201
|
Enhanced early innate and T cell-mediated responses in subjects immunized with Anthrax Vaccine Adsorbed Plus CPG 7909 (AV7909). Vaccine 2014; 32:6847-54. [PMID: 24530403 DOI: 10.1016/j.vaccine.2014.01.096] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/17/2014] [Accepted: 01/30/2014] [Indexed: 11/23/2022]
Abstract
NuThrax™ (Anthrax Vaccine Adsorbed with CPG 7909 Adjuvant) (AV7909) is in development. Samples obtained in a phase Ib clinical trial were tested to confirm biomarkers of innate immunity and evaluate effects of CPG 7909 (PF-03512676) on adaptive immunity. Subjects received two intramuscular doses of commercial BioThrax(®) (Anthrax Vaccine Adsorbed, AVA), or two intramuscular doses of one of four formulations of AV7909. IP-10, IL-6, and C-reactive protein (CRP) levels were elevated 24-48 h after administration of AV7909 formulations, returning to baseline by Day 7. AVA (no CPG 7909) resulted in elevated IL-6 and CRP, but not IP-10. Another marker of CpG, transiently decreased absolute lymphocyte counts (ALCs), correlated with transiently increased IP-10. Cellular recall responses to anthrax protective antigen (PA) or PA peptides were assessed by IFN-γ ELISpot assay performed on cryopreserved PBMCs obtained from subjects prior to immunization and 7 days following the second immunization (study day 21). One-half of subjects that received AV7909 with low-dose (0.25mg/dose) CPG 7909 possessed positive Day 21 T cell responses to PA. In contrast, positive T cell responses occurred at an 11% average rate (1/9) for AVA-treated subjects. Differences in cellular responses due to dose level of CPG 7909 were not associated with differences in humoral anti-PA IgG responses, which were elevated for recipients of AV7909 compared to recipients of AVA. Serum markers at 24 or 48 h (i.e. % ALC decrease, or increase in IL-6, IP-10, or CRP) correlated with the humoral (antibody) responses 1 month later, but did not correlate with cellular ELISpot responses. In summary, biomarkers of early responses to CPG 7909 were confirmed, and adding a CpG adjuvant to a vaccine administered twice resulted in increased T cell effects relative to vaccine alone. Changes in early biomarkers correlated with subsequent adaptive humoral immunity but not cellular immunity.
Collapse
|
202
|
Lee BL, Barton GM. Trafficking of endosomal Toll-like receptors. Trends Cell Biol 2014; 24:360-9. [PMID: 24439965 DOI: 10.1016/j.tcb.2013.12.002] [Citation(s) in RCA: 140] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/14/2013] [Accepted: 12/19/2013] [Indexed: 02/08/2023]
Abstract
Over the past decade we have learned much about nucleic acid recognition by the innate immune system and in particular by Toll-like receptors (TLRs). These receptors localize to endosomal compartments where they are poised to recognize microbial nucleic acids. Multiple regulatory mechanisms function to limit responses to self DNA or RNA, and breakdowns in these mechanisms can contribute to autoimmune or inflammatory disorders. In this review we discuss our current understanding of the cell biology of TLRs involved in nucleic acid recognition and how localization and trafficking of these receptors regulates their function.
Collapse
Affiliation(s)
- Bettina L Lee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Gregory M Barton
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
203
|
Nanoparticle conjugation of CpG enhances adjuvancy for cellular immunity and memory recall at low dose. Proc Natl Acad Sci U S A 2013; 110:19902-7. [PMID: 24248387 DOI: 10.1073/pnas.1313152110] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In subunit vaccines, strong CD8(+) T-cell responses are desired, yet they are elusive at reasonable adjuvant doses. We show that targeting adjuvant to the lymph node (LN) via ultrasmall polymeric nanoparticles (NPs), which rapidly drain to the LN after intradermal injection, greatly enhances adjuvant efficacy at low doses. Coupling CpG-B or CpG-C oligonucleotides to NPs led to better dual-targeting of adjuvant and antigen (codelivered on separate NPs) in cross-presenting dendritic cells compared with free adjuvant. This led to enhanced dendritic cell maturation and T helper 1 (Th1)-cytokine secretion, in turn driving stronger effector CD8(+) T-cell activation with enhanced cytolytic profiles and, importantly, more powerful memory recall. With only 4 μg CpG, NP-CpG-B could substantially protect mice from syngeneic tumor challenge, even after 4 mo of vaccination, compared with free CpG-B. Together, these results show that nanocarriers can enhance vaccine efficacy at a low adjuvant dose for inducing potent and long-lived cellular immunity.
Collapse
|
204
|
Sirois CM, Jin T, Miller AL, Bertheloot D, Nakamura H, Horvath GL, Mian A, Jiang J, Schrum J, Bossaller L, Pelka K, Garbi N, Brewah Y, Tian J, Chang C, Chowdhury PS, Sims GP, Kolbeck R, Coyle AJ, Humbles AA, Xiao TS, Latz E. RAGE is a nucleic acid receptor that promotes inflammatory responses to DNA. ACTA ACUST UNITED AC 2013; 210:2447-63. [PMID: 24081950 PMCID: PMC3804942 DOI: 10.1084/jem.20120201] [Citation(s) in RCA: 167] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Receptor for advanced glycation end-products (RAGE) detects nucleic acids and promotes DNA uptake into endosomes, which in turn lowers the immune recognition threshold for TLR9 activation. Recognition of DNA and RNA molecules derived from pathogens or self-antigen is one way the mammalian immune system senses infection and tissue damage. Activation of immune signaling receptors by nucleic acids is controlled by limiting the access of DNA and RNA to intracellular receptors, but the mechanisms by which endosome-resident receptors encounter nucleic acids from the extracellular space are largely undefined. In this study, we show that the receptor for advanced glycation end-products (RAGE) promoted DNA uptake into endosomes and lowered the immune recognition threshold for the activation of Toll-like receptor 9, the principal DNA-recognizing transmembrane signaling receptor. Structural analysis of RAGE–DNA complexes indicated that DNA interacted with dimers of the outermost RAGE extracellular domains, and could induce formation of higher-order receptor complexes. Furthermore, mice deficient in RAGE were unable to mount a typical inflammatory response to DNA in the lung, indicating that RAGE is important for the detection of nucleic acids in vivo.
Collapse
Affiliation(s)
- Cherilyn M Sirois
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Construction of an immunostimulatory plasmid, pUCpGs10, and research on its immune adjuvant effect. Mol Biotechnol 2013; 54:58-67. [PMID: 22544607 DOI: 10.1007/s12033-012-9544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In order to overcome the instability of CpG ODN in vivo, sequence diversity, and individual differences, eleven CpG ODN fragments were meticulously selected and linked to form a Multi-CpG, which were repeatedly inserted into the cloning vector pUC19 for constructing the recombinant plasmid pUCpGs10 containing ten of Multi-CpG. Using the multi-genotype HCV E1 and multi-epitope complex HCV-T as immunogens, and plasmid pUCpGs10 as the immune adjuvant, Balb/c mice were immunized through nasal and subcutaneous immunization. Strong-specific humoral and cellular immune response were induced, which can obviously inhibit the growth of homograft expressing HCV antigen. The immune adjuvant effect of pUCpGs10 closely matched that of Freund's complete adjuvant. The plasmid pUCpGs10 can significantly improve IgA content in serum and different mucosal extract and systematical T-cell response via intranasal immunization. In conclusions, the newly constructed immunostimulatory plasmid pUCpGs10 is able to effectively activate the humoral and cellular immune activity, and possesses activation on mucosal immune response.
Collapse
|
206
|
The design and structure-functional properties of DNA-based immunomodulatory sequences. Methods Mol Biol 2013; 986:41-56. [PMID: 23436404 DOI: 10.1007/978-1-62703-311-4_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
DNA-based immunomodulatory sequences (DIMS) are promising compounds for the treatment of different diseases, including inflammation and cancer. They act through the interaction with TLR9, a member of the Toll-like receptor family whose essential role in innate immunity was recently recognised by being awarded the Nobel Prize 2011. Combining the data obtained from in vitro and in vivo models with circular dichroism spectroscopy approach, we could show that formation of certain tertiary structures by DIMS can be connected to their specific physiologic effects such as activation of immune cells, induction of interferons and delay of the disease progression. Moreover the ability of selected DIMS compounds to form certain tertiary structures must be regarded as important for biological activities as is the presence of functional primary structure motifs such as unmethylated deoxyribodinucleotide CpG. These findings are useful when considering the design of DNA-based immunomodulators.
Collapse
|
207
|
De Gregorio E, Caproni E, Ulmer JB. Vaccine adjuvants: mode of action. Front Immunol 2013; 4:214. [PMID: 23914187 PMCID: PMC3728558 DOI: 10.3389/fimmu.2013.00214] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/12/2013] [Indexed: 12/12/2022] Open
Abstract
Vaccines were first introduced more than 200 years ago and have since played a key role in the reduction of morbidity and mortality caused by infectious diseases. Many of the safest and most effective vaccines in use today are based on attenuated live viruses, as they mimic a live infection without causing disease. However, it is not always practical to take this approach, such as when it may not be safe to do so (e.g., for viruses that cause chronic infections such as HIV) or may not be feasible to manufacture (e.g., for viruses that do not grow well in cell culture such as HCV). In addition, it may preferable in some cases to target immune responses toward specific antigens from the pathogen, rather than the entirety of the genome. In these cases, subunit vaccines consisting of antigens purified from the pathogen or produced by recombinant DNA technology are being developed. However, highly purified proteins are typically not inherently immunogenic, as they usually lack the means to directly stimulate the innate immune system, and often require the addition of adjuvants to enhance vaccine potency. Despite more than a century of human use, only a few adjuvants are licensed today. However many adjuvants have been tested in humans and are in advanced stages of development. Much of the early work on adjuvants discovery and development was empirical producing safe and effective products, but without a clear understanding of how they worked. Recent insight into the functioning of the innate immune system has demonstrated its important role in triggering and shaping the adaptive immune response to vaccines.
Collapse
|
208
|
Fűri I, Sipos F, Germann TM, Kalmár A, Tulassay Z, Molnár B, Műzes G. Epithelial toll-like receptor 9 signaling in colorectal inflammation and cancer: Clinico-pathogenic aspects. World J Gastroenterol 2013; 19:4119-4126. [PMID: 23864774 PMCID: PMC3710413 DOI: 10.3748/wjg.v19.i26.4119] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 04/29/2013] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) recognize specific motifs which are frequently present in bacteria, fungi, prokaryotes and viruses. Amongst TLRs, TLR9 can be activated by such bacterial or viral DNA fragments, immunoglobulin-DNA complexes or synthetic oligonucleotides, which all contain unmethylated cytosine-guanine nucleotide sequences (CpGs). Emerging data indicate that TLR9 signaling has a role in, and may influence, colorectal carcinogenesis and colonic inflammation. CpGs are classified into three groups according to their influence on both the antigen-specific humoral- and cellular immunity, and the production of type 1 interferons and proinflammatory cytokines. TLR9 activation via CpGs may serve as a new therapeutic target for several cancerous and various inflammatory conditions. Due to its probable anti-cancer effects, the application possibilities of TLR9-signaling modulation may be extremely diverse even in colorectal tumors. In this review we aimed to summarize the current knowledge about TLR-signaling in the pathogenesis and therapy of inflammatory bowel diseases and colorectal cancer. Due to the species-specific differences in TLR9 expression, however, one must be careful in translating the animal model data into the human system, because of the differences between CpG-oligodeoxynucleotide-responsive cells. TLR9 agonist DNA-based immunomodulatory sequences could also represent a promising therapeutic alternative in systemic inflammatory conditions and chronic colonic inflammations as their side effects are not significant.
Collapse
|
209
|
Prélaud AR, Fuchs S, Weber K, Winter G, Coester C, Mueller RS. In vitro effects of CpG oligodeoxynucleotides delivered by gelatin nanoparticles on canine peripheral blood mononuclear cells of atopic and healthy dogs - a pilot study. Vet Dermatol 2013; 24:494-e117. [PMID: 23826658 DOI: 10.1111/vde.12056] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2013] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cytosine-phosphate-guanine (CpG) oligodeoxynucleotides offer a novel promising immunotherapeutic approach for atopic dermatitis (AD) both in humans and animals. Gelatin nanoparticles (GNP) enhance and prolong CpG-associated immunomodulatory effects and minimize adverse effects both in vitro and in vivo. Information about the effects of this combination in dogs is lacking. HYPOTHESIS/OBJECTIVES The aim of this study was to evaluate immunological effects of CpG coupled to GNP on canine peripheral blood mononuclear cells (PBMCs) in vitro. ANIMALS Eight dogs with AD, diagnosed by standard criteria and with a concurrent immediate hypersensitivity to house dust mites were included. Control samples were taken from eight healthy, age-matched control dogs without history or evidence of cutaneous or systemic illness. METHODS Peripheral blood mononuclear cells of healthy and allergic dogs were incubated with CpG-GNP and the uptake of CpG-GNP was demonstrated using confocal laser scanning microscopy. Cell culture supernatant concentrations of interferon gamma (IFN-γ), interleukin (IL)-4, IL-6 and IL-10 were measured by Canine Cytokine Milliplex. RESULTS No significant changes in IFN-γ and IL-4 were found when comparing PBMCs incubated with CpG and CpG-GNP with the negative controls in atopic and healthy dogs. Interleukin-6 was not detected in any of the groups. However, a statistically significant increase in IL-10 concentration was found after 24 h stimulation with CpG-GNP compared with CpG alone both in atopic and healthy dogs. CONCLUSIONS AND CLINICAL IMPORTANCE As IL-10 is considered an immunosuppressive cytokine playing a key role in peripheral tolerance; the reported CpG-GNP formulation could be a new approach in allergy treatment.
Collapse
Affiliation(s)
- Ana Rostaher Prélaud
- Vetsuisse Faculty University of Zurich, Clinic for Small Animal Internal Medicine, 8057, Zurich, Switzerland; Small Animal Medicine Clinic, Centre for Clinical Veterinary Medicine, Ludwig Maximilian University, 80539, Munich, Germany
| | | | | | | | | | | |
Collapse
|
210
|
Detournay O, Morrison DA, Wagner B, Zarnegar B, Wattrang E. Genomic analysis and mRNA expression of equine type I interferon genes. J Interferon Cytokine Res 2013; 33:746-59. [PMID: 23772953 DOI: 10.1089/jir.2012.0130] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This study aimed at identifying all of the type I interferon (IFN) genes of the horse and at monitoring their expression in equine cells on in vitro induction. We identified 32 putative type I IFN loci on horse chromosome 23 and an unplaced genomic scaffold. A phylogentic analysis characterized these into 8 different type I IFN classes, that is, putative functional genes for 6 IFN-α, 4 IFN-β, 8 IFN-ω (plus 4 pseudogenes), 3 IFN-δ (plus 1 pseudogene), 1 IFN-κ and 1 IFN-ε, plus 1 IFN-ν pseudogene, and 3 loci belonging to what has previously been called IFN-αω. Our analyses indicate that the IFN-αω genes are quite distinct from both IFN-α and IFN-ω, and we refer to this type I IFN as IFN-μ. Results from cell cultures showed that leukocytes readily expressed IFN-α, IFN-β, IFN-δ, IFN-μ, and IFN-ω mRNA on induction with, for example, live virus; while fibroblasts only expressed IFN-β mRNA on stimulation. IFN-κ or IFN-ε expression was not consistently induced in these cell cultures. Thus, the equine type I IFN family comprised 8 classes, 7 of which had putative functional genes, and mRNA expression of 5 was induced in vitro. Moreover, a relatively low number of IFN-α subtypes was found in the horse compared with other eutherian mammals.
Collapse
Affiliation(s)
- Olivier Detournay
- 1 Department of Virology, Immunobiology and Parasitology, National Veterinary Institute , Uppsala, Sweden
| | | | | | | | | |
Collapse
|
211
|
Mott TM, Johnston RK, Vijayakumar S, Estes DM, Motamedi M, Sbrana E, Endsley JJ, Torres AG. Monitoring Therapeutic Treatments against Burkholderia Infections Using Imaging Techniques. Pathogens 2013; 2. [PMID: 24349761 PMCID: PMC3859531 DOI: 10.3390/pathogens2020383] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Burkholderia mallei, the etiologic agent of glanders, are Category B select agents with biothreat potential, and yet effective therapeutic treatments are lacking. In this study, we showed that CpG administration increased survival, demonstrating protection in the murine glanders model. Bacterial recovery from infected lungs, liver and spleen was significantly reduced in CpG-treated animals as compared with non-treated mice. Reciprocally, lungs of CpG-treated infected animals were infiltrated with higher levels of neutrophils and inflammatory monocytes, as compared to control animals. Employing the B. mallei bioluminescent strain CSM001 and the Neutrophil-Specific Fluorescent Imaging Agent, bacterial dissemination and neutrophil trafficking were monitored in real-time using multimodal in vivo whole body imaging techniques. CpG-treatment increased recruitment of neutrophils to the lungs and reduced bioluminescent bacteria, correlating with decreased bacterial burden and increased protection against acute murine glanders. Our results indicate that protection of CpG-treated animals was associated with recruitment of neutrophils prior to infection and demonstrated, for the first time, simultaneous real time in vivo imaging of neutrophils and bacteria. This study provides experimental evidence supporting the importance of incorporating optimized in vivo imaging methods to monitor disease progression and to evaluate the efficacy of therapeutic treatment during bacterial infections.
Collapse
Affiliation(s)
- Tiffany M Mott
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.)
| | - R Katie Johnston
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.)
| | - Sudhamathi Vijayakumar
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.)
| | - D Mark Estes
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA;
| | - Massoud Motamedi
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Elena Sbrana
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.) ; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.)
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (T.M.M.); (R.K.J.); (S.V.); (E.S.); (J.J.E.) ; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
212
|
Ries M, Schuster P, Thomann S, Donhauser N, Vollmer J, Schmidt B. Identification of novel oligonucleotides from mitochondrial DNA that spontaneously induce plasmacytoid dendritic cell activation. J Leukoc Biol 2013; 94:123-35. [PMID: 23610148 DOI: 10.1189/jlb.0612278] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This study tested the hypothesis that mtDNA fragments carry immunostimulatory motifs that naturally induce immune activation by PDC. Genomic and mtDNA induced similar IFN-α production after transfection into PBMCs using the liposomal transfection reagent DOTAP. Shortening of mtDNA to CpG islands enhanced the immunostimulatory activity, based on the presence of unmethylated CpG DNA. Further fragmentation into mtODN, which exhibited similarities to published CpG ODN, resulted in a strong immunostimulatory activity in addition to PDC maturation and migration. The addition of the human cathelicidin LL-37 to CpG islands induced spontaneous PDC IFN-α production. Notably, one phosphodiester mtODN with a double-palindromic structure induced PDC IFN-α production in the absence of DOTAP. Flow cytometry, life-cell, and confocal imaging revealed attachment and spontaneous uptake into PDC, colocalizing, in part, with TLR9 in early endosomal vesicles. This process was accompanied by a moderate but significant PDC maturation in addition to B cell and NK cell activation (P<0.05). Altogether, our data indicate that fragmented mtDNA, which may be released as a consequence of apoptotic, necrotic, and necroptotic cell death, can act as a DAMP. For the first time, our study provides a mechanism how longer and shorter mtDNA fragments can be taken up naturally by the PDC and thus, may contribute to acute and chronic immune activation.
Collapse
Affiliation(s)
- Moritz Ries
- German National Reference Centre for Retroviruses, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
213
|
McCluskie MJ, Pryde DC, Gervais DP, Stead DR, Zhang N, Benoit M, Robertson K, Kim IJ, Tharmanathan T, Merson JR, Davis HL. Enhancing immunogenicity of a 3'aminomethylnicotine-DT-conjugate anti-nicotine vaccine with CpG adjuvant in mice and non-human primates. Int Immunopharmacol 2013; 16:50-6. [PMID: 23562759 DOI: 10.1016/j.intimp.2013.03.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/20/2013] [Accepted: 03/20/2013] [Indexed: 10/27/2022]
Abstract
Tobacco smoking is one of the most preventable causes of morbidity and mortality, but current smoking cessation treatments have relatively poor long term efficacy. Anti-nicotine vaccines offer a novel mechanism of action whereby anti-nicotine antibodies (Ab) in circulation prevent nicotine from entering the brain, thus avoiding the reward mechanisms that underpin nicotine addiction. Since antibody responses are typically long lasting, such vaccines could potentially lead to better long-term smoking cessation outcomes. Clinical trials of anti-nicotine vaccines to date have not succeeded, although there was evidence that very high anti-nicotine Ab titers could lead to improved smoking cessation outcomes, suggesting that achieving higher titers in more subjects might result in better efficacy overall. In this study, we evaluated CpG (TLR9 agonist) and aluminum hydroxide (Al(OH)3) adjuvants with a model anti-nicotine antigen comprising trans-3'aminomethylnicotine (3'AmNic) conjugated to diphtheria toxoid (DT). Anti-nicotine Ab titers were significantly higher in both mice and non-human primates (NHP) when 3'AmNic-DT was administered with CpG/Al(OH)3 than with Al(OH)3 alone, and affinity was enhanced in mice. CpG also improved functional responses, as measured by nicotine brain levels in mice after intravenous administration of radiolabeled nicotine (30% versus 3% without CpG), or by nicotine binding capacity of NHP antisera (15-fold higher with CpG). Further improvement should focus on maximizing Ab function, which takes into account both titer and avidity, and this may require improved conjugate design in addition to adjuvants.
Collapse
|
214
|
Silva JM, Videira M, Gaspar R, Préat V, Florindo HF. Immune system targeting by biodegradable nanoparticles for cancer vaccines. J Control Release 2013; 168:179-99. [PMID: 23524187 DOI: 10.1016/j.jconrel.2013.03.010] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 03/11/2013] [Accepted: 03/14/2013] [Indexed: 01/08/2023]
Abstract
The concept of therapeutic cancer vaccines is based on the activation of the immune system against tumor cells after the presentation of tumor antigens. Nanoparticles (NPs) have shown great potential as delivery systems for cancer vaccines as they potentiate the co-delivery of tumor-associated antigens and adjuvants to dendritic cells (DCs), insuring effective activation of the immune system against tumor cells. In this review, the immunological mechanisms behind cancer vaccines, including the role of DCs in the stimulation of T lymphocytes and the use of Toll-like receptor (TLR) ligands as adjuvants will be discussed. An overview of each of the three essential components of a therapeutic cancer vaccine - antigen, adjuvant and delivery system - will be provided with special emphasis on the potential of particulate delivery systems for cancer vaccines, in particular those made of biodegradable aliphatic polyesters, such as poly(lactic-co-glycolic acid) (PLGA) and poly-ε-caprolactone (PCL). Some of the factors that can influence NP uptake by DCs, including size, surface charge, surface functionalization and route of administration, will also be considered.
Collapse
Affiliation(s)
- Joana M Silva
- iMed.UL, Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal
| | | | | | | | | |
Collapse
|
215
|
Tarhini AA, Kirkwood JM, Krieg AM. Early development of the Toll-like receptor 9 agonist, PF-3512676, for the treatment of patients with advanced cancers. Expert Opin Drug Discov 2013; 4:587-603. [PMID: 23485088 DOI: 10.1517/17460440902824784] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Unmethylated oligodeoxynucleotides (ODNs) with cytosine-phosphate-guanine (CpG) motifs can potently activate the immune system through Toll-like receptor (TLR) 9. PF-3512676 is a synthetic CpG ODN that induces strong Th1-type immune responses through TLR9 and is now in clinical development. OBJECTIVE To review discovery and development of synthetic CpG ODNs and their effects on immune cells and to relate preclinical and early clinical development of PF-3512676. METHODS A literature search was performed on databases available through the National Library of Medicine (PubMed), the European Society of Medical Oncology and the American Society of Clinical Oncology. RESULTS/CONCLUSIONS Unmethylated CpG motifs were identified as the element of bacillus Calmette-Guérin responsible for immunostimulatory activity. Preclinical studies identified the mechanism of action (i.e., TLR9) and an optimal human sequence for antitumor activity. On the basis of preclinical studies, PF-3512676, a B-class CpG ODN, was selected for further clinical development. Phase I/II clinical trials have shown PF-3512676 to be well tolerated and to have antitumor activity as a single agent in patients with several types of advanced cancer, and to show promise as a vaccine adjuvant.
Collapse
Affiliation(s)
- Ahmad A Tarhini
- Assistant Professor of Medicine University of Pittsburgh School of Medicine, University of Pittsburgh Cancer Institute, UPMC Cancer Pavilion, 5150 Centre Avenue, RM 555 Pittsburgh, Pennsylvania, USA +1 412 648 6507 ; +1 412 648 6579 ;
| | | | | |
Collapse
|
216
|
Abu-Rish EY, Amrani Y, Browning MJ. Toll-like receptor 9 activation induces expression of membrane-bound B-cell activating factor (BAFF) on human B cells and leads to increased proliferation in response to both soluble and membrane-bound BAFF. Rheumatology (Oxford) 2013; 52:1190-201. [PMID: 23436580 DOI: 10.1093/rheumatology/ket006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Activation of TLR7 and TLR9 and high serum levels of BAFF have been implicated in the pathogenesis of SLE. However, little is known about the effects of TLR9 activation on BAFF expression by human B cells. We investigated the effect of the TLR9 agonist, CpG-ODN 2006, on the expression of BAFF and its receptors BAFF-R, TACI and BCMA, in isolated B cells from healthy donors. METHODS We used RT-PCR, flow cytometry and ELISA to investigate the expression of BAFF, and flow cytometry for BAFF-R, TACI and BCMA. Functional assays assessed the responses of resting and CpG-ODN-activated B cells to exogenous soluble and membrane-bound BAFF. RESULTS CpG-ODN did not induce BAFF secretion, but increased expression of membrane-bound BAFF on B cells. CpG-ODN also induced the expression of TACI and BCMA, but did not up-regulate BAFF-R expression. In functional studies, CpG-ODN sensitized human B cells to proliferate in response to exogenous BAFF. This effect was inhibited by a blocking antibody against BAFF-R, but was not inhibited by anti-TACI or anti-BCMA antibodies. Membrane-bound BAFF, induced by CpG-ODN, co-stimulated the proliferation of B cells stimulated with anti-IgM in a manner that was dependent on the expression of surface BAFF on the CpG-ODN-treated B cells. CONCLUSION TLR9 activation induces expression of membrane-bound BAFF on human B cells and leads to increased proliferation in response to both soluble and membrane-bound BAFF. These data extend our understanding of the role of TLR9 activation on human B cells and provide insights into the mechanisms by which TLR9 may participate in the pathogenesis of SLE.
Collapse
Affiliation(s)
- Eman Y Abu-Rish
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | | | | |
Collapse
|
217
|
Jeske S, Pries R, Wollenberg B. CpG-Induced IFN-α production of plasmacytoid dendritic cells: time and dosage dependence and the effect of structural modifications to the CpG backbone. Nucleic Acid Ther 2013; 23:118-24. [PMID: 23414178 DOI: 10.1089/nat.2012.0384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Plasmacytoid dendritic cells (pDCs) represent a highly specialized immune cell subset and are considered to be the main sentinels against viral infections and play an important role in the development of immune tolerance. pDCs are able to recognize cytosine-phosphate-guanosine (CpG) motifs within microbial DNA, which are unmethylated CG dinucleotides in a certain sequence context and trigger the secretion of interferon (IFN)-α and other proinflammatory cytokines. Here we used the typical class A CpG oligodeoxynucleotide (ODN) 2216, the B-class ODN 2006, and the newly synthesized CpG ODN TM64 to explore the potency and kinetics of IFN-α stimulation of pDC. TM64 CpG ODN has a hexanucleotide sequence TCGTGT that leads to an increased cellular uptake and features a CpG nucleotide within the sequence that leads to a potent specific B-cell stimulation, thus characteristics similar to a class B CpG. Our data reveals that all CpGs act as both dosage- and time-dependent stimuli of IFN-α secretion. The relationship between concentration of the stimulant and the secreted amount of IFN-α is not linear and results in a plateau formation, with saturation kinetics. Alteration to the backbone can change duration and quantity of overall IFN-α secretion.
Collapse
Affiliation(s)
- Sabrina Jeske
- Department of Otorhinolaryngology, University of Schleswig-Holstein Campus, Lübeck, Germany
| | | | | |
Collapse
|
218
|
Kulis M, Gorentla B, Burks AW, Zhong XP. Type B CpG oligodeoxynucleotides induce Th1 responses to peanut antigens: modulation of sensitization and utility in a truncated immunotherapy regimen in mice. Mol Nutr Food Res 2013; 57:906-15. [PMID: 23386314 DOI: 10.1002/mnfr.201200410] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Revised: 12/03/2012] [Accepted: 12/05/2012] [Indexed: 12/14/2022]
Abstract
SCOPE Peanut allergy stems from a Th2-biased immune response to peanut allergens leading to IgE production and allergic reactions upon ingestion. METHODS AND RESULTS A model of peanut allergy in C3H/HeJ mice was used to assess whether type A, B, or C CpG oligodeoxynucleotide (ODN) molecules would be effective in: (i) a prophylactic approach to prevent peanut allergy when administered simultaneously with a Th2-skewing adjuvant, and (ii) a therapeutic model to allow for shortened immunotherapy. Type B ODNs were extremely effective in inhibiting anaphylaxis in the sensitization protocol as evidenced by differences in symptom scores, body temperature, and mouse mast cell protease 1 release compared to sham treatment. In the therapeutic model, co-administration of type B ODN plus peanut proteins was highly effective in reducing anaphylactic reactions in mice with established peanut allergy. The therapeutic effect was accompanied by an increase in IFN-γ and peanut-IgG2a, without a significant decrease in peanut IgE or IL-4 responses. CONCLUSION CpG ODNs, especially type B, were highly effective in inducing Th1 responses in mice undergoing induction of peanut allergy, as well as in mice undergoing therapy for established peanut allergy. Interestingly, the IgE response was not significantly altered, suggesting that IgG antibodies may be enough to prevent peanut-induced anaphylaxis.
Collapse
Affiliation(s)
- Mike Kulis
- Department of Pediatric Allergy and Immunology, Duke University Medical Center, Durham, NC 27599, USA.
| | | | | | | |
Collapse
|
219
|
St Paul M, Brisbin JT, Abdul-Careem MF, Sharif S. Immunostimulatory properties of Toll-like receptor ligands in chickens. Vet Immunol Immunopathol 2012; 152:191-9. [PMID: 23305711 DOI: 10.1016/j.vetimm.2012.10.013] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/28/2012] [Accepted: 10/29/2012] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) are evolutionarily conserved pattern recognition receptors that have been identified in mammals and avian species. Ligands for TLRs are typically conserved structural motifs of microorganisms termed pathogen-associated molecular patterns (PAMPs). Several TLRs have been detected in many cell subsets, such as in macrophages, heterophils and B cells, where they mediate host-responses to pathogens by promoting cellular activation and the production of cytokines. Importantly, TLR ligands help prime a robust adaptive immune response by promoting the maturation of professional antigen presenting cells. These properties make TLR ligands an attractive approach to enhance host-immunity to pathogens by administering them either prophylactically or in the context of a vaccine adjuvant. In this review, we discuss what is known about the immunostimulatory properties of TLR ligands in chickens, both at the cellular level as well as in vivo. Furthermore, we highlight previous successes in exploiting TLR ligands to protect against several pathogens including avian influenza virus, Salmonella, Escherichia coli, and Newcastle disease Virus.
Collapse
Affiliation(s)
- Michael St Paul
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
220
|
Yu YZ, Li N, Ma Y, Wang S, Yu WY, Sun ZW. Three types of human CpG motifs differentially modulate and augment immunogenicity of nonviral and viral replicon DNA vaccines as built-in adjuvants. Eur J Immunol 2012; 43:228-39. [PMID: 23037552 DOI: 10.1002/eji.201242690] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 09/14/2012] [Accepted: 10/01/2012] [Indexed: 01/20/2023]
Abstract
NakedDNA vaccines given by intramuscular injection are efficient in mouse models, but they require improvement for human use. As the immunogenicity of DNA vaccines depends, to a large extent, on the presence of CpG motifs as built-in adjuvants, we addressed this issue by inserting three types of human CpG motifs (A-type, B-type, and C-type) into the backbone of nonviral DNA and viral DNA replicon vectors with distinct immunostimulatory activities on human PBMCs. The adjuvant effects of CpG modifications in DNA vaccines expressing three types of antigens (β-Gal, AHc, or PA4) were then characterized in mice and found to significantly enhance antigen-specific humoral and cell-mediated immune responses. The three types of CpG motifs also differentially affected and modulated immune responses and protective potency against botulinum neurotoxin serotype A and Bacillus anthracis A16R challenge. Taken together, these results demonstrate that insertion of human CpG motifs can differentially modulate the immunogenicity of nonviral DNA vaccines as well as viral DNA replicon vaccines. Our study provides not only a better understanding of the in vivo activities of CpG motif adjuvants but implications for the rational design of such motifs as built-in adjuvants for DNA vectors targeting specific antigens.
Collapse
Affiliation(s)
- Yun-Zhou Yu
- Beijing Institute of Biotechnology, Beijing, China.
| | | | | | | | | | | |
Collapse
|
221
|
Sun J, Hou J, Li D, Liu Y, Hu N, Hao Y, Fu J, Hu Y, Shao Y. Enhancement of HIV-1 DNA vaccine immunogenicity by BCG-PSN, a novel adjuvant. Vaccine 2012; 31:472-9. [PMID: 23174201 DOI: 10.1016/j.vaccine.2012.11.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 11/06/2012] [Accepted: 11/09/2012] [Indexed: 11/24/2022]
Abstract
Although the importance of DNA vaccines, especially as a priming immunization has been well established in numerous HIV vaccine studies, the immunogenictiy of DNA vaccines is generally moderate. Novel adjuvant is in urgent need for improving the immunogenicity of DNA vaccine. Polysaccharide and nucleic acid fraction extracted by hot phenol method from Mycobacterium bovis bacillus Calmette-Guérin, known as BCG-PSN, is a widely used immunomodulatory product in China clinical practice. In this study, we evaluated whether the BCG-PSN could serve as a novel adjuvant of DNA vaccine to trigger better cellular and humoral immune responses against the HIV-1 Env antigen in Balb/C mouse model. The BCG-PSN was mixed with 10 μg or 100 μg of pDRVI1.0gp145 (HIV-1 CN54 gp145 gene) DNA vaccine and intramuscularly immunized two or three times. We found that BCG-PSN could significantly improve the immunogenicity of DNA vaccine when co-administered with DNA vaccine. Further, at the same vaccination schedule, BCG-PSN co-immunization with 10 μg DNA vaccine could elicit cellular and humoral immune responses which were comparable to that induced by 100 μg DNA vaccine alone. Moreover, our results demonstrate that BCG-PSN can activate TLR signaling pathways and induce Th1-type cytokines secretion. These findings suggest that BCG-PSN can serve as a novel and effective adjuvant for DNA vaccination.
Collapse
Affiliation(s)
- Jing Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming 650118, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Brandenburg LO, Jansen S, Albrecht LJ, Merres J, Gerber J, Pufe T, Tauber SC. CpG oligodeoxynucleotides induce the expression of the antimicrobial peptide cathelicidin in glial cells. J Neuroimmunol 2012; 255:18-31. [PMID: 23141747 DOI: 10.1016/j.jneuroim.2012.10.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/18/2012] [Accepted: 10/19/2012] [Indexed: 11/26/2022]
Abstract
During bacterial infections, antimicrobial peptides are synthesised as an important part of the innate immune system. However, expression and function in the central nervous system (CNS) need further investigations. The aim of this study was to examine the involvement of the pattern-recognition-receptor toll-like receptor 9 (TLR9) in the expression of the cathelin-related antimicrobial peptide (CRAMP) and to characterise the participating signal transduction pathways. In primary TLR9 deficient and wildtype mice astrocytes as well as microglia cells, the expression of CRAMP after treatment with the TLR9 agonist unmethylated cytosine-guanine oligodeoxynucleotide motifs (CpG-DNA) was examined in vitro. In vivo CRAMP expression after intraventricular infusion of CpG-DNA in TLR9 deficient and wildtype mice as well as in mice with pneumococcal meningitis localised in glial cells was determined. Furthermore, the regulation of different signal transduction pathways involved in CpG-DNA-induced CRAMP expression in glial cells was analysed. An in vitro and in vivo CpG-DNA-induced increase of CRAMP expression in astrocytes and microglia cells using real time RT-PCR and immunofluorescence was demonstrated. Different signal transduction pathways such as mitogen-activated protein kinases and inflammatory mediated pathways are involved in the expression of CRAMP in primary glial cells. Interestingly, TLR9-deficient glial cells showed a reduced but not completely abolished CRAMP mRNA expression and ERK1/2 phosphorylation in response to CpG-DNA treatment. On the other side in vivo, TLR9 deletion did not change CRAMP expression after bacterial infection. In conclusion, our results show that TLR9 can induce the expression of antimicrobial peptides such as CRAMP in response to bacterial DNA motifs in primary glial cells. Additional findings suggest also that CpG-DNA-induced effects are not only mediated by TLR9, but also mediated by other pattern recognition receptors.
Collapse
|
223
|
Yang L, Wu X, Wan M, Yu Y, Yu Y, Wang L. CpG oligodeoxynucleotides with double stem-loops show strong immunostimulatory activity. Int Immunopharmacol 2012; 15:89-96. [PMID: 23142503 DOI: 10.1016/j.intimp.2012.10.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 10/11/2012] [Accepted: 10/22/2012] [Indexed: 11/27/2022]
Abstract
Based on the current understanding of TLR9 recognition of CpG ODN, we have tried to design a series of CpG ODNs that display double stem-loops when being analyzed for their secondary structures using 'mfold web server'. Proliferation of human PBMC and bioassay for IFN production were used as technical platforms in primary screening. Interestingly, two of them, designated as DSL01 and D-SL03, belonging to B class CpG ODN and C class CpG ODN respectively, showed vigorous immunostimulatory activity and were chosen for further tests. Flow cytometry analysis showed that both of them could activate human B cells, NK cells, mononuclear cells and T cells and up-regulate expression of CD80, CD86 and HLA-DR on the surface of subsets in human PBMCs. Furthermore, we demonstrated that those two ODNs potently stimulated proliferation of PBMC/splenocytes obtained from diverse vertebrate species. Noticeably, both of them displayed anti-breast cancer effect in mice when administered by peritumoral injection.
Collapse
Affiliation(s)
- Liang Yang
- Department of Molecular Biology, Norman Bethune College of Medicine, Jilin University, Changchun, China
| | | | | | | | | | | |
Collapse
|
224
|
Hillyer P, Mane VP, Schramm LM, Puig M, Verthelyi D, Chen A, Zhao Z, Navarro MB, Kirschman KD, Bykadi S, Jubin RG, Rabin RL. Expression profiles of human interferon-alpha and interferon-lambda subtypes are ligand- and cell-dependent. Immunol Cell Biol 2012; 90:774-83. [PMID: 22249201 PMCID: PMC3442264 DOI: 10.1038/icb.2011.109] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 10/18/2011] [Accepted: 11/20/2011] [Indexed: 01/03/2023]
Abstract
Recent genome-wide association studies suggest distinct roles for 12 human interferon-alpha (IFN-α) and 3 IFN-λ subtypes that may be elucidated by defining the expression patterns of these sets of genes. To overcome the impediment of high homology among each of the sets, we designed a quantitative real-time PCR assay that incorporates the use of molecular beacon and locked nucleic acid (LNA) probes, and in some instances, LNA oligonucleotide inhibitors. We then measured IFN subtype expression by human peripheral blood mononuclear cells and by purified monocytes, myeloid dendritic cells (mDC), plasmacytoid dendritic cells (pDC), and monocyte-derived macrophages (MDM), and -dendritic cells (MDDC) in response to poly I:C, lipopolysaccharide (LPS), imiquimod and CpG oligonucleotides. We found that in response to poly I:C and LPS, monocytes, MDM and MDDC express a subtype pattern restricted primarily to IFN-β and IFN-λ1. In addition, while CpG elicited expression of all type I IFN subtypes by pDC, imiquimod did not. Furthermore, MDM and mDC highly express IFN-λ, and the subtypes of IFN-λ are expressed hierarchically in the order IFN-λ1 followed by IFN-λ2, and then IFN-λ3. These data support a model of coordinated cell- and ligand-specific expression of types I and III IFN. Defining IFN subtype expression profiles in a variety of contexts may elucidate specific roles for IFN subtypes as protective, therapeutic or pathogenic mediators.
Collapse
Affiliation(s)
- Philippa Hillyer
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
- These authors contributed equally to this work
| | - Viraj P Mane
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
- These authors contributed equally to this work
- Current address: Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, USA
| | - Lynnsie M Schramm
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | - Montserrat Puig
- Center for Drugs Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | - Daniela Verthelyi
- Center for Drugs Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | - Aaron Chen
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | - Zeng Zhao
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | - Maria B Navarro
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | - Kevin D Kirschman
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | - Srikant Bykadi
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| | | | - Ronald L Rabin
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, MD, USA
| |
Collapse
|
225
|
Robert-Tissot C, Rüegger VL, Cattori V, Meli ML, Riond B, Moore PF, Engels M, Franchini M, Hofmann-Lehmann R, Lutz H. Stimulation with a class A CpG oligonucleotide enhances resistance to infection with feline viruses from five different families. Vet Res 2012; 43:60. [PMID: 22906110 PMCID: PMC3537549 DOI: 10.1186/1297-9716-43-60] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/30/2012] [Indexed: 12/24/2022] Open
Abstract
Domestic cats are commonly affected by viral pathogens that induce lengthy infections with fatal outcomes. Prevention of viral propagation is of primordial importance in shelters and catteries, where cats from different backgrounds have narrow contacts. Oligonucleotides (ODN) containing cytosine-phosphate-guanosine motifs of class A (CpG-A) are highly potent synthetic inducers of innate antiviral mechanisms. The aim of this study was to test their ability to modulate innate immune responses and prevent viral replication as stand-alone agents in the domestic cat. CpG-A stimulation of feline peripheral blood mononuclear cells (PBMCs) enhanced their proliferation, increased the presence of co-stimulatory molecules on their surface and influenced their gene expression profiles in an antiviral orientation. Incubation of the supernatants of CpG-A stimulated PBMCs with feline cell lines of epithelial and fibroblastic origin induced expression of the antiviral myxovirus resistance (Mx) gene in these target cells, which also showed enhanced resistance to feline viruses from five distinct families, namely Coronaviridae, Herpesviridae, Caliciviridae, Parvoviridae, and Retroviridae. Most importantly, subcutaneous administration of CpG-A in domestic cats systemically increased the expression of Mx, reaching maximal levels within 24 h. Plasma from treated cats could furthermore inhibit viral replication in vitro. Altogether, our data highlight the promising potential of CpG-A to induce a preventive antiviral state in the cat and to protect feline populations against a broad range of virus infections.
Collapse
Affiliation(s)
- Céline Robert-Tissot
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, CH-8057, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
226
|
|
227
|
Wright SE, Rewers-Felkins KA, Chowdhury NI, Ahmed J, Srivastava SK. Prevention of human adenocarcinoma with CpG-ODN in a mouse model. Oncol Lett 2012; 4:1061-1063. [PMID: 23162651 DOI: 10.3892/ol.2012.849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 06/25/2012] [Indexed: 11/06/2022] Open
Abstract
CpG-ODNs activate various immune cell subsets and induce the production of numerous cytokines. To determine whether a CpG-ODN-activated innate immune system, without the adaptive immune system, was capable of protecting against cancer cell growth, NOD/SCID mice, which do not have T or B cell function but have a functional innate immune system, were used as a model system. NOD/SCID mice were injected subcutaneously with human prostate cancer cells followed by subcutaneous injection of incremental doses of CpG-ODNs. CpG-ODNs displayed a dose-related antitumoral effect leading to the prevention of tumor growth. These results indicate that ODNs are capable of activating the innate immune system and destroying human cancer cells in the absence of the adaptive immune system.
Collapse
Affiliation(s)
- Stephen E Wright
- Women's Health Research Institute, Department of Internal Medicine
| | | | | | | | | |
Collapse
|
228
|
Robert-Tissot C, Meli ML, Riond B, Hofmann-Lehmann R, Lutz H. Induction of a systemic antiviral state in vivo in the domestic cat with a class A CpG oligonucleotide. Vet Immunol Immunopathol 2012; 150:1-9. [PMID: 22974542 PMCID: PMC7112607 DOI: 10.1016/j.vetimm.2012.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 07/21/2012] [Accepted: 07/30/2012] [Indexed: 12/04/2022]
Abstract
The evolution of cats as a solitary species has pressured feline viruses to develop highly efficient transmission strategies, the ability to persist within the host for long periods of time and the aptitude to adapt to natural and vaccine-induced immunological pressures. These characteristics render feline viruses particularly dangerous in catteries, shelters and rescue homes, were cats from different backgrounds live in close proximity. The possibility to induce short-term resistance of newcomer cats to a broad variety of viruses could help prevent the dissemination of viruses both within and outside such facilities. Oligonucleotides (ODN) containing unmethylated cytosine phosphate guanosine (CpG) motifs stimulate innate immune responses in mammals. We have previously shown that ODN 2216, a class A CpG ODN, promotes the expression by feline immune cells of potent antiviral molecules that increase resistance of feline fibroblastic and epithelial cell lines to five common feline viruses. With the aim to test the safety and extent of the biological effects of ODN 2216 in the domestic cat, we performed an initial in vivo experiment in which two cats were injected the molecule once subcutaneously and two additional cats received control treatments. No side effects to administration of ODN 2216 were observed. Moreover, this molecule induced the expression of the myxovirus resistance (Mx) gene, a marker for the instigation of innate antiviral processes, in blood as well as in oral, conjunctival and rectal mucosa cells, indicating systemic biological activity of the molecule with protective potential at viral entry sites. Mx mRNA levels were already elevated in blood 6 h post injection of ODN 2216, reached peak levels within 24 h and returned to basal values by 96–192 h after administration of the molecule. Similar induction patterns were observed in all analyzed mucosal cells. Plasma collected from treated cats at regular intervals until 96–192 h could moreover induce Mx mRNA expression in fcwf-4 cells and increase resistance of these cells to feline calicivirus inoculation. Finally, Mx mRNA levels measured in blood correlated with the degree of viral inhibition that was induced by plasma from the same cat and the same experimental time point. Our results altogether underline the promising potential of ODN 2216 in promoting antiviral defense mechanisms and inducing temporary resistance to viral infections in vivo in the domestic cat.
Collapse
Affiliation(s)
- Céline Robert-Tissot
- Clinical Laboratory, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, CH-8057 Zurich, Switzerland.
| | | | | | | | | |
Collapse
|
229
|
Xu Y, Fan H, Li X, Sun L, Hou Y. 17β-Estradiol enhances response of mice spleen B cells elicited by TLR9 agonist. Cell Immunol 2012; 278:125-35. [PMID: 22960279 DOI: 10.1016/j.cellimm.2012.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/27/2012] [Accepted: 07/13/2012] [Indexed: 12/23/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the production of autoantibodies against nucleic acid-associated antigens. B cells play cardinal roles in SLE. Many evidences have proved estrogen contribute to the gender bias in SLE and 17β-estradiol (E2) could accelerate the disease by regulating B cells. On the other hand, B cells express TLR9 which recognized dsDNA and played a critical role in SLE. However, the crosstalk between estrogen and TLR9 in B cells remains unknown. So we investigated the E2 effect in the presence of the TLR9 ligand CpG on mice spleen B cells. We found that the up-regulation of cell viability, life-span, co-stimulation molecules (CD40, CD86) expression, IgM secretion, TLR9 and MCM6 expression were more significant than CpG ODN or E2 stimulated alone. It may provide a new way to investigate the mechanism of how E2 modulate the B cells function in lupus.
Collapse
Affiliation(s)
- Yixin Xu
- Immunology and Reproductive Biology Lab, Medical School and State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | |
Collapse
|
230
|
Immunostimulatory and anti-neoplasm effects of a novel palindrome CpG oligodeoxynucleotide in mice. Acta Pharmacol Sin 2012; 33:1047-54. [PMID: 22728711 DOI: 10.1038/aps.2012.54] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
AIM DNAs containing unmethylated CpG motifs can stimulate innate and adaptive immunity. The aim of this study was to investigate the immunostimulatory and anti-neoplasm effects of a novel CpG oligodeoxynucleotide, ODN10, in tumor-bearing mice. METHODS B16 melanoma-bearing C57BL/6 mice were administered ip or sc with ODN10 or conventional CpG ODN1826 on the indicated days post inoculation. The animal survival rate and the inhibitory effect on tumor growth were observed in vivo. B and T lymphocyte proliferation, natural killing cell cytotoxicity and the phagocytic ability of peritoneal macrophages from the animals were determined using [(3)H]-thymidine incorporation assay, 4-h (51)Cr release assay and neutral red chromometry method, respectively. The serum levels of IL-12, IL-4 and IgE were quantified using ELISA assays. Histological examination of tumor tissues was performed after HE staining, and the expression of PCNA, CD63, and CD80 in tumor tissues was analyzed with immunohistochemistry. RESULTS ODN10 (1, 5 and 25 mg/kg) significantly inhibited the growth and metastasis of the tumor, and significantly prolonged the survival of tumor-bearing mice, as compared with ODN1826. The immune status was suppressed in tumor-bearing mice. Both ODN10 and ODN1826 significantly reversed the suppressed immunoactivities in tumor-bearing mice, which included promoting B and T lymphocyte proliferation, enhancing NK cell and peritoneal macrophage activities, inducing IL-12 secretion and inhibiting IL-4 and IgE secretion. Further, CpG ODNs decreased PCNA and CD63 expression while induced expression of CD80. ODN10 presented more potent activity, and displayed the most prominent immunostimulatory potential. CONCLUSION ODN10 produces prominent immunomodulatory effects on cellular immunity in tumor-bearing mice, which might help reverse the established Th2-type responses to the Th1-type responses, thus may be used as a potent anti-tumor immunotherapy agent or adjuvant.
Collapse
|
231
|
St Paul M, Paolucci S, Read LR, Sharif S. Characterization of responses elicited by Toll-like receptor agonists in cells of the bursa of Fabricius in chickens. Vet Immunol Immunopathol 2012; 149:237-44. [PMID: 22884396 DOI: 10.1016/j.vetimm.2012.07.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/12/2012] [Accepted: 07/17/2012] [Indexed: 01/08/2023]
Abstract
Toll-like receptors (TLRs) are an evolutionarily conserved group of pattern recognition receptors that play an important role in mediating host-responses to pathogens. Several TLRs have been identified in chickens and their expression has been detected in many immune cell subsets including in B cells. However, the mechanisms through which TLRs modulate B cell responses have not been well characterized in chickens. The aim of the present study was to elucidate the responses mounted by cells of the bursa of Fabricius to treatment with the TLR 3, 4 and 21 ligands, poly I:C, lipopolysaccharide (LPS) and CpG oligodeoxynucleotides (ODN), respectively. The relative expression of several immune system genes was quantified at 1, 3, 8 and 18 h post-treatment. The results show that all three ligands induced the up-regulation of interferon (IFN)-γ and interleukin (IL)-10 transcripts and promoted the up-regulation of transcripts associated with antigen presentation, namely CD80 and major histocompatibility complex (MHC) class II. Furthermore, the results indicated that LPS and poly I:C induced the greatest IFN-γ and IL-10 responses, respectively, while CpG ODN was the most efficacious inducer of CD80 and MHC-II expression. Future studies may be aimed at elucidating the mechanisms of TLR-mediated activation of chicken B cells. These mechanisms may be then exploited for the development of adjuvants with enhanced ability to stimulate B cell responses.
Collapse
Affiliation(s)
- Michael St Paul
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
232
|
Steinhagen F, Meyer C, Tross D, Gursel M, Maeda T, Klaschik S, Klinman DM. Activation of type I interferon-dependent genes characterizes the "core response" induced by CpG DNA. J Leukoc Biol 2012; 92:775-85. [PMID: 22750547 DOI: 10.1189/jlb.1011522] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Synthetic ODNs expressing CpG motifs trigger an innate immune response via TLR9. pDCs are major effectors of this response. Two structurally distinct classes of CpG ODNs have been identified that differentially activate pDCs. "K" ODNs trigger the production of TNF-α and IL-6, whereas "D" ODNs preferentially induce the secretion of IFN-α. As K and D ODNs have distinct therapeutic effects, knowledge of their shared and sequence-specific activity is of considerable importance. This work uses the CAL-1 human pDC line to analyze the effect of CpG stimulation on gene expression. Genes up-regulated by both K and D ODNs (n=92) were largely dependent on type I IFN signaling and characterized functionally by antiviral activity. K ODNs induced a short-term increase in IFN-α/β production and uniquely up-regulated genes that supported antibacterial responses. In contrast, D ODNs triggered a persistent increase in IFN-α/β production and uniquely up-regulated genes associated with metabolic functions. Thus, the core functionality of human pDCs mediated by TLR9 ligation rests on a type I IFN response that differs from the response induced by the structural elements unique to specific classes of ODNs.
Collapse
Affiliation(s)
- Folkert Steinhagen
- Laboratory of Experimental Immunology, Cancer and Inflammation Program, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | | | | | | | | | | | | |
Collapse
|
233
|
Burel SA, Machemer T, Ragone FL, Kato H, Cauntay P, Greenlee S, Salim A, Gaarde WA, Hung G, Peralta R, Freier SM, Henry SP. Unique O-methoxyethyl ribose-DNA chimeric oligonucleotide induces an atypical melanoma differentiation-associated gene 5-dependent induction of type I interferon response. J Pharmacol Exp Ther 2012; 342:150-62. [PMID: 22505629 DOI: 10.1124/jpet.112.193789] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Antisense oligonucleotides (ASO) containing 2'-O-methoxyethyl ribose (2'-MOE) modifications have been shown to possess both excellent pharmacokinetic properties and robust pharmacological activity in several animal models of human disease. 2'-MOE ASOs are generally well tolerated, displaying minimal to mild proinflammatory effect at doses far exceeding therapeutic doses. Although the vast majority of 2'-MOE ASOs are safe and well tolerated, a small subset of ASOs inducing acute inflammation in mice has been identified. The mechanism for these findings is not clear at this point, but the effects are clearly sequence-specific. One of those ASOs, ISIS 147420, causes a severe inflammatory response atypical of this class of oligonucleotides characterized by induction in interferon-β (IFN-β) at 48 h followed by acute transaminitis and extensive hepatocyte apoptosis and necrosis at 72 h. A large number of interferon-stimulated genes were significantly up-regulated in liver as early as 24 h. We speculated that a specific sequence motif might cause ISIS 147420 to be mistaken for viral RNA or DNA, thus triggering an acute innate immune response. ISIS 147420 toxicity was independent of Toll-like receptors, because there was no decrease in IFN-β in Toll/interleukin-1 receptor-domain-containing adapter-inducing IFN-β or Myd88-deficient mice. The involvement of cytosolic retinoic acid-inducible gene (RIG)-I-like pattern recognition receptors was also investigated. Pretreatment of mice with melanoma differentiation-associated gene 5 (MDA5) and IFN-β promoter stimulator-1 ASOs, but not RIG-I or laboratory of genetics and physiology 2 (LGP2) ASOs, prevented the increase in IFN-β and alanine aminotransferase induced by ISIS 147420. These results revealed a novel mechanism of oligonucleotide-mediated toxicity requiring both MDA5 and IPS-1 and resulting in the activation of the innate immune response.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/immunology
- Adaptor Proteins, Vesicular Transport/metabolism
- Alanine Transaminase/genetics
- Alanine Transaminase/immunology
- Alanine Transaminase/metabolism
- Animals
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/immunology
- DEAD-box RNA Helicases/metabolism
- DNA/genetics
- DNA/immunology
- DNA/metabolism
- Hepatocytes/immunology
- Hepatocytes/metabolism
- Immunity, Innate/genetics
- Immunity, Innate/immunology
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/metabolism
- Interferon Type I/genetics
- Interferon Type I/immunology
- Interferon Type I/metabolism
- Interferon-Induced Helicase, IFIH1
- Interferon-beta/genetics
- Interferon-beta/immunology
- Interferon-beta/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Myeloid Differentiation Factor 88/genetics
- Myeloid Differentiation Factor 88/immunology
- Myeloid Differentiation Factor 88/metabolism
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/immunology
- Receptors, Interleukin-1/genetics
- Receptors, Interleukin-1/immunology
- Receptors, Interleukin-1/metabolism
- Ribose/genetics
- Ribose/immunology
- Ribose/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- Toll-Like Receptors/genetics
- Toll-Like Receptors/immunology
- Toll-Like Receptors/metabolism
Collapse
|
234
|
Karbach J, Neumann A, Wahle C, Brand K, Gnjatic S, Jäger E. Therapeutic administration of a synthetic CpG oligodeoxynucleotide triggers formation of anti-CpG antibodies. Cancer Res 2012; 72:4304-10. [PMID: 22738916 DOI: 10.1158/0008-5472.can-12-0257] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The synthetic oligodeoxynucleotide CpG 7909, which contains unmethylated cytosine/guanine (CpG) motifs, has potent immunostimulatory effects when coadministered with NY-ESO-1 peptides or recombinant NY-ESO-1 protein, resulting in an enhanced cellular and humoral immune response against the vaccine antigen. In this study, we report the development of anti-CpG-ODN antibodies in 21 of 37 patients who received CpG 7909 either alone or as a vaccine adjuvant. Specific anti-CpG immunoglobulin G (IgG) antibody titers ranged from 1:400 to 1:100,000. The anti-CpG antibodies cross-reacted with other synthetic CpG-ODNs but not with the DNA of mixed bacterial vaccine and were shown to be phosphorothioate backbone specific. Vaccine-related severe side effects observed in some patients were most likely not related to the development of anti-CpG antibodies. In addition, anti-CpG antibodies did not have negative effects on the vaccine immune response. These results show that anti-CpG antibodies develop in humans against short unmethylated CpG dinucleotide sequences after administration of CpG 7909. Our data therefore substantiate the potency of CpG 7909 to directly stimulate human B-cells and suggest that anti-CpG antibody monitoring should be a part of ongoing and planned clinical trials with CpG-ODNs.
Collapse
Affiliation(s)
- Julia Karbach
- II. Medizinische Klinik, Hämatologie-Onkologie, Krankenhaus Nordwest, Frankfurt, Germany
| | | | | | | | | | | |
Collapse
|
235
|
Cherepanova AV, Bushuev AV, Kharkova MV, Vlassov VV, Laktionov PP. DNA inhibits dsRNA-induced secretion of pro-inflammatory cytokines by gingival fibroblasts. Immunobiology 2012; 218:272-80. [PMID: 22749216 DOI: 10.1016/j.imbio.2012.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/09/2012] [Accepted: 05/16/2012] [Indexed: 01/05/2023]
Abstract
Nucleic acids interacting with pattern-recognizing receptors (PRRs), such as Toll-like-(TLRs), RIG-I-like receptors (RLRs) and dsDNA-receptors activate innate immune response in non-professional immune cells and thus the production of pro-inflammatory cytokines. Along with bacterial and viral nucleic acids, endogenous cell-free and cell-surface-bound extracellular DNA (exDNA and csbDNA) could interact with PRRs and possess immunomodulating activity. To elucidate if exDNA influence innate immunity a comparative study of exDNA, genomic and plasmid DNA on interleukin production in gingival fibroblasts (GF) has been done. All DNA tested have no effect on IL secretion in a broad concentration range (10 ng/ml-1 μg/ml). Simultaneous treatment of cells with DNA and dsRNA analog poly(I:C) leads to inhibition of poly(I:C)-activated secretion of IL-6 and IL-8. Cell-surface-bound DNA possesses two times stronger inhibiting effect as compared to genomic DNA indicating the enrichment of csbDNA in sequences providing such activity. Effects of several recently found specific DNA sequences tightly bound with cell surface have been tested. Joint stimulation of GF with poly(I:C) and deoxyribooligonucleotides (ODN), containing such sequences, demonstrates that both ssODN and dsODN possess sequence-dependent inhibiting effect. Inhibition of IL production after colipofection of ODN and poly(I:C) into cells indicates the involvement of RLRs or other cytoplasmic factors in the effect. The data obtained indicate that endogenous DNA might be involved in regulation of antiviral immune response and sequence-specific ODNs are potential inhibitors of the inflammation induced by viral infection.
Collapse
Affiliation(s)
- Anna V Cherepanova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of the Russian Academy of Sciences, Novosibirsk 630090, Russia.
| | | | | | | | | |
Collapse
|
236
|
Abstract
Stimulation of toll-like receptor 9 (TLR9) by CpG-C containing oligonucleotides attenuates ischemic injury in the brain and liver. In this study, we investigate whether any of the three classes of CpG (A, B, or C) mitigate ischemia-induced cardiac dysfunction. We measured left ventricular ejection fraction (LVEF) in C57BL/6 mice using transthoracic echocardiography. Using LPS as an inflammatory stimulus, CpG-C was uniquely able to prevent cardiac dysfunction; its activity was confirmed through nuclear factor κB transcriptional activity assay in HL-1 cardiomyocytes. We went on to investigate CpG-C's efficacy and mechanism in the treatment of ischemia-reperfusion. Compared with baseline, no class of CpG significantly altered LVEF at 6 or 24 h; 40 mg/kg LPS induced a rapid, profound suppression of LVEF compared with baseline (26% ± 1.4% vs. 65% ± 1.4%), whereas pretreatment with CpG demonstrated that of the three classes, only CpG-C prevented the LPS -induced decrease in LVEF (51% ± 5.8%). In separate mice, 1-h ischemia followed by reperfusion of the left anterior descending artery resulted in a 7-day suppression of the LVEF (66% ± 5.2% at baseline; 46% ± 4.7% at day 1, and 46% ± 4.0% at day 7), whereas mice either pretreated with or begun on an infusion of CpG-C during the ischemia had no significant decline in LVEF. Gene expression microarray of CpG-C-stimulated cells revealed upregulation of the nuclear factor κB pathway inhibitors TNFAIP3, NFKBIA, TRIM30, and TNIP1. These may play a role in attenuation of cardiac inflammation. The TLR9 ligand CpG-C attenuates the acute inflammatory cardiac dysfunction induced by both LPS and ischemia-reperfusion of the left anterior descending artery.
Collapse
|
237
|
Weber C, Müller C, Podszuweit A, Montino C, Vollmer J, Forsbach A. Toll-like receptor (TLR) 3 immune modulation by unformulated small interfering RNA or DNA and the role of CD14 (in TLR-mediated effects). Immunology 2012; 136:64-77. [PMID: 22260507 DOI: 10.1111/j.1365-2567.2012.03559.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Toll-like receptors (TLRs) 3, 7, 8 and 9 stimulate innate immune responses upon recognizing pathogen-derived nucleic acids. TLR3 is located on the cell surface and in cellular endosomes and recognizes double-stranded viral RNA or the synthetic mimic poly rI:rC. Recently, unformulated small interfering RNA (siRNA) has been reported as ligand for surface-expressed murine TLR3. Blockage of TLR3 is achieved by single-stranded DNA. We confirm and expand the observation that poly rI:rC-mediated TLR3 immune activation is blocked in a sequence-, length-, backbone- and CpG-dependent manner. However, human TLR3 is not activated by siRNA, which may be the result of differences in the amino acid composition of the TLR3 loop 1 of mice and humans. Although CD14 was previously described as a co-receptor for murine TLR3 and other nucleic acid-recognizing TLRs, human CD14 acts only as co-receptor to human TLR9, but not TLR3, TLR7 or TLR8. We show that CD14 up-regulates the TLR9 immune response of A, B and C-class oligodeoxynucleotides but down-regulates the phosphoro-diester version of B-class oligodeoxynucleotides.
Collapse
Affiliation(s)
- Cordula Weber
- Pfizer Oligonucleotide Therapeutics Unit - Coley Pharmaceutical GmbH, Merowingerplatz 1a, 40225 Düsseldorf, Germany
| | | | | | | | | | | |
Collapse
|
238
|
Yang M, Yan Y, Fang M, Wan M, Wu X, Zhang X, Zhao T, Wei H, Song D, Wang L, Yu Y. MF59 formulated with CpG ODN as a potent adjuvant of recombinant HSP65-MUC1 for inducing anti-MUC1+ tumor immunity in mice. Int Immunopharmacol 2012; 13:408-16. [PMID: 22595192 PMCID: PMC7106219 DOI: 10.1016/j.intimp.2012.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/23/2012] [Accepted: 05/03/2012] [Indexed: 12/31/2022]
Abstract
MF59 is an oil-in-water emulsion adjuvant approved for influenza vaccines for human use in Europe. Due to its Th2 inducing properties, MF59 is seldom tested for cancer vaccines. In this study, MF59 formulated with a C-type CpG oligodeoxynucleotide (YW002) was tested for its Th1 adjuvant activity to induce immune responses to HSP65-MUC1, a recombinant fusion protein incorporating a mycobacterial heat shock protein (HSP65) and mucin 1, cell surface associated (MUC1) derived peptide. Combination of YW002 with MF59 (MF59-YW002) could confer a potent Th1 biasing property to the adjuvant, which enhanced the immunogenicity of HSP65-MUC1 to induce significantly higher levels of specific IgG2c, increased IFN-γ mRNA expression in splenocytes and the generation of antigen-specific cytotoxic T lymphocytes in mice. When prophylactically applied, MF59-YW002 adjuvant containing HSP65-MUC1 inhibited the growth of MUC1+ B16 melanoma and prolonged the survival of tumor-bearing mice. In contrast, adjuvant containing MF59 with HSP65-MUC1 in the absence of YW002, promoted the growth of MUC1+ B16 melanoma in mice. These results suggest that MF59 plus CpG oligodeoxynucleotide might be developed as an efficient adjuvant for tumor vaccines against melanoma, and possibly other tumors.
Collapse
Affiliation(s)
- Ming Yang
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Forsbach A, Müller C, Montino C, Kritzler A, Nguyen T, Weeratna R, Jurk M, Vollmer J. Negative regulation of the type I interferon signaling pathway by synthetic Toll-like receptor 7 ligands. J Interferon Cytokine Res 2012; 32:254-68. [PMID: 22540943 DOI: 10.1089/jir.2011.0091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ten Toll-like receptor (TLR) family members have been reported in humans. Here, the endoplasmatic receptors TLR9, TLR8, TLR7, and TLR3 respond to nucleic acids and derivatives or to small molecules (TLR7 and 8). Another cytoplasmic RNA receptor, retinoic acid inducible gene I (RIG-I), is stimulated by 5' triphosphate double-stranded RNA. We discovered that TLR7 small-molecule agonists inhibit nucleic acid-mediated TLR3, TLR7, TLR9, or RIG-I-dependent interferon-α (IFN-α) immune response. Other cytokines and chemokines stimulated by nucleic acid agonists remained unaffected. The observed blockage of TLR3, TLR7, TLR9, and RIG-I-mediated IFN-α response appears to be driven by a competitive mechanism at the type I IFN pathway. Besides type I IFN, IFN response genes such as IFIT-1, Mx1, OAS1, or IRF7 were affected, which indicates that the key element driving the inhibition is located in the type I IFN pathway. Indeed, the heterotrimeric complex formation of phosphor-signal transducer and activator of transcription factor 1 (STAT1), phosphor-STAT2, and IRF9 (called ISGF3, IFN-stimulated gene factor 3) is inhibited through the TLR7 small-molecule agonists by phosphor-STAT2 blockage. These findings provide novel insights into the use of synthetic TLR7 or TLR7/8 small molecules as ligands for immune activation and suppression.
Collapse
Affiliation(s)
- Alexandra Forsbach
- Pfizer Oligonucleotide Therapeutics Unit-Coley Pharmaceutical GmbH , Düsseldorf, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
240
|
Hanagata N. Structure-dependent immunostimulatory effect of CpG oligodeoxynucleotides and their delivery system. Int J Nanomedicine 2012; 7:2181-95. [PMID: 22619554 PMCID: PMC3356174 DOI: 10.2147/ijn.s30197] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Unmethylated cytosine-phosphate-guanosine (CpG) oligodeoxynucleotides (ODNs) are recognized by Toll-like receptor 9 (TLR9) found in antigen-presenting cells and B cells and can activate the immune system. Using CpG ODNs as an adjuvant has been found to be effective for treating infectious diseases, cancers, and allergies. Because natural ODNs with only a phosphodiester backbone are easily degraded by nuclease (deoxyribonuclease [DNase]) in serum, CpG ODNs with a phosphorothioate backbone have been studied for clinical application. CpG ODNs with a phosphorothioate backbone have raised concern regarding undesirable side effects; however, several CpG ODNs with only a phosphodiester backbone have been reported to be stable in serum and to show an immunostimulatory effect. In recent years, research has been conducted on delivery systems for CpG ODNs using nanoparticles (NPs). The advantages of NP-based delivery of CpG ODN include (1) it can protect CpG ODN from DNase, (2) it can retain CpG ODN inside the body for a long period of time, (3) it can improve the cellular uptake efficiency of CpG ODN, and (4) it can deliver CpG ODN to the target tissues. Because the target cells of CpG ODN are cells of the immune system and TLR9, the receptor of CpG ODN is localized in endolysosomes, CpG ODN delivery systems are required to have qualities different from other nucleic acid drugs such as antisense DNA and small interfering RNA. Studies until now have reported various NPs as carriers for CpG ODN delivery. This review presents DNase-resistant CpG ODNs with various structures and their immunostimulatory effects and also focuses on delivery systems of CpG ODNs that utilize NPs. Because CpG ODNs interact with TLR9 and activate both the innate and the adaptive immune system, the application of CpG ODNs for the treatment of cancers, infectious diseases, and allergies holds great promise.
Collapse
Affiliation(s)
- Nobutaka Hanagata
- Nanotechnology Innovation Station, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
241
|
Forsbach A, Samulowitz U, Völp K, Hofmann HP, Noll B, Tluk S, Schmitz C, Wader T, Müller C, Podszuweit A, Lohner A, Curdt R, Uhlmann E, Vollmer J. Dual or triple activation of TLR7, TLR8, and/or TLR9 by single-stranded oligoribonucleotides. Nucleic Acid Ther 2012; 21:423-36. [PMID: 22196370 DOI: 10.1089/nat.2011.0323] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The toll-like receptors (TLRs) 7, 8, and 9 stimulate innate immune responses upon recognizing pathogen nucleic acids. Certain GU- or AU-rich RNA sequences were described to differentiate between human TLR7- and TLR8-mediated immune effects. Those single-stranded RNA molecules require endosomal delivery for stabilization against ribonucleases. We have discovered RNA sequences that preferentially activate TLR7, form higher ordered structures, and do not require specific cellular delivery. In addition, a dual activation of TLR8 and TLR9 without affecting TLR7 can be achieved by chimeric molecules consisting of GU-rich RNA and Cytosin (C) phosphordiester or phosphorthioat (p) guanine (CpG) motif DNA sequences. Such chimeras stimulate TLR9-mediated type I interferon (IFN) and TLR8-depending proinflammatory cytokine and chemokine production upon primary human cell activation. However, an RNA-dependent TLR7 IFN-α cytokine release is suppressed by the phosphorothioate DNA sequence contained in the chimeric molecule. To convert the immune response of a single-stranded RNA from TLR7/8 to TLR9, a simple chemical modification at the 5' end proves to be sufficient. Such 8-oxo-2'-deoxy-guanosine or 8-bromo-2'-deoxy-guanosine modifications of the first guanosine in GU-rich single-stranded RNAs convert the immune response to include TLR9 activation and demonstrate strong additive effects for type I IFN immune responses in human primary cells.
Collapse
Affiliation(s)
- Alexandra Forsbach
- Pfizer Oligonucleotides Therapeutics Unit, Coley Pharmaceutical GmbH, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Interplay between interferon-mediated innate immunity and porcine reproductive and respiratory syndrome virus. Viruses 2012; 4:424-46. [PMID: 22590680 PMCID: PMC3347317 DOI: 10.3390/v4040424] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/15/2012] [Accepted: 03/18/2012] [Indexed: 12/24/2022] Open
Abstract
Innate immunity is the first line of defense against viral infection, and in turn, viruses have evolved to evade host immune surveillance. As a result, viruses may persist in host and develop chronic infections. Type I interferons (IFN-α/β) are among the most potent antiviral cytokines triggered by viral infections. Porcine reproductive and respiratory syndrome (PRRS) is a disease of pigs that is characterized by negligible induction of type I IFNs and viral persistence for an extended period. For IFN production, RIG-I/MDA5 and JAK-STAT pathways are two major signaling pathways, and recent studies indicate that PRRS virus is armed to modulate type I IFN responses during infection. This review describes the viral strategies for modulation of type I IFN responses. At least three non-structural proteins (Nsp1, Nsp2, and Nsp11) and a structural protein (N nucleocapsid protein) have been identified and characterized to play roles in the IFN suppression and NF-κB pathways. Nsp's are early proteins while N is a late protein, suggesting that additional signaling pathways may be involved in addition to the IFN pathway. The understanding of molecular bases for virus-mediated modulation of host innate immune signaling will help us design new generation vaccines and control PRRS.
Collapse
|
243
|
Judy BM, Taylor K, Deeraksa A, Johnston RK, Endsley JJ, Vijayakumar S, Aronson JF, Estes DM, Torres AG. Prophylactic application of CpG oligonucleotides augments the early host response and confers protection in acute melioidosis. PLoS One 2012; 7:e34176. [PMID: 22448290 PMCID: PMC3309019 DOI: 10.1371/journal.pone.0034176] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 02/27/2012] [Indexed: 12/24/2022] Open
Abstract
Prophylactic administration of CpG oligodeoxynucleotides (CpG ODNs) is known to confer protection against lethal sepsis caused by Burkholderia pseudomallei in the mouse model. The mechanisms whereby CpG regulates the innate immune response to provide protection against B. pseudomallei, however, are poorly characterized. In the present study, we demonstrate that intranasal treatment of mice with Class C CpG, results in recruitment of inflammatory monocytes and neutrophils to the lung at 48 h post-treatment. Mice infected with B. pseudomallei 48 h post-CpG treatment had reduced organ bacterial load and significantly altered cytokine and chemokine profiles concomitant with protection as compared to control animals. CpG administration reduced the robust production of chemokines and pro-inflammatory cytokines in blood, lung and spleen, observed following infection of non-treated animals. Death of control animals coincided with the time of peak cytokine production (day 1–3), while a moderate; sustained cytokine production in CpG-treated animals was associated with survival. In general, CpG treatment resulted in diminished expression of cytokines and chemokines post-infection, though IL-12p40 was released in larger quantities in CpG treated animals. In contrast to CpG-treated animals, the lungs of infected control animals were infiltrated with leukocytes, especially neutrophils, and large numbers of necrotic lesions were observed in lung sections. Therapeutic treatment of B. pseudomallei-infected animals with CpG at 24 h post-infection did not impact survival compared to control animals. In summary, protection of CpG-treated animals was associated with recruitment of inflammatory monocytes and neutrophils into the lungs prior to infection. These responses correspond with early control of bacterial growth, a dampened inflammatory cytokine/chemokine response, reduced lung pathology, and greatly increased survival. In contrast, a delay in recruitment of inflammatory cell populations, despite a robust production of pro-inflammatory cytokines, was associated with poorly controlled bacterial growth, severe lung pathology, and death of control animals.
Collapse
Affiliation(s)
- Barbara M. Judy
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Katherine Taylor
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Arpaporn Deeraksa
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - R. Katie Johnston
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Janice J. Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Sudhamathi Vijayakumar
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Judith F. Aronson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - D. Mark Estes
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Alfredo G. Torres
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
244
|
Goutagny N, Estornes Y, Hasan U, Lebecque S, Caux C. Targeting pattern recognition receptors in cancer immunotherapy. Target Oncol 2012; 7:29-54. [PMID: 22399234 DOI: 10.1007/s11523-012-0213-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 01/13/2012] [Indexed: 12/20/2022]
Abstract
Pattern recognition receptors (PRRs) are known for many years for their role in the recognition of microbial products and the subsequent activation of the immune system. The 2011 Nobel Prize for medicine indeed rewarded J. Hoffmann/B. Beutler and R. Steinman for their revolutionary findings concerning the activation of the immune system, thus stressing the significance of understanding the mechanisms of activation of the innate immunity. Such immunostimulatory activities are of major interest in the context of cancer to induce long-term antitumoral responses. Ligands for the toll-like receptors (TLRs), a well-known family of PRR, have been shown to have antitumoral activities in several cancers. Those ligands are now undergoing extensive clinical investigations both as immunostimulant molecules and as adjuvant along with vaccines. However, when considering the use of these ligands in tumor therapy, one shall consider the potential effect on the tumor cells themselves as well as on the entire organism. Recent data indeed demonstrate that TLR activation in tumor cells could trigger both pro- or antitumoral effect depending on the context. This review discusses this balance between the intrinsic activation of PRR in tumor cells and the extrinsic microenvironment activation in term of overall effect of PRR ligands on tumor development. We review recent advances in the field and underline appealing prospects for clinical development of PRR agonists in the light of our current knowledge on their expression and activation.
Collapse
Affiliation(s)
- Nadège Goutagny
- Université de Lyon, Université Lyon I, UMR INSERM 1052 CNRS 5286, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Lyon, France.
| | | | | | | | | |
Collapse
|
245
|
RNase H-mediated degradation of toxic RNA in myotonic dystrophy type 1. Proc Natl Acad Sci U S A 2012; 109:4221-6. [PMID: 22371589 DOI: 10.1073/pnas.1117019109] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an RNA-dominant disease caused by abnormal transcripts containing expanded CUG repeats. The CUG transcripts aggregate in the nucleus to form RNA foci and lead to nuclear depletion of Muscleblind-like 1 (MBNL1) and stabilized expression of CUGBP Elav like family 1 (CELF1), both of which are splicing regulatory proteins. The imbalance of these proteins results in misregulation of alternative splicing and neuromuscular abnormalities. Here, we report the use of antisense oligonucleotides (ASOs) as a therapeutic approach to target the pathogenic RNA in DM1. We designed chimeric ASOs, termed gapmers, containing modified nucleic acid residues to induce RNase H-mediated degradation of CUG-repeat transcripts. The gapmers selectively knockdown expanded CUG transcripts and are sufficient to disrupt RNA foci both in cell culture and mouse models for DM1. Furthermore, combination of gapmers with morpholino ASOs that help release binding of MBNL1 to the toxic RNA can potentially enhance the knockdown effect. Additional optimization will be required for systemic delivery; however, our study provides an alternative strategy for the use of ASOs in DM1 therapy.
Collapse
|
246
|
Abstract
The discovery of the CpG motif in 1995 led to a change in the perception of the immune stimulatory effects of oligodeoxynucleotides (ODN) from an unwanted nonspecific effect to a highly evolved immune defense that can be selectively triggered for a wide range of therapeutic applications. Over the last decade dozens of human clinical trials have been conducted with different CpG ODN in thousands of humans for applications ranging from vaccine adjuvant to immunotherapies for allergy, cancer, and infectious diseases. Along with many positive results have come some failures showing the limitations of several therapeutic approaches. This review summarizes these results to provide an overview of the clinical development of CpG ODN.
Collapse
Affiliation(s)
- Arthur M Krieg
- RaNA Therapeutics, Inc., Cambridge, Massachusetts 02141, USA.
| |
Collapse
|
247
|
Wattrang E, Palm AK, Wagner B. Cytokine production and proliferation upon in vitro oligodeoxyribonucleotide stimulation of equine peripheral blood mononuclear cells. Vet Immunol Immunopathol 2012; 146:113-24. [PMID: 22397968 DOI: 10.1016/j.vetimm.2012.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 02/01/2012] [Accepted: 02/09/2012] [Indexed: 11/28/2022]
Abstract
Synthetic oligodeoxyribonucleotides (ODN) may prove useful immune modulators in equine medicine. It is however important to assess the effects of each specific ODN in the species it is intended to be used in. The present study therefore aimed to evaluate some ODN for induction of cytokine production; i.e. type I interferons (IFN), IFN-γ, tumor necrosis factor-α (TNF-α) and transforming growth factor-β (TGF-β), and proliferation of equine peripheral blood mononuclear cells (PBMC). A panel of four ODN containing unmethylated cytosine-guanosine sequences (CpG) was used: ODN 1 and ODN 8 representing A-class; ODN 2006 representing B-class and ODN 2395 representing C-class-ODN. In addition, two ODN where CpG-motifs were reversed to GpC were included; ODN 2137 otherwise identical to ODN 2006 and ODN 5328 otherwise identical to ODN 2395. Cytokine concentrations were measured in cell culture supernatants after 24h of induction and proliferation was determined after 72 h of induction. Each ODN was tested with PBMC from at least 5 individual horses with and without the addition of lipofectin to cell cultures. Type I IFN, IFN-γ and TNF-α production was readily induced by ODN 1, ODN 2006 and ODN 2395 both in the presence and absence of lipofectin and all three types of ODN induced similar levels of cytokines. Proliferation of PBMC was clearly induced by ODN 2006 and ODN 2395 while ODN 1 only induced low-level proliferation. The levels of proliferation induced were not influenced by the presence of lipofectin. TGF-β production was not induced by any of the tested ODN. ODN 8, ODN 2137 and ODN 5328 were largely inactive in all assays. Thus, responses seemed dependent on or increased by CpG-motifs but presence of CpG-motifs did not necessarily confer activity since ODN 8 was inactive despite its CpG-motifs. Taken together, with equine PBMC distinctions in induction of different leukocyte functions between A-, B-, and C-class ODN were less obvious than what has been observed for human cells. These observations further stress the presence of species differences in ODN-induced responses.
Collapse
Affiliation(s)
- Eva Wattrang
- Department of Virology, Immunobiology and Parasitology, National Veterinary Institute, SE-751 89 Uppsala, Sweden.
| | | | | |
Collapse
|
248
|
Tuvim MJ, Gilbert BE, Dickey BF, Evans SE. Synergistic TLR2/6 and TLR9 activation protects mice against lethal influenza pneumonia. PLoS One 2012; 7:e30596. [PMID: 22299046 PMCID: PMC3267724 DOI: 10.1371/journal.pone.0030596] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/23/2011] [Indexed: 12/22/2022] Open
Abstract
Lower respiratory tract infections caused by influenza A continue to exact unacceptable worldwide mortality, and recent epidemics have emphasized the importance of preventative and containment strategies. We have previously reported that induction of the lungs' intrinsic defenses by aerosolized treatments can protect mice against otherwise lethal challenges with influenza A virus. More recently, we identified a combination of Toll like receptor (TLR) agonists that can be aerosolized to protect mice against bacterial pneumonia. Here, we tested whether this combination of synthetic TLR agonists could enhance the survival of mice infected with influenza A/HK/8/68 (H3N2) or A/California/04/2009 (H1N1) influenza A viruses. We report that the TLR treatment enhanced survival whether given before or after the infectious challenge, and that protection tended to correlate with reductions in viral titer 4 d after infection. Surprisingly, protection was not associated with induction of interferon gene expression. Together, these studies suggest that synergistic TLR interactions can protect against influenza virus infections by mechanisms that may provide the basis for novel therapeutics.
Collapse
Affiliation(s)
- Michael J. Tuvim
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Brian E. Gilbert
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Burton F. Dickey
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| | - Scott E. Evans
- Department of Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas, United States of America
| |
Collapse
|
249
|
Horscroft NJ, Pryde DC, Bright H. Antiviral applications of Toll-like receptor agonists. J Antimicrob Chemother 2012; 67:789-801. [PMID: 22258929 DOI: 10.1093/jac/dkr588] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the past, antiviral research has focused mainly on viral targets. As the search for effective and differentiated antiviral therapies continues, cellular targets are becoming more common, bringing with them a variety of challenges and concerns. Toll-like receptors (TLRs) provide a unique mechanism to induce an antiviral state in the host. In this review we introduce TLRs as targets for the pharmaceutical industry, including how they signal and thereby induce an antiviral state through the production of type I interferons. We examine how TLRs are being therapeutically targeted and discuss several clinically precedented agents for which efficacy and safety data are available. We describe some of the chemistries that have been applied to both small molecule and large molecule leads to tune agonist potency, and offer a differentiated safety profile through targeting certain compartments such as the gut or the lung, thereby limiting systemic drug exposure and affecting systemic cytokine levels. The application of low-dose agonists of TLRs as vaccine adjuvants or immunoprotective agents is also presented. Some of the challenges presented by this approach are then discussed, including viral evasion strategies and mechanism-linked inflammatory cytokine induction.
Collapse
|
250
|
Yan Y, Cao Z, Yang M, Li H, Wei H, Fu Y, Song D, Wang L, Yu Y. A CpG oligodeoxynucleotide potentiates the anti-tumor effect of HSP65-Her2 fusion protein against Her2 positive B16 melanoma in mice. Int Immunopharmacol 2012; 12:402-7. [PMID: 22222115 DOI: 10.1016/j.intimp.2011.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/04/2011] [Accepted: 12/19/2011] [Indexed: 12/25/2022]
Abstract
Although being promising tumor vaccine candidates in animal models, heat shock protein (HSP)-based tumor vaccines have not yet succeeded in the clinical trials, implying the necessity to be formulated with appropriate adjutants to enhance their immunogenicity. In this study, we investigated whether a B-class CpG ODN (BW006), a TLR9 agonist, could facilitate HSP65-Her2, a recombinant protein between mycobacterial HSP65 and Her2-derived peptide, to induce vigorous anti-tumor activity against Her2 positive tumors in mice both prophylactically and therapeutically. It was found that BW006 could enhance prophylactic and therapeutic effect of HSP65-Her2 with improved survival of the mice bearing Her2(+) B16 melanoma and HSP65-Her2 specific Th1 response.
Collapse
Affiliation(s)
- Youyou Yan
- Department of Immunology, Norman Bethune College of Medicine, Jilin University, Changchun 130021, China
| | | | | | | | | | | | | | | | | |
Collapse
|