201
|
Wang H, Li L, Tong Q, Yan M. Evaluation of photochemically immobilized poly(2-ethyl-2-oxazoline) thin films as protein-resistant surfaces. ACS APPLIED MATERIALS & INTERFACES 2011; 3:3463-71. [PMID: 21834589 PMCID: PMC3184304 DOI: 10.1021/am200690s] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Poly(2-ethyl-2-oxazoline) (PEOX) of various molecular weights were covalently immobilized on silicon wafers and gold slides to form protein-resistant surfaces via a fast and general photocoupling chemistry based on the CH insertion reaction of light-activated perfluorophenyl azide (PFPA). The thicknesses of the immobilized PEOX films ranged from 23 to 80 Å for molecular weight of 5000 to 500,000, and the grafting density reached 3.2 × 10(-3) Å(-2) for PEOX 5000. The protein-resistant property of the films was studied using bovine serum albumin (BSA) by fluorescence imaging, ellipsometry, and surface plasmon resonance imaging (SPRi). The fluorescence imaging and ellipsometry studies showed the largest amount of BSA adsorbed on PEOX 5000 and the smallest on PEOX 500,000. This was consistent with the kinetic analysis of BSA adsorption by SPRi showing that PEOX 5000 exhibited the fastest association rate and the slowest dissociation rate whereas PEOX 500,000 had the slowest association rate and the fastest dissociation rate. The PEOX film was then applied in the fabrication of carbohydrate microarrays to reduce the nonspecific adsorption of lectins and thus the background noises. Results showed that the microarray signals were significantly enhanced when the PEOX film was used.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207-0751
| | - Liling Li
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207-0751
| | - Qi Tong
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207-0751
| | - Mingdi Yan
- Department of Chemistry, Portland State University, P.O. Box 751, Portland, OR 97207-0751
| |
Collapse
|
202
|
Affiliation(s)
| | - Jeffrey J.D. Henry
- Department of Bioengineering, University of California, Berkeley, California 94720;
| |
Collapse
|
203
|
Mimicking the fibrinolytic system on material surfaces. Colloids Surf B Biointerfaces 2011; 86:1-6. [DOI: 10.1016/j.colsurfb.2011.04.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/29/2011] [Accepted: 04/01/2011] [Indexed: 01/07/2023]
|
204
|
Poly(ethylene glycol) haired layered double hydroxides as biocompatible nanovehicles: Morphology and dispersity study. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2011.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
205
|
Harris CA, Resau JH, Hudson EA, West RA, Moon C, Black AD, McAllister JP. Reduction of protein adsorption and macrophage and astrocyte adhesion on ventricular catheters by polyethylene glycol and N-acetyl-L-cysteine. J Biomed Mater Res A 2011; 98:425-33. [DOI: 10.1002/jbm.a.33130] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 03/22/2011] [Accepted: 04/07/2011] [Indexed: 12/20/2022]
|
206
|
Lazzara TD, Kliesch TT, Janshoff A, Steinem C. Orthogonal functionalization of nanoporous substrates: control of 3D surface functionality. ACS APPLIED MATERIALS & INTERFACES 2011; 3:1068-1076. [PMID: 21370818 DOI: 10.1021/am101212h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Anodic aluminum oxide (AAO) membranes with aligned, cylindrical, nonintersecting pores were selectively functionalized in order to create dual-functionality substrates with different pore-rim and pore-interior surface functionalities, using silane chemistry. We used a two-step process involving an evaporated thin gold film to protect the underlying surface functionality of the pore rims. Subsequent treatment with oxygen plasma of the modified AAO membrane removed the unprotected organic functional groups, i.e., the pore-interior surface. After gold removal, the substrate became optically transparent, and displayed two distinct surface functionalities, one at the pore-rim surface and another at the pore-interior surface. We achieved a selective hydrophobic functionalization with dodecyl-trichlorosilane of either the pore rims or the pore interiors. The deposition of planar lipid membranes on the functionalized areas by addition of small unilamellar vesicles occurred in a predetermined fashion. Small unilamellar vesicles only ruptured upon contact with the hydrophobic substrate regions forming solid supported hybrid bilayers. In addition, pore-rim functionalization with dodecyl-trichlorosilane allowed the formation of pore-spanning hybrid lipid membranes as a result of giant unilamellar vesicle rupture. Confocal laser scanning microscopy was employed to identify the selective spatial localization of the adsorbed fluorescently labeled lipids. The corresponding increase in the AAO refractive index due to lipid adsorption on the hydrophobic regions was monitored by optical waveguide spectroscopy. This simple orthogonal functionalization route is a promising method to control the three-dimensional surface functionality of nanoporous films.
Collapse
Affiliation(s)
- Thomas D Lazzara
- Institute of Organic and Biomolecular Chemistry, Tammannstrasse 2, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
207
|
Andersen TE, Palarasah Y, Skjødt MO, Ogaki R, Benter M, Alei M, Kolmos HJ, Koch C, Kingshott P. Decreased material-activation of the complement system using low-energy plasma polymerized poly(vinyl pyrrolidone) coatings. Biomaterials 2011; 32:4481-8. [PMID: 21453967 DOI: 10.1016/j.biomaterials.2011.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/01/2011] [Accepted: 03/01/2011] [Indexed: 11/26/2022]
Abstract
In the current study we investigate the activation of blood complement on medical device silicone rubber and present a plasma polymerized vinyl pyrrolidone (ppVP) coating which strongly decreases surface-activation of the blood complement system. We show that uncoated silicone and polystyrene are both potent activators of the complement system, measured both as activated, deposited C3b and quantifying fluid-phase release of the cleavage fragment C3c. The ppVP coated silicone exhibits approximately 90% reduced complement activation compared to untreated silicone. Quartz crystal microbalance with dissipation (QCM-D) measurements show relatively strong adsorption of blood proteins including native C3 to the ppVP surface, indicating that reduction of complement activation on ppVP is neither a result of low protein adsorption nor lower direct C3-binding, and is therefore possibly a consequence of differences in the adsorbed protein layer composition. The alternative and classical complement pathways are barely detectable on ppVP while the lectin pathway through MBL/ficolin-2 deposition remains active on ppVP suggesting this pathway is responsible for the remaining subtle activation on the ppVP coated surface. The ppVP surface is furthermore characterized physically and chemically using scanning electron microscopy (SEM), x-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR), which indicates preservation of chemical functionality by the applied plasma process. Overall, the ppVP coating shows a potential for increasing complement-compatibility of blood-contacting devices.
Collapse
Affiliation(s)
- Thomas E Andersen
- Research Unit of Clinical Microbiology, Institute of Clinical Research, University of Southern Denmark, Odense C, Denmark
| | | | | | | | | | | | | | | | | |
Collapse
|
208
|
Boulares-Pender A, Prager A, Reichelt S, Elsner C, Buchmeiser MR. Functionalization of plasma-treated polymer surfaces with glycidol. J Appl Polym Sci 2011. [DOI: 10.1002/app.33971] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
209
|
Du Y, Ghodousi M, Qi H, Haas N, Xiao W, Khademhosseini A. Sequential assembly of cell-laden hydrogel constructs to engineer vascular-like microchannels. Biotechnol Bioeng 2011; 108:1693-703. [PMID: 21337336 DOI: 10.1002/bit.23102] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 02/06/2023]
Abstract
Microscale technologies, such as microfluidic systems, provide powerful tools for building biomimetic vascular-like structures for tissue engineering or in vitro tissue models. Recently, modular approaches have emerged as attractive approaches in tissue engineering to achieve precisely controlled architectures by using microengineered components. Here, we sequentially assembled microengineered hydrogels (microgels) into hydrogel constructs with an embedded network of microchannels. Arrays of microgels with predefined internal microchannels were fabricated by photolithography and assembled into 3D tubular construct with multi-level interconnected lumens. In the current setting, the sequential assembly of microgels occurred in a biphasic reactor and was initiated by swiping a needle to generate physical forces and fluidic shear. We optimized the conditions for assembly and successfully perfused fluids through the interconnected constructs. The sequential assembly process does not significantly influence cell viability within the microgels indicating its promise as a biofabrication method. Finally, in an attempt to build a biomimetic 3D vasculature, we incorporated endothelial cells and smooth muscle cells into an assembled construct with a concentric microgel design. The sequential assembly is simple, rapid, cost-effective, and could be used for fabricating tissue constructs with biomimetic vasculature and other complex architectures.
Collapse
Affiliation(s)
- Yanan Du
- Department of Medicine, Center for Biomedical Engineering, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|
210
|
Dahe GJ, Teotia RS, Kadam SS, Bellare JR. The biocompatibility and separation performance of antioxidative polysulfone/vitamin E TPGS composite hollow fiber membranes. Biomaterials 2011; 32:352-65. [PMID: 20888631 DOI: 10.1016/j.biomaterials.2010.09.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 09/02/2010] [Indexed: 01/09/2023]
Abstract
The extended interaction of blood with certain materials like hemodialysis membranes results in the activation of cellular element as well as inflammatory response. This results in hypersensitive reactions and increased reactive oxygen species, which occurs during or immediately after dialysis. Although polysulfone (Psf) hollow fiber has been commercially used for acute and chronic hemodialysis, its biocompatibility remains a major concern. To overcome this, we have successfully made composite Psf hollow fiber membrane consisting of hydrophilic/hydrophobic micro-domains of Psf and Vitamin E TPGS (TPGS). These were prepared by dry-wet spinning using 5, 10, 15, 20 wt% TPGS as an additive in dope solution. TPGS was successfully entrapped in Psf hollow fiber, as confirmed by ATR-FTIR and TGA. The selective skin was formed at inner side of hollow fibers, as confirmed by SEM study. In vitro biocompatibility and performance of the Psf/TPGS composite membranes were examined, with cytotoxicity, ROS generation, hemolysis, platelet adhesion, contact and complement activation, protein adsorption, ultrafiltration coefficient, solute rejection and urea clearance. We show that antioxidative composite Psf exhibits enhanced biocompatibility, and the membranes show high flux and high urea clearance, about two orders of magnitude better than commercial hemodialysis membranes on a unit area basis.
Collapse
Affiliation(s)
- Ganpat J Dahe
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | | | |
Collapse
|
211
|
Regulation of smooth muscle cell phenotype by glycosaminoglycan identity. Acta Biomater 2011; 7:1031-9. [PMID: 21094702 DOI: 10.1016/j.actbio.2010.11.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2010] [Revised: 10/13/2010] [Accepted: 11/16/2010] [Indexed: 01/29/2023]
Abstract
The retention of lipoproteins in the arterial intima is an initial event in early atherosclerosis and occurs, in part, through interactions between negatively charged glycosaminoglycans (GAGs) and the positively charged residues of apolipoproteins. Smooth muscle cells (SMCs) which infiltrate into the lipoprotein-enriched intima have been observed to transform into lipid-laden foam cells. This phenotypic switch is associated with SMC acquisition of a macrophage-like capacity to phagocytose lipoproteins and/or of an adipocyte-like capacity to synthesize fatty acids de novo. The aim of the present work was to explore the impact of GAG identity on SMC foam cell formation using a scaffold environment intended to be mimetic of early atherosclerosis. In these studies, we focused on chondroitin sulfate C (CSC), dermatan sulfate (DS), and an intermediate molecular weight hyaluronan (HAIMW, ∼400 kDa), the levels and/or distribution of each of which are significantly altered in atherosclerosis. DS hydrogels were associated with greater SMC phagocytosis of apolipoprotein B than HAIMW gels. Similarly, only SMCs in DS constructs maintained increased expression of the adipocyte marker A-FABP relative to HAIMW gels over 35 days of culture. The increased SMC foam cell phenotype in DS hydrogels was reflected in a corresponding decrease in SMC myosin heavy chain expression in these constructs relative to HAIMW gels at day 35. In addition, this DS-associated increase in foam cell formation was mirrored in an increased SMC synthetic phenotype, as evidenced by greater levels of collagen type I and glucose 6-phosphate dehydrogenase in DS gels than in HAIMW gels. Combined, these results support the increasing body of literature that suggests a critical role for DS-bearing proteoglycans in early atherosclerosis.
Collapse
|
212
|
Ovsianikov A, Malinauskas M, Schlie S, Chichkov B, Gittard S, Narayan R, Löbler M, Sternberg K, Schmitz KP, Haverich A. Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications. Acta Biomater 2011; 7:967-74. [PMID: 20977947 DOI: 10.1016/j.actbio.2010.10.023] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 10/18/2010] [Accepted: 10/20/2010] [Indexed: 12/14/2022]
Abstract
The natural cell environment is characterized by complex three-dimensional structures, which contain features at multiple length scales. Many in vitro studies of cell behavior in three dimensions rely on the availability of artificial scaffolds with controlled three-dimensional topologies. In this paper, we demonstrate fabrication of three-dimensional scaffolds for tissue engineering out of poly(ethylene glycol) diacrylate (PEGda) materials by means of two-photon polymerization (2PP). This laser nanostructuring approach offers unique possibilities for rapid manufacturing of three-dimensional structures with arbitrary geometries. The spatial resolution dependence on the applied irradiation parameters is investigated for two PEGda formulations, which are characterized by molecular weights of 302 and 742. We demonstrate that minimum feature sizes of 200nm are obtained in both materials. In addition, an extensive study of the cytotoxicity of the material formulations with respect to photoinitiator type and photoinitiator concentration is undertaken. Aqueous extracts from photopolymerized PEGda samples indicate the presence of water-soluble molecules, which are toxic to fibroblasts. It is shown that sample aging in aqueous medium reduces the cytotoxicity of these extracts; this mechanism provides a route for biomedical applications of structures generated by 2PP microfabrication and photopolymerization technologies in general. Finally, a fully biocompatible combination of PEGda and a photoinitiator is identified. Fabrication of reproducible scaffold structures is very important for systematic investigation of cellular processes in three dimensions and for better understanding of in vitro tissue formation. The results of this work suggest that 2PP may be used to polymerize poly(ethylene glycol)-based materials into three-dimensional structures with well-defined geometries that mimic the physical and biological properties of native cell environments.
Collapse
Affiliation(s)
- A Ovsianikov
- Laser Zentrum Hannover, Hollerithallee 8, Hannover, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
213
|
Banerjee I, Pangule RC, Kane RS. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:690-718. [PMID: 20886559 DOI: 10.1002/adma.201001215] [Citation(s) in RCA: 1582] [Impact Index Per Article: 121.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/06/2010] [Indexed: 05/21/2023]
Abstract
The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed. Biofouling is of great concern in numerous applications ranging from biosensors to biomedical implants and devices, and from food packaging to industrial and marine equipment. The two major approaches to combat surface fouling are based on either preventing biofoulants from attaching or degrading them. One of the key strategies for imparting adhesion resistance involves the functionalization of surfaces with poly(ethylene glycol) (PEG) or oligo(ethylene glycol). Several alternatives to PEG-based coatings have also been designed over the past decade. While protein-resistant coatings may also resist bacterial attachment and subsequent biofilm formation, in order to overcome the fouling-mediated risk of bacterial infection it is highly desirable to design coatings that are bactericidal. Traditional techniques involve the design of coatings that release biocidal agents, including antibiotics, quaternary ammonium salts (QAS), and silver, into the surrounding aqueous environment. However, the emergence of antibiotic- and silver-resistant pathogenic strains has necessitated the development of alternative strategies. Therefore, other techniques based on the use of polycations, enzymes, nanomaterials, and photoactive agents are being investigated. With regard to marine antifouling coatings, restrictions on the use of biocide-releasing coatings have made the generation of nontoxic antifouling surfaces more important. While considerable progress has been made in the design of antifouling coatings, ongoing research in this area should result in the development of even better antifouling materials in the future.
Collapse
Affiliation(s)
- Indrani Banerjee
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | |
Collapse
|
214
|
Wang H, Ren J, Hlaing A, Yan M. Fabrication and anti-fouling properties of photochemically and thermally immobilized poly(ethylene oxide) and low molecular weight poly(ethylene glycol) thin films. J Colloid Interface Sci 2011; 354:160-7. [PMID: 21044787 PMCID: PMC3053024 DOI: 10.1016/j.jcis.2010.10.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 10/01/2010] [Accepted: 10/02/2010] [Indexed: 11/26/2022]
Abstract
Poly(ethylene oxide) (PEO) and low molecular weight poly(ethylene glycol) (PEG) were covalently immobilized on silicon wafers and gold films by way of the CH insertion reaction of perfluorophenyl azides (PFPAs) by either photolysis or thermolysis. The immobilization does not require chemical derivatization of PEO or PEG, and polymers of different molecular weights were successfully attached to the substrate to give uniform films. Microarrays were also generated by printing polymer solutions on PFPA-functionalized wafer or Au slides followed by light activation. For low molecular weight PEG, the immobilization was highly dependent on the quality of the film deposited on the substrate. While the spin-coated and printed PEG showed poor immobilization efficiency, thermal treatment of the PEG melt on PFPA-functionalized surfaces resulted in excellent film quality, giving, for example, a grafting density of 9.2×10(-4)Å(-2) and an average distance between grafted chains of 33Å for PEG 20,000. The anti-fouling property of the films was evaluated by fluorescence microscopy and surface plasmon resonance imaging (SPRi). Low protein adsorption was observed on thermally-immobilized PEG whereas the photoimmobilized PEG showed increased protein adsorption. In addition, protein arrays were created using polystyrene (PS) and PEG based on the differential protein adsorption of the two polymers.
Collapse
Affiliation(s)
- Hui Wang
- Department of Chemistry, Portland State University, PO Box 751, Portland, OR, U.S.A. 97207-0751
| | - Jin Ren
- Department of Chemistry, Portland State University, PO Box 751, Portland, OR, U.S.A. 97207-0751
| | - Aye Hlaing
- Department of Chemistry, Portland State University, PO Box 751, Portland, OR, U.S.A. 97207-0751
| | - Mingdi Yan
- Department of Chemistry, Portland State University, PO Box 751, Portland, OR, U.S.A. 97207-0751
| |
Collapse
|
215
|
Buller J, Laschewsky A, Lutz JF, Wischerhoff E. Tuning the lower critical solution temperature of thermoresponsive polymers by biospecific recognition. Polym Chem 2011. [DOI: 10.1039/c1py00001b] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
216
|
Stephens EH, Durst CA, West JL, Grande-Allen KJ. Mitral valvular interstitial cell responses to substrate stiffness depend on age and anatomic region. Acta Biomater 2011; 7:75-82. [PMID: 20624493 PMCID: PMC2967579 DOI: 10.1016/j.actbio.2010.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 07/01/2010] [Accepted: 07/02/2010] [Indexed: 10/19/2022]
Abstract
The material properties of heart valves depend on the subject's age, the state of the disease and the complex valvular microarchitecture. Furthermore, valvular interstitial cells (VICs) are mechanosensitive, and their synthesis of extracellular matrix not only determines the valve's material properties but also provides an adhesive substrate for VICs. However, the interrelationship between substrate stiffness and VIC phenotype and synthetic properties is poorly understood. Given that the local mechanical environment (substrate stiffness) surrounding VICs differs among different age groups and different anatomic regions of the valve, it was hypothesized that there may be an age- and valve-region-specific response of VICs to substrate stiffness. Therefore, 6-week-, 6-month- and 6-year-old porcine VICs from the center of the mitral valve anterior leaflet (MVAC) and posterior leaflet (PML) were seeded onto poly(ethylene) glycol hydrogels of different stiffnesses and stained for markers of VIC activation (smooth muscle alpha-actin (SMaA)) and collagen synthesis (heat shock protein-47 (HSP47), prolyl 4-hydroxylase (P4H)). Six-week-old MVAC demonstrated decreased SMaA, P4H and HSP47 on stiffer gels, while 6-week-old PML only demonstrated decreased HSP47. Six-month-old MVAC demonstrated no difference between substrates, while 6-month-old PML demonstrated decreased SMaA, P4H and HSP47. Six-year-old MVAC demonstrated decreased P4H and HSP47, while 6-year-old PML demonstrated decreased P4H and increased HSP47. In conclusion, the age-specific and valve-region-specific responses of VICs to substrate stiffness link VIC phenotype to the leaflet regional matrix in which the VICs reside. These data provide further rationale for investigating the role of substrate stiffness in VIC remodeling within diseased and tissue engineered valves.
Collapse
|
217
|
Li D, Li C, Wan G, Hou W. Self-assembled vesicles of amphiphilic poly(dimethylsiloxane)-b-poly(ethylene glycol) copolymers as nanotanks for hydrophobic drugs. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.08.055] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
218
|
Zheng JN, Xie HG, Yu WT, Liu XD, Xie WY, Zhu J, Ma XJ. Chitosan-g-MPEG-modified alginate/chitosan hydrogel microcapsules: a quantitative study of the effect of polymer architecture on the resistance to protein adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:17156-17164. [PMID: 20949965 DOI: 10.1021/la1030203] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The chemical modification of the alginate/chitosan/alginate (ACA) hydrogel microcapsule with methoxy poly(ethylene glycol) (MPEG) was investigated to reduce nonspecific protein adsorption and improve biocompatibility in vivo. The graft copolymer chitosan-g-MPEG (CS-g-MPEG) was synthesized, and then alginate/chitosan/alginate/CS-g-MPEG (ACAC(PEG)) multilayer hydrogel microcapsules were fabricated by the layer-by-layer (LBL) polyelectrolyte self-assembly method. A quantitative study of the modification was carried out by the gel permeation chromatography (GPC) technique, and protein adsorption on the modified microcapsules was also investigated. The results showed that the apparent graft density of the MPEG side chain on the microcapsules decreased with increases in the degree of substitution (DS) and the MPEG chain length. During the binding process, the apparent graft density of CS-g-MPEG showed rapid growth-plateau-rapid growth behavior. CS-g-MPEG was not only bound to the surface but also penetrated a certain depth into the microcapsule membranes. The copolymers that penetrated the microcapsules made a smaller contribution to protein repulsion than did the copolymers on the surfaces of the microcapsules. The protein repulsion ability decreased with the increase in DS from 7 to 29% with the same chain length of MPEG 2K. CS-g-MPEG with MPEG 2K was more effective at protein repulsion than CS-g-MPEG with MPEG 550, having a similar DS below 20%. In this study, the microcapsules modified with CS-g-MPEG2K-DS7% had the lowest IgG adsorption of 3.0 ± 0.6 μg/cm(2), a reduction of 61% compared to that on the chitosan surface.
Collapse
Affiliation(s)
- Jia N Zheng
- Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | | | | | | | | | | |
Collapse
|
219
|
Schulte VA, Diez M, Hu Y, Möller M, Lensen MC. Combined Influence of Substrate Stiffness and Surface Topography on the Antiadhesive Properties of Acr-sP(EO-stat-PO) Hydrogels. Biomacromolecules 2010; 11:3375-83. [DOI: 10.1021/bm100881y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Vera A. Schulte
- DWI e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, D-52056 Aachen, and Technische Universität Berlin, Institut für Chemie, Nanostrukturierte Biomaterialien, Berlin, Germany
| | - Mar Diez
- DWI e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, D-52056 Aachen, and Technische Universität Berlin, Institut für Chemie, Nanostrukturierte Biomaterialien, Berlin, Germany
| | - Yibing Hu
- DWI e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, D-52056 Aachen, and Technische Universität Berlin, Institut für Chemie, Nanostrukturierte Biomaterialien, Berlin, Germany
| | - Martin Möller
- DWI e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, D-52056 Aachen, and Technische Universität Berlin, Institut für Chemie, Nanostrukturierte Biomaterialien, Berlin, Germany
| | - Marga C. Lensen
- DWI e.V. and Institute of Technical and Macromolecular Chemistry, RWTH Aachen, D-52056 Aachen, and Technische Universität Berlin, Institut für Chemie, Nanostrukturierte Biomaterialien, Berlin, Germany
| |
Collapse
|
220
|
Munoz-Pinto DJ, McMahon RE, Kanzelberger MA, Jimenez-Vergara AC, Grunlan MA, Hahn MS. Inorganic-organic hybrid scaffolds for osteochondral regeneration. J Biomed Mater Res A 2010; 94:112-21. [PMID: 20128006 DOI: 10.1002/jbm.a.32695] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ligament graft failure frequently results from poor integration of the replacement tissue with associated bone. Thus, the ability to regenerate the bone-ligament osteochondral interface would be advantageous in ligament reconstruction. At the osteochondral interface, the tissue transitions from a bone-like matrix to fibrocartilage. Therefore, a scaffold which promotes a spatially regulated transition in cell behavior from osteoblast-like to chondrocyte-like would be desirable. Previous research indicates that addition of inorganic components to organic scaffolds can enhance the deposition of bone-like matrix by associated osteoblasts. We therefore reasoned that a gradient in the inorganic content of a hybrid inorganic-organic scaffold may induce an osteochondral-like transition in cell phenotype and matrix production. To test this hypothesis, hydrogels were prepared from poly(ethylene glycol) (PEG) and star poly(dimethylsiloxane) (PDMS(star)). As anticipated, both the matrix deposition and phenotype of encapsulated osteoblasts varied with scaffold inorganic content, although the directionality of this modulation was contrary to expectation. Specifically, osteoblasts appeared to transdifferentiate into chondrocyte-like cells with increasing scaffold inorganic content, as indicated by increased chondroitin sulfate and collagen type II production and by upregulation of sox9, a transcription factor associated with chondrocytic differentiation. Furthermore, the deposition of bone-like matrix (collagen type I, calcium phosphate, and osteocalcin) decreased with increasing PDMS(star) content. The resistance of the PDMS(star)-PEG scaffolds to protein adsorption and/or the changes in gel modulus/mesh structure accompanying PDMS(star) incorporation may underlie the unexpected increase in chondrocytic phenotype with increasing inorganic content. Combined, the present results indicate that PDMS(star)-PEG hybrid gels may prove promising for osteochondral regeneration. (c) 2010 Wiley Periodicals, Inc. J Biomed Mater Res, 2010.
Collapse
Affiliation(s)
- Dany J Munoz-Pinto
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | |
Collapse
|
221
|
Dong B, Manolache S, Wong ACL, Denes FS. Antifouling ability of polyethylene glycol of different molecular weights grafted onto polyester surfaces by cold plasma. Polym Bull (Berl) 2010. [DOI: 10.1007/s00289-010-0358-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
222
|
Otsuka H. Nanofabrication of nonfouling surfaces for micropatterning of cell and microtissue. Molecules 2010; 15:5525-46. [PMID: 20714311 PMCID: PMC6257743 DOI: 10.3390/molecules15085525] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 07/20/2010] [Accepted: 08/04/2010] [Indexed: 12/13/2022] Open
Abstract
Surface engineering techniques for cellular micropatterning are emerging as important tools to clarify the effects of the microenvironment on cellular behavior, as cells usually integrate and respond the microscale environment, such as chemical and mechanical properties of the surrounding fluid and extracellular matrix, soluble protein factors, small signal molecules, and contacts with neighboring cells. Furthermore, recent progress in cellular micropatterning has contributed to the development of cell-based biosensors for the functional characterization and detection of drugs, pathogens, toxicants, and odorants. In this regards, the ability to control shape and spreading of attached cells and cell-cell contacts through the form and dimension of the cell-adhesive patches with high precision is important. Commitment of stem cells to different specific lineages depends strongly on cell shape, implying that controlled microenvironments through engineered surfaces may not only be a valuable approach towards fundamental cell-biological studies, but also of great importance for the design of cell culture substrates for tissue engineering. To develop this kind of cellular microarray composed of a cell-resistant surface and cell attachment region, micropatterning a protein-repellent surface is important because cellular adhesion and proliferation are regulated by protein adsorption. The focus of this review is on the surface engineering aspects of biologically motivated micropatterning of two-dimensional surfaces with the aim to provide an introductory overview described in the literature. In particular, the importance of non-fouling surface chemistries is discussed.
Collapse
Affiliation(s)
- Hidenori Otsuka
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
223
|
Murthy R, Bailey BM, Valentin-Rodriguez C, Ivanisevic A, Grunlan MA. Amphiphilic silicones prepared from branched PEO-silanes with siloxane tethers. ACTA ACUST UNITED AC 2010. [DOI: 10.1002/pola.24203] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
224
|
Sask KN, Zhitomirsky I, Berry LR, Chan AK, Brash JL. Surface modification with an antithrombin-heparin complex for anticoagulation: studies on a model surface with gold as substrate. Acta Biomater 2010; 6:2911-9. [PMID: 20197127 DOI: 10.1016/j.actbio.2010.02.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 02/10/2010] [Accepted: 02/24/2010] [Indexed: 11/24/2022]
Abstract
Gold was used as a substrate for immobilization of an antithrombin-heparin (ATH) covalent complex to investigate ATH as a surface modifier to prevent blood coagulation. Three different surface modification methods were used to attach ATH to gold: (i) direct chemisorption; (ii) using dithiobis(succinimidyl propionate) (DSP) as a linker molecule and (iii) using polyethylene oxide (PEO) as a linker/spacer. The ATH-modified surfaces were compared to analogous heparinized surfaces. Water contact angles and X-ray photoelectron spectroscopy confirmed the modifications and provided data on surface properties and possible orientation. Ellipsometry measurements showed that surface coverage of DSP and PEO was high. ATH and heparin densities were quantified using radioiodination and quartz crystal microbalance, respectively. The surface density of ATH was greatest on the DSP surface (0.17 microg cm(-2)) and lowest on the PEO (0.05 microg cm(-2)). The low uptake on the PEO surface was likely due to the protein resistance of the PEO component. Using radioiodinated antithrombin (AT), it was shown that ATH-immobilized surfaces bound significantly greater amounts from both buffer and plasma than the analogous heparinized surfaces. Immunoblot analysis of proteins adsorbed from plasma demonstrated that surfaces chemisorbed with PEO, whether or not subsequently modified with ATH, inhibited non-specific adsorption. The immunoblot response for AT was stronger on the DSP-ATH than on the heparin surfaces, thus confirming the results from radiolabelling. The ATH surfaces again showed higher selectivity for AT binding than analogous heparin-modified surfaces, indicating the enhanced anticoagulant potential of ATH for biomaterial surface modification.
Collapse
|
225
|
Hou Y, Schoener CA, Regan KR, Munoz-Pinto D, Hahn MS, Grunlan MA. Photo-cross-linked PDMSstar-PEG hydrogels: synthesis, characterization, and potential application for tissue engineering scaffolds. Biomacromolecules 2010; 11:648-56. [PMID: 20146518 DOI: 10.1021/bm9012293] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Inorganic-organic hydrogels with tunable chemical and physical properties were prepared from methacrylated star polydimethylsiloxane (PDMS(star)-MA) and diacrylated poly(ethylene glycol) (PEG-DA) for use as tissue engineering scaffolds. A total of 18 compositionally unique hydrogels were prepared by photo-cross-linking, varying weight ratios of PEG-DA and PDMS(star)-MA of different molecular weights (M(n)): PEG-DA (M(n) = 3.4k and 6k g/mol) and PDMS(star)-MA (M(n) = 1.8k, 5k, and 7k g/mol). Introduction of PDMS(star)-MA caused formation of discrete PDMS-enriched microparticles dispersed within the PEG matrix. The swelling ratio, mechanical properties in tension and compression, nonspecific protein adhesion, controlled introduction of bioactivity, and cytotoxicity of hydrogels were studied. This library of inorganic-organic hydrogels with tunable properties provides a useful platform to study the effect of scaffold properties on cell behavior.
Collapse
Affiliation(s)
- Yaping Hou
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, USA
| | | | | | | | | | | |
Collapse
|
226
|
Khandwekar AP, Patil DP, Hardikar AA, Shouche YS, Doble M. In vivo modulation of foreign body response on polyurethane by surface entrapment technique. J Biomed Mater Res A 2010; 95:413-23. [DOI: 10.1002/jbm.a.32852] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
227
|
Klenkler BJ, Dwivedi D, West-Mays JA, Sheardown H. Corneal epithelial cell adhesion and growth on EGF-modified aminated PDMS. J Biomed Mater Res A 2010; 93:1043-9. [PMID: 19753622 DOI: 10.1002/jbm.a.32578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Growth factor tethering has significant potential to mediate cellular responses in biomaterials and tissue engineering. We have previously demonstrated that epidermal growth factor (EGF) can be tethered to polydimethylsiloxane (PDMS) substrates and that these surfaces promoted interactions with human corneal epithelial cells in vitro. The goal of the current work was to better understand the specific effects of the tethered growth factor on the cells. The EGF was reacted with a homobifunctional N-hydroxysuccinimide (NHS) polyethylene glycol (PEG) derivative, and then bound to allyamine plasma-modified PDMS. Human corneal epithelial cells were seeded on the surfaces and cultured in serum-free medium for periods of up to 5 days. Cell growth was monitored and quantified by trypsinization and counting with a Coulter counter. Expression of matrix proteins and alpha(6)-integrins was assessed by immunostaining and confocal microscopy. A centrifugation assay was used to determine cell adhesion under an applied detachment force. Binding of EGF was found to significantly increase cell numbers and coverage across the surfaces at 5 days of culture in vitro. Immunofluorescence experiments indicate increased expression of fibronectin, laminin, and alpha(6)-integrins on the EGF-modified surfaces, and expression is localized at the cell-material interface as observed by confocal microscopy. In accordance with these results, the highest quantity of adherent cells is found on the EGF-modified subtrates at 5 days of culture. The results provide initial evidence that binding of EGF may be used to improve the epithelialization of and the adhesion of the cells on a polymeric artificial cornea device.
Collapse
Affiliation(s)
- Bettina J Klenkler
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada L8S 4L7
| | | | | | | |
Collapse
|
228
|
Howes P, Green M. Colloidal and optical stability of PEG-capped and phospholipid-encapsulated semiconducting polymer nanospheres in different aqueous media. Photochem Photobiol Sci 2010; 9:1159-66. [PMID: 20585697 DOI: 10.1039/c0pp00106f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aqueous dispersions of fluorescent semiconducting polymer nanospheres (SPNs) have been synthesised by two methods; miniemulsion and micellar encapsulation. The colloidal and optical stability of SPNs synthesised by these two methods has been compared in order to assess the potential of these fluorescent nanoparticles for use in biological applications. The SPNs were dispersed in water, phosphate buffer solution (PBS) and bovine serum albumin (BSA). The optical stability was studied by absorption and emission spectroscopy, and the colloidal stability was studied by dynamic light scattering (DLS) over a one month period. The results indicate that the micelle-encapsulated SPNs exhibit favourable optical and colloidal stability, and seem promising for use in biological sciences.
Collapse
Affiliation(s)
- Philip Howes
- Department of Physics, King's College London, Strand, London WC2R 2LS, UK
| | | |
Collapse
|
229
|
Use of Temporary Implantable Biomaterials to Reduce Leg Pain and Back Pain in Patients with Sciatica and Lumbar Disc Herniation. MATERIALS 2010. [PMCID: PMC5445914 DOI: 10.3390/ma3053331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The principle etiology of leg pain (sciatica) from lumbar disc herniation is mechanical compression of the nerve root. Sciatica is reduced by decompression of the herniated disc, i.e., removing mechanical compression of the nerve root. Decompression surgery typically reduces sciatica more than lumbar back pain (LBP). Decompression surgery reduces mechanical compression of the nerve root. However, decompression surgery does not directly reduce sensitization of the sensory nerves in the epidural space and disc. In addition, sensory nerves in the annulus fibrosus and epidural space are not protected from topical interaction with pain mediators induced by decompression surgery. The secondary etiology of sciatica from lumbar disc herniation is sensitization of the nerve root. Sensitization of the nerve root results from a) mechanical compression, b) exposure to cellular pain mediators, and/or c) exposure to biochemical pain mediators. Although decompression surgery reduces nerve root compression, sensory nerve sensitization often persists. These observations are consistent with continued exposure of tissue in the epidural space, including the nerve root, to increased cellular and biochemical pain mediators following surgery. A potential contributor to lumbar back pain (LBP) is stimulation of sensory nerves in the annulus fibrosus by a) cellular pain mediators and/or b) biochemical pain mediators that accompany annular tears or disruption. Sensory fibers located in the outer one-third of the annulus fibrosus increase in number and depth as a result of disc herniation. The nucleus pulposus is comprised of material that can produce an autoimmune stimulation of the sensory nerves located in the annulus and epidural space leading to LBP. The sensory nerves of the annulus fibrosus and epidural space may be sensitized by topical exposure to cellular and biochemical pain mediators induced by lumbar surgery. Annulotomy or annular rupture allows the nucleus pulposus topical access to sensory nerve fibers, thereby leading to LBP. Coverage of the annulus and adjacent structures in the epidural space by absorbable viscoelastic gels appears to reduce LBP following surgery by protecting sensory fibers from cellular and biochemical pain mediators.
Collapse
|
230
|
Hou Y, Schoener CA, Regan KR, Munoz-Pinto D, Hahn MS, Grunlan MA. Photo-cross-linked PDMSstar-PEG hydrogels: synthesis, characterization, and potential application for tissue engineering scaffolds. Biomacromolecules 2010. [PMID: 20146518 DOI: 10.1021/bm9012293.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inorganic-organic hydrogels with tunable chemical and physical properties were prepared from methacrylated star polydimethylsiloxane (PDMS(star)-MA) and diacrylated poly(ethylene glycol) (PEG-DA) for use as tissue engineering scaffolds. A total of 18 compositionally unique hydrogels were prepared by photo-cross-linking, varying weight ratios of PEG-DA and PDMS(star)-MA of different molecular weights (M(n)): PEG-DA (M(n) = 3.4k and 6k g/mol) and PDMS(star)-MA (M(n) = 1.8k, 5k, and 7k g/mol). Introduction of PDMS(star)-MA caused formation of discrete PDMS-enriched microparticles dispersed within the PEG matrix. The swelling ratio, mechanical properties in tension and compression, nonspecific protein adhesion, controlled introduction of bioactivity, and cytotoxicity of hydrogels were studied. This library of inorganic-organic hydrogels with tunable properties provides a useful platform to study the effect of scaffold properties on cell behavior.
Collapse
Affiliation(s)
- Yaping Hou
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843-3120, USA
| | | | | | | | | | | |
Collapse
|
231
|
Cai L, Wang K, Wang S. Poly(ethylene glycol)-grafted poly(propylene fumarate) networks and parabolic dependence of MC3T3 cell behavior on the network composition. Biomaterials 2010; 31:4457-66. [PMID: 20202682 DOI: 10.1016/j.biomaterials.2010.02.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
Abstract
We present a method to modify poly(propylene fumarate) (PPF), an injectable biomaterial for bone-tissue-engineering applications, by photo-crosslinking it with methoxy poly(ethylene glycol) monoacrylate (mPEGA) at various mPEGA compositions of 0-30%. The bulk properties such as thermal and rheological properties of uncrosslinked mPEGA/PPF blends and the mechanical properties of photo-crosslinked mPEGA/PPF blends were also investigated and correlated with surface characteristics to elaborate on the modulation of mouse MC3T3 cell adhesion, spreading, proliferation and differentiation through controlled physicochemical properties. Unlike PPF crosslinked with PEG dimethacrylate, mPEGA chains tethered on the surface of crosslinked PPF did not influence the swelling ratio in water while increased surface hydrophilicity greatly. Meanwhile, surface frictional coefficient and the capability of adsorbing proteins from cell culture medium decreased continuously with increasing the mPEGA composition in mPEGA/PPF networks. Demonstrating cell repulsive effect at the mPEGA compositions higher than 7%, the modified surfaces improved MC3T3 cell attachment, proliferation and differentiation, which reached maxima at the mPEGA composition of 5-7%. Besides revealing that mPEGA pendant chains could enhance cell responses by increasing hydrophilicity when their fraction on the hydrophobic surface was small, the present study also offered a new method of improving the wettability and performance of the scaffolds made from PPF for bone repair.
Collapse
Affiliation(s)
- Lei Cai
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, TN 37996, USA
| | | | | |
Collapse
|
232
|
PU M, JI J, LI X, SHEN J. CONSTRUCTION OF A BLOOD COMPATIBLE COATING <I>VIA</I> AMPHIPHILIC COMB-LIKE POLY(ETHYLENE GLYCOL). ACTA POLYM SIN 2010. [DOI: 10.3724/sp.j.1105.2006.00703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
233
|
Jang WS, Saito T, Hickner MA, Lutkenhaus JL. Electrostatic Assembly of Poly(ethylene glycol) Nanotubes. Macromol Rapid Commun 2010; 31:745-51. [PMID: 21590966 DOI: 10.1002/marc.200900807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 12/22/2009] [Indexed: 12/30/2022]
Abstract
Poly(ethylene glycol) (PEG)-based films, nanotubes, and nanotube arrays were successfully made using layer-by-layer (LbL) assembly ion-containing PEO derivatives on porous templates and planar substrates. PEG nanotubes are challenging to produce because PEG dissolves into solutions and solvents used during nanotube processing, but our techniques circumvent the issue. Nanotube dimensions were verified using microscopy and the average observed diameter was 155 nm. The PEG-based structures showed remarkable stability in water, salt water, and sodium hydroxide solution.
Collapse
Affiliation(s)
- Woo-Sik Jang
- Chemical Engineering, Yale University, P.O. Box 208286, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
234
|
Lee BS, Yoon OJ, Cho WK, Lee NE, Yoon KR, Choi IS. Construction of protein-resistant pOEGMA films by helicon plasma-enhanced chemical vapor deposition. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2010; 20:1579-86. [PMID: 19619398 DOI: 10.1163/092050609x12464345079969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This paper describes the formation of protein-resistant, poly(ethylene glycol) methyl ether methacrylate (pOEGMA) thin films by helicon plasma-enhanced chemical vapor deposition (helicon-PECVD). pOEGMA was successfully grafted onto a silicon substrate, as a model substrate, without any additional surface initiators, by plasma polymerization of OEGMA. The resulting pOEGMA films were characterized by ellipsometry, FT-IR spectroscopy, X-ray photoelectron spectroscopy and contact angle goniometry. To investigate the protein-resistant property of the pOEGMA films, four different proteins, bovine serum albumin, fibrinogen, lysozyme and ribonuclease A, were tested as model proteins for ellipsometric measurements. The ellipsometric thickness change for all the model proteins was less than 3 A, indicating that the formed pOEGMA films are protein-resistant.
Collapse
Affiliation(s)
- Bong Soo Lee
- Department of Chemistry and School of Molecular Science (BK21), Center for Molecular Design and Synthesis, KAIST, Daejeon 305-701, South Korea
| | | | | | | | | | | |
Collapse
|
235
|
D'Sa RA, Meenan BJ. Chemical grafting of poly(ethylene glycol) methyl ether methacrylate onto polymer surfaces by atmospheric pressure plasma processing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:1894-1903. [PMID: 19795890 DOI: 10.1021/la902654y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This article reports the use of atmospheric pressure plasma processing to induce chemical grafting of poly(ethylene glycol) methyl ether methacrylate (PEGMA) onto polystyrene (PS) and poly(methyl methacrylate) (PMMA) surfaces with the aim of attaining an adlayer conformation which is resistant to protein adsorption. The plasma treatment was carried out using a dielectric barrier discharge (DBD) reactor with PEGMA of molecular weights (MW) 1000 and 2000, PEGMA(1000) and PEGMA(2000), being grafted in a two step procedure: (1) reactive groups are generated on the polymer surface followed by (2) radical addition reactions with the PEGMA. The surface chemistry, coherency, and topography of the resulting PEGMA grafted surfaces were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and atomic force microscopy (AFM), respectively. The most coherently grafted PEGMA layers were observed for the 2000 MW PEGMA macromolecule, DBD processed at an energy dose of 105.0 J/cm(2) as indicated by ToF-SIMS images. The effect of the chemisorbed PEGMA layer on protein adsorption was assessed by evaluating the surface response to bovine serum albumin (BSA) using XPS. BSA was used as a model protein to determine the grafted macromolecular conformation of the PEGMA layer. Whereas the PEGMA(1000) surfaces showed some protein adsorption, the PEGMA(2000) surfaces appeared to absorb no measurable amount of protein, confirming the optimum surface conformation for a nonfouling surface.
Collapse
Affiliation(s)
- Raechelle A D'Sa
- Nanotechnology and Integrated Bio-Engineering Centre, University of Ulster, Shore Road, Newtownabbey, BT37 0QB, Northern Ireland
| | | |
Collapse
|
236
|
Smart Polymer Surfaces: Concepts and Applications in Biosciences. BIOACTIVE SURFACES 2010. [DOI: 10.1007/12_2010_88] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
237
|
TAKEI T, SUGITANI Y. High Frequency Spectroscopic Study of the Bound State of Water in PEG-H2O System during Heating from Frozen State. ANAL SCI 2010; 26:337-41. [DOI: 10.2116/analsci.26.337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Takaya TAKEI
- Department of Chemistry, Faculty of Science, Kanagawa University
| | | |
Collapse
|
238
|
Zanini S, Riccardi C, Grimoldi E, Colombo C, Villa AM, Natalello A, Gatti-Lafranconi P, Lotti M, Doglia SM. Plasma-induced graft-polymerization of polyethylene glycol acrylate on polypropylene films: Chemical characterization and evaluation of the protein adsorption. J Colloid Interface Sci 2010; 341:53-8. [DOI: 10.1016/j.jcis.2009.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Revised: 09/09/2009] [Accepted: 09/10/2009] [Indexed: 10/20/2022]
|
239
|
Li D, Li C, Wang A, He Q, Li J. Hierarchical gold/copolymer nanostructures as hydrophobic nanotanks for drug encapsulation. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm01059f] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
240
|
Lerum RV, Bermudez H. Controlled Interfacial Assembly and Transfer of Brushlike Copolymer Films. Chemphyschem 2009; 11:665-9. [DOI: 10.1002/cphc.200900738] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
241
|
Jaehrling S, Thelen K, Wolfram T, Pollerberg GE. Nanopatterns biofunctionalized with cell adhesion molecule DM-GRASP offered as cell substrate: spacing determines attachment and differentiation of neurons. NANO LETTERS 2009; 9:4115-4121. [PMID: 19694460 DOI: 10.1021/nl9023325] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The density/spacing of plasma membrane proteins is thought to be crucial for their function; clear-cut experimental evidence, however, is still rare. We examined nanopatterns biofunctionalized with cell adhesion molecule DM-GRASP with respect to their impact on neuron attachment and neurite growth. Data analysis/modeling revealed that these cellular responses improve with increasing DM-GRASP density, with the exception of one spacing which does not allow for the anchorage of a cytoskeletal protein (spectrin) to three DM-GRASP molecules.
Collapse
Affiliation(s)
- Steffen Jaehrling
- Department of Developmental Neurobiology, Institute of Zoology, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | | | | | | |
Collapse
|
242
|
Krishna L, Jayabalan M. Synthesis and characterization of biodegradable poly (ethylene glycol) and poly (caprolactone diol) end capped poly (propylene fumarate) cross linked amphiphilic hydrogel as tissue engineering scaffold material. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20 Suppl 1:S115-S122. [PMID: 18584124 DOI: 10.1007/s10856-008-3493-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 05/29/2008] [Indexed: 05/26/2023]
Abstract
Biodegradable poly (caprolactone diol-co-propylene fumarate-co-ethylene glycol) amphiphilic polymer with poly (ethylene glycol) and poly (caprolactone diol) chain ends (PCL-PPF-PEG) was prepared. PCL-PPF-PEG undergoes fast setting with acrylamide (aqueous solution) by free radical polymerization and produces a crosslinked hydrogel. The cross linked and freeze-dried amphiphilic material has porous and interconnected network. It undergoes higher degree of swelling and water absorption to form hydrogel with hydrophilic and hydrophobic domains at the surface and appreciable tensile strength. The present hydrogel is compatible with L929 fibroblast cells. PCL-PPF-PEG/acrylamide hydrogel is a candidate scaffold material for tissue engineering applications.
Collapse
Affiliation(s)
- Lekshmi Krishna
- Polymer Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram 695 012, India
| | | |
Collapse
|
243
|
South AB, Whitmire RE, García AJ, Lyon LA. Centrifugal deposition of microgels for the rapid assembly of nonfouling thin films. ACS APPLIED MATERIALS & INTERFACES 2009; 1:2747-54. [PMID: 20356152 PMCID: PMC2913592 DOI: 10.1021/am9005435] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Thin films assembled from microgel building blocks have been constructed using a simple, high-throughput, and reproducible centrifugation (or "active") deposition technique. When compared to a common passive adsorption method (e.g., dip coating), microgels that are actively deposited onto a surface have smaller footprints and are more closely packed. Under both active and passive deposition conditions, the microgel footprint areas decrease during deposition. However, under active deposition, the microgel footprint appears to decrease continually and to a greater degree over the course of the deposition, forming a tightly packed, homogeneous film. Taking advantage of the rapid and uniform assembly of these films, we demonstrate the use of active deposition toward the fabrication of polyelectrolyte multilayers containing anionic microgels and a cationic linear polymer. Microgel multilayers successfully demonstrated effective blocking of the underlying substrate toward macrophage adhesion, which is a highly sought-after property for modulating the inflammatory response to an implanted biomaterial.
Collapse
|
244
|
McBride MC, Karl Malcolm R, David Woolfson A, Gorman SP. Persistence of antimicrobial activity through sustained release of triclosan from pegylated silicone elastomers. Biomaterials 2009; 30:6739-47. [DOI: 10.1016/j.biomaterials.2009.08.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 08/27/2009] [Indexed: 10/20/2022]
|
245
|
Munoz-Pinto DJ, Jimenez-Vergara AC, Gelves LM, McMahon RE, Guiza-Arguello V, Hahn MS. Probing vocal fold fibroblast response to hyaluronan in 3D contexts. Biotechnol Bioeng 2009; 104:821-31. [PMID: 19718686 DOI: 10.1002/bit.22436] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A number of treatments are being investigated for vocal fold (VF) scar, including designer implants. The aim of the present study was to validate a 3D model system for probing the effects of various bioactive moieties on VF fibroblast (VFF) behavior toward rational implant design. We selected poly(ethylene glycol) diacrylate (PEGDA) hydrogels as our base-scaffold due to their broadly tunable material properties. However, since cells encapsulated in PEGDA hydrogels are generally forced to take on rounded/stellate morphologies, validation of PEGDA gels as a 3D VFF model system required that the present work directly parallel previous studies involving more permissive scaffolds. We therefore chose to focus on hyaluronan (HA), a polysaccharide that has been a particular focus of the VF community. Toward this end, porcine VFFs were encapsulated in PEGDA hydrogels containing consistent levels of high Mw HA (HA(HMW)), intermediate Mw HA (HA(IMW)), or the control polysaccharide, alginate, and cultured for 7 and 21 days. HA(HMW) promoted sustained increases in active ERK1/2 relative to HA(IMW). Furthermore, VFFs in HA(IMW) gels displayed a more myofibroblast-like phenotype, higher elastin production, and greater protein kinase C (PkC) levels at day 21 than VFFs in HA(HMW) and alginate gels. The present results are in agreement with a previous 3D study of VFF responses to HA(IMW) relative to alginate in collagen-based scaffolds permissive of cell elongation, indicating that PEGDA hydrogels may serve as an effective 3D model system for probing at least certain aspects of VFF behavior.
Collapse
Affiliation(s)
- Dany J Munoz-Pinto
- Department of Chemical Engineering, Texas A&M University, 200 Jack E Brown Bldg, 3122 TAMU, College Station, Texas 77843-3122, USA
| | | | | | | | | | | |
Collapse
|
246
|
Husken D, Feijen J, Gaymans RJ. Surface properties of poly(ethylene oxide)-based segmented block copolymers with monodisperse hard segments. J Appl Polym Sci 2009. [DOI: 10.1002/app.30428] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
247
|
Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:3307-29. [PMID: 20882499 PMCID: PMC4494665 DOI: 10.1002/adma.200802106] [Citation(s) in RCA: 1771] [Impact Index Per Article: 118.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field.
Collapse
Affiliation(s)
- Brandon V. Slaughter
- Department of Biomedical Engineering, C0800, The University of Texas at
Austin, Austin, TX 78712 (USA)
| | - Shahana S. Khurshid
- Department of Biomedical Engineering, C0800, The University of Texas at
Austin, Austin, TX 78712 (USA)
| | - Omar Z. Fisher
- Department of Biomedical Engineering, C0800, The University of Texas at
Austin, Austin, TX 78712 (USA)
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and
Women’s Hospital, Harvard Medical School, Harvard-MIT Division of Health
Sciences and Technology, Massachusetts, Institute of Technology, Cambridge, MA 02139
(USA)
| | - Nicholas A. Peppas
- Biomaterials, Drug Delivery, Bionanotechnology, and Molecular, Recognition
Laboratories, Department of Chemical Engineering, C0400, The University of Texas at
Austin, Austin, TX 78712 (USA)
- Department of Pharmaceutics, C0400, The University of Texas at Austin,
Austin, TX 78712 (USA)
- Department of Biomedical Engineering, C0800, The University of Texas at
Austin, Austin, TX 78712 (USA)
| |
Collapse
|
248
|
Munoz-Pinto DJ, Bulick AS, Hahn MS. Uncoupled investigation of scaffold modulus and mesh size on smooth muscle cell behavior. J Biomed Mater Res A 2009; 90:303-16. [PMID: 19402139 DOI: 10.1002/jbm.a.32492] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Although scaffold material properties are known to critically impact cell behavior, it has proven difficult to correlate specific cell responses to isolated scaffold parameters, inhibiting rational design of scaffold material properties. The aim of this study was to validate a systematic approach for evaluating the influence of initial scaffold modulus and mesh size on cell extracellular matrix (ECM) deposition and phenotype. Poly(ethylene glycol) diacrylate (PEGDA) hydrogels were selected for this study because of their tunable material properties. Following screening of six distinct PEGDA hydrogels, three formulations were identified which permitted uncoupled investigation of scaffold mesh size and modulus within the target incremental modulus range of approximately 100-300 kPa. Smooth muscle cells (SMCs) were encapsulated within these three formulations, and cell ECM deposition and phenotype were evaluated following 21 days of culture. Although elastin content appeared to be correlated with scaffold mesh size and modulus to a similar degree, levels of collagen and serum response factor (SRF), a key regulator of SMC phenotype, were more strongly correlated with mesh size. To gain insight into the cell signaling underlying these observed correlations, variations in cell metabolic state and in RhoA signaling were semi-quantitatively evaluated. Both RhoA activity, which is largely modulated by scaffold mechanics in 2D, and cell metabolic activity were highly correlated with hydrogel mesh size. These results indicate that the effects of scaffold mechanics on RhoA activity in 3D may be distinct from those in 2D and underscore the need for uncoupled investigation of scaffold parameters on cell behavior. Furthermore, the present data suggest that RhoA signaling and cell metabolic regulation may be closely linked.
Collapse
Affiliation(s)
- Dany J Munoz-Pinto
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | | | | |
Collapse
|
249
|
Spadaccio C, Chello M, Trombetta M, Rainer A, Toyoda Y, Genovese JA. Drug releasing systems in cardiovascular tissue engineering. J Cell Mol Med 2009; 13:422-39. [PMID: 19379142 PMCID: PMC3822506 DOI: 10.1111/j.1582-4934.2008.00532.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Heart disease and atherosclerosis are the leading causes of morbidity and mortality worldwide. The lack of suitable autologous grafts has produced a need for artificial grafts; however, current artificial grafts carry significant limitations, including thrombosis, infection, limited durability and the inability to grow. Tissue engineering of blood vessels, cardiovascular structures and whole organs is a promising approach for creating replacement tissues to repair congenital defects and/or diseased tissues. In an attempt to surmount the shortcomings of artificial grafts, tissue-engineered cardiovascular graft (TECVG), constructs obtained using cultured autologous vascular cells seeded onto a synthetic biodegradable polymer scaffold, have been developed. Autologous TECVGs have the potential advantages of growth, durability, resistance to infection, and freedom from problems of rejection, thrombogenicity and donor scarcity. Moreover polymers engrafted with growth factors, cytokines, drugs have been developed allowing drug-releasing systems capable of focused and localized delivery of molecules depending on the environmental requirements and the milieu in which the scaffold is placed. A broad range of applications for compound-releasing, tissue-engineered grafts have been suggested ranging from drug delivery to gene therapy. This review will describe advances in the development of drug-delivery systems for cardiovascular applications focusing on the manufacturing techniques and on the compounds delivered by these systems to date.
Collapse
Affiliation(s)
- Cristiano Spadaccio
- Cardiac and Molecular Biology Laboratory, Heart, Lung & Esophageal Surgery Institute University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
250
|
Mei Y, Gerecht S, Taylor M, Urquhart AJ, Bogatyrev SR, Cho SW, Davies MC, Alexander MR, Langer RS, Anderson DG. Mapping the Interactions among Biomaterials, Adsorbed Proteins, and Human Embryonic Stem Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2009; 21:2781-2786. [PMID: 28794580 PMCID: PMC5546008 DOI: 10.1002/adma.200803184] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Ying Mei
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA)
| | - Sharon Gerecht
- Department of Chemical and Bimolecular Engineering, Johns Hopkins University, Baltimore, MD 21218 (USA)
| | - Michael Taylor
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, The University of Nottingham, Nottingham, NG7 2RD (UK)
| | - Andrew J Urquhart
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, The University of Nottingham, Nottingham, NG7 2RD (UK)
| | - Said R Bogatyrev
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA)
| | - Seung-Woo Cho
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA)
| | - Martyn C Davies
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, The University of Nottingham, Nottingham, NG7 2RD (UK)
| | - Morgan R Alexander
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, The University of Nottingham, Nottingham, NG7 2RD (UK)
| | - Robert S Langer
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA)
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 45 Carleton Street, Building E25-342, Cambridge, MA 02142 (USA)
| |
Collapse
|