling may contribute to the maladaptive stress responsivity and behavioural profile observed in GF mice.
Collapse
Affiliation(s)
- Pauline Luczynski
- APC Microbiome Institute, University College Cork, Room 3.86, Western Gateway Building, Cork, Ireland
| | - Seán O Whelan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Colette O'Sullivan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Institute, University College Cork, Room 3.86, Western Gateway Building, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Fergus Shanahan
- APC Microbiome Institute, University College Cork, Room 3.86, Western Gateway Building, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Institute, University College Cork, Room 3.86, Western Gateway Building, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Institute, University College Cork, Room 3.86, Western Gateway Building, Cork, Ireland.
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
231
|
Xu MX, Yu R, Shao LF, Zhang YX, Ge CX, Liu XM, Wu WY, Li JM, Kong LD. Up-regulated fractalkine (FKN) and its receptor CX3CR1 are involved in fructose-induced neuroinflammation: Suppression by curcumin. Brain Behav Immun 2016; 58:69-81. [PMID: 26765996 DOI: 10.1016/j.bbi.2016.01.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/08/2015] [Accepted: 01/01/2016] [Indexed: 12/11/2022] Open
Abstract
Recent studies suggest that diet-induced fractalkine (FKN) stimulates neuroinflammation in animal models of obesity, yet how it occurs is unclear. This study investigated the role of FKN and it receptor, CX3CR1, in fructose-induced neuroinflammation, and examined curcumin's beneficial effect. Fructose feeding was found to induce hippocampal microglia activation with neuroinflammation through the activation of the Toll-like receptor 4 (TLR4)/nuclear transcription factor κB (NF-κB) signaling, resulting in the reduction of neurogenesis in the dentate gyrus (DG) of mice. Serum FKN levels, as well as hypothalamic FKN and CX3CR1 gene expression, were significantly increased in fructose-fed mice with hypothalamic microglia activation. Hippocampal gene expression of FKN and CX3CR1 was also up-regulated at 14d and normalized at 56d in mice fed with fructose, which were consistent with the change of GFAP. Furthermore, immunostaining showed that GFAP and FKN expression was increased in cornu amonis 1, but decreased in DG in fructose-fed mice. In vitro studies showed that GFAP and FKN expression was stimulated in astrocytes, and suppressed in mixed glial cells exposed to 48h-fructose, with the continual increase of pro-inflammatory cytokines. Thus, increased FKN and CX3CR1 may cause a cross-talk between activated glial cells and neurons, playing an important role in the development of neuroinflammation in fructose-fed mice. Curcumin protected against neuronal damage in hippocampal DG of fructose-fed mice by inhibiting microglia activation and suppressed FKN/CX3CR1 up-regulation in the neuronal network. These results suggest a new therapeutic approach to protect against neuronal damage associated with dietary obesity-associated neuroinflammation.
Collapse
Affiliation(s)
- Min-Xuan Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Rong Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Li-Fei Shao
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Yan-Xiu Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Chen-Xu Ge
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Xin-Meng Liu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Wen-Yuan Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Jian-Mei Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| | - Ling-Dong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
232
|
Somkuwar SS, Fannon-Pavlich MJ, Ghofranian A, Quigley JA, Dutta RR, Galinato MH, Mandyam CD. Wheel running reduces ethanol seeking by increasing neuronal activation and reducing oligodendroglial/neuroinflammatory factors in the medial prefrontal cortex. Brain Behav Immun 2016; 58:357-368. [PMID: 27542327 PMCID: PMC5067224 DOI: 10.1016/j.bbi.2016.08.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 07/26/2016] [Accepted: 08/09/2016] [Indexed: 12/13/2022] Open
Abstract
The therapeutic effects of wheel running (WR) during abstinence on reinstatement of ethanol seeking behaviors in rats that self-administered ethanol only (ethanol drinking, ED) or ED with concurrent chronic intermittent ethanol vapor experience (CIE-ED) were investigated. Neuronal activation as well as oligodendroglial and neuroinflammatory factors were measured in the medial prefrontal cortex (mPFC) tissue to determine cellular correlates associated with enhanced ethanol seeking. CIE-ED rats demonstrated escalated and unregulated intake of ethanol and maintained higher drinking than ED rats during abstinence. CIE-ED rats were more resistant to extinction from ethanol self-administration, however, demonstrated similar ethanol seeking triggered by ethanol contextual cues compared to ED rats. Enhanced seeking was associated with reduced neuronal activation, and increased number of myelinating oligodendrocyte progenitors and PECAM-1 expression in the mPFC, indicating enhanced oligodendroglial and neuroinflammatory response during abstinence. WR during abstinence enhanced self-administration in ED rats, indicating a deprivation effect. WR reduced reinstatement of ethanol seeking in CIE-ED and ED rats, indicating protection against relapse. The reduced ethanol seeking was associated with enhanced neuronal activation, reduced number of myelinating oligodendrocyte progenitors, and reduced PECAM-1 expression. The current findings demonstrate a protective role of WR during abstinence in reducing ethanol seeking triggered by ethanol contextual cues and establish a role for oligodendroglia-neuroinflammatory response in ethanol seeking. Taken together, enhanced oligodendroglia-neuroinflammatory response during abstinence may contribute to brain trauma in chronic alcohol drinking subjects and be a risk factor for enhanced propensity for alcohol relapse.
Collapse
Affiliation(s)
- Sucharita S Somkuwar
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - McKenzie J Fannon-Pavlich
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Atoosa Ghofranian
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Jacqueline A Quigley
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Rahul R Dutta
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Melissa H Galinato
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA
| | - Chitra D Mandyam
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
233
|
Traumatic Brain Injury Stimulates Neural Stem Cell Proliferation via Mammalian Target of Rapamycin Signaling Pathway Activation. eNeuro 2016; 3:eN-NWR-0162-16. [PMID: 27822507 PMCID: PMC5089538 DOI: 10.1523/eneuro.0162-16.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/07/2016] [Accepted: 09/23/2016] [Indexed: 12/31/2022] Open
Abstract
Neural stem cells in the adult brain possess the ability to remain quiescent until needed in tissue homeostasis or repair. It was previously shown that traumatic brain injury (TBI) stimulated neural stem cell (NSC) proliferation in the adult hippocampus, indicating an innate repair mechanism, but it is unknown how TBI promotes NSC proliferation. In the present study, we observed dramatic activation of mammalian target of rapamycin complex 1 (mTORC1) in the hippocampus of mice with TBI from controlled cortical impact (CCI). The peak of mTORC1 activation in the hippocampal subgranular zone, where NSCs reside, is 24-48 h after trauma, correlating with the peak of TBI-enhanced NSC proliferation. By use of a Nestin-GFP transgenic mouse, in which GFP is ectopically expressed in the NSCs, we found that TBI activated mTORC1 in NSCs. With 5-bromo-2'-deoxyuridine labeling, we observed that TBI increased mTORC1 activation in proliferating NSCs. Furthermore, administration of rapamycin abolished TBI-promoted NSC proliferation. Taken together, these data indicate that mTORC1 activation is required for NSC proliferation postinjury, and thus might serve as a therapeutic target for interventions to augment neurogenesis for brain repair after TBI.
Collapse
|
234
|
Olesen MV, Wörtwein G, Folke J, Pakkenberg B. Electroconvulsive stimulation results in long-term survival of newly generated hippocampal neurons in rats. Hippocampus 2016; 27:52-60. [DOI: 10.1002/hipo.22670] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Mikkel Vestergaard Olesen
- Department of Neurology, Research Laboratory for Stereology and Neuroscience; Bispebjerg-Frederiksberg Hospital; Copenhagen Denmark
| | - Gitta Wörtwein
- Laboratory of Neuropsychiatry, Department of Neuroscience and Pharmacology; University of Copenhagen and Mental Health Center Copenhagen; Copenhagen Denmark
- Section of Environmental Health, Department of Public Health; University of Copenhagen; Copenhagen Denmark
| | - Jonas Folke
- Department of Neurology, Research Laboratory for Stereology and Neuroscience; Bispebjerg-Frederiksberg Hospital; Copenhagen Denmark
| | - Bente Pakkenberg
- Department of Neurology, Research Laboratory for Stereology and Neuroscience; Bispebjerg-Frederiksberg Hospital; Copenhagen Denmark
- Department of Health and Medical Sciences, Institute of Clinical Medicine; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
235
|
Abstract
The functions of adult hippocampal neurogenesis have been extensively investigated during the past decade. Numerous studies have shown that adult neurogenesis may play an important role in the hippocampal-dependent learning and memory. This study evaluated the influence of exercise on hippocampal neurogenesis, neural plasticity, neurotrophic factors, and cognition. Areas of research focused on enhancing effect of exercise for adult hippocampal neurogenesis and protective role of exercise against brain diseases. The present study suggests that exercise improves brain functions and prevents decline of cognition across the lifespan. Understanding of neurobiological mechanisms of exercise on brain functions may lead to the development of novel therapeutic strategy for neurodegenerative disorders.
Collapse
Affiliation(s)
- Seung-Soo Baek
- Department of Sport & Health Science, College of Natural Science, Sangmyung University, Seoul, Korea
| |
Collapse
|
236
|
Giannakopoulou A, Lyras GA, Grigoriadis N. Long-term effects of autoimmune CNS inflammation on adult hippocampal neurogenesis. J Neurosci Res 2016; 95:1446-1458. [PMID: 27781303 DOI: 10.1002/jnr.23982] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 01/03/2023]
Abstract
Neurogenesis is a well-characterized phenomenon within the dentate gyrus (DG) of the adult hippocampus. Aging and chronic degenerative disorders have been shown to impair hippocampal neurogenesis, but the consequence of chronic inflammation remains controversial. In this study the chronic experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis was used to investigate the long-term effects of T cell-mediated central nervous system inflammation on hippocampal neurogenesis. 5-Bromodeoxyuridine (BrdU)-labeled subpopulations of hippocampal cells in EAE and control mice (coexpressing GFAP, doublecortin, NeuN, calretinin, and S100) were quantified at the recovery phase, 21 days after BrdU administration, to estimate alterations on the rate and differentiation pattern of the neurogenesis process. The core features of EAE mice DG are (i) elevated number of newborn (BrdU+) cells indicating vigorous proliferation, which in the long term subsided; (ii) enhanced migration of newborn cells into the granule cell layer; (iii) increased level of immature neuronal markers (including calretinin and doublecortin); (iv) trending decrease in the percentage of newborn mature neurons; and (v) augmented gliogenesis and differentiation of newborn neural precursor cells (NPCs) to mature astrocytes (BrdU+/S100+). Although the inflammatory environment in the brain of EAE mice enhances the proliferation of hippocampal NPCs, in the long term neurogenesis is progressively depleted, giving prominence to gliogenesis. The discrepancy between the high number of immature cells and the low number of mature newborn cells could be the result of a caused defect in the maturation pathway. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Aggeliki Giannakopoulou
- Laboratory of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George A Lyras
- Department of Historical Geology and Palaeontology, Faculty of Geology and Geoenvironment, University of Athens, Athens, Greece
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, 2nd Department of Neurology, AHEPA University Hospital, Thessaloniki, Greece
| |
Collapse
|
237
|
Kitahara Y, Nishi A. Antidepressant-induced changes in synaptic morphology in the mouse dentate gyrus. Nihon Yakurigaku Zasshi 2016; 148:180-184. [PMID: 27725565 DOI: 10.1254/fpj.148.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
238
|
Cui L, Sun W, Yu M, Li N, Guo L, Gu H, Zhou Y. Disrupted-in-schizophrenia1 (DISC1) L100P mutation alters synaptic transmission and plasticity in the hippocampus and causes recognition memory deficits. Mol Brain 2016; 9:89. [PMID: 27729083 PMCID: PMC5059944 DOI: 10.1186/s13041-016-0270-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 10/05/2016] [Indexed: 11/21/2022] Open
Abstract
Disrupted-in-schizophrenia 1(DISC1) is a promising candidate susceptibility gene for a spectrum of psychiatric illnesses that share cognitive impairments in common, including schizophrenia, bipolar disorder and major depression. Here we report that DISC1 L100P homozygous mutant shows normal anxiety- and depression-like behavior, but impaired object recognition which is prevented by administration of atypical antipsychotic drug clozapine. Ca2+ image analysis reveals suppression of glutamate-evoked elevation of cytoplasmic [Ca2+] in L100P hippocampal slices. L100P mutant slices exhibit decreased excitatory synaptic transmission (sEPSCs and mEPSCs) in dentate gyrus (DG) and impaired long-term potentiation in the CA1 region of the hippocampus. L100P mutation does not alter proteins expression of the excitatory synaptic markers, PSD95 and synapsin-1; neither does it changes dendrites morphology of primary cultured hippocampal neurons. Our findings suggest that the existence of abnormal synaptic transmission and plasticity in hippocampal network may disrupt declarative information processing and contribute to recognition deficits in DISC1 L100P mutant mice.
Collapse
Affiliation(s)
- Lin Cui
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China.,Department of Pathology, Qingdao Municipal Hospital, Affiliated to Medical College of Qingdao University, Qingdao, Shandong, 266071, China
| | - Wei Sun
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China.,Departments of Medicine, Shandong Liming Polytechnic Vocational College, Jinan, Shandong, 250116, China
| | - Ming Yu
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China
| | - Nan Li
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China
| | - Li Guo
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China
| | - Huating Gu
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China
| | - Yu Zhou
- Department of Physiology, Medical College of Qingdao University, 403 Boya Bldg., 308 Ningxia Rd., Qingdao, Shandong, 266071, China.
| |
Collapse
|
239
|
Diamantaki M, Frey M, Berens P, Preston-Ferrer P, Burgalossi A. Sparse activity of identified dentate granule cells during spatial exploration. eLife 2016; 5. [PMID: 27692065 PMCID: PMC5077296 DOI: 10.7554/elife.20252] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/01/2016] [Indexed: 01/20/2023] Open
Abstract
In the dentate gyrus - a key component of spatial memory circuits - granule cells (GCs) are known to be morphologically diverse and to display heterogeneous activity profiles during behavior. To resolve structure-function relationships, we juxtacellularly recorded and labeled single GCs in freely moving rats. We found that the vast majority of neurons were silent during exploration. Most active GCs displayed a characteristic spike waveform, fired at low rates and showed spatial activity. Primary dendritic parameters were sufficient for classifying neurons as active or silent with high accuracy. Our data thus support a sparse coding scheme in the dentate gyrus and provide a possible link between structural and functional heterogeneity among the GC population.
Collapse
Affiliation(s)
- Maria Diamantaki
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Graduate Training Centre of Neuroscience - IMPRS, University of Tübingen, Tübingen, Germany
| | - Markus Frey
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.,Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany.,Bernstein Centre for Computational Neuroscience, University of Tübingen, Tübingen, Germany
| | - Patricia Preston-Ferrer
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Andrea Burgalossi
- Werner-Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
240
|
Chen C, Ma TZ, Wang LN, Wang JJ, Tu Y, Zhao ML, Zhang S, Sun HT, Li XH. Mild hypothermia facilitates the long-term survival of newborn cells in the dentate gyrus after traumatic brain injury by diminishing a pro-apoptotic microenvironment. Neuroscience 2016; 335:114-21. [DOI: 10.1016/j.neuroscience.2016.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 01/08/2023]
|
241
|
Friedrich J, Khatib D, Parsa K, Santopietro A, Gallicano GI. The grass isn't always greener: The effects of cannabis on embryological development. BMC Pharmacol Toxicol 2016; 17:45. [PMID: 27680736 PMCID: PMC5041313 DOI: 10.1186/s40360-016-0085-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/24/2016] [Indexed: 12/14/2022] Open
Abstract
With the increasing publicity of marijuana due to recent legislation, it is pertinent that the effects of fetal exposure to the drug are assessed. While in utero cannabis exposure has been associated with early pregnancy failure, birth defects and developmental delay, the mechanisms of such outcomes are largely unexplained. Furthermore, the use of cannabinoids in cancer treatment via growth inhibition and apoptosis may indicate how cannabis exposure likely harms a growing fetus. Cannabinoid signaling is required for proper pre-implantation development, embryo transport to the uterus, and uterine receptivity during implantation. In post-implantation development, cannabinoid signaling functions in a multitude of pathways, including, but not limited to, folic acid, VEGF, PCNA, MAPK/ERK, and BDNF. Disrupting the normal activity of these pathways can significantly alter many vital in utero processes, including angiogenesis, cellular replication, tissue differentiation, and neural cognitive development. This paper aims to demonstrate the effects of cannabis exposure on a developing embryo in order to provide a molecular explanation for the adverse outcomes associated with cannabis use during pregnancy.
Collapse
Affiliation(s)
- Joseph Friedrich
- Department of Biochemistry and Molecular & Cellular biology, Georgetown University Medical Center, 3900 reservoir Rd. NW, Med/Dent Building NE205, Washington DC, 20057, USA
| | - Dara Khatib
- Department of Biochemistry and Molecular & Cellular biology, Georgetown University Medical Center, 3900 reservoir Rd. NW, Med/Dent Building NE205, Washington DC, 20057, USA
| | - Keon Parsa
- Department of Biochemistry and Molecular & Cellular biology, Georgetown University Medical Center, 3900 reservoir Rd. NW, Med/Dent Building NE205, Washington DC, 20057, USA
| | - Ariana Santopietro
- Department of Biochemistry and Molecular & Cellular biology, Georgetown University Medical Center, 3900 reservoir Rd. NW, Med/Dent Building NE205, Washington DC, 20057, USA
| | - G Ian Gallicano
- Department of Biochemistry and Molecular & Cellular biology, Georgetown University Medical Center, 3900 reservoir Rd. NW, Med/Dent Building NE205, Washington DC, 20057, USA.
| |
Collapse
|
242
|
Chow CL, Trivedi P, Pyle MP, Matulle JT, Fettiplace R, Gubbels SP. Evaluation of Nestin Expression in the Developing and Adult Mouse Inner Ear. Stem Cells Dev 2016; 25:1419-32. [PMID: 27474107 DOI: 10.1089/scd.2016.0176] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Adult stem cells are undifferentiated cells with the capacity to proliferate and form mature tissue-specific cell types. Nestin is an intermediate filament protein used to identify cells with stem cell characteristics. Its expression has been observed in a population of cells in developing and adult cochleae. In vitro studies using rodent cochlear tissue have documented the potential of nestin-expressing cells to proliferate and form hair and supporting cells. In this study, nestin coupled to green fluorescent protein (GFP) transgenic mice were used to provide a more complete characterization of the spatial and temporal expression of nestin in the inner ear, from organogenesis to adulthood. During development, nestin is expressed in the spiral ganglion cell region and in multiple cell types in the organ of Corti, including nascent hair and supporting cells. In adulthood, its expression is reduced but persists in the spiral ganglion, in a cell population medial to and below the inner hair cells, and in Deiters' cells in the cochlear apex. Moreover, nestin-expressing cells can proliferate in restricted regions of the inner ear during development shown by coexpression with Ki67 and MCM2 and by 5-ethynyl-2'-deoxyuridine incorporation. Results suggest that nestin may label progenitor cells during inner ear development and may not be a stem cell marker in the mature organ of Corti; however, nestin-positive cells in the spiral ganglion exhibit some stem cell characteristics. Future studies are necessary to determine if these cells possess any latent stem cell-like qualities that may be targeted as a regenerative approach to treat neuronal forms of hearing loss.
Collapse
Affiliation(s)
- Cynthia L Chow
- 1 Department of Communication Sciences and Disorders, University of Wisconsin-Madison , Madison, Wisconsin.,2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin.,3 Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Parul Trivedi
- 2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Madeline P Pyle
- 2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Jacob T Matulle
- 2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin
| | - Robert Fettiplace
- 4 Department of Neuroscience, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin
| | - Samuel P Gubbels
- 2 Waisman Center, University of Wisconsin-Madison , Madison, Wisconsin.,3 Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin School of Medicine and Public Health , Madison, Wisconsin.,5 Department of Otolaryngology, University of Colorado School of Medicine , Aurora, Colorado
| |
Collapse
|
243
|
Lupus brain fog: a biologic perspective on cognitive impairment, depression, and fatigue in systemic lupus erythematosus. Immunol Res 2016; 63:26-37. [PMID: 26481913 DOI: 10.1007/s12026-015-8716-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cognitive disturbances, mood disorders and fatigue are common in SLE patients with substantial adverse effects on function and quality of life. Attribution of these clinical findings to immune-mediated disturbances associated with SLE remains difficult and has compromised research efforts in these areas. Improved understanding of the role of the immune system in neurologic processes essential for cognition including synaptic plasticity, long term potentiation and adult neurogenesis suggests multiple potential mechanisms for altered central nervous system function associated with a chronic inflammatory illness such as SLE. This review will focus on the biology of cognition and neuroinflammation in normal circumstances and potential biologic mechanisms for cognitive impairment, depression and fatigue attributable to SLE.
Collapse
|
244
|
Altunkaynak BZ, Altun G, Yahyazadeh A, Kaplan AA, Deniz OG, Türkmen AP, Önger ME, Kaplan S. Different methods for evaluating the effects of microwave radiation exposure on the nervous system. J Chem Neuroanat 2016; 75:62-9. [DOI: 10.1016/j.jchemneu.2015.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 01/13/2023]
|
245
|
Moon M, Jeong HU, Choi JG, Jeon SG, Song EJ, Hong SP, Oh MS. Memory-enhancing effects of Cuscuta japonica Choisy via enhancement of adult hippocampal neurogenesis in mice. Behav Brain Res 2016; 311:173-182. [DOI: 10.1016/j.bbr.2016.05.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 05/08/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
|
246
|
Comparative effects of amphetamine-like psychostimulants on rat hippocampal cell genesis at different developmental ages. Neurotoxicology 2016; 56:29-39. [DOI: 10.1016/j.neuro.2016.06.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/28/2016] [Accepted: 06/28/2016] [Indexed: 01/08/2023]
|
247
|
Tighilet B, Dutheil S, Siponen MI, Noreña AJ. Reactive Neurogenesis and Down-Regulation of the Potassium-Chloride Cotransporter KCC2 in the Cochlear Nuclei after Cochlear Deafferentation. Front Pharmacol 2016; 7:281. [PMID: 27630564 PMCID: PMC5005331 DOI: 10.3389/fphar.2016.00281] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/16/2016] [Indexed: 12/26/2022] Open
Abstract
While many studies have been devoted to investigating the homeostatic plasticity triggered by cochlear hearing loss, the cellular and molecular mechanisms involved in these central changes remain elusive. In the present study, we investigated the possibility of reactive neurogenesis after unilateral cochlear nerve section in the cochlear nucleus (CN) of cats. We found a strong cell proliferation in all the CN sub-divisions ipsilateral to the lesion. Most of the newly generated cells survive up to 1 month after cochlear deafferentation in all cochlear nuclei (except the dorsal CN) and give rise to a variety of cell types, i.e., microglial cells, astrocytes, and neurons. Interestingly, many of the newborn neurons had an inhibitory (GABAergic) phenotype. This result is intriguing since sensory deafferentation is usually accompanied by enhanced excitation, consistent with a reduction in central inhibition. The membrane potential effect of GABA depends, however, on the intra-cellular chloride concentration, which is maintained at low levels in adults by the potassium chloride co-transporter KCC2. The KCC2 density on the plasma membrane of neurons was then assessed after cochlear deafferentation in the cochlear nuclei ipsilateral and contralateral to the lesion. Cochlear deafferentation is accompanied by a strong down-regulation of KCC2 ipsilateral to the lesion at 3 and 30 days post-lesion. This study suggests that reactive neurogenesis and down-regulation of KCC2 is part of the vast repertoire involved in homeostatic plasticity triggered by hearing loss. These central changes may also play a role in the generation of tinnitus and hyperacusis.
Collapse
Affiliation(s)
- Brahim Tighilet
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260 - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition) - Aix-Marseille Université - Centre National de la Recherche Scientifique Marseille, France
| | - Sophie Dutheil
- Department of Psychiatry, School of Medicine, Yale University, New Haven CT, USA
| | - Marina I Siponen
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260 - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition) - Aix-Marseille Université - Centre National de la Recherche Scientifique Marseille, France
| | - Arnaud J Noreña
- Laboratoire de Neurosciences Intégratives et Adaptatives, UMR 7260 - Comportement, Cerveau, Cognition (Behavior, Brain, and Cognition) - Aix-Marseille Université - Centre National de la Recherche Scientifique Marseille, France
| |
Collapse
|
248
|
Central Nervous System and Vertebrae Development in Horses: a Chronological Study with Differential Temporal Expression of Nestin and GFAP. J Mol Neurosci 2016; 61:61-78. [PMID: 27525635 DOI: 10.1007/s12031-016-0805-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 07/28/2016] [Indexed: 10/21/2022]
Abstract
The neural system is one of the earliest systems to develop and the last to be fully developed after birth. This study presents a detailed description of organogenesis of the central nervous system (CNS) at equine embryonic/fetal development between 19 and 115 days of pregnancy. The expression of two important biomarkers in the main structure of the nervous system responsible for neurogenesis in the adult individual, and in the choroid plexus, was demonstrated by Nestin and glial fibrillary acid protein (GFAP) co-labeling. In the 29th day of pregnancy in the undifferentiated lateral ventricle wall, the presence of many cells expressing Nestin and few expressing GFAP was observed. After the differentiation of the lateral ventricle wall zones at 60 days of pregnancy, the subventricular zone, which initially had greater number of Nestin+ cells, began to show higher numbers of GFAP+ cells at 90 days of pregnancy. A similar pattern was observed for Nestin+ and GFAP+ cells during development of the choroid plexus. This study demonstrates, for the first time, detailed chronological aspects of the equine central nervous system organogenesis associated with downregulation of Nestin and upregulation of GFAP expression.
Collapse
|
249
|
Mental and physical skill training increases neurogenesis via cell survival in the adolescent hippocampus. Brain Res 2016; 1654:95-101. [PMID: 27531182 DOI: 10.1016/j.brainres.2016.08.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/10/2016] [Accepted: 08/12/2016] [Indexed: 12/30/2022]
Abstract
The adolescent hippocampus produces thousands more new neurons daily than the adult, yet many die within weeks of their generation (Cameron and McCay, 2001; Curlik, DiFeo & Shors, 2014; Shors et al., 2016). Learning new skills can increase their survival. The present study tested the effects of physical skill training on the survival of these newly generated cells in males and female rodents during puberty. Newly generated cells were labeled with BrdU, a marker of cell mitosis, and training began one week later, just as the new cells begin to die. Significantly more BrdU-labeled cells were present in the hippocampus of both sexes after engaging in the physical training experiences. The young animals were able to maintain their balance on a modified rotarod task throughout most trials of training and as a consequence expended considerable energy and endurance during each training trial. These data suggest that a combination of both exercise and skill training can increase brain plasticity through increases in neurogenesis in the adolescent hippocampus. This finding supports the premise behind a clinical intervention known as MAP Training, which combines mental and physical training to enhance brain health in humans (Shors et al., 2014; Alderman et al., 2016). Although theoretical at this stage, the positive consequences of MAP Training for brain function may be mediated through neurogenesis. This article is part of a Special Issue entitled SI: Adolescent plasticity.
Collapse
|
250
|
Overall RW, Walker TL, Fischer TJ, Brandt MD, Kempermann G. Different Mechanisms Must Be Considered to Explain the Increase in Hippocampal Neural Precursor Cell Proliferation by Physical Activity. Front Neurosci 2016; 10:362. [PMID: 27536215 PMCID: PMC4971098 DOI: 10.3389/fnins.2016.00362] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022] Open
Abstract
The number of proliferating neural precursor cells in the adult hippocampus is strongly increased by physical activity. The mechanisms through which this behavioral stimulus induces cell proliferation, however, are not yet understood. In fact, even the mode of proliferation of the stem and progenitor cells is not exactly known. Evidence exists for several mechanisms including cell cycle shortening, reduced cell death and stem cell recruitment, but as yet no model can account for all observations. An appreciation of how the cells proliferate, however, is crucial to our ability to model the neurogenic process and predict its behavior in response to pro-neurogenic stimuli. In a recent study, we addressed modulation of the cell cycle length as one possible mode of regulation of precursor cell proliferation in running mice. Our results indicated that the observed increase in number of proliferating cells could not be explained through a shortening of the cell cycle. We must therefore consider other mechanisms by which physical activity leads to enhanced precursor cell proliferation. Here we review the evidence for and against several different hypotheses and discuss the implications for future research in the field.
Collapse
Affiliation(s)
- Rupert W Overall
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| | - Tara L Walker
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| | - Tim J Fischer
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| | - Moritz D Brandt
- Division of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden Dresden, Germany
| | - Gerd Kempermann
- Genomics of Regeneration, Center for Regenerative Therapies Dresden (CRTD), Technische Universität DresdenDresden, Germany; Genomics of Regeneration, German Center for Neurodegenerative Diseases (DZNE) DresdenDresden, Germany
| |
Collapse
|