201
|
JNK inhibition of VMAT2 contributes to rotenone-induced oxidative stress and dopamine neuron death. Toxicology 2014; 328:75-81. [PMID: 25496994 DOI: 10.1016/j.tox.2014.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/27/2014] [Accepted: 12/06/2014] [Indexed: 02/06/2023]
Abstract
Treatment with rotenone, both in vitro and in vivo, is widely used to model dopamine neuron death in Parkinson's disease upon exposure to environmental neurotoxicants and pesticides. Mechanisms underlying rotenone neurotoxicity are still being defined. Our recent studies suggest that rotenone-induced dopamine neuron death involves microtubule destabilization, which leads to accumulation of cytosolic dopamine and consequently reactive oxygen species (ROS). Furthermore, the c-Jun N-terminal protein kinase (JNK) is required for rotenone-induced dopamine neuron death. Here we report that the neural specific JNK3 isoform of the JNKs, but not JNK1 or JNK2, is responsible for this neuron death in primary cultured dopamine neurons. Treatment with taxol, a microtubule stabilizing agent, attenuates rotenone-induced phosphorylation and presumably activation of JNK. This suggests that JNK is activated by microtubule destabilization upon rotenone exposure. Moreover, rotenone inhibits VMAT2 activity but not VMAT2 protein levels. Significantly, treatment with SP600125, a pharmacological inhibitor of JNKs, attenuates rotenone inhibition of VMAT2. Furthermore, decreased VMAT2 activity following in vitro incubation of recombinant JNK3 protein with purified mesencephalic synaptic vesicles suggests that JNK3 can inhibit VMAT2 activity. Together with our previous findings, these results suggest that rotenone induces dopamine neuron death through a series of sequential events including microtubule destabilization, JNK3 activation, VMAT2 inhibition, accumulation of cytosolic dopamine, and generation of ROS. Our data identify JNK3 as a novel regulator of VMAT2 activity.
Collapse
|
202
|
Anandhan A, Rodriguez-Rocha H, Bohovych I, Griggs AM, Zavala-Flores L, Reyes-Reyes EM, Seravalli J, Stanciu LA, Lee J, Rochet JC, Khalimonchuk O, Franco R. Overexpression of alpha-synuclein at non-toxic levels increases dopaminergic cell death induced by copper exposure via modulation of protein degradation pathways. Neurobiol Dis 2014; 81:76-92. [PMID: 25497688 DOI: 10.1016/j.nbd.2014.11.018] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/03/2014] [Accepted: 11/26/2014] [Indexed: 12/14/2022] Open
Abstract
Gene multiplications or point mutations in alpha (α)-synuclein are associated with familial and sporadic Parkinson's disease (PD). An increase in copper (Cu) levels has been reported in the cerebrospinal fluid and blood of PD patients, while occupational exposure to Cu has been suggested to augment the risk to develop PD. We aimed to elucidate the mechanisms by which α-synuclein and Cu regulate dopaminergic cell death. Short-term overexpression of wild type (WT) or mutant A53T α-synuclein had no toxic effect in human dopaminergic cells and primary midbrain cultures, but it exerted a synergistic effect on Cu-induced cell death. Cell death induced by Cu was potentiated by overexpression of the Cu transporter protein 1 (Ctr1) and depletion of intracellular glutathione (GSH) indicating that the toxic effects of Cu are linked to alterations in its intracellular homeostasis. Using the redox sensor roGFP, we demonstrated that Cu-induced oxidative stress was primarily localized in the cytosol and not in the mitochondria. However, α-synuclein overexpression had no effect on Cu-induced oxidative stress. WT or A53T α-synuclein overexpression exacerbated Cu toxicity in dopaminergic and yeast cells in the absence of α-synuclein aggregation. Cu increased autophagic flux and protein ubiquitination. Impairment of autophagy by overexpression of a dominant negative Atg5 form or inhibition of the ubiquitin/proteasome system (UPS) with MG132 enhanced Cu-induced cell death. However, only inhibition of the UPS stimulated the synergistic toxic effects of Cu and α-synuclein overexpression. Our results demonstrate that α-synuclein stimulates Cu toxicity in dopaminergic cells independent from its aggregation via modulation of protein degradation pathways.
Collapse
Affiliation(s)
- Annadurai Anandhan
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Humberto Rodriguez-Rocha
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Iryna Bohovych
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Amy M Griggs
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Laura Zavala-Flores
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Javier Seravalli
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lia A Stanciu
- Weldon School of Biomedical Engineering and School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - Jaekwon Lee
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, USA
| | - Oleh Khalimonchuk
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
203
|
von Wrangel C, Schwabe K, John N, Krauss JK, Alam M. The rotenone-induced rat model of Parkinson's disease: behavioral and electrophysiological findings. Behav Brain Res 2014; 279:52-61. [PMID: 25446762 DOI: 10.1016/j.bbr.2014.11.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/29/2014] [Accepted: 11/04/2014] [Indexed: 12/21/2022]
Abstract
Exposure to rotenone leads to parkinsonian features, such as loss of dopaminergic neurons in the substantia nigra and motor impairment, however, the validity of this model has recently been questioned. In rodent and monkey models of Parkinson's disease (PD) abnormal neuronal activity in the basal ganglia motor loop has been described, with hyperactivity of the subthalamic nucleus (STN) similar to that found in PD. The present study aims at providing new and more specific evidence for the validity of the rotenone rat model of PD by examining whether neuronal activity in the STN is altered. Male Sprague Dawley rats were treated with rotenone injections (2.5mg/kg bodyweight intraperitoneally) for 60 days. Behavioral analysis showed an impairment in the rotarod and hanging wire test in the rotenone group (p<0.05), accompanied by a decline in tyrosine hydroxylase immunoreactive neurons in the nigro-striatal region (p<0.001). Thereafter, single unit (SU) activities and local field potentials were recorded in the STN in urethane anesthetized rats. The SU analysis revealed a higher neuronal discharge rate (p<0.001), more bursts per minute (p=0.006) and a higher oscillatory activity (p=0.008) in the STN of rotenone treated rats. Spectral analysis showed an increase of relative beta power in the STN as well as in the motor cortex. We found electrophysiological key features of PD pathology and pathophysiology in the STN of rotenone treated rats. Therefore, the rotenone-induced rat model of PD deserves further attention since it covers more aspects than dopamine depletion and implies the reproducibility of PD specific features.
Collapse
Affiliation(s)
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Nadine John
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Mesbah Alam
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
204
|
Cell cycle regulation of DNA polymerase beta in rotenone-based Parkinson's disease models. PLoS One 2014; 9:e109697. [PMID: 25303312 PMCID: PMC4193828 DOI: 10.1371/journal.pone.0109697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 09/07/2014] [Indexed: 11/19/2022] Open
Abstract
In Parkinson's disease (PD), neuronal cells undergo mitotic catastrophe and endoreduplication prior to cell death; however, the regulatory mechanisms remain to be defined. In this study, we investigated cell cycle regulation of DNA polymerase β (poly β) in rotenone-based dopaminergic cellular and animal models. Incubation with a low concentration (0.25 µM) of rotenone for 1.5 to 7 days resulted in a flattened cell body and decreased DNA replication during S phase, whereas a high concentration (2 µM) of rotenone exposure resulted in enlarged, multi-nucleated cells and converted the mitotic cycle into endoreduplication. Consistently, DNA poly β, which is mainly involved in DNA repair synthesis, was upregulated to a high level following exposure to 2 µM rotenone. The abrogation of DNA poly β by siRNA transfection or dideoxycytidine (DDC) treatment attenuated the rotenone-induced endoreduplication. The cell cycle was reactivated in cyclin D-expressing dopaminergic neurons from the substantia nigra (SN) of rats following stereotactic (ST) infusion of rotenone. Increased DNA poly β expression was observed in the substantia nigra pars compacta (SNc) and the substantia nigra pars reticulate (SNr) of rotenone-treated rats. Collectively, in the in vitro model of rotenone-induced mitotic catastrophe, the overexpression of DNA poly β promotes endoreduplication; in the in vivo model, the upregulation of DNA poly β and cell cycle reentry were also observed in the adult rat substantia nigra. Therefore, the cell cycle regulation of DNA poly β may be involved in the pathological processes of PD, which results in the induction of endoreduplication.
Collapse
|
205
|
Bassani TB, Gradowski RW, Zaminelli T, Barbiero JK, Santiago RM, Boschen SL, da Cunha C, Lima MMS, Andreatini R, Vital MABF. Neuroprotective and antidepressant-like effects of melatonin in a rotenone-induced Parkinson's disease model in rats. Brain Res 2014; 1593:95-105. [PMID: 25301688 DOI: 10.1016/j.brainres.2014.09.068] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 09/17/2014] [Accepted: 09/27/2014] [Indexed: 12/21/2022]
Abstract
Parkinson׳s disease (PD) is a neurodegenerative disorder characterized by a progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Systemic and intranigral exposure to rotenone in rodents reproduces many of the pathological and behavioral features of PD in humans and thus has been used as an animal model of the disease. Melatonin is a neurohormone secreted by the pineal gland, which has several important physiological functions. It has been reported to be neuroprotective in some animal models of PD. The present study investigated the effects of prolonged melatonin treatment in rats previously exposed to rotenone. The animals were intraperitoneally treated for 10 days with rotenone (2.5mg/kg) or its vehicle. 24h later, they were intraperitoneally treated with melatonin (10mg/kg) or its vehicle for 28 days. One day after the last rotenone exposure, the animals exhibited hypolocomotion in the open field test, which spontaneously reversed at the last motor evaluation. We verified that prolonged melatonin treatment after dopaminergic lesion did not alter motor function but produced antidepressant-like effects in the forced swim test, prevented the rotenone-induced reduction of striatal dopamine, and partially prevented tyrosine hydroxylase immunoreactivity loss in the SNpc. Our results indicate that melatonin exerts neuroprotective and antidepressant-like effects in the rotenone model of PD.
Collapse
Affiliation(s)
- Taysa B Bassani
- Pharmacology Department, Federal University of Paraná, Brazil
| | | | - Tiago Zaminelli
- Pharmacology Department, Federal University of Paraná, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
206
|
Ali SJ, Rajini PS. Effect of monocrotophos, an organophosphorus insecticide, on the striatal dopaminergic system in a mouse model of Parkinson’s disease. Toxicol Ind Health 2014; 32:1153-65. [DOI: 10.1177/0748233714547733] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Our earlier study had shown that low concentrations of monocrotophos (MCP) elicited dopaminergic features of Parkinson’s disease (PD) in the nematode Caenorhabditis elegans. In the present study, the effect of low doses of MCP on the striatal dopaminergic neurons was investigated using the mouse model system. MCP was initially screened for its ability to cause any neurobehavioral deficits and alterations in the dopaminergic system in Swiss albino mice, aged 8 weeks and weighing 25–30 g, with repeated doses at 0.3 and 0.6 mg/kg body weight (b.w.)/day for 7 days and 30 days. Mice were treated with four intraperitoneal injections for every 2 h with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at the dosage of 14 mg/kg b.w. MCP was administered to these mice at the above-mentioned doses for 7 days. Mice administered with MCP alone revealed a significant ( p < 0.05) reduction in the dopamine (DA) content at both 7 and 30 days and showed a significant ( p < 0.05) increase in neurobehavioral deficits. Interestingly, when MCP was administered for 7 days to MPTP-treated mice, further significant decrease in both DA content and increase in neurobehavioral deficits were apparent. The extent of reactive oxygen species and lipid peroxidation were markedly increased, while the ratio of reduced to oxidized glutathione levels were significantly decreased ( p < 0.05) in the treated mice as compared to the control. Significant histopathological alterations and a marked reduction in the number of tyrosine hydroxylase positive cells were evident in striatum of mice treated with higher doses of MCP. These changes were comparable to that seen in mice treated with MPTP and post-administered lower doses of MCP. Our findings suggest that MCP per se has the propensity to induce pathological changes in the dopaminergic neurons as well as augment the degeneration in a compromised nigrostriatal system such as that in PD.
Collapse
Affiliation(s)
- Shaheen Jafri Ali
- Department of Food Protectants and Infestation Control, Council of Scientific and Industrial Research (CSIR)—Central Food Technological Research Institute, Mysore, Karnataka, India
| | - Padmanabhan Sharda Rajini
- Department of Food Protectants and Infestation Control, Council of Scientific and Industrial Research (CSIR)—Central Food Technological Research Institute, Mysore, Karnataka, India
| |
Collapse
|
207
|
Ghrelin: a link between ageing, metabolism and neurodegenerative disorders. Neurobiol Dis 2014; 72 Pt A:72-83. [PMID: 25173805 DOI: 10.1016/j.nbd.2014.08.026] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/28/2014] [Accepted: 08/20/2014] [Indexed: 12/13/2022] Open
Abstract
Along with the increase in life expectancy over the last century comes the increased risk for development of age-related disorders, including metabolic and neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's diseases. These chronic disorders share two main characteristics: 1) neuronal loss in motor, sensory or cognitive systems, leading to cognitive and motor decline; and 2) a strong correlation between metabolic changes and neurodegeneration. In order to treat them, a better understanding of their complexity is required: it is necessary to interpret the neuronal damage in light of the metabolic changes, and to find the disrupted link between the peripheral organs governing energy metabolism and the CNS. This review is an attempt to present ghrelin as part of molecular regulatory interface between energy metabolism, neuroendocrine and neurodegenerative processes. Ghrelin takes part in lipid and glucose metabolism, in higher brain functions such as sleep-wake state, learning and memory consolidation; it influences mitochondrial respiration and shows neuroprotective effect. All these make ghrelin an attractive target for development of biomarkers or therapeutics for prevention or treatment of disorders, in which cell protection and recruitment of new neurons or synapses are needed.
Collapse
|
208
|
Perfeito R, Lázaro DF, Outeiro TF, Rego AC. Linking alpha-synuclein phosphorylation to reactive oxygen species formation and mitochondrial dysfunction in SH-SY5Y cells. Mol Cell Neurosci 2014; 62:51-9. [PMID: 25109238 DOI: 10.1016/j.mcn.2014.08.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 07/25/2014] [Accepted: 08/06/2014] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein (α-syn) is a soluble protein highly enriched in presynaptic terminals of neurons. Accumulation of α-syn as intracellular filamentous aggregates is a pathological feature of sporadic and familial forms of Parkinson's disease (PD). Changes in α-syn post-translational modifications, as well as mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Here we assessed the correlation between α-syn phosphorylation at serine 129 (Ser129), the formation of reactive oxygen species (ROS) and mitochondrial dysfunction in SH-SY5Y cells expressing A53T mutant or wild-type (WT) α-syn, exposed to ferrous iron (FeSO4) and rotenone (complex I inhibitor). Under basal conditions, prolonged expression of A53T mutant α-syn altered mitochondria morphology, increased superoxide formation and phosphorylation at Ser129, which was linked to decreased activity of protein phosphatase 2A (PP2A). Exposure to FeSO4 or rotenone enhanced intracellular ROS levels, including superoxide anions, in both types of cells, along with α-syn Ser129 phosphorylation and mitochondrial depolarization. Most of these changes were largely evident in A53T mutant α-syn expressing cells. Overall, the data suggest that stimuli that promote ROS formation and mitochondrial alterations highly correlate with mutant α-syn phosphorylation at Ser129, which may precede cell degeneration in PD.
Collapse
Affiliation(s)
- Rita Perfeito
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Diana F Lázaro
- Department of Neurodegeneration and Restorative Research, University Medical Center Goettingen, Goettingen, Germany
| | - Tiago F Outeiro
- Department of Neurodegeneration and Restorative Research, University Medical Center Goettingen, Goettingen, Germany; Cell and Molecular Neuroscience Unit, Instituto de Medicina Molecular, Lisboa, Portugal; Instituto de Fisiologia, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - A Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
209
|
Inhibition of neuroinflammation and mitochondrial dysfunctions by carbenoxolone in the rotenone model of Parkinson's disease. Mol Neurobiol 2014; 51:209-19. [PMID: 24946750 DOI: 10.1007/s12035-014-8769-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 06/01/2014] [Indexed: 12/21/2022]
Abstract
α-Synuclein aggregation contributes to the Parkinson's disease (PD) pathology in multiple ways-the two most important being the activation of neuroinflammation and mitochondrial dysfunction. Our recent studies have shown the beneficial effects of a heat shock protein (HSP) inducer, carbenoxolone (Cbx), in reducing the aggregation of α-synuclein in a rotenone-based rat model of PD. The present study was designed to explore its ability to attenuate the α-synuclein-mediated alterations in neuroinflammation and mitochondrial functions. The PD model was generated by the rotenone administration (2 mg/kg b.wt.) to the male SD rats for a period of 5 weeks. Cbx (20 mg/kg b.wt.) co-administration was seen to reduce the activation of astrocytes incited by rotenone. Subsequently, the release of pro-inflammatory cytokines TNF-α, IL-6, and IL-1β was inhibited. Further, the expression level of various inflammatory mediators such as COX-2, iNOS, and NF-κB was also reduced following Cbx co-treatment. Cbx was also shown to reduce the rotenone-induced decline in activity of mitochondrial complexes-I, -II, and -IV. Protection of mitochondrial functions and reduction in neuroinflammation lead to the lesser production of ROS and subsequently reduced oxidative stress. This was reflected by the increase in both the cytosolic and mitochondrial GSH levels as well as SOD activity during Cbx co-treatment. Thus, Cbx reduces the inflammatory response and improves the mitochondrial dysfunctions by reducing α-synuclein aggregation. In addition, it also reduces the associated oxidative stress. Due to its ability to target the multiple pathways implicated in the PD, Cbx can serve as a highly beneficial prophylactic agent.
Collapse
|
210
|
Hallett PJ, Cooper O, Sadi D, Robertson H, Mendez I, Isacson O. Long-term health of dopaminergic neuron transplants in Parkinson's disease patients. Cell Rep 2014; 7:1755-61. [PMID: 24910427 DOI: 10.1016/j.celrep.2014.05.027] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 04/01/2014] [Accepted: 05/09/2014] [Indexed: 12/23/2022] Open
Abstract
To determine the long-term health and function of transplanted dopamine neurons in Parkinson's disease (PD) patients, the expression of dopamine transporters (DATs) and mitochondrial morphology were examined in human fetal midbrain cellular transplants. DAT was robustly expressed in transplanted dopamine neuron terminals in the reinnervated host putamen and caudate for at least 14 years after transplantation. The transplanted dopamine neurons showed a healthy and nonatrophied morphology at all time points. Labeling of the mitochondrial outer membrane protein Tom20 and α-synuclein showed a typical cellular pathology in the patients' own substantia nigra, which was not observed in transplanted dopamine neurons. These results show that the vast majority of transplanted neurons remain healthy for the long term in PD patients, consistent with clinical findings that fetal dopamine neuron transplants maintain function for up to 15-18 years in patients. These findings are critically important for the rational development of stem-cell-based dopamine neuronal replacement therapies for PD.
Collapse
Affiliation(s)
- Penelope J Hallett
- Neuroregeneration Research Institute, Harvard University and McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Oliver Cooper
- Neuroregeneration Research Institute, Harvard University and McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA
| | - Damaso Sadi
- Division of Neurosurgery, Department of Anatomy and Neurobiology, and Department of Pharmacology, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS B3H 3A7, Canada
| | - Harold Robertson
- Division of Neurosurgery, Department of Anatomy and Neurobiology, and Department of Pharmacology, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS B3H 3A7, Canada
| | - Ivar Mendez
- Division of Neurosurgery, Department of Anatomy and Neurobiology, and Department of Pharmacology, Dalhousie University and Queen Elizabeth II Health Sciences Centre, Halifax, NS B3H 3A7, Canada
| | - Ole Isacson
- Neuroregeneration Research Institute, Harvard University and McLean Hospital, 115 Mill Street, Belmont, MA 02478, USA.
| |
Collapse
|
211
|
Abstract
OBJECTIVES Mazindol is a sympathomimetic amine, widely used as an anorectic agent in the treatment of obesity. This drug causes psychostimulant effects because of its pharmacological profile similar to amphetamine, acting like a monoamine reuptake inhibitor. However, the mechanisms underlying the action of mazindol are still not clearly understood. METHODS Swiss mice received a single acute administration of mazindol (0.25, 1.25 and 2.5 mg/kg, ip) or saline. After 2 h, the animals were killed by decapitation; the brain was removed and used for the evaluation of activities of mitochondrial respiratory chain complexes, Krebs cycle enzymes and creatine kinase. RESULTS Acute administration of mazindol decreased complex I activity only in the hippocampus. Complex IV activity was increased in the cerebellum (2.5 mg/kg) and cerebral cortex (0.25 mg/kg). Citrate synthase activity was increased in the cerebellum (1.25 mg/kg) and cerebral cortex (1.25 mg/kg), and creatine kinase activity was increased in the cerebellum (1.25 mg/kg). CONCLUSION We suggest that the inhibition of complex I in the hippocampus only and activation of complex IV, citrate synthase and creatine kinase occurs because of a stimulus effect of mazindol in the central nervous system, which causes a direct impairment on energy metabolism.
Collapse
|
212
|
Fiandaca MS, Federoff HJ. Using viral-mediated gene delivery to model Parkinson's disease: Do nonhuman primate investigations expand our understanding? Exp Neurol 2014; 256:117-25. [DOI: 10.1016/j.expneurol.2013.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Revised: 02/08/2013] [Accepted: 03/14/2013] [Indexed: 12/21/2022]
|
213
|
Antidepressant and Antioxidative Effect of Ibuprofen in the Rotenone Model of Parkinson’s Disease. Neurotox Res 2014; 26:351-62. [DOI: 10.1007/s12640-014-9467-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 03/08/2014] [Accepted: 03/28/2014] [Indexed: 12/12/2022]
|
214
|
Camilleri A, Vassallo N. The centrality of mitochondria in the pathogenesis and treatment of Parkinson's disease. CNS Neurosci Ther 2014; 20:591-602. [PMID: 24703487 DOI: 10.1111/cns.12264] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/07/2014] [Accepted: 03/08/2014] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is an incurable neurodegenerative disorder leading to progressive motor impairment and for which there is no cure. From the first postmortem account describing a lack of mitochondrial complex I in the substantia nigra of PD sufferers, the direct association between mitochondrial dysfunction and death of dopaminergic neurons has ever since been consistently corroborated. In this review, we outline common pathways shared by both sporadic and familial PD that remarkably and consistently converge at the level of mitochondrial integrity. Furthermore, such knowledge has incontrovertibly established mitochondria as a valid therapeutic target in neurodegeneration. We discuss several mitochondria-directed therapies that promote the preservation, rescue, or restoration of dopaminergic neurons and which have been identified in the laboratory and in preclinical studies. Some of these have progressed to clinical trials, albeit the identification of an unequivocal disease-modifying neurotherapeutic is still elusive. The challenge is therefore to improve further, not least by more research on the molecular mechanisms and pathophysiological consequences of mitochondrial dysfunction in PD.
Collapse
Affiliation(s)
- Angelique Camilleri
- Department of Physiology and Biochemistry, University of Malta, Msida 2080, Malta
| | | |
Collapse
|
215
|
Carriere CH, Kang NH, Niles LP. Neuroprotection by valproic acid in an intrastriatal rotenone model of Parkinson's disease. Neuroscience 2014; 267:114-21. [PMID: 24613722 DOI: 10.1016/j.neuroscience.2014.02.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 02/15/2014] [Accepted: 02/20/2014] [Indexed: 11/28/2022]
Abstract
Rotenone, which is used as a pesticide and insecticide, has been shown to cause systemic inhibition of mitochondrial complex I activity, with consequent degeneration of dopaminergic neurons within the substantia nigra and striatum, as observed in Parkinson's disease. A novel intrastriatal rotenone model of Parkinson's disease was used to examine the neuroprotective effects of valproic acid (VPA), which is known to upregulate neurotrophic factors and other protective proteins in the brain. Sham or lesioned rats were treated with either vehicle or VPA at a dose of 4mg/mL in drinking water. The right striatum was lesioned by infusion of rotenone at three sites (2μg/site) along its rostro-caudal axis. A forelimb asymmetry (cylinder) test indicated a significant (p<0.01) decrease in use of the contralateral forelimb in rotenone-lesioned animals, in the third week post-lesioning, which was abolished by VPA treatment. Similarly, a significant (p<0.01) and persistent increase in use of the ipsilateral forelimb in lesioned animals over the 4weeks of testing, was not seen in animals treated with VPA. Results of the asymmetry test illustrate that intrastriatal infusion of rotenone causes contralateral motor dysfunction, which is blocked by VPA. The significant increase in ipsilateral forelimb use has not been documented previously, and presumably represents a compensatory response in lesioned animals. Six weeks post-surgery, animals were sacrificed by transcardial perfusion. Subsequent immunohistochemical examination revealed a decrease in tyrosine hydroxylase immunoreactivity within the striatum and substantia nigra of rotenone-lesioned animals. VPA treatment attenuated the decrease in tyrosine hydroxylase in the striatum and abolished it in the substantia nigra. Stereological cell counting indicated a significant (p<0.05) decrease in tyrosine hydroxylase-positive dopamine neurons in the substantia nigra of rotenone-lesioned animals, which was confirmed by Nissl staining. Importantly, this loss of dopamine neurons in rotenone-lesioned animals, was blocked by chronic VPA treatment. These findings strongly support the therapeutic potential of VPA in Parkinson's disease.
Collapse
Affiliation(s)
- C H Carriere
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - N H Kang
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada
| | - L P Niles
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| |
Collapse
|
216
|
The effect of cannabis on oxidative stress and neurodegeneration induced by intrastriatal rotenone injection in rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s00580-014-1907-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
217
|
Chai C, Lim KL. Genetic insights into sporadic Parkinson's disease pathogenesis. Curr Genomics 2014; 14:486-501. [PMID: 24532982 PMCID: PMC3924245 DOI: 10.2174/1389202914666131210195808] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 09/09/2013] [Accepted: 10/22/2013] [Indexed: 12/23/2022] Open
Abstract
Intensive research over the last 15 years has led to the identification of several autosomal recessive and dominant
genes that cause familial Parkinson’s disease (PD). Importantly, the functional characterization of these genes has
shed considerable insights into the molecular mechanisms underlying the etiology and pathogenesis of PD. Collectively;
these studies implicate aberrant protein and mitochondrial homeostasis as key contributors to the development of PD, with
oxidative stress likely acting as an important nexus between the two pathogenic events. Interestingly, recent genome-wide
association studies (GWAS) have revealed variations in at least two of the identified familial PD genes (i.e. α-synuclein
and LRRK2) as significant risk factors for the development of sporadic PD. At the same time, the studies also uncovered
variability in novel alleles that is associated with increased risk for the disease. Additionally, in-silico meta-analyses of
GWAS data have allowed major steps into the investigation of the roles of gene-gene and gene-environment interactions
in sporadic PD. The emergent picture from the progress made thus far is that the etiology of sporadic PD is multi-factorial
and presumably involves a complex interplay between a multitude of gene networks and the environment. Nonetheless,
the biochemical pathways underlying familial and sporadic forms of PD are likely to be shared.
Collapse
Affiliation(s)
- Chou Chai
- Duke-NUS Graduate Medical School, Singapore
| | - Kah-Leong Lim
- Duke-NUS Graduate Medical School, Singapore ; Department of Physiology, National University of Singapore, Singapore ; Neurodegeneration Research Laboratory, National Neuroscience Institute, Singapore
| |
Collapse
|
218
|
Zou T, Tang X, Huang Z, Xu N, Hu Z. The Pael-R gene does not mediate the changes in rotenone-induced Parkinson's disease model cells. Neural Regen Res 2014; 9:402-6. [PMID: 25206827 PMCID: PMC4146201 DOI: 10.4103/1673-5374.128245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2014] [Indexed: 11/04/2022] Open
Abstract
In this study, we established cell models for Parkinson's disease using rotenone. An RNA interference vector targeting Parkin-associated endothelin receptor-like receptor (Pael-R) was transfected into the model cells. The results of reverse-transcription polymerase chain reaction and western blot analysis showed that Pael-R expression was decreased after RNA interference compared with the control group (no treatment) and the model group (rotenone treatment), while the rate of apoptosis and survival of dopaminergic cells did not differ significantly between groups, as detected by flow cytometry and an MTT assay. These experimental findings indicate that the Pael-R gene has no role in the changes in rotenone-induced Parkinson's disease model cells.
Collapse
Affiliation(s)
- Ting Zou
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiangqi Tang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhiling Huang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Niangui Xu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|
219
|
Pienaar IS, Dexter DT, Burkhard PR. Mitochondrial proteomics as a selective tool for unraveling Parkinson’s disease pathogenesis. Expert Rev Proteomics 2014; 7:205-26. [DOI: 10.1586/epr.10.8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
220
|
The Contribution of Cdc2 in Rotenone-Induced G2/M Arrest and Caspase-3-Dependent Apoptosis. J Mol Neurosci 2013; 53:31-40. [DOI: 10.1007/s12031-013-0185-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 11/13/2013] [Indexed: 12/24/2022]
|
221
|
Hauser DN, Dukes AA, Mortimer AD, Hastings TG. Dopamine quinone modifies and decreases the abundance of the mitochondrial selenoprotein glutathione peroxidase 4. Free Radic Biol Med 2013; 65:419-427. [PMID: 23816523 PMCID: PMC4043454 DOI: 10.1016/j.freeradbiomed.2013.06.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 06/07/2013] [Accepted: 06/17/2013] [Indexed: 12/21/2022]
Abstract
Oxidative stress and mitochondrial dysfunction are known to contribute to the pathogenesis of Parkinson's disease. Dopaminergic neurons may be more sensitive to these stressors because they contain dopamine (DA), a molecule that oxidizes to the electrophilic dopamine quinone (DAQ) which can covalently bind nucleophilic amino acid residues such as cysteine. The identification of proteins that are sensitive to covalent modification and functional alteration by DAQ is of great interest. We have hypothesized that selenoproteins, which contain a highly nucleophilic selenocysteine residue and often play vital roles in the maintenance of neuronal viability, are likely targets for the DAQ. Here we report the findings of our studies on the effect of DA oxidation and DAQ on the mitochondrial antioxidant selenoprotein glutathione peroxidase 4 (GPx4). Purified GPx4 could be covalently modified by DAQ, and the addition of DAQ to rat testes lysate resulted in dose-dependent decreases in GPx4 activity and monomeric protein levels. Exposing intact rat brain mitochondria to DAQ resulted in similar decreases in GPx4 activity and monomeric protein levels as well as detection of multiple forms of DA-conjugated GPx4 protein. Evidence of both GPx4 degradation and polymerization was observed following DAQ exposure. Finally, we observed a dose-dependent loss of mitochondrial GPx4 in differentiated PC12 cells treated with dopamine. Our findings suggest that a decrease in mitochondrial GPx4 monomer and a functional loss of activity may be a contributing factor to the vulnerability of dopaminergic neurons in Parkinson's disease.
Collapse
Affiliation(s)
- David N Hauser
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260
| | - April A Dukes
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260
| | - Amanda D Mortimer
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260
| | - Teresa G Hastings
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260; Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA 15260; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260.
| |
Collapse
|
222
|
Rotenone and paraquat perturb dopamine metabolism: A computational analysis of pesticide toxicity. Toxicology 2013; 315:92-101. [PMID: 24269752 DOI: 10.1016/j.tox.2013.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/18/2013] [Accepted: 11/11/2013] [Indexed: 12/21/2022]
Abstract
Pesticides, such as rotenone and paraquat, are suspected in the pathogenesis of Parkinson's disease (PD), whose hallmark is the progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Thus, compounds expected to play a role in the pathogenesis of PD will likely impact the function of dopaminergic neurons. To explore the relationship between pesticide exposure and dopaminergic toxicity, we developed a custom-tailored mathematical model of dopamine metabolism and utilized it to infer potential mechanisms underlying the toxicity of rotenone and paraquat, asking how these pesticides perturb specific processes. We performed two types of analyses, which are conceptually different and complement each other. The first analysis, a purely algebraic reverse engineering approach, analytically and deterministically computes the altered profile of enzyme activities that characterize the effects of a pesticide. The second method consists of large-scale Monte Carlo simulations that statistically reveal possible mechanisms of pesticides. The results from the reverse engineering approach show that rotenone and paraquat exposures lead to distinctly different flux perturbations. Rotenone seems to affect all fluxes associated with dopamine compartmentalization, whereas paraquat exposure perturbs fluxes associated with dopamine and its breakdown metabolites. The statistical results of the Monte-Carlo analysis suggest several specific mechanisms. The findings are interesting, because no a priori assumptions are made regarding specific pesticide actions, and all parameters characterizing the processes in the dopamine model are treated in an unbiased manner. Our results show how approaches from computational systems biology can help identify mechanisms underlying the toxicity of pesticide exposure.
Collapse
|
223
|
Martinez-Finley EJ, Caito S, Slaughter JC, Aschner M. The Role of skn-1 in methylmercury-induced latent dopaminergic neurodegeneration. Neurochem Res 2013; 38:2650-60. [PMID: 24194349 DOI: 10.1007/s11064-013-1183-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/09/2013] [Accepted: 10/17/2013] [Indexed: 02/07/2023]
Abstract
Mercury (Hg) is a persistent environmental bioaccumulative metal, with developmental exposure to methylmercury (MeHg) resulting in long-term health effects. We examined the impact of early-life exposure to MeHg and knockdown of skn-1 on dopaminergic (DAergic) neurodegeneration in the nematode Caenorhabditis elegans. SKN-1, a the major stress-activated cytoprotective transcription factors, promotes the transcription of enzymes that scavenge free radicals, synthesizes glutathione and catalyzes reactions that increase xenobiotic excretion. Deletions or mutations in this gene suppress stress resistance. Thus, we hypothesized that the extent of MeHg's toxicity is dependent on intact skn-1 response; therefore skn-1 knockout (KO) worms would show heightened sensitivity to MeHg-induced toxicity compared to wildtype worms. In this study we identified the impact of early-life MeHg exposure on Hg content, stress reactivity and DAergic neurodegeneration in wildtype, and skn-1KO C. elegans. Hg content, measured by Inductively Coupled Plasma Mass Spectrometry, showed no strain-dependent differences. Reactive oxygen species generation was dramatically increased in skn-1KO compared to wildtype worms. Structural integrity of DAergic neurons was microscopically assessed by visualization of fluorescently-labeled neurons, and revealed loss of neurons in skn-1KO and MeHg exposed worms compared to wildtype controls. Dopamine levels detected by High-performance liquid chromatography, were decreased in response to MeHg exposure and decreased in skn-1KO worms, and functional behavioral assays showed similar findings. Combined, these studies suggest that knockdown of skn-1 in the nematode increases DAergic sensitivity to MeHg exposure following a period of latency.
Collapse
Affiliation(s)
- Ebany J Martinez-Finley
- Division of Pediatric Toxicology and Clinical Pharmacology, Vanderbilt University Medical Center, 11425 MRB IV, 2215-B Garland Ave., Nashville, TN, 37232-0414, USA
| | | | | | | |
Collapse
|
224
|
Dodson M, Darley-Usmar V, Zhang J. Cellular metabolic and autophagic pathways: traffic control by redox signaling. Free Radic Biol Med 2013; 63:207-21. [PMID: 23702245 PMCID: PMC3729625 DOI: 10.1016/j.freeradbiomed.2013.05.014] [Citation(s) in RCA: 441] [Impact Index Per Article: 40.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 11/16/2022]
Abstract
It has been established that the key metabolic pathways of glycolysis and oxidative phosphorylation are intimately related to redox biology through control of cell signaling. Under physiological conditions glucose metabolism is linked to control of the NADH/NAD redox couple, as well as providing the major reductant, NADPH, for thiol-dependent antioxidant defenses. Retrograde signaling from the mitochondrion to the nucleus or cytosol controls cell growth and differentiation. Under pathological conditions mitochondria are targets for reactive oxygen and nitrogen species and are critical in controlling apoptotic cell death. At the interface of these metabolic pathways, the autophagy-lysosomal pathway functions to maintain mitochondrial quality and generally serves an important cytoprotective function. In this review we will discuss the autophagic response to reactive oxygen and nitrogen species that are generated from perturbations of cellular glucose metabolism and bioenergetic function.
Collapse
Affiliation(s)
- Matthew Dodson
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Victor Darley-Usmar
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
| | - Jianhua Zhang
- Center for Free Radical Biology, University of Alabama at Birmingham
- Department of Pathology, University of Alabama at Birmingham
- Department of Veterans Affairs, Birmingham VA Medical Center
| |
Collapse
|
225
|
Abdel-Salam OME, Khadrawy YA, Youness ER, Mohammed NA, Abdel-Rahman RF, Hussein JS, Shafee N. Effect of a single intrastriatal rotenone injection on oxidative stress and neurodegeneration in the rat brain. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s00580-013-1807-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
226
|
Perfeito R, Cunha-Oliveira T, Rego AC. Reprint of: revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease-resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med 2013; 62:186-201. [PMID: 23743292 DOI: 10.1016/j.freeradbiomed.2013.05.042] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/15/2022]
Abstract
Parkinson disease (PD) is a chronic and progressive neurological disease associated with a loss of dopaminergic neurons. In most cases the disease is sporadic but genetically inherited cases also exist. One of the major pathological features of PD is the presence of aggregates that localize in neuronal cytoplasm as Lewy bodies, mainly composed of α-synuclein (α-syn) and ubiquitin. The selective degeneration of dopaminergic neurons suggests that dopamine itself may contribute to the neurodegenerative process in PD. Furthermore, mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Thus, in this review we give an actual perspective to classical pathways involving these two mechanisms of neurodegeneration, including the role of dopamine in sporadic and familial PD, as well as in the case of abuse of amphetamine-type drugs. Mutations in genes related to familial PD causing autosomal dominant or recessive forms may also have crucial effects on mitochondrial morphology, function, and oxidative stress. Environmental factors, such as MPTP and rotenone, have been reported to induce selective degeneration of the nigrostriatal pathways leading to α-syn-positive inclusions, possibly by inhibiting mitochondrial complex I of the respiratory chain and subsequently increasing oxidative stress. Recently, increased risk for PD was found in amphetamine users. Amphetamine drugs have effects similar to those of other environmental factors for PD, because long-term exposure to these drugs leads to dopamine depletion. Moreover, amphetamine neurotoxicity involves α-syn aggregation, mitochondrial dysfunction, and oxidative stress. Therefore, dopamine and related oxidative stress, as well as mitochondrial dysfunction, seem to be common links between PD and amphetamine neurotoxicity.
Collapse
Affiliation(s)
- Rita Perfeito
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Ana Cristina Rego
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal.
| |
Collapse
|
227
|
Abstract
Parkinson's disease (PD) is one of the most common degenerative disorders of the central nervous system that produces motor and non-motor symptoms. The majority of cases are idiopathic and characterized by the presence of Lewy bodies containing fibrillar α-synuclein. Small ubiquitin-related modifier (SUMO) immunoreactivity was observed among others in cases with PD. Key disease-associated proteins are SUMO-modified, linking this posttranslational modification to neurodegeneration. SUMOylation and SUMO-mediated mechanisms have been intensively studied in recent years, revealing nuclear and extranuclear functions for SUMO in a variety of cellular processes, including the regulation of transcriptional activity, modulation of signal transduction pathways, and response to cellular stress. This points to a role for SUMO more than just an antagonist to ubiquitin and proteasomal degradation. The identification of risk and age-at-onset gene loci was a breakthrough in PD and promoted the understanding of molecular mechanisms in the pathology. PD has been increasingly linked with mitochondrial dysfunction and impaired mitochondrial quality control. Interestingly, SUMO is involved in many of these processes and up-regulated in response to cellular stress, further emphasizing the importance of SUMOylation in physiology and disease.
Collapse
Affiliation(s)
- Katrin Eckermann
- Department of Neurology, University Medical Center Goettingen, Waldweg 33, 37073, Goettingen, Germany,
| |
Collapse
|
228
|
Sato T, Mrejen S, Spaide RF. Multimodal imaging of optic disc drusen. Am J Ophthalmol 2013; 156:275-282.e1. [PMID: 23677136 DOI: 10.1016/j.ajo.2013.03.039] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/28/2013] [Accepted: 03/28/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE To evaluate optic disc drusen, extracellular protein deposits known to contain numerous aggregates of mitochondria, using multimodal modalities featuring optical coherence tomography (OCT) and autofluorescence imaging. DESIGN Retrospective observational case series. METHODS Eyes with optic nerve drusen were examined with enhanced depth imaging (EDI)-OCT, swept source OCT, and fundus autofluorescence using a fundus camera. RESULTS Twenty-six eyes of 15 patients with optic disc drusen were evaluated. EDI-OCT and swept source OCT showed multiple optic disc drusen at different levels; most were located immediately anterior to the lamina cribrosa. The drusen were ovoid regions of lower reflectivity that were bordered by hyperreflective material, and in 12 eyes (46.2%) there were internal hyperreflective foci. The mean diameter of the optic disc drusen as measured in OCT images was 686.8 (standard deviation ± 395.2) μm. There was a significant negative correlation between the diameter of the optic disc drusen and the global retinal nerve fiber layer thickness (r = -0.61, P = .001). There was a significant negative correlation between proportion of the optic disc drusen area occupied by optic nerve drusen as detected by autofluorescence imaging and the global retinal nerve fiber layer thickness (r = -0.63, P = .001). CONCLUSIONS Deeper-penetration OCT imaging demonstrated the internal characteristics of optic disc drusen and their relationship with the lamina cribrosa in vivo. This study also showed that both the larger the drusen and the more area of the optic canal occupied by drusen, the greater the associated retinal nerve fiber layer abnormalities.
Collapse
|
229
|
Nigrostriatal damage after systemic rotenone and/or lipopolysaccharide and the effect of cannabis. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s00580-013-1788-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
230
|
Ferris CF, Marella M, Smerkers B, Barchet TM, Gershman B, Matsuno-Yagi A, Yagi T. A phenotypic model recapitulating the neuropathology of Parkinson's disease. Brain Behav 2013; 3:351-66. [PMID: 24381808 PMCID: PMC3869678 DOI: 10.1002/brb3.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 03/08/2013] [Accepted: 03/18/2013] [Indexed: 12/21/2022] Open
Abstract
This study was undertaken to develop a phenotypic model recapitulating the neuropathology of Parkinson's disease (PD). Such a model would show loss of dopamine in the basal ganglia, appearance of Lewy bodies, and the early stages of motor dysfunction. The model was developed by subcutaneously injecting biodegradable microspheres of rotenone, a complex I inhibitor in 8-9 month old, ovariectomized Long-Evans rats. Animals were observed for changes in body weight and motor activity. At the end of 11-12 weeks animals were euthanized and the brains examined for histopathological changes. Rotenone treated animals gain weight and appear normal and healthy as compared to controls but showed modest hypokinesia around 5-6 weeks posttreatment. Animals showed loss of dopaminergic (DA) neurons and the appearance of putative Lewy bodies in the substantia nigra. Neuroinflammation and oxidative stress were evidenced by the appearance of activated microglia, iron precipitates, and 8-oxo-2'-deoxyguanosine a major product of DNA oxidation. The dorsal striatum, the projection site of midbrain DA neurons, showed a significant reduction in tyrosine hydroxylase immunostaining, together with an increase in reactive astrocytes, an early sign of DA nerve terminal damage. Levels of vesicular monoamine transporter 2 (VMAT2) were significantly reduced in the dorsal striatum; however, there was an unexpected increase in dopamine transporter (DAT) levels. Old, ovariectomized females treated with rotenone microspheres present with normal weight gain and good health but a modest hypokinesia. Accompanying this behavioral phenotype are a constellation of neuropathologies characteristic of PD that include loss of DA neurons, microglia activation, oxidative damage to nuclear DNA, iron deposition, and appearance of putative Lewy bodies. This phenotypic model recapitulating the neuropathology of Parkinson's disease could provide insight into early mechanisms of pathogenesis and could aid in the identification of biomarkers to identify patients in early stage, PD.
Collapse
Affiliation(s)
- Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University Boston, Massachusetts
| | - Mathieu Marella
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute La Jolla, California
| | - Brian Smerkers
- State University of New York Upstate Medical University Syracuse, New York
| | - Thomas M Barchet
- Center for Translational NeuroImaging, Northeastern University Boston, Massachusetts
| | | | - Akemi Matsuno-Yagi
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute La Jolla, California
| | - Takao Yagi
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute La Jolla, California
| |
Collapse
|
231
|
Pharmacological correction of experimental mitochondrial dysfunction of brain stem neurons by rhytmocor and mildronate. ACTA ACUST UNITED AC 2013. [DOI: 10.15407/fz59.03.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
232
|
Harrison IF, Dexter DT. Epigenetic targeting of histone deacetylase: therapeutic potential in Parkinson's disease? Pharmacol Ther 2013; 140:34-52. [PMID: 23711791 DOI: 10.1016/j.pharmthera.2013.05.010] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the most common movement disorder affecting more than 4million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD?
Collapse
Affiliation(s)
- Ian F Harrison
- Parkinson's Disease Research Group, Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.
| | | |
Collapse
|
233
|
Increased SUMO-1 expression in the unilateral rotenone-lesioned mouse model of Parkinson's disease. Neurosci Lett 2013; 544:119-24. [PMID: 23583339 DOI: 10.1016/j.neulet.2013.03.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 02/12/2013] [Accepted: 03/31/2013] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease resulting from progressive loss of dopaminergic nigrostriatal neurons. α-Synuclein protein conformational changes, resulting in cytotoxic/aggregated proteins, have been linked to PD pathogenesis. We investigated a unilateral rotenone-lesioned mouse PD model. Unilateral lesion of the medial forebrain bundle for two groups of male C57 black mice (n=5); adult (6-12 months) group and aged (1.75-2 years) group, was via stereotactic rotenone injection. After 2 weeks post-lesion, phenotypic Parkinsonian symptoms, resting tremor, postural instability, left-handed bias, ipsiversive rotation and bradykinesia were observed and were more severe in the aged group. We investigated protein expression profiles of the post-translational modifier, SUMO-1, and α-synuclein between the treated and control hemisphere, and between adult and aged groups. Western analysis of the brain homogenates indicated that there were statistically significant (p<0.05) increases in several specific molecular weight species (ranging 12-190 kDa) of both SUMO-1 (0.75-4.3-fold increased) and α-synuclein (1.6-19-fold increase) in the lesioned compared to un-lesioned hemisphere, with the adult mice showing proportionately greater increases in SUMO-1 than the aged group.
Collapse
|
234
|
Tien LT, Kaizaki A, Pang Y, Cai Z, Bhatt AJ, Fan LW. Neonatal exposure to lipopolysaccharide enhances accumulation of α-synuclein aggregation and dopamine transporter protein expression in the substantia nigra in responses to rotenone challenge in later life. Toxicology 2013; 308:96-103. [PMID: 23567316 DOI: 10.1016/j.tox.2013.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/13/2013] [Accepted: 03/25/2013] [Indexed: 11/18/2022]
Abstract
Brain inflammation in early life may enhance adult susceptibility to develop neurodegenerative disorders triggered by environmental toxins. Our previous studies show that perinatal lipopolysaccharide (LPS) exposure enhances adult susceptibility to rotenone-induced injury to the dopaminergic system in the substantia nigra (SN) of the adult rat brain. To further investigate the enhanced adult susceptibility by neonatal LPS exposure to rotenone neurotoxicity, we used our neonatal rat model of LPS exposure (1mg/kg, intracerebral injection in postnatal day 5, P5, neonatal rats) to examine the protein levels of α-synuclein and dopamine transporters (DAT) in the adult rat. By P70, rats from the saline- or LPS-exposed group were challenged with rotenone, a commonly used pesticide, through subcutaneous mini-pump infusion at a dose of 1.25mg/kg/day for 14 days. The accumulation of α-synuclein aggregation and increment of DAT protein content were found in the SN of LPS-exposed rats. Neonatal LPS exposure enhanced rotenone-stimulated accumulation of α-synuclein aggregation and increment in DAT protein expression in the cytoplasmic compartment of the SN, and in the synaptosomal compartment of the striatum of adult rats. Rotenone treatment also resulted in reduction of [(3)H]dopamine uptake and mitochondrial complex I activity in the striatum of rats with neonatal LPS exposure, but not in those without this exposure. The current study suggests possible roles of α-synuclein aggregate and DAT distribution in the cytoplasm and synaptosome triggered by environmental toxins in later life in the development of neurodegenerative disorders. Our model may be useful in studying mechanisms involved in the pathogenesis of nonfamilial Parkinson's disease and for developing potential therapeutic treatments for this disease.
Collapse
Affiliation(s)
- Lu-Tai Tien
- School of Medicine, Fu Jen Catholic University, Xinzhuang Dist, New Taipei City 24205, Taiwan
| | | | | | | | | | | |
Collapse
|
235
|
Taylor JM, Main BS, Crack PJ. Neuroinflammation and oxidative stress: Co-conspirators in the pathology of Parkinson’s disease. Neurochem Int 2013; 62:803-19. [DOI: 10.1016/j.neuint.2012.12.016] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 12/21/2022]
|
236
|
Thany SH, Reynier P, Lenaers G. [Neurotoxicity of pesticides: its relationship with neurodegenerative diseases]. Med Sci (Paris) 2013; 29:273-8. [PMID: 23544381 DOI: 10.1051/medsci/2013293013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several epidemiological studies suggest that pesticides could lead to neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Among pesticides, insecticides appear more neurotoxic than others but the neurotoxic mechanisms leading to adverse health effects remain unclear. The currently used pesticides such as rotenone and paraquat could disrupt mitochondrial bioenergetic function, reactive oxygen metabolism, redox function and promote α-synuclein aggregation. In addition, recent studies demonstrate that genetic susceptibility to Parkinson's disease could monitor pesticide susceptibility, as demonstrated for polymorphisms in pesticide metabolizing enzymes that are involved in organophosphorus sensitivity.
Collapse
Affiliation(s)
- Steeve H Thany
- Laboratoire récepteurs et canaux ioniques membranaires, UPRES EA 2647-USC INRA 1330, Université d'Angers, UFR sciences, 2, boulevard Lavoisier, 49045 Angers, France.
| | | | | |
Collapse
|
237
|
Madathil SK, Karuppagounder SS, Mohanakumar KP. Sodium salicylate protects against rotenone-induced Parkinsonism in rats. Synapse 2013; 67:502-14. [DOI: 10.1002/syn.21658] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 02/22/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Sindhu K. Madathil
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| | - Saravanan S. Karuppagounder
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| | - Kochupurackal P. Mohanakumar
- Division of Cell Biology and Physiology; Laboratory of Clinical and Experimental Neuroscience, CSIR-Indian Institute of Chemical Biology; Kolkata; 700032; West Bengal; India
| |
Collapse
|
238
|
Wang S, Fang J, Ma J, Wang Y, Liang S, Zhou D, Sun G. Electroacupuncture-regulated neurotrophic factor mRNA expression in the substantia nigra of Parkinson's disease rats. Neural Regen Res 2013; 8:540-9. [PMID: 25206697 PMCID: PMC4146059 DOI: 10.3969/j.issn.1673-5374.2013.06.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 11/20/2012] [Indexed: 12/21/2022] Open
Abstract
Acupuncture for the treatment of Parkinson's disease has a precise clinical outcome. This study investigated the effect of electroacupuncture at Fengfu (GV16) and Taichong (LR3) acupoints in rat models of Parkinson's disease induced by subcutaneous injection of rotenone into rat neck and back. Reverse transcription-PCR demonstrated that brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression was significantly increased in the substantia nigra of rat models of Parkinson's disease, and that abnormal behavior of rats was significantly improved following electroacupuncture treatment. These results indicated that electroacupuncture treatment upregulated brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor mRNA expression in the substantia nigra of rat models of Parkinson's disease. Thus, electroacupuncture may be useful in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Shuju Wang
- Department of Acupuncture and Moxibustion, Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang Province, China
- Teaching and Research Office of Acupuncture, College of Acupuncture & Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, China
| | - Jianqiao Fang
- Department of Acupuncture and Moxibustion, Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310005, Zhejiang Province, China
| | - Jun Ma
- Teaching and Research Office of Acupuncture, College of Acupuncture & Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, China
| | - Yanchun Wang
- Teaching and Research Office of Acupuncture, College of Acupuncture & Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, China
| | - Shaorong Liang
- Teaching and Research Office of Acupuncture, College of Acupuncture & Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, China
| | - Dan Zhou
- Teaching and Research Office of Acupuncture, College of Acupuncture & Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, China
| | - Guojie Sun
- Teaching and Research Office of Acupuncture, College of Acupuncture & Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, Hubei Province, China
| |
Collapse
|
239
|
Cai Z, Fan LW, Kaizaki A, Tien LT, Ma T, Pang Y, Lin S, Lin RCS, Simpson KL. Neonatal systemic exposure to lipopolysaccharide enhances susceptibility of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life. Dev Neurosci 2013; 35:155-71. [PMID: 23446007 PMCID: PMC3777222 DOI: 10.1159/000346156] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 10/26/2012] [Indexed: 12/21/2022] Open
Abstract
Brain inflammation via intracerebral injection with lipopolysaccharide (LPS) in early life has been shown to increase risks for the development of neurodegenerative disorders in adult rats. To determine if neonatal systemic LPS exposure has the same effects on enhancement of adult dopaminergic neuron susceptibility to rotenone neurotoxicity as centrally injected LPS does, LPS (2 μg/g body weight) was administered intraperitoneally into postnatal day 5 (P5) rats and when grown to P70, rats were challenged with rotenone, a commonly used pesticide, through subcutaneous minipump infusion at a dose of 1.25 mg/kg/day for 14 days. Systemically administered LPS can penetrate into the neonatal rat brain and cause acute and chronic brain inflammation, as evidenced by persistent increases in IL-1β levels, cyclooxygenase-2 expression and microglial activation in the substantia nigra (SN) of P70 rats. Neonatal LPS exposure resulted in suppression of tyrosine hydroxylase (TH) expression, but not actual death of dopaminergic neurons in the SN, as indicated by the reduced number of TH+ cells and unchanged total number of neurons (NeuN+) in the SN. Neonatal LPS exposure also caused motor function deficits, which were spontaneously recoverable by P70. A small dose of rotenone at P70 induced loss of dopaminergic neurons, as indicated by reduced numbers of both TH+ and NeuN+ cells in the SN, and Parkinson's disease (PD)-like motor impairment in P98 rats that had experienced neonatal LPS exposure, but not in those without the LPS exposure. These results indicate that although neonatal systemic LPS exposure may not necessarily lead to death of dopaminergic neurons in the SN, such an exposure could cause persistent functional alterations in the dopaminergic system and indirectly predispose the nigrostriatal system in the adult brain to be damaged by environmental toxins at an ordinarily nontoxic or subtoxic dose and develop PD-like pathological features and motor dysfunction.
Collapse
Affiliation(s)
- Zhengwei Cai
- Division of Newborn Medicine, Department of Pediatrics, University of Mississippi Medical Center, Jackson, MS 39216-4504, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Szalardy L, Zadori D, Plangar I, Vecsei L, Weydt P, Ludolph AC, Klivenyi P, Kovacs GG. Neuropathology of partial PGC-1α deficiency recapitulates features of mitochondrial encephalopathies but not of neurodegenerative diseases. NEURODEGENER DIS 2013; 12:177-88. [PMID: 23406886 DOI: 10.1159/000346267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Deficient peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) function is one component of mitochondrial dysfunction in neurodegenerative diseases. Current molecular classification of such diseases is based on the predominant protein accumulating as intra- or extracellular aggregates. Experimental evidence suggests that mitochondrial dysfunction and impaired protein processing are closely interrelated. In vitro findings further indicate that PGC-1α dysfunction may contribute to protein misfolding in neurodegeneration. OBJECTIVE To systematically evaluate the neuropathological alterations of mice lacking the expression of the full-length PGC-1α protein (FL-PGC-1α) but expressing an N-truncated fragment. METHODS To assess the pattern of neurodegeneration-related proteins, we performed immunostaining for Tau, pTau, α-synuclein, amyloid-β, amyloid precursor protein, prion protein, FUS, TDP-43 and ubiquitin. Using hematoxylin and eosin, Klüver-Barrera and Bielschowsky silver stainings and anti-GFAP immunohistochemistry, we performed an anatomical mapping to provide a lesion profile. RESULTS The immunohistochemical pattern of neurodegeneration-related proteins did not differ between FL-PGC-1α knockout and wild-type animals, and there was a complete lack of protein deposits or ubiquitin-positive inclusions. The analysis of neuropathological alterations revealed widespread vacuolation predominating in the cerebral white matter, caudate-putamen, thalamus and brainstem, and reactive astrogliosis in the brainstem and cerebellar nuclei. This morphological phenotype was thus reminiscent of human mitochondrial encephalopathies, especially the Kearns-Sayre syndrome. CONCLUSION We conclude that the lack of FL-PGC-1α per se is insufficient to recapitulate major features of neurodegenerative diseases, but evokes a pathology seen in mitochondrial encephalopathies, which makes PGC-1α-deficient mice a valuable model for this yet incurable group of diseases.
Collapse
|
241
|
Taetzsch T, Block ML. Pesticides, microglial NOX2, and Parkinson's disease. J Biochem Mol Toxicol 2013; 27:137-49. [PMID: 23349115 DOI: 10.1002/jbt.21464] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 11/03/2012] [Indexed: 12/11/2022]
Abstract
Accumulating evidence indicates that pesticide exposure is associated with an increased risk for developing Parkinson's disease (PD). Several pesticides known to damage dopaminergic (DA) neurons, such as paraquat, rotenone, lindane, and dieldrin also demonstrate the ability to activate microglia, the resident innate immune cell in the brain. While each of these environmental toxicants may impact microglia through unique mechanisms, they all appear to converge on a common final pathway of microglial activation: NADPH oxidase 2 (NOX2) activation. This review will detail the role of microglia in selective DA neurotoxicity, highlight what is currently known about the mechanism of microglial NOX2 activation in these key pesticides, and describe the importance for DA neuron survival and PD etiology.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, VA 23298, USA
| | | |
Collapse
|
242
|
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson's disease. JOURNAL OF PARKINSON'S DISEASE 2013; 3:461-91. [PMID: 24252804 PMCID: PMC4135313 DOI: 10.3233/jpd-130230] [Citation(s) in RCA: 1098] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidative stress plays an important role in the degeneration of dopaminergic neurons in Parkinson's disease (PD). Disruptions in the physiologic maintenance of the redox potential in neurons interfere with several biological processes, ultimately leading to cell death. Evidence has been developed for oxidative and nitrative damage to key cellular components in the PD substantia nigra. A number of sources and mechanisms for the generation of reactive oxygen species (ROS) are recognized including the metabolism of dopamine itself, mitochondrial dysfunction, iron, neuroinflammatory cells, calcium, and aging. PD causing gene products including DJ-1, PINK1, parkin, alpha-synuclein and LRRK2 also impact in complex ways mitochondrial function leading to exacerbation of ROS generation and susceptibility to oxidative stress. Additionally, cellular homeostatic processes including the ubiquitin-proteasome system and mitophagy are impacted by oxidative stress. It is apparent that the interplay between these various mechanisms contributes to neurodegeneration in PD as a feed forward scenario where primary insults lead to oxidative stress, which damages key cellular pathogenetic proteins that in turn cause more ROS production. Animal models of PD have yielded some insights into the molecular pathways of neuronal degeneration and highlighted previously unknown mechanisms by which oxidative stress contributes to PD. However, therapeutic attempts to target the general state of oxidative stress in clinical trials have failed to demonstrate an impact on disease progression. Recent knowledge gained about the specific mechanisms related to PD gene products that modulate ROS production and the response of neurons to stress may provide targeted new approaches towards neuroprotection.
Collapse
Affiliation(s)
- Vera Dias
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - Eunsung Junn
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| | - M. Maral Mouradian
- Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, Rutgers - Robert Wood Johnson Medical School, Piscataway, NJ, USA
| |
Collapse
|
243
|
Establishment of a survival and toxic cellular model for Parkinson's disease from chicken mesencephalon. Neurotox Res 2012; 24:119-29. [PMID: 23238634 PMCID: PMC3691473 DOI: 10.1007/s12640-012-9367-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/21/2022]
Abstract
Cellular models for Parkinson’s disease (PD) represent a fast and efficient tool in the screening for drug candidates and factors involved in the disease pathogenesis. The objective of this study was to establish and characterize a survival and toxic cellular model for PD by culturing dopaminergic neurons from embryonic chicken ventral midbrain. We show that as in rodents, the common neurotrophic factors—brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and fibroblast growth factor 2 (FGF2)—are able to support the survival of chicken midbrain dopaminergic neurons. Furthermore, after treatment with MPP+ or rotenone as in vitro models for PD, the number of tyrosine hydroxylase-positive cells decreased drastically. This effect could be significantly rescued by treatment with BDNF or GDNF. Together, our results indicate that mechanisms of neuroprotection of dopaminergic neurons are conserved between chicken and mammals. This supports the use of primary culture from chicken embryonic midbrain as a suitable tool for the study of neuroprotection in vitro.
Collapse
|
244
|
Perfeito R, Cunha-Oliveira T, Rego AC. Revisiting oxidative stress and mitochondrial dysfunction in the pathogenesis of Parkinson disease--resemblance to the effect of amphetamine drugs of abuse. Free Radic Biol Med 2012; 53:1791-806. [PMID: 22967820 DOI: 10.1016/j.freeradbiomed.2012.08.569] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/15/2012] [Accepted: 08/16/2012] [Indexed: 12/15/2022]
Abstract
Parkinson disease (PD) is a chronic and progressive neurological disease associated with a loss of dopaminergic neurons. In most cases the disease is sporadic but genetically inherited cases also exist. One of the major pathological features of PD is the presence of aggregates that localize in neuronal cytoplasm as Lewy bodies, mainly composed of α-synuclein (α-syn) and ubiquitin. The selective degeneration of dopaminergic neurons suggests that dopamine itself may contribute to the neurodegenerative process in PD. Furthermore, mitochondrial dysfunction and oxidative stress constitute key pathogenic events of this disorder. Thus, in this review we give an actual perspective to classical pathways involving these two mechanisms of neurodegeneration, including the role of dopamine in sporadic and familial PD, as well as in the case of abuse of amphetamine-type drugs. Mutations in genes related to familial PD causing autosomal dominant or recessive forms may also have crucial effects on mitochondrial morphology, function, and oxidative stress. Environmental factors, such as MPTP and rotenone, have been reported to induce selective degeneration of the nigrostriatal pathways leading to α-syn-positive inclusions, possibly by inhibiting mitochondrial complex I of the respiratory chain and subsequently increasing oxidative stress. Recently, increased risk for PD was found in amphetamine users. Amphetamine drugs have effects similar to those of other environmental factors for PD, because long-term exposure to these drugs leads to dopamine depletion. Moreover, amphetamine neurotoxicity involves α-syn aggregation, mitochondrial dysfunction, and oxidative stress. Therefore, dopamine and related oxidative stress, as well as mitochondrial dysfunction, seem to be common links between PD and amphetamine neurotoxicity.
Collapse
Affiliation(s)
- Rita Perfeito
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | |
Collapse
|
245
|
Goldstein DS, Sullivan P, Cooney A, Jinsmaa Y, Sullivan R, Gross DJ, Holmes C, Kopin IJ, Sharabi Y. Vesicular uptake blockade generates the toxic dopamine metabolite 3,4-dihydroxyphenylacetaldehyde in PC12 cells: relevance to the pathogenesis of Parkinson's disease. J Neurochem 2012; 123:932-43. [PMID: 22906103 DOI: 10.1111/j.1471-4159.2012.07924.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 08/03/2012] [Accepted: 08/11/2012] [Indexed: 01/03/2023]
Abstract
Parkinson's disease entails profound loss of nigrostriatal dopaminergic terminals, decreased vesicular uptake of intraneuronal catecholamines, and relatively increased putamen tissue concentrations of the toxic dopamine metabolite, 3,4-dihydroxyphenylacetaldehyde (DOPAL). The objective of this study was to test whether vesicular uptake blockade augments endogenous DOPAL production. We also examined whether intracellular DOPAL contributes to apoptosis and, as α-synuclein oligomers may be pathogenetic in Parkinson's disease, oligomerizes α-synuclein. Catechols were assayed in PC12 cells after reserpine to block vesicular uptake, with or without inhibition of enzymes metabolizing DOPAL-daidzein for aldehyde dehydrogenase and AL1576 for aldehyde reductase. Vesicular uptake was quantified by a method based on 6F- or (13) C-dopamine incubation; DOPAL toxicity by apoptosis responses to exogenous dopamine, with or without daidzein+AL1576; and DOPAL--induced synuclein oligomerization by synuclein dimer production during DOPA incubation, with or without inhibition of L-aromatic-amino-acid decarboxylase or monoamine oxidase. Reserpine inhibited vesicular uptake by 95-97% and rapidly increased cell DOPAL content (p = 0.0008). Daidzein+AL1576 augmented DOPAL responses to reserpine (p = 0.004). Intracellular DOPAL contributed to dopamine-evoked apoptosis and DOPA-evoked synuclein dimerization. The findings fit with the 'catecholaldehyde hypothesis,' according to which decreased vesicular sequestration of cytosolic catecholamines and impaired catecholaldehyde detoxification contribute to the catecholaminergic denervation that characterizes Parkinson's disease.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, CNP/DIR/NINDS/NIH, Bethesda, MD 20892-1620, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Rotenone-induced neurotoxicity in rat brain areas: a study on neuronal and neuronal supportive cells. Neuroscience 2012; 230:172-83. [PMID: 23098804 DOI: 10.1016/j.neuroscience.2012.10.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/10/2012] [Accepted: 10/14/2012] [Indexed: 12/31/2022]
Abstract
The present study was conducted to correlate rotenone-induced neurotoxicity with cellular and molecular modifications in neuronal and neuronal supportive cells in rat brain regions. Rotenone was administered (3, 6 and 12 μg/μl) intranigrally in adult male Sprague-Dawley rats. After the 7th day of rotenone treatment, specific protein markers for neuronal cells - tyrosine hydroxylase (TH), astroglial cells - glial fibrillary acidic protein (GFAP), microglial cells - CD11b/c, and Iba-1 were evaluated by immunoblotting and immunofluorescence in the striatum (STR) and mid brain (MB). Apoptotic cell death was assessed by caspase-3 gene expression. Higher doses of rotenone significantly lowered TH protein levels and elevated Iba-1 levels in MB. All the doses of rotenone significantly increased GFAP and CD11b/c protein in the MB. In STR, rotenone elevated GFAP levels but did not affect TH, CD11b/c and Iba-1 protein levels. Caspase-3 expression was increased significantly by all the doses of rotenone in MB but in STR only by higher doses (6 and 12 μg). It may be suggested that astroglial activation and apoptosis play an important role in rotenone-induced neurotoxicity. MB appeared as more sensitive than STR toward rotenone-induced cell toxicity. The astroglial cells emerged as more susceptible than neuronal and microglial cells to rotenone in STR.
Collapse
|
247
|
Bolam JP, Pissadaki EK. Living on the edge with too many mouths to feed: why dopamine neurons die. Mov Disord 2012; 27:1478-83. [PMID: 23008164 PMCID: PMC3504389 DOI: 10.1002/mds.25135] [Citation(s) in RCA: 298] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/02/2012] [Accepted: 07/17/2012] [Indexed: 12/21/2022] Open
Abstract
Although genes, protein aggregates, environmental toxins, and other factors associated with Parkinson's disease (PD) are widely distributed in the nervous system and affect many classes of neurons, a consistent feature of PD is the exceptional and selective vulnerability of dopamine (DA) neurons of the SNc. What is it about these neurons, among all other neurons in the brain, that makes them so susceptible in PD? We hypothesize that a major contributory factor is the unique cellular architecture of SNc DA neuron axons. Their large, complex axonal arbour puts them under such a tight energy budget that it makes them particularly susceptible to factors that contribute to cell death, including unique molecular characteristics associated with SNc DA neurons and nonspecific, nervous-system-wide factors.
Collapse
Affiliation(s)
- J Paul Bolam
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, and Oxford Parkinson's Disease Centre, University of Oxford, Oxford, UK.
| | | |
Collapse
|
248
|
Alexander GE. Biology of Parkinson's disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. DIALOGUES IN CLINICAL NEUROSCIENCE 2012. [PMID: 22033559 PMCID: PMC3181806 DOI: 10.31887/dcns.2004.6.3/galexander] [Citation(s) in RCA: 276] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is the second most common movement disorder. The characteristic motor impairments - bradykinesia, rigidity, and resting tremor - result from degenerative loss of midbrain dopamine (DA) neurons in the substantia nigra, and are responsive to symptomatic treatment with dopaminergic medications and functional neurosurgery. PD is also the second most common neurodegenerative disorder. Viewed from this perspective, PD is a disorder of multiple functional systems, not simply the motor system, and of multiple neurotransmitter systems, not merely that of DA. The characteristic pathology - intraneuronal Lewy body inclusions and reduced numbers of surviving neurons - is similar in each of the targeted neuron groups, suggesting a common neurodegenerative process. Pathological and experimental studies indicate that oxidative stress, proteolytic stress, and inflammation figure prominently in the pathogenesis of PD. Yet, whether any of these mechanisms plays a causal role in human PD is unknown, because to date we have no proven neuroprotective therapies that slow or reverse disease progression in patients with PD. We are beginning to understand the pathophysiology of motor dysfunction in PD, but its etiopathogenesis as a neurodegenerative disorder remains poorly understood.
Collapse
Affiliation(s)
- Garrett E Alexander
- Department of Neurology, Emory University School of Medicine, Atlanta, Ga, USA
| |
Collapse
|
249
|
Giordano S, Lee J, Darley-Usmar VM, Zhang J. Distinct effects of rotenone, 1-methyl-4-phenylpyridinium and 6-hydroxydopamine on cellular bioenergetics and cell death. PLoS One 2012; 7:e44610. [PMID: 22970265 PMCID: PMC3435291 DOI: 10.1371/journal.pone.0044610] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 08/03/2012] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease is characterized by dopaminergic neurodegeneration and is associated with mitochondrial dysfunction. The bioenergetic susceptibility of dopaminergic neurons to toxins which induce Parkinson's like syndromes in animal models is then of particular interest. For example, rotenone, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and its active metabolite 1-methyl-4-phenylpyridinium (MPP(+)), and 6-hydroxydopamine (6-OHDA), have been shown to induce dopaminergic cell death in vivo and in vitro. Exposure of animals to these compounds induce a range of responses characteristics of Parkinson's disease, including dopaminergic cell death, and Reactive Oxygen Species (ROS) production. Here we test the hypothesis that cellular bioenergetic dysfunction caused by these compounds correlates with induction of cell death in differentiated dopaminergic neuroblastoma SH-SY5Y cells. At increasing doses, rotenone induced significant cell death accompanied with caspase 3 activation. At these concentrations, rotenone had an immediate inhibition of mitochondrial basal oxygen consumption rate (OCR) concomitant with a decrease of ATP-linked OCR and reserve capacity, as well as a stimulation of glycolysis. MPP(+) exhibited a different behavior with less pronounced cell death at doses that nearly eliminated basal and ATP-linked OCR. Interestingly, MPP(+), unlike rotenone, stimulated bioenergetic reserve capacity. The effects of 6-OHDA on bioenergetic function was markedly less than the effects of rotenone or MPP(+) at cytotoxic doses, suggesting a mechanism largely independent of bioenergetic dysfunction. These studies suggest that these dopaminergic neurotoxins induce cell death through distinct mechanisms and differential effects on cellular bioenergetics.
Collapse
Affiliation(s)
- Samantha Giordano
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jisun Lee
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Victor M. Darley-Usmar
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jianhua Zhang
- Department of Pathology, Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Department of Veterans Affairs, Birmingham VA Medical Center, Birmingham, Alabama, United States of America
| |
Collapse
|
250
|
Morais LH, Lima MM, Martynhak BJ, Santiago R, Takahashi TT, Ariza D, Barbiero JK, Andreatini R, Vital MA. Characterization of motor, depressive-like and neurochemical alterations induced by a short-term rotenone administration. Pharmacol Rep 2012; 64:1081-90. [DOI: 10.1016/s1734-1140(12)70905-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 06/28/2012] [Indexed: 12/21/2022]
|