201
|
Tolmasov M, Djaldetti R, Lev N, Gilgun-Sherki Y. Pathological and clinical aspects of alpha/beta synuclein in Parkinson's disease and related disorders. Expert Rev Neurother 2016; 16:505-13. [PMID: 26959397 DOI: 10.1586/14737175.2016.1164600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) and related synucleinopathies are characterized by extensive neuronal cell loss, which is potentially triggered by α-synuclein misfolding and aggregation. Therefore it is reasonable to suggest that treatments targeting α-synuclein could reduce its levels and toxicity, rescue neuronal cells and halt the neurodegeneration process. Several approaches to decrease α-synuclein levels were employed thus far, mainly by using β-synuclein, another protein from the same family, or immunotherapies. These treatments demonstrated some positive results in preclinical studies, which may pave the road to the development of new promising disease-modifying therapies (DMTs). This approach should be further examined in preclinical and clinical settings, together with a clear process in order to advance candidates, enable the ability to define when there are target engagements and to detect what is a meaningful pharmacological response, and how it will be translated in clinical efficacy.
Collapse
Affiliation(s)
- Michael Tolmasov
- a Specialty Products Department , Dexcel Pharma Technologies Ltd ., Jerusalem , Israel
| | - Ruth Djaldetti
- b Department of Neurology , Rabin Medical Center, Beilinson Campus , Petach Tikva , Israel
| | - Nirit Lev
- b Department of Neurology , Rabin Medical Center, Beilinson Campus , Petach Tikva , Israel
| | - Yossi Gilgun-Sherki
- a Specialty Products Department , Dexcel Pharma Technologies Ltd ., Jerusalem , Israel
| |
Collapse
|
202
|
Dehay B, Decressac M, Bourdenx M, Guadagnino I, Fernagut PO, Tamburrino A, Bassil F, Meissner WG, Bezard E. Targeting α-synuclein: Therapeutic options. Mov Disord 2016; 31:882-8. [PMID: 26926119 DOI: 10.1002/mds.26568] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/09/2016] [Accepted: 01/14/2016] [Indexed: 12/21/2022] Open
Abstract
The discovery of the central role of α-synuclein (αSyn) in the pathogenesis of Parkinson's disease (PD) has powered, in the last decade, the emergence of novel relevant models of this condition based on viral vector-mediated expression of the disease-causing protein or inoculation of toxic species of αSyn. Although the development of these powerful tools and models has provided considerable insights into the mechanisms underlying neurodegeneration in PD, it has also been translated into the expansion of the landscape of preclinical therapeutic strategies. Much attention is now brought to the proteotoxic mechanisms induced by αSyn and how to block them using strategies inspired by intrinsic cellular pathways such as the enhancement of cellular clearance by the lysosomal-autophagic system, through proteasome-mediated degradation or through immunization. The important effort undertaken by several laboratories and consortia to tackle these issues and identify novel targets warrants great promise for the discovery not only of neuroprotective approaches but also of restorative strategies for PD and other synucleinopathies. In this viewpoint, we summarize the latest advances in this new area of PD research and will discuss promising approaches and ongoing challenges. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Benjamin Dehay
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | | | - Mathieu Bourdenx
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | | | - Pierre-Olivier Fernagut
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Anna Tamburrino
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Fares Bassil
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| | - Wassilios G Meissner
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,Department of Neurology, University Hospital Bordeaux, Bordeaux, France
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux, France
| |
Collapse
|
203
|
Ilie IM, den Otter WK, Briels WJ. A coarse grained protein model with internal degrees of freedom. Application to α-synuclein aggregation. J Chem Phys 2016; 144:085103. [DOI: 10.1063/1.4942115] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Ioana M. Ilie
- Computational Chemical Physics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wouter K. den Otter
- Computational Chemical Physics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Multi Scale Mechanics, Faculty of Engineering Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Wim J. Briels
- Computational Chemical Physics, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
- MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
- Forschungszentrum Jülich, ICS, D-52425 Jülich, Germany
| |
Collapse
|
204
|
Kynurenine-3-monooxygenase: a review of structure, mechanism, and inhibitors. Drug Discov Today 2016; 21:315-24. [DOI: 10.1016/j.drudis.2015.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/14/2015] [Accepted: 11/05/2015] [Indexed: 01/04/2023]
|
205
|
Lam HT, Graber MC, Gentry KA, Bieschke J. Stabilization of α-Synuclein Fibril Clusters Prevents Fragmentation and Reduces Seeding Activity and Toxicity. Biochemistry 2016; 55:675-85. [PMID: 26799377 DOI: 10.1021/acs.biochem.5b01168] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Protein misfolding results in the accumulation of aggregated β-sheet-rich structures in Parkinson's disease (PD) and Alzheimer's disease. The toxic oligomer hypothesis stipulates that prefibrillar assemblies, such as soluble oligomers or protofibrils, are responsible for the poor prognosis of these diseases. Previous studies demonstrated that a small molecule related to the natural compound orcein, O4, directly binds to amyloid-β fibrils and stabilizes them, accelerating the formation of end-stage mature fibrils. Here we demonstrate a similar phenomenon during O4 treatment of α-synuclein (αsyn) aggregates, the protein responsible for PD pathology. While the drug did not change the kinetics of aggregate formation as measured by the amyloidophilic dye thioflavin T, O4 depleted αsyn oligomers and promoted the formation of sodium dodecyl sulfate and proteinase K resistant aggregates consisting of large fibril clusters. These fibril clusters exhibited reduced toxicity to human neuronal model cells and reduced seeding activity in vitro. The effectiveness of O4 decreased when it was added at later points in the αsyn aggregation pathway, which suggests that the incorporation of O4 into fibril assemblies stabilizes them against chemical, enzymatic, and mechanic degradation. These findings suggest that small molecules, which stabilize amyloid fibrils, can prevent fibril fragmentation and seeding and consequently prevent prion-like replication of misfolded αsyn. Inhibiting prion replication by fibril stabilization could thus be a therapeutic strategy for PD.
Collapse
Affiliation(s)
- Huy T Lam
- Department of Biomedical Engineering, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Michael C Graber
- Department of Biomedical Engineering, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Katherine A Gentry
- Department of Biomedical Engineering, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Jan Bieschke
- Department of Biomedical Engineering, Washington University in St. Louis , One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
206
|
Abbas A, Al Zarea G, Ali A, Mahmoud A. Hearing profile and postural sensory integration deficits in Parkinson′s disease. AL-AZHAR ASSIUT MEDICAL JOURNAL 2016. [DOI: 10.4103/1687-1693.192651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
207
|
Samuel F, Flavin WP, Iqbal S, Pacelli C, Sri Renganathan SD, Trudeau LE, Campbell EM, Fraser PE, Tandon A. Effects of Serine 129 Phosphorylation on α-Synuclein Aggregation, Membrane Association, and Internalization. J Biol Chem 2015; 291:4374-85. [PMID: 26719332 DOI: 10.1074/jbc.m115.705095] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 02/04/2023] Open
Abstract
Although trace levels of phosphorylated α-synuclein (α-syn) are detectable in normal brains, nearly all α-syn accumulated within Lewy bodies in Parkinson disease brains is phosphorylated on serine 129 (Ser-129). The role of the phosphoserine residue and its effects on α-syn structure, function, and intracellular accumulation are poorly understood. Here, co-expression of α-syn and polo-like kinase 2 (PLK2), a kinase that targets Ser-129, was used to generate phosphorylated α-syn for biophysical and biological characterization. Misfolding and fibril formation of phosphorylated α-syn isoforms were detected earlier, although the fibrils remained phosphatase- and protease-sensitive. Membrane binding of α-syn monomers was differentially affected by phosphorylation depending on the Parkinson disease-linked mutation. WT α-syn binding to presynaptic membranes was not affected by phosphorylation, whereas A30P α-syn binding was greatly increased, and A53T α-syn was slightly lower, implicating distal effects of the carboxyl- on amino-terminal membrane binding. Endocytic vesicle-mediated internalization of pre-formed fibrils into non-neuronal cells and dopaminergic neurons matched the efficacy of α-syn membrane binding. Finally, the disruption of internalized vesicle membranes was enhanced by the phosphorylated α-syn isoforms, a potential means for misfolded extracellular or lumenal α-syn to access cytosolic α-syn. Our results suggest that the threshold for vesicle permeabilization is evident even at low levels of α-syn internalization and are relevant to therapeutic strategies to reduce intercellular propagation of α-syn misfolding.
Collapse
Affiliation(s)
- Filsy Samuel
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| | | | - Sobia Iqbal
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| | - Consiglia Pacelli
- the Departments of Pharmacology and Neurosciences, Central Nervous System Research Group (GRSNC), Faculty of Medicine, Université de Montréal, Québec H4T 1J4, Canada, and
| | | | - Louis-Eric Trudeau
- the Departments of Pharmacology and Neurosciences, Central Nervous System Research Group (GRSNC), Faculty of Medicine, Université de Montréal, Québec H4T 1J4, Canada, and
| | - Edward M Campbell
- the Integrative Cell Biology Program, Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153
| | - Paul E Fraser
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 2S8, Canada, the Departments of Medical Biophysics and
| | - Anurag Tandon
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 2S8, Canada, Medicine, University of Toronto, Toronto, Ontario M5T 2S8, Canada
| |
Collapse
|
208
|
Macchi F, Deleersnijder A, Van den Haute C, Munck S, Pottel H, Michiels A, Debyser Z, Gerard M, Baekelandt V. High-content analysis of α-synuclein aggregation and cell death in a cellular model of Parkinson's disease. J Neurosci Methods 2015; 261:117-27. [PMID: 26620202 DOI: 10.1016/j.jneumeth.2015.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 11/16/2015] [Accepted: 11/16/2015] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alpha-synuclein (α-SYN) aggregates represent a key feature of Parkinson's disease, but the exact relationship between α-SYN aggregation and neurodegeneration remains incompletely understood. Therefore, the availability of a cellular assay that allows medium-throughput analysis of α-SYN-linked pathology will be of great value for studying the aggregation process and for advancing α-SYN-based therapies. NEW METHOD Here we describe a high-content neuronal cell assay that simultaneously measures oxidative stress-induced α-SYN aggregation and apoptosis. RESULTS We optimized an automated and reproducible assay to quantify both α-SYN aggregation and cell death in human SH-SY5Y neuroblastoma cells. COMPARISON WITH EXISTING METHODS Quantification of α-SYN aggregates in cells has typically relied on manual imaging and counting or cell-free assays, which are time consuming and do not allow a concurrent analysis of cell viability. Our high-content analysis method for quantification of α-SYN aggregation allows simultaneous measurements of multiple cell parameters at a single-cell level in a fast, objective and automated manner. CONCLUSIONS The presented analysis approach offers a rapid, objective and multiparametric approach for the screening of compounds and genes that might alter α-SYN aggregation and/or toxicity.
Collapse
Affiliation(s)
- Francesca Macchi
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium
| | - Angélique Deleersnijder
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium
| | - Chris Van den Haute
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven B-3000, Flanders, Belgium
| | - Sebastian Munck
- KU Leuven, Department of Human Genetics, Flanders Interuniversity Institute of Biotechnology, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium
| | - Hans Pottel
- KU Leuven Campus Kulak Kortrijk, Public Health and Primary Care, Interdisciplinary Research Facility Life Sciences, Etienne Sabbelaan 53, Kortrijk B-8500, Flanders, Belgium
| | - Annelies Michiels
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven B-3000, Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven B-3000, Flanders, Belgium
| | - Melanie Gerard
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium; KU Leuven campus Kulak Kortrijk, Laboratory of Biochemistry, Interdisciplinary Research Facility Life Sciences, Etienne Sabbelaan 53, Kortrijk B-8500, Flanders, Belgium
| | - Veerle Baekelandt
- KU Leuven, Laboratory for Neurobiology and Gene Therapy, Kapucijnenvoer 33, Leuven B-3000, Flanders, Belgium.
| |
Collapse
|
209
|
Tianma Gouteng Yin, a Traditional Chinese Medicine decoction, exerts neuroprotective effects in animal and cellular models of Parkinson's disease. Sci Rep 2015; 5:16862. [PMID: 26578166 PMCID: PMC4649620 DOI: 10.1038/srep16862] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/21/2015] [Indexed: 11/18/2022] Open
Abstract
Tianma Gouteng Yin (TGY) is a traditional Chinese medicine (TCM) decoction widely used to treat symptoms associated with typical Parkinson’s disease (PD). In this study, the neuroprotective effects of water extract of TGY were tested on rotenone-intoxicated and human α-synuclein transgenic Drosophila PD models. In addition, the neuroprotective effect of TGY was also evaluated in the human dopaminergic neuroblastoma SH-SY5Y cell line treated with rotenone and the rotenone intoxicated hemi-parkinsonian rats. In rotenone-induced PD models, TGY improved survival rate, alleviated impaired locomotor function of Drosophila, mitigated the loss of dopaminergic neurons in hemi-parkinsonian rats and alleviated apoptotic cell death in SH-SY5Y cells; in α-synuclein transgenic Drosophila, TGY reduced the level of α-synuclein and prevented degeneration of dopaminergic neurons. Conclusively, TGY is neuroprotective in PD models both in vivo and in vitro.
Collapse
|
210
|
Loureiro JA, Gomes B, Coelho MAN, do Carmo Pereira M, Rocha S. Immunoliposomes doubly targeted to transferrin receptor and to α-synuclein. Future Sci OA 2015; 1:FSO71. [PMID: 28031922 PMCID: PMC5137902 DOI: 10.4155/fso.15.71] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/10/2015] [Indexed: 01/06/2023] Open
Abstract
AIM The present study was designed to test the cellular uptake of PEGylated liposomes targeted to transferrin receptor and to α-synuclein by a cell model of the blood-brain barrier (BBB). MATERIALS & METHODS PEGylated immunoliposomes were prepared with anti-transferrin receptor OX26 and anti-α-synuclein LB509 antibodies to overcome the BBB in Parkinson's disease. RESULTS The doubly targeted immunoliposomes bind to transferrin receptor and to α-synuclein protein, as assessed by ELISA assays. We establish that 40% of an encapsulated tested drug (epigallocatechin-3-gallate) is released in a time frame of 44 h, which is reasonable for sustained release. The cellular uptake of doubly targeted immunoliposomes in cultured brain endothelial cells hCMEC/D3 was two-times more efficient than that of PEGylated liposomes. CONCLUSION Immunoliposomes targeted to BBB receptors and to α-synuclein could potentially enable the transport of drugs across the BBB and reach one of the drug targets in Parkinson's disease.
Collapse
Affiliation(s)
- Joana A Loureiro
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
| | - Bárbara Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
| | - Manuel AN Coelho
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
| | - Maria do Carmo Pereira
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal
| | - Sandra Rocha
- Department of Biology & Biological Engineering, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| |
Collapse
|
211
|
McColgan P, Seunarine KK, Razi A, Cole JH, Gregory S, Durr A, Roos RAC, Stout JC, Landwehrmeyer B, Scahill RI, Clark CA, Rees G, Tabrizi SJ. Selective vulnerability of Rich Club brain regions is an organizational principle of structural connectivity loss in Huntington's disease. Brain 2015; 138:3327-44. [PMID: 26384928 PMCID: PMC4620513 DOI: 10.1093/brain/awv259] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/21/2015] [Accepted: 07/22/2015] [Indexed: 01/05/2023] Open
Abstract
Huntington's disease can be predicted many years before symptom onset, and thus makes an ideal model for studying the earliest mechanisms of neurodegeneration. Diffuse patterns of structural connectivity loss occur in the basal ganglia and cortex early in the disease. However, the organizational principles that underlie these changes are unclear. By understanding such principles we can gain insight into the link between the cellular pathology caused by mutant huntingtin and its downstream effect at the macroscopic level. The 'rich club' is a pattern of organization established in healthy human brains, where specific hub 'rich club' brain regions are more highly connected to each other than other brain regions. We hypothesized that selective loss of rich club connectivity might represent an organizing principle underlying the distributed pattern of structural connectivity loss seen in Huntington's disease. To test this hypothesis we performed diffusion tractography and graph theoretical analysis in a pseudo-longitudinal study of 50 premanifest and 38 manifest Huntington's disease participants compared with 47 healthy controls. Consistent with our hypothesis we found that structural connectivity loss selectively affected rich club brain regions in premanifest and manifest Huntington's disease participants compared with controls. We found progressive network changes across controls, premanifest Huntington's disease and manifest Huntington's disease characterized by increased network segregation in the premanifest stage and loss of network integration in manifest disease. These regional and whole brain network differences were highly correlated with cognitive and motor deficits suggesting they have pathophysiological relevance. We also observed greater reductions in the connectivity of brain regions that have higher network traffic and lower clustering of neighbouring regions. This provides a potential mechanism that results in a characteristic pattern of structural connectivity loss targeting highly connected brain regions with high network traffic and low clustering of neighbouring regions. Our findings highlight the role of the rich club as a substrate for the structural connectivity loss seen in Huntington's disease and have broader implications for understanding the connection between molecular and systems level pathology in neurodegenerative disease.
Collapse
Affiliation(s)
- Peter McColgan
- 1 Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Kiran K. Seunarine
- 2 Developmental Imaging and Biophysics Section, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Adeel Razi
- 3 Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, WC1N 3BG, UK
- 4 Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan
| | - James H. Cole
- 5 Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Medicine, Imperial College London, W12 0HS, UK
| | - Sarah Gregory
- 3 Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Alexandra Durr
- 6 APHP Department of Genetics, Groupe Hospitalier Pitié-Salpêtrière, and Institut du Cerveau et de la Moelle, INSERM U1127, CNRS UMR7225, Sorbonne Universités – UPMC Université Paris VI UMR_S1127, Paris, France
| | - Raymund A. C. Roos
- 7 Department of Neurology, Leiden University Medical Centre, 2300RC Leiden, The Netherlands
| | - Julie C. Stout
- 8 School of Psychological Sciences, Monash University, VIC, Australia
| | - Bernhard Landwehrmeyer
- 9 Department of Neurology, University of Ulm, Oberer Eselsberg 45-1, D-89081, Ulm, Germany
| | - Rachael I. Scahill
- 1 Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Chris A. Clark
- 2 Developmental Imaging and Biophysics Section, UCL Institute of Child Health, London, WC1N 1EH, UK
| | - Geraint Rees
- 3 Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, WC1N 3BG, UK
| | - Sarah J. Tabrizi
- 1 Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
- 10 National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
212
|
Protective Mechanisms of Flavonoids in Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:314560. [PMID: 26576219 PMCID: PMC4630416 DOI: 10.1155/2015/314560] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/29/2015] [Indexed: 12/11/2022]
Abstract
Parkinson's disease is a chronic, debilitating neurodegenerative movement disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta region in human midbrain. To date, oxidative stress is the well accepted concept in the etiology and progression of Parkinson's disease. Hence, the therapeutic agent is targeted against suppressing and alleviating the oxidative stress-induced cellular damage. Within the past decades, an explosion of research discoveries has reported on the protective mechanisms of flavonoids, which are plant-based polyphenols, in the treatment of neurodegenerative disease using both in vitro and in vivo models. In this paper, we have reviewed the literature on the neuroprotective mechanisms of flavonoids in protecting the dopaminergic neurons hence reducing the symptoms of this movement disorder. The mechanism reviewed includes effect of flavonoids in activation of endogenous antioxidant enzymes, suppressing the lipid peroxidation, inhibition of inflammatory mediators, flavonoids as a mitochondrial target therapy, and modulation of gene expression in neuronal cells.
Collapse
|
213
|
Iacono D, Geraci-Erck M, Rabin ML, Adler CH, Serrano G, Beach TG, Kurlan R. Parkinson disease and incidental Lewy body disease: Just a question of time? Neurology 2015; 85:1670-9. [PMID: 26468408 DOI: 10.1212/wnl.0000000000002102] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/07/2015] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To quantify the loss of pigmented neurons in the substantia nigra (SN) of autopsy-confirmed Parkinson disease (PD) and incidental Lewy body disease (ILBD) vs age-matched controls (C). METHODS Unbiased stereology methods were used to rigorously count number and measure volumes of nigral pigmented neurons in PD, ILBD, and C brains. The obtained stereologic results were correlated with Lewy body (LB), amyloid plaque (AP), neurofibrillary tangle (NFT), and vascular pathology loads assessed in nigral and extranigral regions of each PD, ILBD, and C brain. The stereologic measurements were also correlated to predeath motor and cognitive scores as available for each participant. RESULTS A marked nigral neuronal loss (NNL) in PD (-82%) and ILBD (-40%) compared to C (p < 0.0001) was found. While there was significant correlation between NNL and LB in some cortical areas of PD (i.e., olfactory bulb), there were no correlations between NNL and LB, AP, or NFT loads or cerebral infarct volumes in any other examined regions for PD and ILBD brains. CONCLUSIONS Using unbiased stereology methods, we show that there is a significant loss and absence of hypertrophic changes in nigral pigmented neurons of ILBD in comparison to C brains. Intriguingly, no significant correlations were found between NNL and LB loads in the SN of both PD and ILBD brains. These autopsy-verified stereologically based findings are novel and support ILBD as a pathologic condition. These results suggest possible new and alternative pathophysiologic hypotheses on the actual relationship between NNL and LB pathology.
Collapse
Affiliation(s)
- Diego Iacono
- From Neuropathology Research (D.I., M.G.-E.), Biomedical Research Institute of New Jersey, BRInj, Cedar Knolls; Movement Disorders Program (D.I., M.L.R., R.K.), Atlantic Neuroscience Institute, Overlook Medical Center, Summit, NJ; Department of Neurology (D.I., R.K.), Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY; Parkinson's Disease and Movement Disorders Center (C.H.A.), Mayo Clinic Arizona, Scottsdale; and Civin Laboratory for Neuropathology (G.S., T.G.B.), Banner Sun Health Research Institute, Sun City, AZ.
| | - Maria Geraci-Erck
- From Neuropathology Research (D.I., M.G.-E.), Biomedical Research Institute of New Jersey, BRInj, Cedar Knolls; Movement Disorders Program (D.I., M.L.R., R.K.), Atlantic Neuroscience Institute, Overlook Medical Center, Summit, NJ; Department of Neurology (D.I., R.K.), Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY; Parkinson's Disease and Movement Disorders Center (C.H.A.), Mayo Clinic Arizona, Scottsdale; and Civin Laboratory for Neuropathology (G.S., T.G.B.), Banner Sun Health Research Institute, Sun City, AZ
| | - Marcie L Rabin
- From Neuropathology Research (D.I., M.G.-E.), Biomedical Research Institute of New Jersey, BRInj, Cedar Knolls; Movement Disorders Program (D.I., M.L.R., R.K.), Atlantic Neuroscience Institute, Overlook Medical Center, Summit, NJ; Department of Neurology (D.I., R.K.), Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY; Parkinson's Disease and Movement Disorders Center (C.H.A.), Mayo Clinic Arizona, Scottsdale; and Civin Laboratory for Neuropathology (G.S., T.G.B.), Banner Sun Health Research Institute, Sun City, AZ
| | - Charles H Adler
- From Neuropathology Research (D.I., M.G.-E.), Biomedical Research Institute of New Jersey, BRInj, Cedar Knolls; Movement Disorders Program (D.I., M.L.R., R.K.), Atlantic Neuroscience Institute, Overlook Medical Center, Summit, NJ; Department of Neurology (D.I., R.K.), Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY; Parkinson's Disease and Movement Disorders Center (C.H.A.), Mayo Clinic Arizona, Scottsdale; and Civin Laboratory for Neuropathology (G.S., T.G.B.), Banner Sun Health Research Institute, Sun City, AZ
| | - Geidy Serrano
- From Neuropathology Research (D.I., M.G.-E.), Biomedical Research Institute of New Jersey, BRInj, Cedar Knolls; Movement Disorders Program (D.I., M.L.R., R.K.), Atlantic Neuroscience Institute, Overlook Medical Center, Summit, NJ; Department of Neurology (D.I., R.K.), Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY; Parkinson's Disease and Movement Disorders Center (C.H.A.), Mayo Clinic Arizona, Scottsdale; and Civin Laboratory for Neuropathology (G.S., T.G.B.), Banner Sun Health Research Institute, Sun City, AZ
| | - Thomas G Beach
- From Neuropathology Research (D.I., M.G.-E.), Biomedical Research Institute of New Jersey, BRInj, Cedar Knolls; Movement Disorders Program (D.I., M.L.R., R.K.), Atlantic Neuroscience Institute, Overlook Medical Center, Summit, NJ; Department of Neurology (D.I., R.K.), Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY; Parkinson's Disease and Movement Disorders Center (C.H.A.), Mayo Clinic Arizona, Scottsdale; and Civin Laboratory for Neuropathology (G.S., T.G.B.), Banner Sun Health Research Institute, Sun City, AZ
| | - Roger Kurlan
- From Neuropathology Research (D.I., M.G.-E.), Biomedical Research Institute of New Jersey, BRInj, Cedar Knolls; Movement Disorders Program (D.I., M.L.R., R.K.), Atlantic Neuroscience Institute, Overlook Medical Center, Summit, NJ; Department of Neurology (D.I., R.K.), Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, NY; Parkinson's Disease and Movement Disorders Center (C.H.A.), Mayo Clinic Arizona, Scottsdale; and Civin Laboratory for Neuropathology (G.S., T.G.B.), Banner Sun Health Research Institute, Sun City, AZ
| |
Collapse
|
214
|
O-GlcNAc modification blocks the aggregation and toxicity of the protein α-synuclein associated with Parkinson's disease. Nat Chem 2015; 7:913-20. [PMID: 26492012 PMCID: PMC4618406 DOI: 10.1038/nchem.2361] [Citation(s) in RCA: 219] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 08/28/2015] [Indexed: 01/02/2023]
Abstract
Several aggregation-prone proteins associated with neurodegenerative diseases can be modified by O-linked N-acetyl-glucosamine (O-GlcNAc) in vivo. One of these proteins, α-synuclein, is a toxic aggregating protein associated with synucleinopathies, including Parkinson's disease. However, the effect of O-GlcNAcylation on α-synuclein is not clear. Here, we use synthetic protein chemistry to generate both unmodified α-synuclein and α-synuclein bearing a site-specific O-GlcNAc modification at the physiologically relevant threonine residue 72. We show that this single modification has a notable and substoichiometric inhibitory effect on α-synuclein aggregation, while not affecting the membrane binding or bending properties of α-synuclein. O-GlcNAcylation is also shown to affect the phosphorylation of α-synuclein in vitro and block the toxicity of α-synuclein that was exogenously added to cells in culture. These results suggest that increasing O-GlcNAcylation may slow the progression of synucleinopathies and further support a general function for O-GlcNAc in preventing protein aggregation.
Collapse
|
215
|
Mulak A, Bonaz B. Brain-gut-microbiota axis in Parkinson's disease. World J Gastroenterol 2015; 21:10609-10620. [PMID: 26457021 PMCID: PMC4588083 DOI: 10.3748/wjg.v21.i37.10609] [Citation(s) in RCA: 374] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/28/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is characterized by alpha-synucleinopathy that affects all levels of the brain-gut axis including the central, autonomic, and enteric nervous systems. Recently, it has been recognized that the brain-gut axis interactions are significantly modulated by the gut microbiota via immunological, neuroendocrine, and direct neural mechanisms. Dysregulation of the brain-gut-microbiota axis in PD may be associated with gastrointestinal manifestations frequently preceding motor symptoms, as well as with the pathogenesis of PD itself, supporting the hypothesis that the pathological process is spread from the gut to the brain. Excessive stimulation of the innate immune system resulting from gut dysbiosis and/or small intestinal bacterial overgrowth and increased intestinal permeability may induce systemic inflammation, while activation of enteric neurons and enteric glial cells may contribute to the initiation of alpha-synuclein misfolding. Additionally, the adaptive immune system may be disturbed by bacterial proteins cross-reacting with human antigens. A better understanding of the brain-gut-microbiota axis interactions should bring a new insight in the pathophysiology of PD and permit an earlier diagnosis with a focus on peripheral biomarkers within the enteric nervous system. Novel therapeutic options aimed at modifying the gut microbiota composition and enhancing the intestinal epithelial barrier integrity in PD patients could influence the initial step of the following cascade of neurodegeneration in PD.
Collapse
|
216
|
Zeighami Y, Ulla M, Iturria-Medina Y, Dadar M, Zhang Y, Larcher KMH, Fonov V, Evans AC, Collins DL, Dagher A. Network structure of brain atrophy in de novo Parkinson's disease. eLife 2015; 4:e08440. [PMID: 26344547 PMCID: PMC4596689 DOI: 10.7554/elife.08440] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/05/2015] [Indexed: 01/01/2023] Open
Abstract
We mapped the distribution of atrophy in Parkinson's disease (PD) using magnetic resonance imaging (MRI) and clinical data from 232 PD patients and 117 controls from the Parkinson's Progression Markers Initiative. Deformation-based morphometry and independent component analysis identified PD-specific atrophy in the midbrain, basal ganglia, basal forebrain, medial temporal lobe, and discrete cortical regions. The degree of atrophy reflected clinical measures of disease severity. The spatial pattern of atrophy demonstrated overlap with intrinsic networks present in healthy brain, as derived from functional MRI. Moreover, the degree of atrophy in each brain region reflected its functional and anatomical proximity to a presumed disease epicenter in the substantia nigra, compatible with a trans-neuronal spread of the disease. These results support a network-spread mechanism in PD. Finally, the atrophy pattern in PD was also seen in healthy aging, where it also correlated with the loss of striatal dopaminergic innervation.
Collapse
Affiliation(s)
- Yashar Zeighami
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Miguel Ulla
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
- Service de Neurologie A, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Yasser Iturria-Medina
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Mahsa Dadar
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Yu Zhang
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | - Vladimir Fonov
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alan C Evans
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Canada
| |
Collapse
|
217
|
Schneeberger A, Tierney L, Mandler M. Active immunization therapies for Parkinson's disease and multiple system atrophy. Mov Disord 2015; 31:214-24. [PMID: 26260853 DOI: 10.1002/mds.26377] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/16/2015] [Accepted: 07/20/2015] [Indexed: 01/06/2023] Open
Abstract
Vaccination is increasingly being investigated as a potential treatment for synucleinopathies, a group of neurodegenerative diseases including Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies associated with α-synuclein pathology. All lack a causal therapy. Development of novel, disease-altering treatment strategies is urgently needed. Vaccination has positioned itself as a prime strategy for addressing these diseases because it is broadly applicable, requires infrequent administration, and maintains low production costs for treating a large population or as a preventive measure. Current evidence points to a causal role of misfolded α-synuclein in the development and progression of synucleinopathies. In the past decade, significant progress in active immunization against α-synuclein has been shown both in preclinical animal models and in early clinical development. In this review, we describe the state-of-the-art in active immunization approaches to synucleinopathies, with a focus on advances in Parkinson's disease (PD) and multiple-system atrophy (MSA). We first review preclinical animal models, highlighting their progress in translation to the clinical setting. We then discuss current clinical applications, stressing different approaches taken to address α-synuclein pathology. Finally, we address challenges, trends, and future perspectives of current vaccination programs.
Collapse
|
218
|
Wang ZH, Zhang JL, Duan YL, Zhang QS, Li GF, Zheng DL. MicroRNA-214 participates in the neuroprotective effect of Resveratrol via inhibiting α-synuclein expression in MPTP-induced Parkinson’s disease mouse. Biomed Pharmacother 2015; 74:252-6. [DOI: 10.1016/j.biopha.2015.08.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/05/2015] [Indexed: 01/08/2023] Open
|
219
|
Abstract
α-Synuclein inclusion bodies are a pathological hallmark of several neurodegenerative diseases, including Parkinson’s disease, and contain aggregated α-synuclein and a variety of recruited factors, including protein chaperones, proteasome components, ubiquitin and the small ubiquitin-like modifier, SUMO-1. Cell culture and animal model studies suggest that misfolded, aggregated α-synuclein is actively translocated via the cytoskeletal system to a region of the cell where other factors that help to lessen the toxic effects can also be recruited. SUMO-1 covalently conjugates to various intracellular target proteins in a way analogous to ubiquitination to alter cellular distribution, function and metabolism and also plays an important role in a growing list of cellular pathways, including exosome secretion and apoptosis. Furthermore, SUMO-1 modified proteins have recently been linked to cell stress responses, such as oxidative stress response and heat shock response, with increased SUMOylation being neuroprotective in some cases. Several recent studies have linked SUMOylation to the ubiquitin-proteasome system, while other evidence implicates the lysosomal pathway. Other reports depict a direct mechanism whereby sumoylation reduced the aggregation tendency of α-synuclein, and reduced the toxicity. However, the precise role of SUMO-1 in neurodegeneration remains unclear. In this review, we explore the potential direct or indirect role(s) of SUMO-1 in the cellular response to misfolded α-synuclein in neurodegenerative disorders.
Collapse
|
220
|
Brundin P, Atkin G, Lamberts JT. Basic science breaks through: New therapeutic advances in Parkinson's disease. Mov Disord 2015; 30:1521-7. [PMID: 26177603 DOI: 10.1002/mds.26332] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/13/2015] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease and is typically associated with progressive motor dysfunction, although PD patients also exhibit a variety of non-motor symptoms. The neuropathological hallmark of PD is intraneuronal inclusions containing primarily α-Synuclein (α-Syn), and several lines of evidence point to α-Syn as a key contributor to disease progression. Thus, basic research in the field of PD is largely focused on understanding the pathogenic properties of α-Syn. Over the past 2 y, these studies helped to identify several novel therapeutic strategies that have the potential to slow PD progression; such strategies include sequestration of extracellular α-Syn through immunotherapy, reduction of α-Syn multimerization or intracellular toxicity, and attenuation of the neuroinflammatory response. This review describes these and other putative therapeutic strategies, together with the basic science research that led to their identification. The current breadth of novel targets for the treatment of PD warrants cautious optimism in the fight against this devastating disease.
Collapse
Affiliation(s)
- Patrik Brundin
- Laboratory of Translational Parkinson's Disease Research, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Graham Atkin
- Laboratory of Translational Parkinson's Disease Research, Van Andel Research Institute, Grand Rapids, Michigan, USA
| | - Jennifer T Lamberts
- Laboratory of Translational Parkinson's Disease Research, Van Andel Research Institute, Grand Rapids, Michigan, USA.,College of Pharmacy, Ferris State University, Big Rapids, Michigan, USA
| |
Collapse
|
221
|
Colvin MT, Silvers R, Frohm B, Su Y, Linse S, Griffin RG. High resolution structural characterization of Aβ42 amyloid fibrils by magic angle spinning NMR. J Am Chem Soc 2015; 137:7509-18. [PMID: 26001057 PMCID: PMC4623963 DOI: 10.1021/jacs.5b03997] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
The presence of amyloid plaques composed
of amyloid beta (Aβ)
fibrils is a hallmark of Alzheimer’s disease (AD). The Aβ
peptide is present as several length variants with two common alloforms
consisting of 40 and 42 amino acids, denoted Aβ1–40 and Aβ1–42, respectively. While there have
been numerous reports that structurally characterize fibrils of Aβ1–40, very little is known about the structure of amyloid
fibrils of Aβ1–42, which are considered the
more toxic alloform involved in AD. We have prepared isotopically 13C/15N labeled AβM01–42 fibrils in vitro from recombinant protein and examined their 13C–13C and 13C–15N magic angle spinning (MAS) NMR spectra. In contrast to several
other studies of Aβ fibrils, we observe spectra with excellent
resolution and a single set of chemical shifts, suggesting the presence
of a single fibril morphology. We report the initial structural characterization
of AβM01–42 fibrils utilizing 13C and 15N shift assignments of 38 of the 43 residues,
including the backbone and side chains, obtained through a series
of cross-polarization based 2D and 3D 13C–13C, 13C–15N MAS NMR experiments for rigid
residues along with J-based 2D TOBSY experiments for dynamic residues.
We find that the first ∼5 residues are dynamic and most efficiently
detected in a J-based TOBSY spectrum. In contrast, residues 16–42
are easily observed in cross-polarization experiments and most likely
form the amyloid core. Calculation of ψ and φ dihedral
angles from the chemical shift assignments indicate that 4 β-strands
are present in the fibril’s secondary structure.
Collapse
Affiliation(s)
- Michael T Colvin
- †Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Robert Silvers
- †Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Birgitta Frohm
- ‡Department of Biochemistry and Structural Biology, Lund University, SE22100 Lund, Sweden
| | - Yongchao Su
- †Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sara Linse
- ‡Department of Biochemistry and Structural Biology, Lund University, SE22100 Lund, Sweden
| | - Robert G Griffin
- †Department of Chemistry and Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
222
|
Lamberts JT, Hildebrandt EN, Brundin P. Spreading of α-synuclein in the face of axonal transport deficits in Parkinson's disease: A speculative synthesis. Neurobiol Dis 2015; 77:276-83. [DOI: 10.1016/j.nbd.2014.07.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/02/2014] [Indexed: 11/30/2022] Open
|
223
|
Fernández-Borges N, Eraña H, Venegas V, Elezgarai SR, Harrathi C, Castilla J. Animal models for prion-like diseases. Virus Res 2015; 207:5-24. [PMID: 25907990 DOI: 10.1016/j.virusres.2015.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 12/13/2022]
Abstract
Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are a group of fatal neurodegenerative disorders affecting several mammalian species being Creutzfeldt-Jacob Disease (CJD) the most representative in human beings, scrapie in ovine, Bovine Spongiform Encephalopathy (BSE) in bovine and Chronic Wasting Disease (CWD) in cervids. As stated by the "protein-only hypothesis", the causal agent of TSEs is a self-propagating aberrant form of the prion protein (PrP) that through a misfolding event acquires a β-sheet rich conformation known as PrP(Sc) (from scrapie). This isoform is neurotoxic, aggregation prone and induces misfolding of native cellular PrP. Compelling evidence indicates that disease-specific protein misfolding in amyloid deposits could be shared by other disorders showing aberrant protein aggregates such as Alzheimer's Disease (AD), Parkinson's Disease (PD), Amyotrophic lateral sclerosis (ALS) and systemic Amyloid A amyloidosis (AA amyloidosis). Evidences of shared mechanisms of the proteins related to each disease with prions will be reviewed through the available in vivo models. Taking prion research as reference, typical prion-like features such as seeding and propagation ability, neurotoxic species causing disease, infectivity, transmission barrier and strain evidences will be analyzed for other protein-related diseases. Thus, prion-like features of amyloid β peptide and tau present in AD, α-synuclein in PD, SOD-1, TDP-43 and others in ALS and serum α-amyloid (SAA) in systemic AA amyloidosis will be reviewed through models available for each disease.
Collapse
Affiliation(s)
| | - Hasier Eraña
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Vanesa Venegas
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Saioa R Elezgarai
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Chafik Harrathi
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque tecnológico de Bizkaia, Derio 48160, Bizkaia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Bizkaia, Spain.
| |
Collapse
|
224
|
Olanow CW, Wakeman DR, Kordower JH. Peripheral alpha-synuclein and Parkinson's disease. Mov Disord 2015; 29:963-6. [PMID: 25043799 DOI: 10.1002/mds.25966] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- C Warren Olanow
- Departments of Neurology and Neuroscience, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | | | | |
Collapse
|
225
|
Yasuhara T, Kameda M, Agari T, Date I. Regenerative medicine for Parkinson's disease. Neurol Med Chir (Tokyo) 2015; 55:113-23. [PMID: 25746305 PMCID: PMC4533405 DOI: 10.2176/nmc.ra.2014-0264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Regenerative medicine for Parkinson’s disease (PD) is expected to develop dramatically with the advancement of biotechnology as represented by induced pluripotent stem cells. Existing therapeutic strategy for PD consists of medication using L-DOPA, surgery such as deep brain stimulation and rehabilitation. Current treatment cannot stop the progression of the disease, although there is definite therapeutic effect. True neurorestoration is strongly desired by regenerative medicine. This review article describes the historical development of regenerative medicine for PD, with a focus on fetal nigral cell transplantation and glial cell line-derived neurotrophic factor infusion. Subsequently, the current status of regenerative medicine for PD in terms of cell therapy and gene therapy are reviewed. In the end, the future direction to realize regenerative medicine for PD is discussed.
Collapse
Affiliation(s)
- Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine
| | | | | | | |
Collapse
|
226
|
Affiliation(s)
- E Ben-David
- From the Department of Radiology, George Washington University Hospital, Washington, DC
| | - R Tu
- From the Department of Radiology, George Washington University Hospital, Washington, DC.
| |
Collapse
|
227
|
Sanchez-Guajardo V, Tentillier N, Romero-Ramos M. The relation between α-synuclein and microglia in Parkinson's disease: Recent developments. Neuroscience 2015; 302:47-58. [PMID: 25684748 DOI: 10.1016/j.neuroscience.2015.02.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/13/2015] [Accepted: 02/04/2015] [Indexed: 12/14/2022]
Abstract
Recent research suggests a complex role for microglia not only in Parkinson's disease but in other disorders involving alpha-synuclein aggregation, such as multiple system atrophy. In these neurodegenerative processes, the activation of microglia is a common pathological finding, which disturbs the homeostasis of the neuronal environment otherwise maintained, among others, by microglia. The term activation comprises any deviation from what otherwise is considered normal microglia status, including cellular abundance, morphology or protein expression. The microglial response during disease will sustain survival or otherwise promote cell degeneration. The novel concepts of alpha-synuclein being released and uptaken by neighboring cells, and their importance in disease progression, positions microglia as the main cell that can clear and handle alpha-synuclein efficiently. Microglia's behavior will therefore be a determinant on the disease's progression. For this reason we believe that the better understanding of microglia's response to alpha-synuclein pathological accumulation across brain areas and disease stages is essential to develop novel therapeutic tools for Parkinson's disease and other alpha-synucleinopathies. In this review we will revise the most recent findings and developments with regard to alpha-synuclein and microglia in Parkinson's disease.
Collapse
Affiliation(s)
- V Sanchez-Guajardo
- AU IDEAS center NEURODIN, Aarhus University, DK-8000 Aarhus C, Denmark; Neuroimmunology of Degenerative Disease, Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - N Tentillier
- AU IDEAS center NEURODIN, Aarhus University, DK-8000 Aarhus C, Denmark; CNS Disease Modeling Group, Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - M Romero-Ramos
- AU IDEAS center NEURODIN, Aarhus University, DK-8000 Aarhus C, Denmark; CNS Disease Modeling Group, Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
228
|
Zhou M, Ottenberg G, Sferrazza GF, Hubbs C, Fallahi M, Rumbaugh G, Brantley AF, Lasmézas CI. Neuronal death induced by misfolded prion protein is due to NAD+ depletion and can be relieved in vitro and in vivo by NAD+ replenishment. ACTA ACUST UNITED AC 2015; 138:992-1008. [PMID: 25678560 DOI: 10.1093/brain/awv002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mechanisms of neuronal death in protein misfolding neurodegenerative diseases such as Alzheimer's, Parkinson's and prion diseases are poorly understood. We used a highly toxic misfolded prion protein (TPrP) model to understand neurotoxicity induced by prion protein misfolding. We show that abnormal autophagy activation and neuronal demise is due to severe, neuron-specific, nicotinamide adenine dinucleotide (NAD(+)) depletion. Toxic prion protein-exposed neuronal cells exhibit dramatic reductions of intracellular NAD(+) followed by decreased ATP production, and are completely rescued by treatment with NAD(+) or its precursor nicotinamide because of restoration of physiological NAD(+) levels. Toxic prion protein-induced NAD(+) depletion results from PARP1-independent excessive protein ADP-ribosylations. In vivo, toxic prion protein-induced degeneration of hippocampal neurons is prevented dose-dependently by intracerebral injection of NAD(+). Intranasal NAD(+) treatment of prion-infected sick mice significantly improves activity and delays motor impairment. Our study reveals NAD(+) starvation as a novel mechanism of autophagy activation and neurodegeneration induced by a misfolded amyloidogenic protein. We propose the development of NAD(+) replenishment strategies for neuroprotection in prion diseases and possibly other protein misfolding neurodegenerative diseases.
Collapse
Affiliation(s)
- Minghai Zhou
- 1 Department of Infectious Diseases, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Gregory Ottenberg
- 1 Department of Infectious Diseases, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Gian Franco Sferrazza
- 1 Department of Infectious Diseases, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Christopher Hubbs
- 2 Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Mohammad Fallahi
- 3 Informatics Core, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Gavin Rumbaugh
- 2 Department of Neuroscience, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Alicia F Brantley
- 4 Behaviour Core, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| | - Corinne I Lasmézas
- 1 Department of Infectious Diseases, The Scripps Research Institute, Scripps Florida, Jupiter, FL 33458, USA
| |
Collapse
|
229
|
Abstract
Kufor-Rakeb syndrome (KRS) is caused by loss-of-function mutations in ATP13A2 (PARK9) and characterized by juvenile-onset parkinsonism, pyramidal signs, and cognitive decline. Previous studies suggested that PARK9 deficiency causes lysosomal dysfunction and α-synuclein (α-syn) accumulation, whereas PARK9 overexpression suppresses toxicity of α-syn. However, the precise mechanism of PARK9 effect on lysosomes and α-syn has been unknown. Here, we found that overexpressed PARK9 localized to multivesicular bodies (MVBs) in the human H4 cell line. The results from patient fibroblasts showed that loss of PARK9 function leads to decreased number of the intraluminal vesicles in MVBs and diminished release of exosomes into culture media. By contrast, overexpression of PARK9 results in increased release of exosomes in H4 cells and mouse primary cortical neurons. Moreover, loss of PARK9 function resulted in decreased secretion of α-syn into extracellular space, whereas overexpressed PARK9 promotes secretion of α-syn, at least in part via exosomes. Finally, we found that PARK9 regulates exosome biogenesis through functional interaction with the endosomal sorting complex required for transport machinery. Together, these data suggest the involvement of PARK9 in the biogenesis of exosomes and α-syn secretion and raise a possibility that disruption of these pathways in patients with KRS contributes to the disease pathogenesis.
Collapse
|
230
|
Betzer C, Movius AJ, Shi M, Gai WP, Zhang J, Jensen PH. Identification of synaptosomal proteins binding to monomeric and oligomeric α-synuclein. PLoS One 2015; 10:e0116473. [PMID: 25659148 PMCID: PMC4319895 DOI: 10.1371/journal.pone.0116473] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 12/09/2014] [Indexed: 01/09/2023] Open
Abstract
Monomeric α-synuclein (αSN) species are abundant in nerve terminals where they are hypothesized to play a physiological role related to synaptic vesicle turn-over. In Parkinson’s disease (PD) and dementia with Lewy body (DLB), αSN accumulates as aggregated soluble oligomers in terminals, axons and the somatodendritic compartment and insoluble filaments in Lewy inclusions and Lewy neurites. The autosomal dominant heritability associated to mutations in the αSN gene suggest a gain of function associated to aggregated αSN. We have conducted a proteomic screen to identify the αSN interactome in brain synaptosomes. Porcine brain synaptosomes were fractionated, solubilized in non-denaturing detergent and subjected to co-immunoprecipitation using purified recombinant human αSN monomers or oligomers as bait. The isolated αSN binding proteins were identified with LC-LTQ-orbitrap tandem mass spectrometry and quantified by peak area using Windows client application, Skyline Targeted Proteomic Environment. Data are available via ProteomeXchange with identifier PXD001462. To quantify the preferential binding an average fold increase was calculated by comparing binding to monomer and oligomer. We identified 10 proteins preferentially binding monomer, and 76 binding preferentially to oligomer and a group of 92 proteins not displaying any preferred conformation of αSN. The proteomic data were validated by immunoprecipitation in both human and porcine brain extracts using antibodies against monomer αSN interactors: Abl interactor 1, and myelin proteolipid protein, and oligomer interactors: glutamate decarboxylase 2, synapsin 1, glial fibrillary acidic protein, and VAMP-2. We demonstrate the existence of αSN conformation selective ligands and present lists of proteins, whose identity and functions will be useful for modeling normal and pathological αSN dependent processes.
Collapse
Affiliation(s)
- Cristine Betzer
- University of Aarhus, DANDRITE—Danish Research Institute of Translational Neuroscience & Department of Biomedicine, Aarhus, Denmark
| | - A. James Movius
- Flinders University School of Medicine, Department of Human Physiology and Centre for Neuroscience, Bedford Park, SA, Australia
| | - Min Shi
- Flinders University School of Medicine, Department of Human Physiology and Centre for Neuroscience, Bedford Park, SA, Australia
| | - Wei-Ping Gai
- Washington School of Medicine, Department of Pathology, Seattle, United States of America
| | - Jing Zhang
- Flinders University School of Medicine, Department of Human Physiology and Centre for Neuroscience, Bedford Park, SA, Australia
| | - Poul Henning Jensen
- University of Aarhus, DANDRITE—Danish Research Institute of Translational Neuroscience & Department of Biomedicine, Aarhus, Denmark
- * E-mail:
| |
Collapse
|
231
|
Viola KL, Klein WL. Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 2015; 129:183-206. [PMID: 25604547 DOI: 10.1007/s00401-015-1386-3] [Citation(s) in RCA: 458] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/11/2015] [Accepted: 01/11/2015] [Indexed: 12/22/2022]
Abstract
Protein aggregation is common to dozens of diseases including prionoses, diabetes, Parkinson's and Alzheimer's. Over the past 15 years, there has been a paradigm shift in understanding the structural basis for these proteinopathies. Precedent for this shift has come from investigation of soluble Aβ oligomers (AβOs), toxins now widely regarded as instigating neuron damage leading to Alzheimer's dementia. Toxic AβOs accumulate in AD brain and constitute long-lived alternatives to the disease-defining Aβ fibrils deposited in amyloid plaques. Key experiments using fibril-free AβO solutions demonstrated that while Aβ is essential for memory loss, the fibrillar Aβ in amyloid deposits is not the agent. The AD-like cellular pathologies induced by AβOs suggest their impact provides a unifying mechanism for AD pathogenesis, explaining why early stage disease is specific for memory and accounting for major facets of AD neuropathology. Alternative ideas for triggering mechanisms are being actively investigated. Some research favors insertion of AβOs into membrane, while other evidence supports ligand-like accumulation at particular synapses. Over a dozen candidate toxin receptors have been proposed. AβO binding triggers a redistribution of critical synaptic proteins and induces hyperactivity in metabotropic and ionotropic glutamate receptors. This leads to Ca(2+) overload and instigates major facets of AD neuropathology, including tau hyperphosphorylation, insulin resistance, oxidative stress, and synapse loss. Because different species of AβOs have been identified, a remaining question is which oligomer is the major pathogenic culprit. The possibility has been raised that more than one species plays a role. Despite some key unknowns, the clinical relevance of AβOs has been established, and new studies are beginning to point to co-morbidities such as diabetes and hypercholesterolemia as etiological factors. Because pathogenic AβOs appear early in the disease, they offer appealing targets for therapeutics and diagnostics. Promising therapeutic strategies include use of CNS insulin signaling enhancers to protect against the presence of toxins and elimination of the toxins through use of highly specific AβO antibodies. An AD-dependent accumulation of AβOs in CSF suggests their potential use as biomarkers and new AβO probes are opening the door to brain imaging. Overall, current evidence indicates that Aβ oligomers provide a substantive molecular basis for the cause, treatment and diagnosis of Alzheimer's disease.
Collapse
|
232
|
Le Grand JN, Gonzalez-Cano L, Pavlou MA, Schwamborn JC. Neural stem cells in Parkinson's disease: a role for neurogenesis defects in onset and progression. Cell Mol Life Sci 2015; 72:773-97. [PMID: 25403878 PMCID: PMC11113294 DOI: 10.1007/s00018-014-1774-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 10/09/2014] [Accepted: 11/03/2014] [Indexed: 12/27/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, leading to a variety of motor and non-motor symptoms. Interestingly, non-motor symptoms often appear a decade or more before the first signs of motor symptoms. Some of these non-motor symptoms are remarkably similar to those observed in cases of impaired neurogenesis and several PD-related genes have been shown to play a role in embryonic or adult neurogenesis. Indeed, animal models deficient in Nurr1, Pitx3, SNCA and PINK1 display deregulated embryonic neurogenesis and LRRK2 and VPS35 have been implicated in neuronal development-related processes such as Wnt/β-catenin signaling and neurite outgrowth. Moreover, adult neurogenesis is affected in both PD patients and PD animal models and is regulated by dopamine and dopaminergic (DA) receptors, by chronic neuroinflammation, such as that observed in PD, and by differential expression of wild-type or mutant forms of PD-related genes. Indeed, an increasing number of in vivo studies demonstrate a role for SNCA and LRRK2 in adult neurogenesis and in the generation and maintenance of DA neurons. Finally, the roles of PD-related genes, SNCA, LRRK2, VPS35, Parkin, PINK1 and DJ-1 have been studied in NSCs, progenitor cells and induced pluripotent stem cells, demonstrating a role for some of these genes in stem/progenitor cell proliferation and maintenance. Together, these studies strongly suggest a link between deregulated neurogenesis and the onset and progression of PD and present strong evidence that, in addition to a neurodegenerative disorder, PD can also be regarded as a developmental disorder.
Collapse
Affiliation(s)
- Jaclyn Nicole Le Grand
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Laura Gonzalez-Cano
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Maria Angeliki Pavlou
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Jens C. Schwamborn
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
233
|
Gruden MA, Davydova TV, Narkevich VB, Fomina VG, Wang C, Kudrin VS, Morozova-Roche LA, Sewell RD. Noradrenergic and serotonergic neurochemistry arising from intranasal inoculation with α-synuclein aggregates which incite parkinsonian-like symptoms. Behav Brain Res 2015; 279:191-201. [DOI: 10.1016/j.bbr.2014.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/28/2014] [Accepted: 11/01/2014] [Indexed: 12/13/2022]
|
234
|
Carboni E, Lingor P. Insights on the interaction of alpha-synuclein and metals in the pathophysiology of Parkinson's disease. Metallomics 2015; 7:395-404. [DOI: 10.1039/c4mt00339j] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The interaction of different metals with the Parkinson's disease-associated protein alpha-synuclein results in oxidative stress, protein aggregation and pathology progression.
Collapse
Affiliation(s)
- Eleonora Carboni
- Department of Neurology
- University Medicine Göttingen
- D-37075 Göttingen, Germany
- Cluster of Excellence and DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain
- Göttingen, Germany
| | - Paul Lingor
- Department of Neurology
- University Medicine Göttingen
- D-37075 Göttingen, Germany
- Cluster of Excellence and DFG-Research Center for Nanoscale Microscopy and Molecular Physiology of the Brain
- Göttingen, Germany
| |
Collapse
|
235
|
Brändl B, Schneider SA, Loring JF, Hardy J, Gribbon P, Müller FJ. Stem cell reprogramming: basic implications and future perspective for movement disorders. Mov Disord 2014; 30:301-12. [PMID: 25546831 DOI: 10.1002/mds.26113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 10/03/2014] [Accepted: 10/29/2014] [Indexed: 12/14/2022] Open
Abstract
The introduction of stem cell-associated molecular factors into human patient-derived cells allows for their reprogramming in the laboratory environment. As a result, human induced pluripotent stem cells (hiPSC) can now be reprogrammed epigenetically without disruption of their overall genomic integrity. For patients with neurodegenerative diseases characterized by progressive loss of functional neurons, the ability to reprogram any individual's cells and drive their differentiation toward susceptible neuronal subtypes holds great promise. Apart from applications in regenerative medicine and cell replacement-based therapy, hiPSCs are increasingly used in preclinical research for establishing disease models and screening for drug toxicities. The rapid developments in this field prompted us to review recent progress toward the applications of stem cell technologies for movement disorders. We introduce reprogramming strategies and explain the critical steps in the differentiation of hiPSCs to clinical relevant subtypes of cells in the context of movement disorders. We summarize and discuss recent discoveries in this field, which, based on the rapidly expanding basic science literature as well as upcoming trends in personalized medicine, will strongly influence the future therapeutic options available to practitioners working with patients suffering from such disorders.
Collapse
Affiliation(s)
- Björn Brändl
- Center for Psychiatry, University Hospital Schleswig Holstein, Campus Kiel, Germany
| | | | | | | | | | | |
Collapse
|
236
|
The role of Galectin-3 in α-synuclein-induced microglial activation. Acta Neuropathol Commun 2014; 2:156. [PMID: 25387690 PMCID: PMC4236422 DOI: 10.1186/s40478-014-0156-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/17/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the most prevalent neurodegenerative motor disorder. The neuropathology is characterized by intraneuronal protein aggregates of α-synuclein and progressive degeneration of dopaminergic neurons within the substantia nigra. Previous studies have shown that extracellular α-synuclein aggregates can activate microglial cells, induce inflammation and contribute to the neurodegenerative process in PD. However, the signaling pathways involved in α-synuclein-mediated microglia activation are poorly understood. Galectin-3 is a member of a carbohydrate-binding protein family involved in cell activation and inflammation. Therefore, we investigated whether galectin-3 is involved in the microglia activation triggered by α-synuclein. RESULTS We cultured microglial (BV2) cells and induced cell activation by addition of exogenous α-synuclein monomers or aggregates to the cell culture medium. This treatment induced a significant increase in the levels of proinflammatory mediators including the inducible Nitric Oxide Synthase (iNOS), interleukin 1 Beta (IL-1β) and Interleukin-12 (IL-12). We then reduced the levels of galectin-3 expression using siRNA or pharmacologically targeting galectin-3 activity using bis-(3-deoxy-3-(3-fluorophenyl-1H-1,2,3-triazol-1-yl)-β-D-galactopyranosyl)-sulfane. Both approaches led to a significant reduction in the observed inflammatory response induced by α-synuclein. We confirmed these findings using primary microglial cells obtained from wild-type and galectin-3 null mutant mice. Finally, we performed injections of α-synuclein in the olfactory bulb of wild type mice and observed that some of the α-synuclein was taken up by activated microglia that were immunopositive for galectin-3. CONCLUSIONS We show that α-synuclein aggregates induce microglial activation and demonstrate for the first time that galectin-3 plays a significant role in microglia activation induced by α-synuclein. These results suggest that genetic down-regulation or pharmacological inhibition of galectin-3 might constitute a novel therapeutic target in PD and other synucleinopathies.
Collapse
|
237
|
Self-propagative replication of Aβ oligomers suggests potential transmissibility in Alzheimer disease. PLoS One 2014; 9:e111492. [PMID: 25365422 PMCID: PMC4218758 DOI: 10.1371/journal.pone.0111492] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/16/2014] [Indexed: 12/29/2022] Open
Abstract
The aggregation of amyloid-β (Aβ) peptide and its deposition in parts of the brain form the central processes in the etiology of Alzheimer disease (AD). The low-molecular weight oligomers of Aβ aggregates (2 to 30 mers) are known to be the primary neurotoxic agents whose mechanisms of cellular toxicity and synaptic dysfunction have received substantial attention in the recent years. However, how these toxic agents proliferate and induce widespread amyloid deposition throughout the brain, and what mechanism is involved in the amplification and propagation of toxic oligomer species, are far from clear. Emerging evidence based on transgenic mice models indicates a transmissible nature of Aβ aggregates and implicates a prion-like mechanism of oligomer propagation, which manifests as the dissemination and proliferation of Aβ toxicity. Despite accumulating evidence in support of a transmissible nature of Aβ aggregates, a clear, molecular-level understanding of this intriguing mechanism is lacking. Recently, we reported the characterization of unique replicating oligomers of Aβ42 (12–24 mers) invitro called Large Fatty Acid-derived Oligomers (LFAOs) (Kumar et al., 2012, J. Biol. Chem). In the current report, we establish that LFAOs possess physiological activity by activating NF-κB in human neuroblastoma cells, and determine the experimental parameters that control the efficiency of LFAO replication by self-propagation. These findings constitute the first detailed report on monomer – oligomer lateral propagation reactions that may constitute potential mechanism governing transmissibility among Aβ oligomers. These data support the previous reports on transmissible mechanisms observed in transgenic animal models.
Collapse
|
238
|
Santiago JA, Potashkin JA. Current Challenges Towards the Development of a Blood Test for Parkinson's Disease. Diagnostics (Basel) 2014; 4:153-64. [PMID: 26852683 PMCID: PMC4665557 DOI: 10.3390/diagnostics4040153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/08/2014] [Accepted: 10/11/2014] [Indexed: 12/25/2022] Open
Abstract
Parkinson’ disease (PD) is the second most prevalent neurodegenerative disease worldwide. To date, there is no disease-modifying agent, and current medical treatment only provides symptomatic benefits. Early diagnosis of PD would be useful in clinical practice to identify patients for clinical trials, test potential drugs and neuroprotective agents and track their therapeutic effect. Considerable progress has been made in the discovery and validation of diagnostic biomarkers for PD. In particular, blood-based biomarkers have shown promise in identifying PD patients in samples from independent clinical trials. Evaluation of these biomarkers in de novo patients and individuals at risk for PD remains a top priority. Here, we review the current advances and challenges toward the clinical translation of these biomarkers into a blood-based test for PD.
Collapse
Affiliation(s)
- Jose A Santiago
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064-3037, USA.
| | - Judith A Potashkin
- The Cellular and Molecular Pharmacology Department, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064-3037, USA.
| |
Collapse
|
239
|
Dzamko N, Geczy CL, Halliday GM. Inflammation is genetically implicated in Parkinson's disease. Neuroscience 2014; 302:89-102. [PMID: 25450953 DOI: 10.1016/j.neuroscience.2014.10.028] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/11/2014] [Accepted: 10/14/2014] [Indexed: 12/16/2022]
Abstract
Inflammation has long been associated with the pathogenesis of Parkinson's disease (PD) but the extent to which it is a cause or consequence is sill debated. Over the past decade a number of genes have been implicated in PD. Relatively rare missense mutations in genes such as LRRK2, Parkin, SNCA and PINK1 are causative for familial PD whereas more common variation in genes, including LRRK2, SNCA and GBA, comprise risk factors for sporadic PD. Determining how the function of these genes and the proteins they encode are altered in PD has become a priority, as results will likely provide much needed insights into contributing causes. Accumulating evidence indicates that many of these genes function in pathways that regulate aspects of immunity, particularly inflammation, suggesting close associations between PD and immune homeostasis.
Collapse
Affiliation(s)
- N Dzamko
- School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia; Neuroscience Research Australia, Randwick, NSW 2031, Australia.
| | - C L Geczy
- School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia
| | - G M Halliday
- School of Medical Sciences, University of NSW, Sydney, NSW 2052, Australia; Neuroscience Research Australia, Randwick, NSW 2031, Australia.
| |
Collapse
|
240
|
Dashtipour K. Do genetic factors protect against Parkinson's disease? What I can learn from my healthy grandma. Med Hypotheses 2014; 83:637-9. [PMID: 25459129 DOI: 10.1016/j.mehy.2014.09.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 09/16/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder and it affects 4-5% of people age 85 years or older. The etiopathogenesis of PD is a consequence of interaction between two factors, environmental pathogens and genetic susceptibility. If an environmental agent such as a toxin or pathogen were to play a major role in the causality of PD, it would need to be something relatively ubiquitous in our environment since we cannot find a specific population at risk. On the other hand, all efforts to implicate specific genetic sequences in risk of PD were futile since the great majority of PD cases are sporadic; however, if the majority of the population is exposed to a culpable environmental factor and only 5% of the population 85 years or older manifest the disorder, this raises an important question: Why and how does vast majority of the population not manifest with PD? It seems that we should investigate the certain genome or epigenetic alterations of the unaffected 95%. This large non affected population might have PD but they are not yet symptomatic and some may not be so for at least another 10 or 20 years. To further address this issue, we should screen and study the population that have been exposed to the environmental factor but with high certainty are not yet affected. Therefore the perfect population would be non-PD subjects who are 90 years or older. We believe the following are the unmet research needs that deserve more attention in PD. (1) More genetic studies. Comparison should be between PD subjects and non-PD control subjects who are 90 years old and above. (2) Study the mechanism of action of the candidate genes, as a subsequent examination of their gene products may lead to the discovery of neuroprotective agents in the disease.
Collapse
Affiliation(s)
- Khashayar Dashtipour
- Loma Linda University School of Medicine, Department of Neurology, 11370 Anderson, Suite B-100, Loma Linda, CA 92354, USA.
| |
Collapse
|
241
|
Jellinger KA. Neuropathology of multiple system atrophy: New thoughts about pathogenesis. Mov Disord 2014; 29:1720-41. [DOI: 10.1002/mds.26052] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/29/2014] [Accepted: 09/16/2014] [Indexed: 12/14/2022] Open
|
242
|
Quadri M, Yang X, Cossu G, Olgiati S, Saddi VM, Breedveld GJ, Ouyang L, Hu J, Xu N, Graafland J, Ricchi V, Murgia D, Guedes LC, Mariani C, Marti MJ, Tarantino P, Asselta R, Valldeoriola F, Gagliardi M, Pezzoli G, Ezquerra M, Quattrone A, Ferreira J, Annesi G, Goldwurm S, Tolosa E, Oostra BA, Melis M, Wang J, Bonifati V. An exome study of Parkinson's disease in Sardinia, a Mediterranean genetic isolate. Neurogenetics 2014; 16:55-64. [PMID: 25294124 DOI: 10.1007/s10048-014-0425-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/15/2014] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder of complex aetiology. Rare, highly penetrant PD-causing mutations and common risk factors of small effect size have been identified in several genes/loci. However, these mutations and risk factors only explain a fraction of the disease burden, suggesting that additional, substantial genetic determinants remain to be found. Genetically isolated populations offer advantages for dissecting the genetic architecture of complex disorders, such as PD. We performed exome sequencing in 100 unrelated PD patients from Sardinia, a genetic isolate. SNPs absent from dbSNP129 and 1000 Genomes, shared by at least five patients, and of functional effects were genotyped in an independent Sardinian case-control sample (n = 500). Variants associated with PD with nominal p value <0.05 and those with odds ratio (OR) ≥3 were validated by Sanger sequencing and typed in a replication sample of 2965 patients and 2678 controls from Italy, Spain, and Portugal. We identified novel moderately rare variants in several genes, including SCAPER, HYDIN, UBE2H, EZR, MMRN2 and OGFOD1 that were specifically present in PD patients or enriched among them, nominating these as novel candidate risk genes for PD, although no variants achieved genome-wide significance after Bonferroni correction. Our results suggest that the genetic bases of PD are highly heterogeneous, with implications for the design of future large-scale exome or whole-genome analyses of this disease.
Collapse
Affiliation(s)
- Marialuisa Quadri
- Department of Clinical Genetics, Erasmus MC, PO Box 2040, 3000, CA, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Novel insights into the neurobiology underlying LRRK2-linked Parkinson's disease. Neuropharmacology 2014; 85:45-56. [DOI: 10.1016/j.neuropharm.2014.05.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Revised: 04/16/2014] [Accepted: 05/10/2014] [Indexed: 01/08/2023]
|
244
|
Bourdenx M, Dehay B, Bezard E. Down-regulating α-synuclein for treating synucleopathies. Mov Disord 2014; 29:1463-5. [PMID: 25214445 DOI: 10.1002/mds.26028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 08/25/2014] [Indexed: 01/08/2023] Open
Affiliation(s)
- Mathieu Bourdenx
- Institute of Neurodegenerative Diseases, University of Bordeaux, Centre National de la Recherche Scientifique Unité Mixte de Recherche, Bordeaux, France
| | | | | |
Collapse
|
245
|
Surgucheva I, Newell KL, Burns J, Surguchov A. New α- and γ-synuclein immunopathological lesions in human brain. Acta Neuropathol Commun 2014; 2:132. [PMID: 25209836 PMCID: PMC4172890 DOI: 10.1186/s40478-014-0132-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/20/2014] [Indexed: 11/23/2022] Open
Abstract
Introduction Several neurodegenerative diseases are classified as proteopathies as they are associated with the aggregation of misfolded proteins. Synucleinopathies are a group of neurodegenerative disorders associated with abnormal deposition of synucleins. α-Synucleinopathies include Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Recently accumulation of another member of the synuclein family- γ−synuclein in neurodegenerative diseases compelled the introduction of the term γ−synucleinopathy. The formation of aggregates and deposits of γ−synuclein is facilitated after its oxidation at methionine 38 (Met38). Results Several types of intracytoplasmic inclusions containing post-translationally modified α- and γ−synucleins are detected. Oxidized Met38-γ-synuclein forms aberrant inclusions in amygdala and substantia nigra. Double staining revealed colocalization of oxidized-γ-synuclein with α-synuclein in the cytoplasm of neurons. Another type of synuclein positive inclusions in the amygdala of dementia with Lewy bodies patients has the appearance of Lewy bodies. These inclusions are immunoreactive when analyzed with antibodies to α-synuclein phosphorylated on serine 129, as well as with antibodies to oxidized-γ-synuclein. Some of these Lewy bodies have doughnut-like shape with round or elongated shape. The separate immunofluorescent images obtained with individual antibodies specific to oxidized-γ-synuclein and phospho-α-synuclein clearly shows the colocalization of these synuclein isoforms in substantia nigra inclusions. Phospho-α-synuclein is present almost exclusively at the periphery of these structures, whereas oxidized-γ-syn immunoreactivity is also located in the internal parts forming dot-like pattern of staining. We also identified several types of oxidized-γ-syn positive astrocytes with different morphology and examined their immunohistochemical phenotypes. Some of them are compact cells with short processes, others have longer processes. Oxidized-γ-synuclein positive astrocytes may also display mixed morphological and immunocytochemical phenotypes between protoplasmic and fibrous astrocytes. Conclusions These results reveal new γ−synuclein positive lesions in human brain. Oxidized-γ-synuclein is colocalized with phospho-α-synuclein in doughnut-like inclusions. Several types of astrocytes with different morphology are immunopositive for oxidized-γ-synuclein.
Collapse
|
246
|
Sato H, Kato T, Arawaka S. Potential of Cellular and Animal Models Based on a Prion-Like Propagation of α-Synuclein for Assessing Antiparkinson Agents. Mol Neurobiol 2014; 52:226-35. [PMID: 25143237 DOI: 10.1007/s12035-014-8858-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/07/2014] [Indexed: 11/30/2022]
Abstract
The pathological hallmark of Parkinson's disease (PD) is the loss of dopaminergic neurons in the substantia nigra pars compacta and the presence of Lewy bodies (LBs). LBs are intracellular inclusions typically found in these neurons and in noradrenergic neurons of the locus coeruleus in patients with PD. However, LBs can be found more widely in neurons of the olfactory bulb, cerebral cortex, and spinal cord. Additionally, LBs appear in neurons of the cardiac, cutaneous, and intestinal autonomic nervous systems. LBs are composed of fibrillar aggregates of α-synuclein (α-syn). The widespread distribution of LBs indicates that α-syn aggregation occurs in neurons in various areas, supporting the concept that PD is not only a simple movement disorder but also a complex one with nonmotor impairments. However, it is unclear how α-syn pathology spreads in the nervous system. Postmortem analyses of patients with PD who received transplants of fetal mesencephalic dopaminergic neurons revealed LB formation in surviving grafts, providing a crucial clue regarding the host-to-graft disease propagation. Recent experiments demonstrated that fibrillar α-syn is transferred from neurons to neurons in cellular and animal models, suggesting that fibrillar α-syn is repeatedly generated in cells by triggering the continuous conversion of normal soluble species into fibrillar ones. These findings suggest a "prion-like" mechanism for α-syn propagation in the pathogenesis of PD. This review summarizes the experimental findings on the prion-like propagation of α-syn and discusses the potential of cellular and animal models for testing the protective effects of chemical agents against neurodegeneration in PD.
Collapse
Affiliation(s)
- Hiroyasu Sato
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata University Faculty of Medicine, 2-2-2 Iida-nishi, Yamagata, 990-9585, Japan
| | | | | |
Collapse
|
247
|
Role of α-synuclein in neurodegeneration: implications for the pathogenesis of Parkinson's disease. Essays Biochem 2014; 56:125-35. [DOI: 10.1042/bse0560125] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
α-Syn (α-synuclein) is a small soluble acidic protein that is extensively expressed in the nervous system. Genetic, clinical and experimental studies demonstrate that α-syn is strongly implicated in the pathogenesis of PD (Parkinson's disease). However, the pathogenic mechanism remains elusive. In the present chapter, we first describe the normal expression and potential physiological functions of α-syn. Then, we introduce recent research progress related to the pathogenic role of α-syn in PD, with special emphasis on how α-syn oligomers cause the preferential degeneration of dopaminergic neurons in the substantia nigra and the spreading of α-syn pathology in the brain of PD patients.
Collapse
|
248
|
Potgieser AR, van der Hoorn A, Meppelink AM, Teune LK, Koerts J, de Jong BM. Anterior Temporal Atrophy and Posterior Progression in Patients with Parkinson's Disease. NEURODEGENER DIS 2014; 14:125-32. [DOI: 10.1159/000363245] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/28/2014] [Indexed: 11/19/2022] Open
|
249
|
Yang X, Xu Y. Mutations in the ATP13A2 gene and Parkinsonism: a preliminary review. BIOMED RESEARCH INTERNATIONAL 2014; 2014:371256. [PMID: 25197640 PMCID: PMC4147200 DOI: 10.1155/2014/371256] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 07/14/2014] [Accepted: 07/28/2014] [Indexed: 02/05/2023]
Abstract
Parkinson's disease (PD) is a major neurodegenerative disorder for which the etiology and pathogenesis remain as elusive as for Alzheimer's disease. PD appears to be caused by genetic and environmental factors, and pedigree and cohort studies have identified numerous susceptibility genes and loci related to PD. Autosomal recessive mutations in the genes Parkin, Pink1, DJ-1, ATP13A2, PLA2G6, and FBXO7 have been linked to PD susceptibility. Such mutations in ATP13A2, also named PARK9, were first identified in 2006 in a Chilean family and are associated with a juvenile-onset, levodopa-responsive type of Parkinsonism called Kufor-Rakeb syndrome (KRS). KRS involves pyramidal degeneration, supranuclear palsy, and cognitive impairment. Here we review current knowledge about the ATP13A2 gene, clinical characteristics of patients with PD-associated ATP13A2 mutations, and models of how the ATP13A2 protein may help prevent neurodegeneration by inhibiting α-synuclein aggregation and supporting normal lysosomal and mitochondrial function. We also discuss another ATP13A2 mutation that is associated with the family of neurodegenerative disorders called neuronal ceroid lipofuscinoses (NCLs), and we propose a single pathway whereby ATP13A2 mutations may contribute to NCLs and Parkinsonism. Finally, we highlight how studies of mutations in this gene may provide new insights into PD pathogenesis and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Xinglong Yang
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| |
Collapse
|
250
|
Hippocampal proliferation is increased in presymptomatic Parkinson's disease and due to microglia. Neural Plast 2014; 2014:959154. [PMID: 25197578 PMCID: PMC4147270 DOI: 10.1155/2014/959154] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 07/01/2014] [Indexed: 01/08/2023] Open
Abstract
Besides dopamine-deficiency related motor symptoms, nonmotor symptoms, including cognitive changes occur in Parkinson's disease (PD) patients, that may relate to accumulation of α-synuclein in the hippocampus (HC). This brain region also contains stem cells that can proliferate. This is a well-regulated process that can, for example, be altered by neurodegenerative conditions. In contrast to proliferation in the substantia nigra and subventricular zone, little is known about the HC in PD. In addition, glial cells contribute to neurodegenerative processes and may proliferate in response to PD pathology. In the present study, we questioned whether microglial cells proliferate in the HC of established PD patients versus control subjects or incidental Lewy body disease (iLBD) cases as a prodromal state of PD. To this end, proliferation was assessed using the immunocytochemical marker minichromosome maintenance protein 2 (MCM2). Colocalization with Iba1 was performed to determine microglial proliferation. MCM2-positive cells were present in the HC of controls and were significantly increased in the presymptomatic iLBD cases, but not in established PD patients. Microglia represented the majority of the proliferating cells in the HC. This suggests an early microglial response to developing PD pathology in the HC and further indicates that neuroinflammatory processes play an important role in the development of PD pathology.
Collapse
|