201
|
Tiller T, Schuster I, Deppe D, Siegers K, Strohner R, Herrmann T, Berenguer M, Poujol D, Stehle J, Stark Y, Heßling M, Daubert D, Felderer K, Kaden S, Kölln J, Enzelberger M, Urlinger S. A fully synthetic human Fab antibody library based on fixed VH/VL framework pairings with favorable biophysical properties. MAbs 2013; 5:445-70. [PMID: 23571156 DOI: 10.4161/mabs.24218] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
This report describes the design, generation and testing of Ylanthia, a fully synthetic human Fab antibody library with 1.3E+11 clones. Ylanthia comprises 36 fixed immunoglobulin (Ig) variable heavy (VH)/variable light (VL) chain pairs, which cover a broad range of canonical complementarity-determining region (CDR) structures. The variable Ig heavy and Ig light (VH/VL) chain pairs were selected for biophysical characteristics favorable to manufacturing and development. The selection process included multiple parameters, e.g., assessment of protein expression yield, thermal stability and aggregation propensity in fragment antigen binding (Fab) and IgG1 formats, and relative Fab display rate on phage. The framework regions are fixed and the diversified CDRs were designed based on a systematic analysis of a large set of rearranged human antibody sequences. Care was taken to minimize the occurrence of potential posttranslational modification sites within the CDRs. Phage selection was performed against various antigens and unique antibodies with excellent biophysical properties were isolated. Our results confirm that quality can be built into an antibody library by prudent selection of unmodified, fully human VH/VL pairs as scaffolds.
Collapse
|
202
|
Somatic hypermutation maintains antibody thermodynamic stability during affinity maturation. Proc Natl Acad Sci U S A 2013; 110:4261-6. [PMID: 23440204 DOI: 10.1073/pnas.1301810110] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Somatic hypermutation and clonal selection lead to B cells expressing high-affinity antibodies. Here we show that somatic mutations not only play a critical role in antigen binding, they also affect the thermodynamic stability of the antibody molecule. Somatic mutations directly involved in antigen recognition by antibody 93F3, which binds a relatively small hapten, reduce the melting temperature compared with its germ-line precursor by up to 9 °C. The destabilizing effects of these mutations are compensated by additional somatic mutations located on surface loops distal to the antigen binding site. Similarly, somatic mutations enhance both the affinity and thermodynamic stability of antibody OKT3, which binds the large protein antigen CD3. Analysis of the crystal structures of 93F3 and OKT3 indicates that these somatic mutations modulate antibody stability primarily through the interface of the heavy and light chain variable domains. The historical view of antibody maturation has been that somatic hypermutation and subsequent clonal selection increase antigen-antibody specificity and binding energy. Our results suggest that this process also optimizes protein stability, and that many peripheral mutations that were considered to be neutral are required to offset deleterious effects of mutations that increase affinity. Thus, the immunological evolution of antibodies recapitulates on a much shorter timescale the natural evolution of enzymes in which function and thermodynamic stability are simultaneously enhanced through mutation and selection.
Collapse
|
203
|
Mahon CM, Lambert MA, Glanville J, Wade JM, Fennell BJ, Krebs MR, Armellino D, Yang S, Liu X, O'Sullivan CM, Autin B, Oficjalska K, Bloom L, Paulsen J, Gill D, Damelin M, Cunningham O, Finlay WJJ. Comprehensive interrogation of a minimalist synthetic CDR-H3 library and its ability to generate antibodies with therapeutic potential. J Mol Biol 2013; 425:1712-30. [PMID: 23429058 DOI: 10.1016/j.jmb.2013.02.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/31/2013] [Accepted: 02/11/2013] [Indexed: 11/17/2022]
Abstract
We have generated large libraries of single-chain Fv antibody fragments (>10(10) transformants) containing unbiased amino acid diversity that is restricted to the central combining site of the stable, well-expressed DP47 and DPK22 germline V-genes. Library WySH2A was constructed to examine the potential for synthetic complementarity-determining region (CDR)-H3 diversity to act as the lone source of binding specificity. Library WySH2B was constructed to assess the necessity for diversification in both the H3 and L3. Both libraries provided diverse, specific antibodies, yielding a total of 243 unique hits against 7 different targets, but WySH2B produced fewer hits than WySH2A when selected in parallel. WySH2A also consistently produced hits of similar quality to WySH2B, demonstrating that the diversification of the CDR-L3 reduces library fitness. Despite the absence of deliberate bias in the library design, CDR length was strongly associated with the number of hits produced, leading to a functional loop length distribution profile that mimics the biases observed in the natural repertoire. A similar trend was also observed for the CDR-L3. After target selections, several key amino acids were enriched in the CDR-H3 (e.g., small and aromatic residues) while others were reduced (e.g., strongly charged residues) in a manner that was specific to position, preferentially occurred in CDR-H3 stem positions, and tended towards residues associated with loop stabilization. As proof of principle for the WySH2 libraries to produce viable lead candidate antibodies, 114 unique hits were produced against Delta-like ligand 4 (DLL4). Leads exhibited nanomolar binding affinities, highly specific staining of DLL4+ cells, and biochemical neutralization of DLL4-NOTCH1 interaction.
Collapse
Affiliation(s)
- Ciara M Mahon
- Pfizer, Global Biotherapeutics Technologies, Grange Castle Business Park, Clondalkin, Dublin 22, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
204
|
Durani V, Magliery TJ. Protein engineering and stabilization from sequence statistics: variation and covariation analysis. Methods Enzymol 2013; 523:237-56. [PMID: 23422433 DOI: 10.1016/b978-0-12-394292-0.00011-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The concepts of consensus and correlation in multiple sequence alignments (MSAs) have been used in the past to understand and engineer proteins. However, there are multiple ways of acquiring MSA databases and also numerous mathematical metrics that can be applied to calculate each of the parameters. This chapter describes an overall methodology that we have chosen to employ for acquiring and statistically analyzing MSAs. We have provided a step-by-step protocol for calculating relative entropy and mutual information metrics and describe how they can be used to predict mutations that have a high probability of stabilizing a protein. This protocol allows for flexibility for modification of formulae and parameters without using anything more complicated than Microsoft Excel. We have also demonstrated various aspects of data analysis by carrying out a sample analysis on the BPTI-Kunitz family of proteins and identified mutations that would be predicted to stabilize this protein based on consensus and correlation values.
Collapse
Affiliation(s)
- Venuka Durani
- Department of Chemistry, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
205
|
Pershad K, Kay BK. Generating thermal stable variants of protein domains through phage display. Methods 2012; 60:38-45. [PMID: 23276752 DOI: 10.1016/j.ymeth.2012.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 12/13/2022] Open
Abstract
Often in protein design research, one desires to generate thermally stable variants of a protein or domain. One route to identifying mutations that yield domains that remain folded and active at a higher temperature is through the use of directed evolution. A library of protein domain variants can be generated by mutagenic PCR, expressed on the surface of bacteriophage M13, and subjected to heat, such that the unfolded forms of the domain, showing reduced or no binding activity, are lost during subsequent affinity selection, whereas variants that still retain binding to their target are selected and enriched with each subsequent round of affinity selection. This approach takes advantage of the fact that bacteriophage M13 particles are heat stable and resistant to many proteases and protein denaturants. We present the application of this general approach to generating thermally stable variants of a eukaryotic peptide-binding domain. The benefits of producing such variants are that they typically express at high levels in Escherichia coli (30-60 mg/L shake flask) and remain soluble in solution at higher concentrations for longer periods of time than the wild-type form of the domain. The process of library generation and screening generally requires about one month of effort, and yields variants with >10 °C increase in thermal stability, as measured in a simple fluorescence-based thermal shift assay. It is anticipated that thermally stable variants will serve as excellent scaffolds for generating affinity reagents to a variety of targets of interest.
Collapse
Affiliation(s)
- Kritika Pershad
- Department of Biological Sciences, University of Illinois at Chicago, 845 W. Taylor St., 3240 SES-MC 066, Chicago, IL 60607-7060, USA
| | | |
Collapse
|
206
|
Schweighofer CD, Tuchscherer A, Sperka S, Meyer T, Rattel B, Stein S, Ismail S, Elter T, Staib P, Reiser M, Hallek M. Clinical safety and pharmacological profile of the HLA-DR antibody 1D09C3 in patients with B cell chronic lymphocytic leukemia and lymphoma: results from a phase I study. Cancer Immunol Immunother 2012; 61:2367-73. [PMID: 23090290 PMCID: PMC11029561 DOI: 10.1007/s00262-012-1362-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 10/09/2012] [Indexed: 10/27/2022]
Abstract
1D09C3 is a human monoclonal IgG4-type antibody against human leukocyte antigen-DR (HLA-DR) which has demonstrated pro-apoptotic activity against lymphoid tumors in vitro and in vivo. We report results from a phase I dose-escalation study which aimed to identify tolerated dosing, and the pharmacokinetic and pharmacodynamic profile of 1D09C3. Fourteen patients with relapsed/refractory B cell type leukemia/lymphoma were treated and followed after up to 4 weekly infusions of 1D09C3, administered in 6 dose levels at 0.25-8 mg/kg/day. Treatment was tolerated well with mostly mild side effects. The most common grade III-IV toxicities were hematological events observed in 4 patients. In one patient, treated at 8.0 mg/kg/day, a dose limiting toxicity occurred, identified as an invasive catheter-related infection. Adverse events resolved completely without long-term sequelae. 1D09C3 reduced peripheral blood B cells and monocytes by a median of 73-81 % in all patients, with a nadir reached 30-60 min after infusion and sustained for <96 h. Granulocytes and natural killer cells predominantly increased with variable time courses. Pharmacokinetic assessments showed detectable drug concentrations at doses 4-8 mg/kg/day and a terminal half-life of 0.7-7.9 h. Effective saturation of HLA-DR on peripheral blood B cells/monocytes was achieved, varying consistently with available serum concentrations and the cell-reducing activity of 1D09C3. In summary, 1D09C3 could be administered safely in patients with advanced B cell malignancies. Pharmacodynamic studies demonstrated a strong dose dependent but transient reduction of peripheral blood B cells and monocytes, consistent with a short drug serum availability.
Collapse
MESH Headings
- Aged
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal, Humanized
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- Drug Administration Schedule
- Female
- Follow-Up Studies
- Granulocytes/drug effects
- Granulocytes/immunology
- HLA-DR Antigens/immunology
- Half-Life
- Humans
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Male
- Maximum Tolerated Dose
- Middle Aged
- Monocytes/drug effects
- Monocytes/immunology
Collapse
Affiliation(s)
- Carmen D Schweighofer
- Department of Internal Medicine I, Center of Integrated Oncology Cologne Bonn, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
207
|
McConnell AD, Spasojevich V, Macomber JL, Krapf IP, Chen A, Sheffer JC, Berkebile A, Horlick RA, Neben S, King DJ, Bowers PM. An integrated approach to extreme thermostabilization and affinity maturation of an antibody. Protein Eng Des Sel 2012; 26:151-64. [DOI: 10.1093/protein/gzs090] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
208
|
Finlay WJJ, Almagro JC. Natural and man-made V-gene repertoires for antibody discovery. Front Immunol 2012; 3:342. [PMID: 23162556 PMCID: PMC3498902 DOI: 10.3389/fimmu.2012.00342] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 10/27/2012] [Indexed: 01/15/2023] Open
Abstract
Antibodies are the fastest-growing segment of the biologics market. The success of antibody-based drugs resides in their exquisite specificity, high potency, stability, solubility, safety, and relatively inexpensive manufacturing process in comparison with other biologics. We outline here the structural studies and fundamental principles that define how antibodies interact with diverse targets. We also describe the antibody repertoires and affinity maturation mechanisms of humans, mice, and chickens, plus the use of novel single-domain antibodies in camelids and sharks. These species all utilize diverse evolutionary solutions to generate specific and high affinity antibodies and illustrate the plasticity of natural antibody repertoires. In addition, we discuss the multiple variations of man-made antibody repertoires designed and validated in the last two decades, which have served as tools to explore how the size, diversity, and composition of a repertoire impact the antibody discovery process.
Collapse
|
209
|
McConnell AD, Do M, Neben TY, Spasojevic V, MacLaren J, Chen AP, Altobell L, Macomber JL, Berkebile AD, Horlick RA, Bowers PM, King DJ. High affinity humanized antibodies without making hybridomas; immunization paired with mammalian cell display and in vitro somatic hypermutation. PLoS One 2012; 7:e49458. [PMID: 23166676 PMCID: PMC3498135 DOI: 10.1371/journal.pone.0049458] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 10/09/2012] [Indexed: 01/15/2023] Open
Abstract
A method has been developed for the rapid generation of high-affinity humanized antibodies from immunized animals without the need to make conventional hybridomas. Rearranged IgH D(J) regions were amplified from the spleen and lymph tissue of mice immunized with the human complement protein C5, fused with a limited repertoire of human germline heavy chain V-genes to form intact humanized heavy chains, and paired with a human light chain library. Completed heavy and light chains were assembled for mammalian cell surface display and transfected into HEK 293 cells co-expressing activation-induced cytidine deaminase (AID). Numerous clones were isolated by fluorescence-activated cell sorting, and affinity maturation, initiated by AID, resulted in the rapid evolution of high affinity, functional antibodies. This approach enables the efficient sampling of an immune repertoire and the direct selection and maturation of high-affinity, humanized IgGs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Peter M. Bowers
- AnaptysBio, Inc., San Diego, California, United States of America
- * E-mail:
| | | |
Collapse
|
210
|
Abstract
Phage display has emerged as one of the leading technologies for the selection and generation of highly specific antibodies, offering a number of advantages over traditional ways of antibody generation such as mouse hybridoma techniques. While there are various possibilities to conduct phage display, selection of antibodies via solution panning is an elegant way to circumvent conformation changes of antigen, which may arise when performing panning with antigen immobilized on a solid surface. Here, a standard solution panning procedure using a Fab based antibody library including primary screening for selectivity is described.
Collapse
|
211
|
Selection of antibodies from synthetic antibody libraries. Arch Biochem Biophys 2012; 526:87-98. [DOI: 10.1016/j.abb.2011.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 12/27/2011] [Accepted: 12/30/2011] [Indexed: 11/21/2022]
|
212
|
Nilvebrant J, Kuku G, Björkelund H, Nestor M. Selection and in vitro characterization of human CD44v6-binding antibody fragments. Biotechnol Appl Biochem 2012; 59:367-80. [PMID: 23586913 DOI: 10.1002/bab.1033] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 07/24/2012] [Indexed: 12/14/2022]
Abstract
The cluster of differentiation (CD) 44v6 antigen has been suggested to be involved in tumor formation, invasion, and metastasis formation, and has been observed in a majority of primary and metastatic squamous cell carcinomas of the head and neck. Probes specifically binding to this region may be utilized as tools for the challenging tasks of early detection and targeted treatments of small residual disease. In this project, an epitope-guided phage display selection of human fragment antigen-binding (Fab) fragments with affinity to the v6 sequence was performed. A selected set of Fab fragments was shown to specifically recognize increasingly complex forms of the target sequence, both in the form of a short synthetic or recombinant peptide and in the context of a purified extracellular domain of CD44. The binding was independent of known v6-sequence variation and posttranslational modifications that are common in the CD44 protein family. Furthermore, real-time interaction measurements on antibody fragments labeled with ¹²⁵I showed specific and high-affinity binding to the antigen present on cultured head and neck squamous cell carcinoma cells. There was no cross-reactivity toward cells that lack the target protein. As hypothesized, characterization of the interaction between Fab fragments and the targets using the mathematical tool Interaction Map revealed more heterogeneous interactions on cells than with pure proteins analyzed by surface plasmon resonance. One main candidate Fab fragment with optimal affinity for all forms of the target sequence was identified. The flexible recombinant source of the Fab fragments might aid the development of tailored molecules adapted for therapeutic or diagnostic applications in the future.
Collapse
Affiliation(s)
- Johan Nilvebrant
- Department of Proteomics, School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | | | | | | |
Collapse
|
213
|
Sayer JM, Aniana A, Louis JM. Mechanism of dissociative inhibition of HIV protease and its autoprocessing from a precursor. J Mol Biol 2012; 422:230-44. [PMID: 22659320 PMCID: PMC3418415 DOI: 10.1016/j.jmb.2012.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 05/15/2012] [Accepted: 05/15/2012] [Indexed: 11/17/2022]
Abstract
Dimerization is indispensible for release of the human immunodeficiency virus protease (PR) from its precursor (Gag-Pol) and ensuing mature-like catalytic activity that is crucial for virus maturation. We show that a single-chain Fv fragment (scFv) of a previously reported monoclonal antibody (mAb1696), which recognizes the N-terminus of PR, dissociates a dimeric mature D25N PR mutant with an enhanced dimer dissociation constant (K(d)) in the sub-micromolar range to form predominantly a monomer-scFv complex at a 1:1 ratio, along with small (5-10%) amounts of a dimer-scFv complex. Enzyme kinetics indicate a mixed mechanism of inhibition of the wild-type PR, which exhibits a K(d)<10nM, with effects both on K(m) and k(cat) at an scFv-to-PR ratio of 10:1. ScFv binds to the N-terminal peptide P(1)QITLW(6) of PR and to PR monomers with dissociation constants of ≤30 nM and ~100 nM, respectively. Consistent with an ~400-fold increase in the dissociation of the antibody (K(Ab)) on even addition of an acetyl group to P(1) of the peptide, the antibody fails to inhibit N-terminal autoprocessing of the PR from a model precursor (at ~5 μM). However, subsequent to this cleavage, it sequesters the PR, thus blocking autoprocessing at its C-terminus. A second monoclonal antibody [PRM1 (human monoclonal antibody to PR)], which recognizes part of the flap region (residues 41-47) of the mature PR and its precursor, does not inhibit autoprocessing and ensuing catalytic activity. However, its failure to recognize drug-resistant clinical mutants of PR may be beneficial to monitor the selection of mutations in this region under drug pressure.
Collapse
Affiliation(s)
| | | | - John M. Louis
- Corresponding author: John M. Louis, Building 5, Room B2-29, LCP, NIDDK, NIH, Bethesda, MD 20892-0520, Tel. 301 594-3122; Fax. 301 480-4001;
| |
Collapse
|
214
|
Webb DR, Handel TM, Kretz-Rommel A, Stevens RC. Opportunities for functional selectivity in GPCR antibodies. Biochem Pharmacol 2012; 85:147-52. [PMID: 22975405 DOI: 10.1016/j.bcp.2012.08.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 08/24/2012] [Indexed: 11/26/2022]
Abstract
Monoclonal antibodies (mAbs) have been used for decades as tools to probe the biology and pharmacology of receptors in cells and tissues. They are also increasingly being developed for clinical purposes against a broad range of targets, albeit to a lesser extent for G-protein-coupled receptors (GPCRs) relative to other therapeutic targets. Recent pharmacological, structural and biophysical data have provided a great deal of new insight into the molecular details, complexity and regulation of GPCR function. Whereas GPCRs used to be viewed as having either "on" or "off" conformational states, it is now recognized that their structures may be finely tuned by ligands and other interacting proteins, leading to the selective activation of specific signaling pathways. This information coupled with new technologies for the selection of mAbs targeting GPCRs will be increasingly deployed for the development of highly selective mAbs that recognize conformational determinants leading to novel therapeutics.
Collapse
Affiliation(s)
- David R Webb
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
215
|
Venet S, Ravn U, Buatois V, Gueneau F, Calloud S, Kosco-Vilbois M, Fischer N. Transferring the characteristics of naturally occurring and biased antibody repertoires to human antibody libraries by trapping CDRH3 sequences. PLoS One 2012; 7:e43471. [PMID: 22937053 PMCID: PMC3427355 DOI: 10.1371/journal.pone.0043471] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 07/20/2012] [Indexed: 11/18/2022] Open
Abstract
Antibody repertoires are characterized by diversity as they vary not only amongst individuals and post antigen exposure but also differ significantly between vertebrate species. Such plasticity can be exploited to generate human antibody libraries featuring hallmarks of these diverse repertoires. In this study, the focus was to capture CDRH3 sequences, as this region generally accounts for most of the interaction energy with antigen. Sequences from human as well as non-human sources were successfully integrated into human antibody libraries. Next generation sequencing of these libraries proved that the CDRH3 lengths and amino acid composition corresponded to the species of origin. Specific CDRH3 sequences, biased towards the recognition of a model antigen either by immunizing mice or by selecting with phage display, were then integrated into another set of libraries. From these antigen biased libraries, highly potent antibodies were more frequently isolated, indicating that the characteristics of an immune repertoire is transferrable via CDRH3 sequences into a human antibody library. Taken together, these data demonstrate that the properties of naturally or experimentally biased repertoires can be effectively harnessed for the generation of targeted human antibody libraries, substantially increasing the probability of isolating antibodies suitable for therapeutic and diagnostic applications.
Collapse
|
216
|
Bazan J, Całkosiński I, Gamian A. Phage display--a powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications. Hum Vaccin Immunother 2012; 8:1817-28. [PMID: 22906939 DOI: 10.4161/hv.21703] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
One of the most effective molecular diversity techniques is phage display. This technology is based on a direct linkage between phage phenotype and its encapsulated genotype, which leads to presentation of molecule libraries on the phage surface. Phage display is utilized in studying protein-ligand interactions, receptor binding sites and in improving or modifying the affinity of proteins for their binding partners. Generating monoclonal antibodies and improving their affinity, cloning antibodies from unstable hybridoma cells and identifying epitopes, mimotopes and functional or accessible sites from antigens are also important advantages of this technology. Techniques originating from phage display have been applied to transfusion medicine, neurological disorders, mapping vascular addresses and tissue homing of peptides. Phages have been applicable to immunization therapies, which may lead to development of new tools used for treating autoimmune and cancer diseases. This review describes the phage display technology and presents the recent advancements in therapeutic applications of phage display.
Collapse
Affiliation(s)
- Justyna Bazan
- Department of Medical Biochemistry; Wroclaw Medical University; Wroclaw, Poland.
| | | | | |
Collapse
|
217
|
T-cell receptor gene transfer exclusively to human CD8(+) cells enhances tumor cell killing. Blood 2012; 120:4334-42. [PMID: 22898597 DOI: 10.1182/blood-2012-02-412973] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transfer of tumor-specific T-cell receptor (TCR) genes into patient T cells is a promising strategy in cancer immunotherapy. We describe here a novel vector (CD8-LV) derived from lentivirus, which delivers genes exclusively and specifically to CD8(+) cells. CD8-LV mediated stable in vitro and in vivo reporter gene transfer as well as efficient transfer of genes encoding TCRs recognizing the melanoma antigen tyrosinase. Strikingly, T cells genetically modified with CD8-LV killed melanoma cells reproducibly more efficiently than CD8(+) cells transduced with a conventional lentiviral vector. Neither TCR expression levels, nor the rate of activation-induced death of transduced cells differed between both vector types. Instead, CD8-LV transduced cells showed increased granzyme B and perforin levels as well as an up-regulation of CD8 surface expression in a small subpopulation of cells. Thus, a possible mechanism for CD8-LV enhanced tumor cell killing may be based on activation of the effector functions of CD8(+) T cells by the vector particle displaying OKT8-derived CD8-scFv and an increase of the surface density of CD8, which functions as coreceptor for tumor-cell recognition. CD8-LV represents a powerful novel vector for TCR gene therapy and other applications in immunotherapy and basic research requiring CD8(+) cell-specific gene delivery.
Collapse
|
218
|
Structural and functional analysis of phosphorylation-specific binders of the kinase ERK from designed ankyrin repeat protein libraries. Proc Natl Acad Sci U S A 2012; 109:E2248-57. [PMID: 22843676 DOI: 10.1073/pnas.1205399109] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have selected designed ankyrin repeat proteins (DARPins) from a synthetic library by using ribosome display that selectively bind to the mitogen-activated protein kinase ERK2 (extracellular signal-regulated kinase 2) in either its nonphosphorylated (inactive) or doubly phosphorylated (active) form. They do not bind to other kinases tested. Crystal structures of complexes with two DARPins, each specific for one of the kinase forms, were obtained. The two DARPins bind to essentially the same region of the kinase, but recognize the conformational change within the activation loop and an adjacent area, which is the key structural difference that occurs upon activation. Whereas the rigid phosphorylated activation loop remains in the same form when bound by the DARPin, the more mobile unphosphorylated loop is pushed to a new position. The DARPins can be used to selectively precipitate the cognate form of the kinases from cell lysates. They can also specifically recognize the modification status of the kinase inside the cell. By fusing the kinase with Renilla luciferase and the DARPin to GFP, an energy transfer from luciferase to GFP can be observed in COS-7 cells upon intracellular complex formation. Phosphorylated ERK2 is seen to increase by incubation of the COS-7 cells with FBS and to decrease upon adding the ERK pathway inhibitor PD98509. Furthermore, the anti-ERK2 DARPin is seen to inhibit ERK phosphorylation as it blocks the target inside the cell. This strategy of creating activation-state-specific sensors and kinase-specific inhibitors may add to the repertoire to investigate intracellular signaling in real time.
Collapse
|
219
|
Schaefer JV, Plückthun A. Transfer of engineered biophysical properties between different antibody formats and expression systems. Protein Eng Des Sel 2012; 25:485-506. [PMID: 22763265 DOI: 10.1093/protein/gzs039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Recombinant antibodies and their derivatives are receiving ever increasing attention for many applications. Nevertheless, they differ widely in biophysical properties, from stable monomers to metastable aggregation-prone mixtures of oligomers. Previous work from our laboratory presented the combination of structure-based analysis with family consensus alignments as being able to improve the properties of immunoglobulin variable domains. We had identified a series of mutations in the variable domains that greatly influenced both the stability and the expression level of single-chain Fv (scFv) fragments produced in the periplasm of Escherichia coli. We now investigated whether these effects are transferable to Fab fragments and immunoglobulin G (IgG) produced in bacteria, Pichia pastoris, and mammalian cells. Taken together, our data indicate that engineered mutations can increase functional expression levels only for periplasmic expression in prokaryotes. In contrast, stability against thermal and denaturant-induced unfolding is improved by the same mutations in all formats tested, including scFv, Fab and IgG, independent of the expression system. The mutations in V(H) also influenced the structural homogeneity of full-length IgG, and the reducibility of the distant C(H)1-C(L) inter-chain disulfide bond. These results confirm the potential of structure-based protein engineering in the context of full-length IgGs and the transferability of stability improvements discovered with smaller antibody fragments.
Collapse
Affiliation(s)
- Jonas V Schaefer
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
220
|
Sotelo P, Collazo N, Zuñiga R, Gutiérrez-González M, Catalán D, Ribeiro CH, Aguillón JC, Molina MC. An efficient method for variable region assembly in the construction of scFv phage display libraries using independent strand amplification. MAbs 2012; 4:542-50. [PMID: 22692130 DOI: 10.4161/mabs.20653] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Phage display library technology is a common method to produce human antibodies. In this technique, the immunoglobulin variable regions are displayed in a bacteriophage in a way that each filamentous virus displays the product of a single antibody gene on its surface. From the collection of different phages, it is possible to isolate the virus that recognizes specific targets. The most common form in which to display antibody variable regions in the phage is the single chain variable fragment format (scFv), which requires assembly of the heavy and light immunoglobulin variable regions in a single gene. In this work, we describe a simple and efficient method for the assembly of immunoglobulin heavy and light chain variable regions in a scFv format. This procedure involves a two-step reaction: (1) DNA amplification to produce the single strand form of the heavy or light chain gene required for the fusion; and (2) mixture of both single strand products followed by an assembly reaction to construct a complete scFv gene. Using this method, we produced 6-fold more scFv encoding DNA than the commonly used splicing by overlap extension PCR (SOE-PCR) approach. The scFv gene produced by this method also proved to be efficient in generating a diverse scFv phage display library. From this scFv library, we obtained phages that bound several non-related antigens, including recombinant proteins and rotavirus particles.
Collapse
Affiliation(s)
- Pablo Sotelo
- Centro de InmunoBioTecnología (IBT), Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
221
|
General strategy for the generation of human antibody variable domains with increased aggregation resistance. Proc Natl Acad Sci U S A 2012; 109:10879-84. [PMID: 22745168 DOI: 10.1073/pnas.1202866109] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The availability of stable human antibody reagents would be of considerable advantage for research, diagnostic, and therapeutic applications. Unfortunately, antibody variable heavy and light domains (V(H) and V(L)) that mediate the interaction with antigen have the propensity to aggregate. Increasing their aggregation resistance in a general manner has proven to be a difficult and persistent problem, due to the high level of sequence diversity observed in human variable domains and the requirement to maintain antigen binding. Here we outline such an approach. By using phage display we identified specific positions that clustered in the antigen binding site (28, 30-33, 35 in V(H) and 24, 49-53, 56 in V(L)). Introduction of aspartate or glutamate at these positions endowed superior biophysical properties (non-aggregating, well-expressed, and heat-refoldable) onto domains derived from common human germline families (V(H)3 and V(κ)1). The effects of the mutations were highly positional and independent of sequence diversity at other positions. Moreover, crystal structures of mutant V(H) and V(L) domains revealed a surprising degree of structural conservation, indicating compatibility with V(H)/V(L) pairing and antigen binding. This allowed the retrofitting of existing binders, as highlighted by the development of robust high affinity antibody fragments derived from the breast cancer therapeutic Herceptin. Our results provide a general strategy for the generation of human antibody variable domains with increased aggregation resistance.
Collapse
|
222
|
Miersch S, Sidhu SS. Synthetic antibodies: concepts, potential and practical considerations. Methods 2012; 57:486-98. [PMID: 22750306 DOI: 10.1016/j.ymeth.2012.06.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 06/18/2012] [Accepted: 06/21/2012] [Indexed: 01/08/2023] Open
Abstract
The last 100 years of enquiry into the fundamental basis of humoral immunity has resulted in the identification of antibodies as key molecular sentinels responsible for the in vivo surveillance, neutralization and clearance of foreign substances. Intense efforts aimed at understanding and exploiting their exquisite molecular specificity have positioned antibodies as a cornerstone supporting basic research, diagnostics and therapeutic applications [1]. More recently, efforts have aimed to circumvent the limitations of developing antibodies in animals by developing wholly in vitro techniques for designing antibodies of tailored specificity. This has been realized with the advent of synthetic antibody libraries that possess diversity outside the scope of natural immune repertoires and are thus capable of yielding specificities not otherwise attainable. This review examines the convergence of technologies that have contributed to the development of combinatorial phage-displayed antibody libraries. It further explores the practical concepts that underlie phage display, antibody diversity and the methods used in the generation of and selection from phage-displayed synthetic antibody libraries, highlighting specific applications in which design approaches gave rise to specificities that could not easily be obtained with libraries based upon natural immune repertories.
Collapse
Affiliation(s)
- S Miersch
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada.
| | | |
Collapse
|
223
|
Sullivan BJ, Nguyen T, Durani V, Mathur D, Rojas S, Thomas M, Syu T, Magliery TJ. Stabilizing proteins from sequence statistics: the interplay of conservation and correlation in triosephosphate isomerase stability. J Mol Biol 2012; 420:384-99. [PMID: 22555051 DOI: 10.1016/j.jmb.2012.04.025] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 04/16/2012] [Accepted: 04/21/2012] [Indexed: 10/28/2022]
Abstract
Understanding the determinants of protein stability remains one of protein science's greatest challenges. There are still no computational solutions that calculate the stability effects of even point mutations with sufficient reliability for practical use. Amino acid substitutions rarely increase the stability of native proteins; hence, large libraries and high-throughput screens or selections are needed to stabilize proteins using directed evolution. Consensus mutations have proven effective for increasing stability, but these mutations are successful only about half the time. We set out to understand why some consensus mutations fail to stabilize, and what criteria might be useful to predict stabilization more accurately. Overall, consensus mutations at more conserved positions were more likely to be stabilizing in our model, triosephosphate isomerase (TIM) from Saccharomyces cerevisiae. However, positions coupled to other sites were more likely not to stabilize upon mutation. Destabilizing mutations could be removed both by removing sites with high statistical correlations to other positions and by removing nearly invariant positions at which "hidden correlations" can occur. Application of these rules resulted in identification of stabilizing mutations in 9 out of 10 positions, and amalgamation of all predicted stabilizing positions resulted in the most stable yeast TIM variant we produced (+8 °C). In contrast, a multimutant with 14 mutations each found to stabilize TIM independently was destabilized by 2 °C. Our results are a practical extension to the consensus concept of protein stabilization, and they further suggest the importance of positional independence in the mechanism of consensus stabilization.
Collapse
Affiliation(s)
- Brandon J Sullivan
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
224
|
Delhalle S, Schmit JC, Chevigné A. Phages and HIV-1: from display to interplay. Int J Mol Sci 2012; 13:4727-4794. [PMID: 22606007 PMCID: PMC3344243 DOI: 10.3390/ijms13044727] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/26/2012] [Accepted: 03/30/2012] [Indexed: 11/16/2022] Open
Abstract
The complex hide-and-seek game between HIV-1 and the host immune system has impaired the development of an efficient vaccine. In addition, the high variability of the virus impedes the long-term control of viral replication by small antiviral drugs. For more than 20 years, phage display technology has been intensively used in the field of HIV-1 to explore the epitope landscape recognized by monoclonal and polyclonal HIV-1-specific antibodies, thereby providing precious data about immunodominant and neutralizing epitopes. In parallel, biopanning experiments with various combinatorial or antibody fragment libraries were conducted on viral targets as well as host receptors to identify HIV-1 inhibitors. Besides these applications, phage display technology has been applied to characterize the enzymatic specificity of the HIV-1 protease. Phage particles also represent valuable alternative carriers displaying various HIV-1 antigens to the immune system and eliciting antiviral responses. This review presents and summarizes the different studies conducted with regard to the nature of phage libraries, target display mode and biopanning procedures.
Collapse
Affiliation(s)
- Sylvie Delhalle
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +352-26970211; Fax: +352-26970221
| | - Jean-Claude Schmit
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
- Service National des Maladies Infectieuses, Centre Hospitalier Luxembourg, 4, rue E. Barblé, L-1210 Luxembourg, Luxembourg
| | - Andy Chevigné
- Laboratory of Retrovirology, CRP-Sante, 84, Val Fleuri, L-1526 Luxembourg, Luxembourg; E-Mails: (J.-C.S.); (A.C.)
| |
Collapse
|
225
|
Abstract
The ability of antibodies to bind to target molecules with high affinity and specificity has led to their widespread use in diagnostic and therapeutic applications. Nevertheless, a limitation of antibodies is their propensity to self-associate and aggregate at high concentrations and elevated temperatures. The large size and multidomain architecture of full-length monoclonal antibodies have frustrated systematic analysis of how antibody sequence and structure regulate antibody solubility. In contrast, analysis of single and multidomain antibody fragments that retain the binding activity of mono-clonal antibodies has provided valuable insights into the determinants of antibody aggregation. Here we review advances in engineering antibody frameworks, domain interfaces, and antigen-binding loops to prevent aggregation of natively and nonnatively folded antibody fragments. We also highlight advances and unmet challenges in developing robust strategies for engineering large, multidomain antibodies to resist aggregation.
Collapse
Affiliation(s)
- Joseph M Perchiacca
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | | |
Collapse
|
226
|
Back JW, Frisch C, Van Pee K, Boschert V, van Vught R, Puijk W, Mueller TD, Knappik A, Timmerman P. Selecting highly structure-specific antibodies using structured synthetic mimics of the cystine knot protein sclerostin. Protein Eng Des Sel 2012; 25:251-9. [PMID: 22454505 DOI: 10.1093/protein/gzs012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antibodies directed against specific regions of a protein have traditionally been raised against full proteins, protein domains or simple unstructured peptides, containing contiguous stretches of primary sequence. We have used a new approach of selecting antibodies against restrained peptides mimicking defined epitopes of the bone modulator protein sclerostin, which has been identified as a negative regulator of the Wnt pathway. For a fast exploration of activity defining epitopes, we produced a set of synthetic peptide constructs mimicking native sclerostin, in which intervening loops from the cystine-knot protein sclerostin were truncated and whose sequences were optimized for fast and productive refolding. We found that the second loop within the cystine knot could be replaced by unnatural sequences, both speeding up folding, and increasing yield. Subsequently, we used these constructs to pan the HuCAL phage display library for antibodies capable of binding the native protein, thereby restricting recognition to the desired epitope regions. It is shown that the antibodies that were obtained recognize a complex epitope in the protein that cannot be mimicked with linear peptides. Antibodies selected against peptides show similar recognition specificity and potency as compared with antibodies obtained from full-length recombinant protein.
Collapse
Affiliation(s)
- J W Back
- Pepscan Therapeutics, Zuidersluisweg 2, 8203RC Lelystad, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Ahmad ZA, Yeap SK, Ali AM, Ho WY, Alitheen NBM, Hamid M. scFv antibody: principles and clinical application. Clin Dev Immunol 2012; 2012:980250. [PMID: 22474489 PMCID: PMC3312285 DOI: 10.1155/2012/980250] [Citation(s) in RCA: 504] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/07/2012] [Indexed: 01/16/2023]
Abstract
To date, generation of single-chain fragment variable (scFv) has become an established technique used to produce a completely functional antigen-binding fragment in bacterial systems. The advances in antibody engineering have now facilitated a more efficient and generally applicable method to produce Fv fragments. Basically, scFv antibodies produced from phage display can be genetically fused to the marker proteins, such as fluorescent proteins or alkaline phosphatase. These bifunctional proteins having both antigen-binding capacity and marker activity can be obtained from transformed bacteria and used for one-step immunodetection of biological agents. Alternatively, antibody fragments could also be applied in the construction of immunotoxins, therapeutic gene delivery, and anticancer intrabodies for therapeutic purposes. This paper provides an overview of the current studies on the principle, generation, and application of scFv. The potential of scFv in breast cancer research is also discussed in this paper.
Collapse
Affiliation(s)
- Zuhaida Asra Ahmad
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
| | - Swee Keong Yeap
- Institute of Bioscience, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
| | - Abdul Manaf Ali
- Faculty of Agriculture and Biotechnology, Universiti Sultan Zainal Abidin, Kampus Kota, Jalan Sultan Mahmud, 20400 Kuala Terengganu, Malaysia
| | - Wan Yong Ho
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
| | - Noorjahan Banu Mohamed Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
| | - Muhajir Hamid
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, 43400 Serdang, Malaysia
| |
Collapse
|
228
|
Beaber JW, Tam EM, Lao LS, Rondon IJ. A new helper phage for improved monovalent display of Fab molecules. J Immunol Methods 2012; 376:46-54. [PMID: 22119405 DOI: 10.1016/j.jim.2011.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 11/10/2011] [Accepted: 11/10/2011] [Indexed: 10/15/2022]
Abstract
Phage display technology is a powerful tool for the identification of novel antibodies for drug discovery. Phage display libraries have been constructed with massive diversity, but their use may be hindered by limited antibody display levels when rescued with the M13KO7 helper phage. Variants of M13KO7 have been constructed previously that increase the levels of display of rescued phage, but all produce phage that display multiple copies of the antibody fragment on their surface and have reduced titer and infectivity. In this study, we describe a new helper phage, XP5, which increased the display level of Fab molecules more than two-fold compared to phage rescued with M13KO7. XP5 uses a combination of ribosome binding site spacing alterations and rare codon clusters to reduce the expression of pIII from the helper phage. This reduction in pIII expression leads to an increase in the incorporation of pIII-Fab fusions during phage rescue. The rescued phage displayed a single copy of the Fab molecule, preventing any avidity effects during the selection process. This also suggests that the percentage of the population of phage displaying a Fab molecule is increased when rescued with XP5. Additionally, the phage titers and infectivity are comparable to libraries rescued with M13KO7. After two rounds of panning we observed a nearly 5-fold increase in the number of antigen binding Fab molecules compared to panning conducted with the same library rescued with M13KO7. The nature of the mutations in XP5 makes it a universal substitute for M13KO7 in pIII-based phage display, compatible with most phagemids and bacterial strains.
Collapse
Affiliation(s)
- John W Beaber
- Preclinical Research and Development, XOMA (US) LLC, Berkeley, CA 94710, United States.
| | | | | | | |
Collapse
|
229
|
Engineering aggregation resistance in IgG by two independent mechanisms: lessons from comparison of Pichia pastoris and mammalian cell expression. J Mol Biol 2012; 417:309-35. [PMID: 22306407 DOI: 10.1016/j.jmb.2012.01.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/16/2012] [Accepted: 01/20/2012] [Indexed: 11/22/2022]
Abstract
Aggregation is an important concern for therapeutic antibodies, since it can lead to reduced bioactivity and increase the risk of immunogenicity. In our analysis of immunoglobulin G (IgG) molecules of identical amino acid sequence but produced either in mammalian cells (HEK293) or in the yeast Pichia pastoris (PP), dramatic differences in their aggregation susceptibilities were encountered. The antibodies produced in Pichia were much more resistant to aggregation under many conditions, a phenomenon found to be mainly caused by two factors. First, the mannose-rich glycan of the IgG from Pichia, while slightly thermally destabilizing the IgG, strongly inhibited its aggregation susceptibility, compared to the complex mammalian glycan. Second, on the Pichia-produced IgGs, amino acids belonging to the α-factor pre-pro sequence were left at the N-termini of both chains. These additional residues proved to considerably increase the temperature of the onset of aggregation and reduced the aggregate formation after extended incubation at elevated temperatures. The attachment of these residues to IgGs produced in cell culture confirmed their beneficial effect on the aggregation resistance. Secretion of IgGs with native N-termini in the yeast system became possible after systematic engineering of the precursor proteins and the processing site. Taken together, the present results will be useful for the successful production of full-length IgGs in Pichia, give indications on how to engineer aggregation-resistant IgGs and shed new light on potential biophysical effects of tag sequences in general.
Collapse
|
230
|
Jacobs SA, Diem MD, Luo J, Teplyakov A, Obmolova G, Malia T, Gilliland GL, O'Neil KT. Design of novel FN3 domains with high stability by a consensus sequence approach. Protein Eng Des Sel 2012; 25:107-17. [PMID: 22240293 DOI: 10.1093/protein/gzr064] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The use of consensus design to produce stable proteins has been applied to numerous structures and classes of proteins. Here, we describe the engineering of novel FN3 domains from two different proteins, namely human fibronectin and human tenascin-C, as potential alternative scaffold biotherapeutics. The resulting FN3 domains were found to be robustly expressed in Escherichia coli, soluble and highly stable, with melting temperatures of 89 and 78°C, respectively. X-ray crystallography was used to confirm that the consensus approach led to a structure consistent with the FN3 design despite having only low-sequence identity to natural FN3 domains. The ability of the Tenascin consensus domain to withstand mutations in the loop regions connecting the β-strands was investigated using alanine scanning mutagenesis demonstrating the potential for randomization in these regions. Finally, rational design was used to produce point mutations that significantly increase the stability of one of the consensus domains. Together our data suggest that consensus FN3 domains have potential utility as alternative scaffold therapeutics.
Collapse
Affiliation(s)
- Steven A Jacobs
- Janssen Research & Development, L.L.C., Radnor, PA 19087, USA.
| | | | | | | | | | | | | | | |
Collapse
|
231
|
Abstract
Libraries of antibody fragments displayed on filamentous phages have proved their value to generate human antibodies against virtually any target. We describe here a simple protocol to make large and diverse libraries based on a single or few frameworks. Diversity is introduced in the third hypervariable loops using degenerate synthetic oligonucleotides and PCR assembly. Because all the antibody fragments isolated from the library will share their framework sequence, their stability and physical properties will be more consistent and customizable than when antibody fragments are isolated from a library prepared from human donors.
Collapse
Affiliation(s)
- Gautier Robin
- IRCM, Institut de Recherche en Cancérologie de Montpellier
INSERM : U896Université Montpellier ICRLCC Val d'Aurelle - Paul Lamarque208 Rue des Apothicaires F-34298 Montpellier, FR
- BioXtal SA
BoiXtal163 Avenue de Luminy - 13288 Marseille Cedex 09, FR
| | - Pierre Martineau
- IRCM, Institut de Recherche en Cancérologie de Montpellier
INSERM : U896Université Montpellier ICRLCC Val d'Aurelle - Paul Lamarque208 Rue des Apothicaires F-34298 Montpellier, FR
| |
Collapse
|
232
|
Chinestra P, Lajoie-Mazenc I, Faye JC, Favre G. Use of phage display for the identification of molecular sensors specific for activated Rho. Methods Mol Biol 2012; 827:283-303. [PMID: 22144282 DOI: 10.1007/978-1-61779-442-1_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We describe a phage display approach to select active Rho-specific scFv sensors. This in vitro technique allows preserving the antigen conformation stability all along the selection process. We used the GTP locked RhoBQ63L mutant as antigen against the Griffin.1 library composed of a human synthetic V(H) + V(L) scFv cloned in the pHEN2 phagemid vector. The method described here has permitted to identify an scFv that discriminates between the activated and the inactivated form of the Rho subfamily.
Collapse
Affiliation(s)
- Patrick Chinestra
- INSERM UMR 1037, Cancer Research Centre of Toulouse, Claudius Regaud Cancer Institute, University of Toulouse, Toulouse, France
| | | | | | | |
Collapse
|
233
|
|
234
|
Hust M, Frenzel A, Meyer T, Schirrmann T, Dübel S. Construction of human naive antibody gene libraries. Methods Mol Biol 2012; 907:85-107. [PMID: 22907347 DOI: 10.1007/978-1-61779-974-7_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human antibodies are valuable tools for proteome research and diagnostics. Furthermore, antibodies are a rapidly growing class of therapeutic agents, mainly for inflammation and cancer therapy. The first therapeutic antibodies are of murine origin and were chimerized or humanized. The later-developed antibodies are fully human antibodies. Here, two technologies are competing the hybridoma technology using transgenic mice with human antibody gene loci and antibody phage display. The starting point for the selection of human antibodies against any target is the construction of an antibody phage display gene library.In this review we describe the construction of human naive and immune antibody gene libraries for antibody phage display.
Collapse
Affiliation(s)
- Michael Hust
- Institut für Biochemie und Biotechnologie, Techische Universität Braunschweig, Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
235
|
Whelan AO, Villarreal-Ramos B, Vordermeier HM, Hogarth PJ. Development of an antibody to bovine IL-2 reveals multifunctional CD4 T(EM) cells in cattle naturally infected with bovine tuberculosis. PLoS One 2011; 6:e29194. [PMID: 22216206 PMCID: PMC3245252 DOI: 10.1371/journal.pone.0029194] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 11/22/2011] [Indexed: 12/31/2022] Open
Abstract
Gaining a better understanding of the T cell mechanisms underlying natural immunity to bovine tuberculosis would help to identify immune correlates of disease progression and facilitate the rational design of improved vaccine and diagnostic strategies. CD4 T cells play an established central role in immunity to TB, and recent interest has focussed on the potential role of multifunctional CD4 T cells expressing IFN-γ, IL-2 and TNF-α. Until now, it has not been possible to assess the contribution of these multifunctional CD4 T cells in cattle due to the lack of reagents to detect bovine IL-2 (bIL-2). Using recombinant phage display technology, we have identified an antibody that recognises biologically active bIL-2. Using this antibody, we have developed a polychromatic flow cytometric staining panel that has allowed the investigation of multifunctional CD4 T-cells responses in cattle naturally infected with M. bovis. Assessment of the frequency of antigen specific CD4 T cell subsets reveals a dominant IFN-γ+IL-2+TNF-α+ and IFN-γ+ TNF-α+ response in naturally infected cattle. These multifunctional CD4 T cells express a CD44hiCD45RO+CD62Llo T-effector memory (TEM) phenotype and display higher cytokine median fluorescence intensities than single cytokine producers, consistent with an enhanced ‘quality of response’ as reported for multifunctional cells in human and murine systems. Through our development of these novel immunological bovine tools, we provide the first description of multifunctional TEM cells in cattle. Application of these tools will improve our understanding of protective immunity in bovine TB and allow more direct comparisons of the complex T cell mediated immune responses between murine models, human clinical studies and bovine TB models in the future.
Collapse
Affiliation(s)
- Adam O. Whelan
- TB Research Group, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Bernardo Villarreal-Ramos
- TB Research Group, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - H. Martin Vordermeier
- TB Research Group, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
| | - Philip J. Hogarth
- TB Research Group, Animal Health and Veterinary Laboratories Agency, Addlestone, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
236
|
Coupling mammalian cell surface display with somatic hypermutation for the discovery and maturation of human antibodies. Proc Natl Acad Sci U S A 2011; 108:20455-60. [PMID: 22158898 DOI: 10.1073/pnas.1114010108] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel approach has been developed for the isolation and maturation of human antibodies that replicates key features of the adaptive immune system by coupling in vitro somatic hypermutation (SHM) with mammalian cell display. SHM is dependent on the action of the B cell specific enzyme, activation-induced cytidine deaminase (AID), and can be replicated in non-B cells through expression of recombinant AID. A library of human antibodies, based on germline V-gene segments with recombined human regions was used to isolate low-affinity antibodies to human β nerve growth factor (hβNGF). These antibodies, initially naïve to SHM, were subjected to AID-directed SHM in vitro and selected using the same mammalian cell display system, as illustrated by the maturation of one of the antibodies to low pM K(D). This approach overcomes many of the previous limitations of mammalian cell display, enabling direct selection and maturation of antibodies as full-length, glycosylated IgGs.
Collapse
|
237
|
Affiliation(s)
- Per-Ake Nygren
- Division of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden
| |
Collapse
|
238
|
Triosephosphate Isomerase by Consensus Design: Dramatic Differences in Physical Properties and Activity of Related Variants. J Mol Biol 2011; 413:195-208. [DOI: 10.1016/j.jmb.2011.08.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/23/2011] [Accepted: 08/01/2011] [Indexed: 11/23/2022]
|
239
|
Tohidkia MR, Barar J, Asadi F, Omidi Y. Molecular considerations for development of phage antibody libraries. J Drug Target 2011; 20:195-208. [PMID: 21950316 DOI: 10.3109/1061186x.2011.611517] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Nowadays, phage display libraries are used as robust tools for discovery and evolution of peptide/protein based drugs as well as targeting molecules, in particular monoclonal antibodies (mAbs) and its fragments (i.e., scFvs, Fabs, or bivalent F(ab')₂). Phage display technology, as a molecular diversity approach, enables selection of antibody fragments (e.g., scFv/Fab) with high affinity, specificity and effector functions against various targets. However, such selection process itself is largely dependent upon various molecular factors such as methods for construction of phage library, phage/phagemid vectors, helper phage, host cells and biopanning processes. The current review article provides important molecular considerations for successful development of phage antibody libraries that may be used as a platform for translation of antibody fragments into viable diagnostic/therapeutic reagents.
Collapse
Affiliation(s)
- Mohammad Reza Tohidkia
- Research Center for Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | |
Collapse
|
240
|
Altshuler EP, Serebryanaya DV, Katrukha AG. Generation of recombinant antibodies and means for increasing their affinity. BIOCHEMISTRY (MOSCOW) 2011; 75:1584-605. [PMID: 21417996 DOI: 10.1134/s0006297910130067] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Highly specific interaction with foreign molecules is a unique feature of antibodies. Since 1975, when Keller and Milstein proposed the method of hybridoma technology and prepared mouse monoclonal antibodies, many antibodies specific to various antigens have been obtained. Recent development of methods for preparation of recombinant DNA libraries and in silico bioinformatics approaches for protein structure analysis makes possible antibody preparation using gene engineering approaches. The development of gene engineering methods allowed creating recombinant antibodies and improving characteristics of existing antibodies; this significantly extends the applicability of antibodies. By modifying biochemical and immunochemical properties of antibodies by changing their amino acid sequences it is possible to create antibodies with properties optimal for certain tasks. For example, application of recombinant technologies resulted in antibody preparation of high affinity significantly exceeding the initial affinity of natural antibodies. In this review we summarize information about the structure, modes of preparation, and application of recombinant antibodies and their fragments and also consider the main approaches used to increase antibody affinity.
Collapse
Affiliation(s)
- E P Altshuler
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Russia
| | | | | |
Collapse
|
241
|
Prassler J, Thiel S, Pracht C, Polzer A, Peters S, Bauer M, Nörenberg S, Stark Y, Kölln J, Popp A, Urlinger S, Enzelberger M. HuCAL PLATINUM, a synthetic Fab library optimized for sequence diversity and superior performance in mammalian expression systems. J Mol Biol 2011; 413:261-78. [PMID: 21856311 DOI: 10.1016/j.jmb.2011.08.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 06/18/2011] [Accepted: 08/05/2011] [Indexed: 12/31/2022]
Abstract
This article describes the design of HuCAL (human combinatorial antibody library) PLATINUM, an optimized, second-generation, synthetic human Fab antibody library with six trinucleotide-randomized complementarity-determining regions (CDRs). Major improvements regarding the optimized antibody library sequence space were implemented. Sequence space optimization is considered a multistep process that includes the analysis of unproductive antibody sequences in order to, for example, avoid motifs such as potential N-glycosylation sites, which are undesirable in antibody production. Gene optimization has been used to improve expression of the antibody master genes in the library context. As a result, full-length IgGs derived from the library show both significant improvements in expression levels and less undesirable glycosylation sites when compared to the previous HuCAL GOLD library. Additionally, in-depth analysis of sequences from public databases revealed that diversity of CDR-H3 is a function of loop length. Based upon this analysis, the relatively uniform diversification strategy used in the CDR-H3s of the previous HuCAL libraries was changed to a length-dependent design, which replicates the natural amino acid distribution of CDR-H3 in the human repertoire. In a side-by-side comparison of HuCAL GOLD and HuCAL PLATINUM, the new library concept led to isolation of about fourfold more unique sequences and to a higher number of high-affinity antibodies. In the majority of HuCAL PLATINUM projects, 100-300 antibodies each having different CDR-H3s are obtained against each antigen. This increased diversity pool has been shown to significantly benefit functional antibody profiling and screening for superior biophysical properties.
Collapse
Affiliation(s)
- Josef Prassler
- MorphoSys AG, Lena-Christ-Strasse 48, 82152 Martinsried, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Zhai W, Glanville J, Fuhrmann M, Mei L, Ni I, Sundar PD, Van Blarcom T, Abdiche Y, Lindquist K, Strohner R, Telman D, Cappuccilli G, Finlay WJJ, Van den Brulle J, Cox DR, Pons J, Rajpal A. Synthetic antibodies designed on natural sequence landscapes. J Mol Biol 2011; 412:55-71. [PMID: 21787786 DOI: 10.1016/j.jmb.2011.07.018] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/27/2011] [Accepted: 07/11/2011] [Indexed: 12/16/2022]
Abstract
We present a method for synthetic antibody library generation that combines the use of high-throughput immune repertoire analysis and a novel synthetic technology. The library design recapitulates positional amino acid frequencies observed in natural antibody repertoires. V-segment diversity in four heavy (V(H)) and two kappa (V(κ)) germlines was introduced based on the analysis of somatically hypermutated donor-derived repertoires. Complementarity-determining region 3 length and amino acid designs were based on aggregate frequencies of all V(H) and V(κ) sequences in the data set. The designed libraries were constructed through an adaptation of a novel gene synthesis technology that enables precise positional control of amino acid composition and incorporation frequencies. High-throughput pyrosequencing was used to monitor the fidelity of construction and characterize genetic diversity in the final 3.6×10(10) transformants. The library exhibited Fab expression superior to currently reported synthetic approaches of equivalent diversity, with greater than 93% of clones observed to successfully display both a correctly folded heavy chain and a correctly folded light chain. Genetic diversity in the library was high, with 95% of 7.0×10(5) clones sequenced observed only once. The obtained library diversity explores a comparable sequence space as the donor-derived natural repertoire and, at the same time, is able to access novel recombined diversity due to lack of segmental linkage. The successful isolation of low- and subnanomolar-affinity antibodies against a diverse panel of receptors, growth factors, enzymes, antigens from infectious reagents, and peptides confirms the functional viability of the design strategy.
Collapse
Affiliation(s)
- Wenwu Zhai
- Rinat, Pfizer Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
243
|
Chevigné A, Fischer A, Mathu J, Counson M, Beaupain N, Plesséria JM, Schmit JC, Deroo S. Selection of a CXCR4 antagonist from a human heavy chain CDR3-derived phage library. FEBS J 2011; 278:2867-78. [DOI: 10.1111/j.1742-4658.2011.08208.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
244
|
Brockmann EC, Akter S, Savukoski T, Huovinen T, Lehmusvuori A, Leivo J, Saavalainen O, Azhayev A, Lövgren T, Hellman J, Lamminmäki U. Synthetic single-framework antibody library integrated with rapid affinity maturation by VL shuffling. Protein Eng Des Sel 2011; 24:691-700. [PMID: 21680620 DOI: 10.1093/protein/gzr023] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Affinity maturation is often applied to improve the properties of antibodies isolated from universal antibody libraries in vitro. A synthetic human scFv antibody library was constructed in single immunoglobulin framework to enable rapid affinity maturation by updated Kunkel's mutagenesis. The initial diversity was generated predominantly in the V(H) domain combined with only 36 V(L) domain variants yielding 3 × 10(10) unique members in the phage-displayed library. After three rounds of panning the enriched V(H) genes from the primary library selections against lysozyme were incorporated into a ready-made circular single-stranded affinity maturation library containing 7 × 10(8) V(L) gene variants. Several unique antibodies with 0.8-10 nM (K(d), dissociation constant) affinities against lysozyme were found after panning from the affinity maturation library, contrasted by only one anti-lysozyme scFv clone with K(d) <20 nM among the clones panned from the primary universal library. The presented single-framework strategy provides a way to convey significant amount of functional V(H) domain diversity to affinity maturation without bimolecular ligation leading to a diverse set of antibodies with binding affinities in the low nanomolar range.
Collapse
Affiliation(s)
- E-C Brockmann
- Department of Biotechnology, University of Turku, Turku, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
245
|
Schwaeble WJ, Lynch NJ, Clark JE, Marber M, Samani NJ, Ali YM, Dudler T, Parent B, Lhotta K, Wallis R, Farrar CA, Sacks S, Lee H, Zhang M, Iwaki D, Takahashi M, Fujita T, Tedford CE, Stover CM. Targeting of mannan-binding lectin-associated serine protease-2 confers protection from myocardial and gastrointestinal ischemia/reperfusion injury. Proc Natl Acad Sci U S A 2011; 108:7523-8. [PMID: 21502512 PMCID: PMC3088599 DOI: 10.1073/pnas.1101748108] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Complement research experienced a renaissance with the discovery of a third activation route, the lectin pathway. We developed a unique model of total lectin pathway deficiency, a mouse strain lacking mannan-binding lectin-associated serine protease-2 (MASP-2), and analyzed the role of MASP-2 in two models of postischemic reperfusion injury (IRI). In a model of transient myocardial IRI, MASP-2-deficient mice had significantly smaller infarct volumes than their wild-type littermates. Mice deficient in the downstream complement component C4 were not protected, suggesting the existence of a previously undescribed lectin pathway-dependent C4-bypass. Lectin pathway-mediated activation of C3 in the absence of C4 was demonstrated in vitro and shown to require MASP-2, C2, and MASP-1/3. MASP-2 deficiency also protects mice from gastrointestinal IRI, as do mAb-based inhibitors of MASP-2. The therapeutic effects of MASP-2 inhibition in this experimental model suggest the utility of anti-MASP-2 antibody therapy in reperfusion injury and other lectin pathway-mediated disorders.
Collapse
Affiliation(s)
- Wilhelm J Schwaeble
- Department of Infection, University of Leicester, Leicester LE1 9HN, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Ponsel D, Neugebauer J, Ladetzki-Baehs K, Tissot K. High affinity, developability and functional size: the holy grail of combinatorial antibody library generation. Molecules 2011; 16:3675-700. [PMID: 21540796 PMCID: PMC6263270 DOI: 10.3390/molecules16053675] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/20/2011] [Accepted: 04/22/2011] [Indexed: 01/12/2023] Open
Abstract
Since the initial description of phage display technology for the generation of human antibodies, a variety of selection methods has been developed. The most critical parameter for all in vitro-based approaches is the quality of the antibody library. Concurrent evolution of the libraries has allowed display and selection technologies to reveal their full potential. They come in different flavors, from naïve to fully synthetic and differ in terms of size, quality, method of preparation, framework and CDR composition. Early on, the focus has mainly been on affinities and thus on library size and diversity. Subsequently, the increased awareness of developability and cost of goods as important success factors has spurred efforts to generate libraries with improved biophysical properties and favorable production characteristics. More recently a major focus on reduction of unwanted side effects through reduced immunogenicity and improved overall biophysical behavior has led to a re-evaluation of library design.
Collapse
Affiliation(s)
| | - Julia Neugebauer
- Author to whom correspondence should be addressed; ; Tel.: +49-89-89927-179; Fax: +49-89-89927-5179
| | | | | |
Collapse
|
247
|
Villa A, Lovato V, Bujak E, Wulhfard S, Pasche N, Neri D. A novel synthetic naïve human antibody library allows the isolation of antibodies against a new epitope of oncofetal fibronectin. MAbs 2011; 3:264-72. [PMID: 21487243 DOI: 10.4161/mabs.3.3.15616] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Human monoclonal antibodies (mAbs) can routinely be isolated from phage display libraries against virtually any protein available in sufficient purity and quantity, but library design can influence epitope coverage on the target antigen. Here we describe the construction of a novel synthetic human antibody phage display library that incorporates hydrophilic or charged residues at position 52 of the CDR2 loop of the variable heavy chain domain, instead of the serine residue found in the corresponding germline gene. The novel library was used to isolate human mAbs to various antigens, including the alternatively-spliced EDA domain of fibronectin, a marker of tumor angiogenesis. In particular, the mAb 2H7 was proven to bind to a novel epitope on EDA, which does not overlap with the one recognized by the clinical-stage F8 antibody. F8 and 2H7 were used for the construction of chelating recombinant antibodies (CRAbs), whose tumor-targeting properties were assessed in vivo in biodistribution studies in mice bearing F9 teratocarcinoma, revealing a preferential accumulation at the tumor site.
Collapse
|
248
|
Abstract
Active immunization has benefited human health perhaps more than any other biomedical advancement. Today, passive immunization is profoundly changing the practice of medicine by enabling antibody targeting of toxic, self, and other antigens not conducive to active immunization. Recombinant antibody libraries have contributed greatly to this progress and will continue to do so. The ability to construct and display a variety of antibody libraries, including naive, immune, semi-synthetic, and synthetic ones coupled with rapid screening and selection technologies, is in large measure responsible for the thousands of monoclonal antibody therapeutics in development.
Collapse
Affiliation(s)
- Heyue Zhou
- Sorrento Therapeutics, Inc., 6042 Cornerstone Court West, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
249
|
Prassler J, Steidl S, Urlinger S. In vitro affinity maturation of HuCAL antibodies: complementarity determining region exchange and RapMAT technology. Immunotherapy 2011; 1:571-83. [PMID: 20635988 DOI: 10.2217/imt.09.23] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Monoclonal antibodies gain ever-increasing importance in the treatment of human diseases across a broad range of indications. Diverse technologies currently exist, which are used to generate recombinant therapeutic antibodies that are basically indistinguishable from naturally occurring human immunoglobulins. We describe how human combinatorial antibody libraries are used together with unique optimization techniques to produce such therapeutically relevant proteins, for instance in the areas of oncology and inflammation.
Collapse
Affiliation(s)
- Josef Prassler
- MorphoSys AG, Lena-Christ-Str. 48, 82152 Martinsried/Planegg, Germany
| | | | | |
Collapse
|
250
|
Schirrmann T, Meyer T, Schütte M, Frenzel A, Hust M. Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules 2011; 16:412-26. [PMID: 21221060 PMCID: PMC6259421 DOI: 10.3390/molecules16010412] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/04/2011] [Accepted: 01/07/2011] [Indexed: 12/15/2022] Open
Abstract
Twenty years after its development, antibody phage display using filamentous bacteriophage represents the most successful in vitro antibody selection technology. Initially, its development was encouraged by the unique possibility of directly generating recombinant human antibodies for therapy. Today, antibody phage display has been developed as a robust technology offering great potential for automation. Generation of monospecific binders provides a valuable tool for proteome research, leading to highly enhanced throughput and reduced costs. This review presents the phage display technology, application areas of antibodies in research, diagnostics and therapy and the use of antibody phage display for these applications.
Collapse
Affiliation(s)
| | | | | | | | - Michael Hust
- Technische Universität Braunschweig, Institute of Biochemistry and Biotechnology, Department of Biotechnology, Spielmannstr. 7, 38106 Braunschweig, Germany
| |
Collapse
|