201
|
Abstract
Diabetes and diabetic kidney diseases have continually exerted a great burden on our society. Although the recent advances in medical research have led to a much better understanding of diabetic kidney diseases, there is still no successful strategy for effective treatments for diabetic kidney diseases. Recently, treatment of diabetic kidney diseases relies either on drugs that reduce the progression of renal injury or on renal replacement therapies, such as dialysis and kidney transplantation. On the other hand, searching for biomarkers for early diagnosis and effective therapy is also urgent. Discovery of microRNAs has opened to a novel field for posttranscriptional regulation of gene expression. Results from cell culture experiments, experimental animal models, and patients under diabetic conditions reveal the critical role of microRNAs during the progression of diabetic kidney diseases. Functional studies demonstrate not only the capability of microRNAs to regulate expression of target genes, but also their therapeutic potential to diabetic kidney diseases. The existence of microRNAs in plasma, serum, and urine suggests their possibility to be biomarkers in diabetic kidney diseases. Thus, identification of the functional role of microRNAs provides an essentially clinical impact in terms of prevention and treatment of progression in diabetic kidney diseases as it enables us to develop novel, specific therapies and diagnostic tools for diabetic kidney diseases.
Collapse
|
202
|
Zhang W, Shu L. Upregulation of miR-21 by Ghrelin Ameliorates Ischemia/Reperfusion-Induced Acute Kidney Injury by Inhibiting Inflammation and Cell Apoptosis. DNA Cell Biol 2016; 35:417-25. [PMID: 27152763 DOI: 10.1089/dna.2016.3231] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Renal ischemia-reperfusion (I/R) injury can be caused by cardiac surgery, renal vascular obstruction, and kidney transplantation, mainly leading to acute kidney injury (AKI), which is complicated by lack of effective preventative and therapeutic strategies. Ghrelin has recently been reported to possess anti-inflammatory properties in several types of cells; however, little attention has been given to the role of ghrelin in I/R-induced AKI. The aim of this study is to explore the role of ghrelin in I/R-induced AKI. In this study, an I/R-induced rat AKI model and a hypoxia-induced NRK-52E cell I/R model were successfully constructed. Ghrelin expression was increased significantly in these rat and cell models. After enhancing ghrelin level by injecting exogenous ghrelin into rats or transfecting a ghrelin-pcDNA3.1 vector into renal tubular epithelial cells, we observed that I/R-induced AKI can be ameliorated by ghrelin, as shown by alterations in histology, as well as changes in serum creatinine (SCr) level, cell apoptosis, and the levels of inflammatory factors. Based on the importance of microRNA-21 (miR-21) in renal disease and the modulation effect of ghrelin on miR-21 in gastric epithelial cells, we tested whether miR-21 participates in the protective effect of ghrelin on I/R-induced AKI. Ghrelin could upregulate the PI3K/AKT signaling pathway by increasing the miR-21 level, which led to the protective effect of ghrelin on I/R-induced AKI by inhibiting the inflammatory response and renal tubular epithelial cell apoptosis. Our research identifies that ghrelin can ameliorate I/R-induced AKI by upregulating miR-21, which advances the understanding of mechanisms by which ghrelin ameliorates I/R-induced AKI.
Collapse
Affiliation(s)
- Wanzhe Zhang
- 1 Department of Nephrology, The Second Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| | - Liliang Shu
- 2 Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University , Zhengzhou, China
| |
Collapse
|
203
|
Gomez IG, Nakagawa N, Duffield JS. MicroRNAs as novel therapeutic targets to treat kidney injury and fibrosis. Am J Physiol Renal Physiol 2016; 310:F931-44. [PMID: 26911854 PMCID: PMC5002060 DOI: 10.1152/ajprenal.00523.2015] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/25/2016] [Indexed: 01/28/2023] Open
Abstract
MicroRNAs (miRs), a class of small noncoding RNAs that act as post-transcriptional regulators of gene expression, have attracted increasing attention as critical regulators of organogenesis, cancer, and disease. Interest has been spurred by development of a novel class of synthetic RNA oligonucleotides with excellent drug-like properties that hybridize to a specific miR, preventing its action. In kidney disease, a small number of miRs are dysregulated. These overlap with regulated miRs in nephrogenesis and kidney cancers. Several dysregulated miRs have been identified in fibrotic diseases of other organs, representing a "fibrotic signature," and some of these fibrotic miRs contribute remarkably to the pathogenesis of kidney disease. Chronic kidney disease, affecting ∼10% of the population, leads to kidney failure, with few treatment options. Here, we will explore the pathological mechanism of miR-21, whose pre-eminent role in amplifying kidney disease and fibrosis by suppressing mitochondrial biogenesis and function is established. Evolving roles for miR-214, -199, -200, -155, -29, -223, and -126 in kidney disease will be discussed, and we will demonstrate how studying functions of distinct miRs has led to new mechanistic insights for kidney disease progression. Finally, the utility of anti-miR oligonucleotides as potential novel therapeutics to treat chronic disease will be highlighted.
Collapse
Affiliation(s)
- Ivan G Gomez
- Research and Development, Biogen, Cambridge, Massachusetts; Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington; and
| | - Naoki Nakagawa
- Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington; and Division of Nephrology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Jeremy S Duffield
- Research and Development, Biogen, Cambridge, Massachusetts; Division of Nephrology, Departments of Medicine and Pathology, University of Washington, Seattle, Washington; and
| |
Collapse
|
204
|
Sekar D, Venugopal B, Sekar P, Ramalingam K. Role of microRNA 21 in diabetes and associated/related diseases. Gene 2016; 582:14-8. [DOI: 10.1016/j.gene.2016.01.039] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/22/2016] [Accepted: 01/24/2016] [Indexed: 02/06/2023]
|
205
|
Abstract
Transforming growth factor-β (TGF-β) is the primary factor that drives fibrosis in most, if not all, forms of chronic kidney disease (CKD). Inhibition of the TGF-β isoform, TGF-β1, or its downstream signalling pathways substantially limits renal fibrosis in a wide range of disease models whereas overexpression of TGF-β1 induces renal fibrosis. TGF-β1 can induce renal fibrosis via activation of both canonical (Smad-based) and non-canonical (non-Smad-based) signalling pathways, which result in activation of myofibroblasts, excessive production of extracellular matrix (ECM) and inhibition of ECM degradation. The role of Smad proteins in the regulation of fibrosis is complex, with competing profibrotic and antifibrotic actions (including in the regulation of mesenchymal transitioning), and with complex interplay between TGF-β/Smads and other signalling pathways. Studies over the past 5 years have identified additional mechanisms that regulate the action of TGF-β1/Smad signalling in fibrosis, including short and long noncoding RNA molecules and epigenetic modifications of DNA and histone proteins. Although direct targeting of TGF-β1 is unlikely to yield a viable antifibrotic therapy due to the involvement of TGF-β1 in other processes, greater understanding of the various pathways by which TGF-β1 controls fibrosis has identified alternative targets for the development of novel therapeutics to halt this most damaging process in CKD.
Collapse
|
206
|
Rudnicki M, Beckers A, Neuwirt H, Vandesompele J. RNA expression signatures and posttranscriptional regulation in diabetic nephropathy. Nephrol Dial Transplant 2016. [PMID: 26209736 DOI: 10.1093/ndt/gfv079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the last decade, the integration of molecular approaches including transcriptome and miRNome analyses uncovered pathological mechanisms involved in the progression of diabetic nephropathy (DN). Using these techniques, molecular marker candidates [both messenger RNA (mRNA) and miRNA] have also been identified which may enable the characterization of patients at high risk for progression to end-stage renal disease. The results of such studies are urgently needed for a molecular definition of DN and for targeted treatment to improve patient care. The heterogeneity of kidney tissue and the minute amounts of RNA isolated from renal biopsies remain a challenge for omics-studies. Nevertheless, several studies have succeeded in the identification of RNA expression signatures in patients with diabetes and kidney disease. These studies show a reduced expression of growth factors such as VEGF and EGF, and an increased expression of matrix components and matrix-modulating enzymes, an activation of specific NF-κB modules, inflammatory pathways and the complement system. microRNAs are involved in the fine-tuning of mRNA abundance by binding to the 3' untranslated region of a target mRNA, which leads in most cases to translational repression or mRNA cleavage and a decrease in protein output. Here, we review the platforms used for miRNA expression profiling and ways to predict miRNA targets and functions. Several miRNAs have been shown to be involved in the pathogenesis of DN (e.g. miR-21, miR-192, miR-215, miR-216a, miR-29, let-7, miR-25, miR-93, etc.). Functional studies provide evidence that miRNAs are not only diagnostic tools but also represent potential therapeutic targets in DN.
Collapse
Affiliation(s)
- Michael Rudnicki
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | | | - Hannes Neuwirt
- Department of Internal Medicine IV - Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
207
|
He X, Zhang K, Gao X, Li L, Tan H, Chen J, Zhou Y. Rapid atrial pacing induces myocardial fibrosis by down-regulating Smad7 via microRNA-21 in rabbit. Heart Vessels 2016; 31:1696-708. [PMID: 26968995 PMCID: PMC5043001 DOI: 10.1007/s00380-016-0808-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/29/2016] [Indexed: 01/01/2023]
Abstract
Tachycardia-induced atrial fibrosis is a hallmark of the structural remodeling of atrial fibrillation (AF). The mechanisms underlying tachycardia-induced atrial fibrosis remain unclear. In our previous study, we found that Smad7-downregulation promoted the development of atrial fibrosis in AF. Fibroblasts are enriched in microRNA-21 (miR-21), which contributes to the development of fibrosis and heart failure in the cardiovascular system. Our study was designed to test the hypothesis that miR-21 reinforces the TGF-β1/Smad signaling pathway in AF-induced atrial fibrosis by down-regulating Smad7. Rapid atrial pacing (RAP, 1000 ppm) was applied to the left atrium of the rabbit heart to induce atrial fibrillation and fibrosis. qRT-PCR and northern blot analysis revealed that RAP caused a marked increase in the expression of miR-21. Transfection with a miR-21 inhibitor significantly increased the expression of Smad7, while the expression of collagen I/III significantly decreased. These changes were implicated in the AF-induced release of miR-21 and down-regulation of Smad7. Adult rat cardiac fibroblasts treated with TGF-β1 showed increased miR-21 expression and decreased Smad7 expression. Pretreatment with a TGF-β1 inhibitor reduced the TGF-β1-induced up-regulation of miR-21. Pretreatment with pre-miR-21 and a miR-21 inhibitor significantly decreased and increased Smad7 expression, respectively. This result was negatively correlated with the expression of collagen I/III in fibroblasts. Moreover, the results of a luciferase activity assay suggest that Smad7 is a validated miR-21 target in CFs. Our results provide compelling evidence that the miR-21 specific degradation of Smad7 may decrease the inhibitory feedback regulation of TGF-β1/Smad signaling and serves as a new insight of the mechanism of atrial fibrosis in atrial fibrillation.
Collapse
Affiliation(s)
- Xuyu He
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road 2, Guangzhou, 510080, China
| | - Kunyi Zhang
- Sun Yat-sen University Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China.,State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University, Guangzhou, 510060, China.,Department of Radiation Oncology, Cancer Center, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiuren Gao
- Department of Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Liwen Li
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road 2, Guangzhou, 510080, China
| | - Hong Tan
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road 2, Guangzhou, 510080, China
| | - Jiyan Chen
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Yingling Zhou
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of Coronary Disease, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
208
|
Abstract
Progressive kidney disease is a common companion to both type 1 and type 2 diabetes. However, the majority of people with diabetes do not develop diabetic kidney disease. This may in part be explained by good control of glucose, blood pressure, obesity and other risk factors for kidney disease. It may also be partly due to their genetic makeup or ethnicity. However, the vast majority of the variability in incident nephropathy remains unaccounted for by conventional risk factors or genetics. Epigenetics has recently emerged as an increasingly powerful paradigm to understand and potentially explain complex non-Mendelian conditions-including diabetic kidney disease. Persistent epigenetic changes can be acquired during development or as adaptations to environmental exposure, including metabolic fluctuations associated with diabetes. These epigenetic modifications-including DNA methylation, histone modifications, non-coding RNAs and other changes in chromatin structure and function-individually and co-operatively act to register, store, retain and recall past experiences in a way to shape the transcription of specific genes and, therefore, cellular functions. This review will explore the emerging evidence for the role of epigenetic modifications in programming the legacy of hyperglycaemia for kidney disease in diabetes.
Collapse
Affiliation(s)
- Merlin C Thomas
- Baker IDI Heart & Diabetes Institute, 75 Commercial Rd, Melbourne, 3004, Australia.
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia.
| |
Collapse
|
209
|
Morishita Y, Yoshizawa H, Watanabe M, Imai R, Imai T, Hirahara I, Akimoto T, Ookawara S, Muto S, Nagata D. MicroRNA expression profiling in peritoneal fibrosis. Transl Res 2016; 169:47-66. [PMID: 26616819 DOI: 10.1016/j.trsl.2015.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
Abstract
Peritoneal fibrosis (PF) is an intractable complication leading to peritoneal membrane failure in peritoneal dialysis (PD). The aim of this study was to identify microRNAs (miRNAs) involved in PF. Peritoneal tissue from a PF rat model was screened for miRNA expression using microarray analysis. The expression levels of differentially expressed miRNAs were evaluated in serum and drained dialysate and associated with peritoneal membrane functions, as measured by the peritoneal equilibrium test in 33 PD patients. Furthermore, an miRNA inhibitor (anti-miRNA-21-5p locked nucleic acid (LNA): anti-miRNA-21-LNA) was intraperitoneally injected to PF model mice to investigate its effects on PF. The initial profiling study of PF rat peritoneal tissue identified 6 miRNAs (miRNA-142-3p, miRNA-21-5p, miRNA-221-3p, miRNA-223-3p, miRNA-34a-5p, and miRNA-327) whose expression was increased more than 2-fold and no miRNAs whose expression was decreased more than half. Among them, serum levels of miRNA-21-5p, miRNA-221-3p, and miRNA-327 and drained dialysate levels of miRNA-221-3p and miRNA-34a-5p were significantly correlated with peritoneal membrane functions in PD patients. Anti-miRNA-21-LNA significantly inhibited miRNA-21-5p expression in the PF mouse peritoneum, inhibited peritoneal fibrous thickening, and maintained peritoneal membrane functions. These results suggest that several miRNAs are involved in PF and that they may be useful as novel diagnostic biomarkers and therapeutic targets for PF.
Collapse
Affiliation(s)
- Yoshiyuki Morishita
- Division of Nephrology, Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Omiya, Saitama, Japan.
| | - Hiromichi Yoshizawa
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Minami Watanabe
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Reika Imai
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Toshimi Imai
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Ichiro Hirahara
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Tetsu Akimoto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Susumu Ookawara
- Division of Nephrology, Department of Integrated Medicine, Saitama Medical Center, Jichi Medical University, Omiya, Saitama, Japan
| | - Shigeaki Muto
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| | - Daisuke Nagata
- Division of Nephrology, Department of Internal Medicine, Jichi Medical University, Shimotsuke City, Tochigi, Tochigi, Japan
| |
Collapse
|
210
|
Abstract
Recent estimates suggest that 1 in 12 of the global population suffers from diabetes mellitus. Approximately 40 % of those affected will go on to develop diabetes-related chronic kidney disease or diabetic nephropathy (DN). DN is a major cause of disability and premature death. Existing tests for prognostic purposes are limited and can be invasive, and interventions to delay progression are challenging. MicroRNAs (miRNAs) are a recently described class of molecular regulators found ubiquitously in human tissues and bodily fluids, where they are highly stable. Alterations in miRNA expression profiles have been observed in numerous diseases. Blood and tissue miRNAs are already established cancer biomarkers, and cardiovascular, metabolic and immune disease miRNA biomarkers are under development. Urinary miRNAs represent a potential novel source of non-invasive biomarkers for kidney diseases, including DN. In addition, recent data suggest that miRNAs may have therapeutic applications. Here, we review the utility of miRNAs as biomarkers for the early detection and progression of DN, assess emerging data on miRNAs implicated in DN pathology and discuss how the data from both fields may contribute to the development of novel therapeutic agents.
Collapse
Affiliation(s)
- Kate Simpson
- Wales Kidney Research Unit, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XN UK
| | - Alexa Wonnacott
- Wales Kidney Research Unit, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XN UK
| | - Donald J. Fraser
- Wales Kidney Research Unit, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XN UK
| | - Timothy Bowen
- Wales Kidney Research Unit, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, CF14 4XN UK
| |
Collapse
|
211
|
Bao Q, Shen X, Qian L, Gong C, Nie M, Dong Y. Anti-diabetic activities of catalpol in db/db mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:153-60. [PMID: 26937211 PMCID: PMC4770105 DOI: 10.4196/kjpp.2016.20.2.153] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/31/2015] [Accepted: 08/11/2015] [Indexed: 12/18/2022]
Abstract
The objective was to investigate the hypoglycemic action of catalpol in spontaneous diabetes db/db mice. 40 db/db mice were randomly divided into fi ve groups: model control gourp; db/db plus catalpol 40, 80, 120 mg/kg body wt. groups and db/db plus metformin 250 mg/kg group. Age-matched db/m mice were selected as normal control group. The mice were administered with corresponding drugs or solvent by gavage for 4 weeks. The oral glucose tolerance test was carried out at the end of 3(rd) week. After 4 weeks of treatment, the concentrations of fasting blood glucose (FBG), glycated serum protein (GSP), insulin (INS), triglyceride (TG), total cholesterol (TC) and adiponection (APN) in serum were detected. The protein expressions of phosphorylation-AMPKα1/2 in liver, phosphorylation-AMPKα1/2 and glucose transporter-4 (GLUT-4) in skeletal muscle and adipose tissues were detected by western blot. Real time RT-PCR was used to detect the mRNA expressions of acetyl-CoA carboxylase (ACC) and Hydroxymethyl glutaric acid acyl CoA reductase (HMGCR) in liver. Our results showed that catalpol could significantly improve the insulin resistance, decrease the serum concentrations of INS, GSP, TG, and TC. The concentrations of APN in serum, the protein expression of phosphorylation-AMPKα1/2 in liver, phosphorylation-AMPKα1/2 and GLUT-4 in peripheral tissue were increased. Catalpol could also down regulate the mRNA expressions of ACC and HMGCR in liver. In conclusion, catalpol ameliorates diabetes in db/db mice. It has benefi t eff ects against lipid/glucose metabolism disorder and insulin resistance. The mechanism may be related to up-regulating the expression of phosphorylation-AMPKα1/2.
Collapse
Affiliation(s)
- Qinwen Bao
- Department of Geriatric, Lianyungang Second People's Hospital of Jiangsu Province East Hospital, Jiangsu Province, Lianyungang 222002, PR China
| | - Xiaozhu Shen
- Department of Geriatric, Lianyungang Second People's Hospital of Jiangsu Province East Hospital, Jiangsu Province, Lianyungang 222002, PR China
| | - Li Qian
- Department of Clinical, Lianyungang Second People's Hospital of Jiangsu Province East Hospital, Jiangsu Province, Lianyungang 222002, PR China
| | - Chen Gong
- Department of Geriatric, Lianyungang Second People's Hospital of Jiangsu Province East Hospital, Jiangsu Province, Lianyungang 222002, PR China
| | - Maoxiao Nie
- Department of Geriatric, Lianyungang Second People's Hospital of Jiangsu Province East Hospital, Jiangsu Province, Lianyungang 222002, PR China
| | - Yan Dong
- Department of Geriatric, Lianyungang Second People's Hospital of Jiangsu Province East Hospital, Jiangsu Province, Lianyungang 222002, PR China
| |
Collapse
|
212
|
Colorectal cancer characterization and therapeutic target prediction based on microRNA expression profile. Sci Rep 2016; 6:20616. [PMID: 26852921 PMCID: PMC4745004 DOI: 10.1038/srep20616] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/08/2016] [Indexed: 01/09/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer death. However, the molecular mechanisms underlying CRC initiation, growth and metastasis are poorly understood. In this study, based on our previous work for comprehensively analyzing miRNA sequencing data, we examined a series of colorectal cancer microRNAs expression profiles data. Results show that all these CRC samples share the same four pathways including TGF-beta signaling pathway, which is important in colorectal carcinogenesis. Twenty-one microRNAs that evolved in the four overlapped pathways were then discovered. Further analysis selected miR-21 as an important regulator for CRC through TGF-beta pathways. This study develops methods for discovering tumor specific miRNA cluster as biomarker and for screening new cancer therapy targets based on miRNA sequencing.
Collapse
|
213
|
Caporali A, Miscianinov V, Saif J, Emanueli C. MicroRNA transport in cardiovascular complication of diabetes. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:2111-2120. [PMID: 26806392 DOI: 10.1016/j.bbalip.2016.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/17/2016] [Accepted: 01/18/2016] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) are post-transcriptional inhibitory regulators of gene expression by binding to complementary messenger RNA (mRNA) transcripts. Extracellular miRNAs are transported by membrane-derived vesicles (exosomes and microparticles), lipoproteins, and other ribonucleoprotein complexes. Extracellular microRNAs are emerging as important mediators of intercellular communications, being involved in the transmission of biological signals between cells. Several miRNAs have been identified as having a primary impact on many biological processes that are of direct relevance to cardiovascular complications of diabetes. Whether the extracellular miRNAs are directly involved in the regulation of these processes is yet to be established. Here, we review recent progresses in extracellular miRNA biology and the role of extracellular miRNA in diabetes induced cardiovascular disease, describing the regulators affecting miRNA transport and the mechanisms for different miRNA transporters. In addition, we discuss the advancement of the research in this field and identify the associated challenges. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez.
Collapse
Affiliation(s)
- Andrea Caporali
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Vladislav Miscianinov
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Jaimy Saif
- Bristol Heart Institute, University of Bristol, Bristol, UK
| | - Costanza Emanueli
- Bristol Heart Institute, University of Bristol, Bristol, UK; National Heart Lung Institute, Imperial College London, London, UK.
| |
Collapse
|
214
|
Shan TD, Ouyang H, Yu T, Li JY, Huang CZ, Yang HS, Zhong W, Xia ZS, Chen QK. miRNA-30e regulates abnormal differentiation of small intestinal epithelial cells in diabetic mice by downregulating Dll4 expression. Cell Prolif 2016; 49:102-14. [PMID: 26786283 DOI: 10.1111/cpr.12230] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Depression of the Notch/Hes1 pathway has been reported to play a role in abnormal differentiation of intestinal epithelial cells (IECs) in diabetes mellitus (DM). However, the mechanism by which this pathway influences IEC differentiation has remained unclear. In this study, we have investigated the role of microRNAs (miRNAs) in regulating the Notch/Hes1 pathway in IECs of DM mice. MATERIALS AND METHODS Integrated comparative miRNA microarray technology was used to determine the expression profile of miRNAs in IECs of DM mice. After bioinformatic analysis, an miRNA with altered expression levels, miRNA-30e, was identified as a candidate for regulating the Notch pathway in DM. A luciferase reporter assay confirmed that miRNA-30e targeted 3'-UTR of the Notch gene. The role of miRNA-30e in regulating Notch signalling was then explored by up- and downregulating its expression in vitro and in vivo. RESULTS Abnormal differentiation of IECs in DM mice was associated with reduced activity of the Dll4/NICD/Hes1 signal pathway. Based on bioinformatic analyses, increased expression of miRNA-30e was identified as a potential candidate for regulating Notch signalling. miRNA-30e targeted the 3'-UTR of Dll4 and downregulated Dll4 expression in primary IECs and IEC-6 cells. Exogenous miRNA-30e reduced activity of the Dll4/NICD/Hes1 pathway, and induced abnormal differentiation of IECs in normal mice. Conversely, treatment with miRNA-30e antagonist upregu-lated activity of the Dll4/NICD/Hes1 pathway in vivo, and normalized IEC differentiation in DM mice. CONCLUSIONS Increased levels of miRNA-30e downregulated activity of the Dll4/NICD/Hes1 signalling pathway by targeting the 3'-UTR of Dll4, which contributed to abnormal differentiation in small intestinal epithelia of DM mice.
Collapse
Affiliation(s)
- Ti-Dong Shan
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hui Ouyang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Tao Yu
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jie-Yao Li
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Can-Ze Huang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hong-Sheng Yang
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Wa Zhong
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | | | - Qi-Kui Chen
- Department of Gastroenterology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| |
Collapse
|
215
|
Irbesartan Ameliorates Diabetic Nephropathy by Suppressing the RANKL-RANK-NF-κB Pathway in Type 2 Diabetic db/db Mice. Mediators Inflamm 2016; 2016:1405924. [PMID: 26880862 PMCID: PMC4736580 DOI: 10.1155/2016/1405924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/20/2015] [Indexed: 12/18/2022] Open
Abstract
The receptor activator of NF-κB ligand (RANKL) and its receptor RANK are overexpressed in focal segmental glomerular sclerosis (FSGS), IgA nephropathy (IgAN), and membranous nephropathy (MN). However, the expression and the potential roles of RANKL and RANK in diabetic nephropathy (DN) remain unclear. Irbesartan (Irb) has beneficial effects against diabetes-induced renal damage, but its mechanisms are poorly understood. Our present study investigated the effects of Irb in DN and whether the renal protective effects of Irb are mediated by RANKL/RANK and the downstream NF-κB pathway in db/db mice. Our results showed that db/db mice revealed severe metabolic abnormalities, renal dysfunction, podocyte injury, and increased MCP-1; these symptoms were reversed by Irb. At the molecular level, RANKL and RANK were overexpressed in the kidneys of db/db mice and Irb downregulated RANKL and RANK and inhibited the downstream NF-κB pathway. Our study suggests that Irb can ameliorate DN by suppressing the RANKL-RANK-NF-κB pathway.
Collapse
|
216
|
León LE, Rani S, Fernandez M, Larico M, Calligaris SD. Subclinical Detection of Diabetic Cardiomyopathy with MicroRNAs: Challenges and Perspectives. J Diabetes Res 2016; 2016:6143129. [PMID: 26770988 PMCID: PMC4684873 DOI: 10.1155/2016/6143129] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/17/2015] [Accepted: 07/26/2015] [Indexed: 02/08/2023] Open
Abstract
The prevalence of cardiac diabetic diseases has been increased around the world, being the most common cause of death and disability among diabetic patients. In particular, diabetic cardiomyopathy is characterized with a diastolic dysfunction and cardiac remodelling without signs of hypertension and coronary artery diseases. In an early stage, it is an asymptomatic disease; however, clinical studies demonstrate that diabetic myocardia are more vulnerable to injury derived by acute myocardial infarct and are the worst prognosis for rehabilitation. Currently, biochemical and imaging diagnostic methods are unable to detect subclinical manifestation of the disease (prior to diastolic dysfunction). In this review, we elaborately discuss the current scientific evidences to propose circulating microRNAs as promising biomarkers for early detection of diabetic cardiomyopathy and, then, to identify patients at high risk of diabetic cardiomyopathy development. Moreover, here we summarise the research strategies to identify miRNAs as potential biomarkers, present limitations, challenges, and future perspectives.
Collapse
Affiliation(s)
- Luis E. León
- Centro de Genética y Genómica, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, 7710162 Santiago, Chile
| | - Sweta Rani
- Regenerative Medicine Institute (REMEDI), National University of Ireland, Galway, Ireland
| | | | | | - Sebastián D. Calligaris
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, 7710162 Santiago, Chile
- *Sebastián D. Calligaris:
| |
Collapse
|
217
|
Chien HY, Chen CY, Chiu YH, Lin YC, Li WC. Differential microRNA Profiles Predict Diabetic Nephropathy Progression in Taiwan. Int J Med Sci 2016; 13:457-65. [PMID: 27279796 PMCID: PMC4893561 DOI: 10.7150/ijms.15548] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/09/2016] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Diabetic nephropathy (DN) is a major leading cause of kidney failure. Recent studies showed that serological microRNAs (miRs) could be utilized as biomarkers to identify disease pathogenesis; the DN-related miRs, however, remained to be explored. METHODS A prospective case-control study was conducted. The clinical significance of five potential miRs (miR-21, miR-29a, miR-29b, miR-29c and miR192) in type 2 Diabetes Mellitus (T2DM) patients who have existing diabetic retinopathy with differential Albumin:Creatinine Ratio (ACR) and estimated Glomerular Filtration Rate (eGFR) was performed using quantitative RT-PCR analysis. The subjects with diabetic retinopathy enrolled in Taipei City Hospital, Taiwan, were classified into groups of normal albuminuria (ACR<30mg/g; N=12); microalbuminuria (30mg/g<ACR<300mg/g; N=17) and overt proteinuria (ACR>300mg/g; N=21) as well as 18 low-eGFR (eGFR<60ml/min) and 32 high-eGFR (eGFR>60ml/min). The level of serum miRs was statistically correlated with age, Glucose AC, ACR, eGFR and DN progression. RESULTS The levels of miR-21, miR-29a and miR-192 were significantly enriched in the overt proteinuria group compared with microalbuminuria and/or overt proteinuria groups. It was shown that only miR-21 level was significantly up-regulated in low-eGFR group compared with high-eGFR patients. Interestingly, Pearson's correlation coefficient analysis demonstrated that DN progressors showed significantly greater levels of miR-21, miR-29a, miR-29b and miR-29c in comparison with non-progressors implying the clinical potential of DN associated miRs in monitoring and preventing disease advancement. CONCLUSION Our findings showed that miR-21, miR-29a/b/c and miR-192 could reflect DN pathogenesis and serve as biomarkers during DN progression.
Collapse
Affiliation(s)
- Hung-Yu Chien
- 1. Department of Endocrinology & Metabolism, Taipei City Hospital, Ren-Ai Branch, Taipei, Taiwan
| | - Chang-Yi Chen
- 2. Institute of Oral Biology and Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Hui Chiu
- 3. Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| | - Yi-Chun Lin
- 4. Division of Endocrinology &Metabolism, Taipei Veterans General Hospital, Taipei, Taiwan;; 5. Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Chun Li
- 2. Institute of Oral Biology and Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan;; 3. Department of Education and Research, Taipei City Hospital, Taipei, Taiwan
| |
Collapse
|
218
|
Microbubbles and Ultrasound: Therapeutic Applications in Diabetic Nephropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 880:309-30. [PMID: 26486345 DOI: 10.1007/978-3-319-22536-4_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Diabetic nephropathy (DN) remains one of the most common causes of end-stage renal disease. Current therapeutic strategies aiming at optimization of serum glucose and blood pressure are beneficial in early stage DN, but are unable to fully prevent disease progression. With the limitations of current medical therapies and the shortage of available donor organs for kidney transplantation, the need for novel therapies to address DN complications and prevent progression towards end-stage renal failure is crucial. The development of ultrasound technology for non-invasive and targeted in-vivo gene delivery using high power ultrasound and carrier microbubbles offers great therapeutic potential for the prevention and treatment of DN. The promising results from preclinical studies of ultrasound-mediated gene delivery (UMGD) in several DN animal models suggest that UMGD offers a unique, non-invasive platform for gene- and cell-based therapies targeted against DN with strong clinical translation potential.
Collapse
|
219
|
Yan YM, Wang XL, Zhou LL, Zhou FJ, Li R, Tian Y, Zuo ZL, Fang P, Chung ACK, Hou FF, Cheng YX. Lingzhilactones from Ganoderma lingzhi ameliorate adriamycin-induced nephropathy in mice. JOURNAL OF ETHNOPHARMACOLOGY 2015; 176:385-393. [PMID: 26571087 DOI: 10.1016/j.jep.2015.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 07/12/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Several Ganoderma fungi are well-known for their medical uses to treat cancer, insomnia and kidney disease in East Asia. Triperpenoids and polysaccharides have been considered for a long time to be the major active components of the genus Ganoderma. The present study is to examine the effects of lingzhilactones from G. lingzhi on adriamycin-induced nephropathy in mice. MATERIALS AND METHODS A combination of various chromatography led to the isolation of lingzhilactones A-C, their structures were identified by spectroscopic and computational methods. The intracellular reactive oxygen species (ROS) was detected with the carboxymethyl-H2-dichlorofluorescein diacetate fluoroprobe. The fibrotic markers were analyzed by real-time RT-PCR and Western blot analyses. Detection of SEAP was conducted with the chemiluminescent. Urine albumin was measured using an ELISA assay. Histology and immunohistochemical staining was used to assess fibrotic lesions in mice. RESULTS Three new lingzhilactones A-C (1-3) containing a fused lactone moiety were isolated from G. lingzhi. We found that 2 could inhibit ROS generation in a dose-dependent manner, inhibit mRNA expression of collagen IV, fibronectin, IL-6 and increase expression of Nrf2 in rat tubular epithelial cells. Furthermore, we found that 2 could reduce urinary albumin levels, abrogate myofibroblastic activation and inhibit the phosphorylation of Smad3 in adriamycin-induced mice. CONCLUSIONS The in vitro and in vivo results suggested that lingzhilactone B could protect against renal injuries by increasing the activities of antioxidants and inhibiting inflammation. The inhibition of Smad3 phosphorylation suggested that this substance displays in vivo antifibrotic activity by a mechanism that is dependent on disruption of Smad3. These results promote understanding of the traditional usage of G. lingzhi and provide promising findings which may be beneficial for anti-kidney disease drug design.
Collapse
Affiliation(s)
- Yong-Ming Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China; University of Chinese Academy of Sciences, Beijing, PR China
| | - Xin-Long Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Li-Li Zhou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Key Laboratory for Organ Failure Research, Education Ministry, Guangzhou, PR China
| | - Feng-Jiao Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Rong Li
- Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon, Hong Kong SAR, PR China; Department of Nephrology, First Peopl e's Ho spital of Yunnan Province, Kunming, PR China
| | - Yuan Tian
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Key Laboratory for Organ Failure Research, Education Ministry, Guangzhou, PR China
| | - Zhi-Li Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Ping Fang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China
| | - Arthur C K Chung
- Partner State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon, Hong Kong SAR, PR China.
| | - Fan-Fan Hou
- Division of Nephrology, Nanfang Hospital, Southern Medical University, Key Laboratory for Organ Failure Research, Education Ministry, Guangzhou, PR China.
| | - Yong-Xian Cheng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China.
| |
Collapse
|
220
|
Mukhadi S, Hull R, Mbita Z, Dlamini Z. The Role of MicroRNAs in Kidney Disease. Noncoding RNA 2015; 1:192-221. [PMID: 29861424 PMCID: PMC5932548 DOI: 10.3390/ncrna1030192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/28/2015] [Accepted: 11/08/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that regulate pathophysiological processes that suppress gene expression by binding to messenger RNAs. These biomolecules can be used to study gene regulation and protein expression, which will allow better understanding of many biological processes such as cell cycle progression and apoptosis that control the fate of cells. Several pathways have also been implicated to be involved in kidney diseases such as Transforming Growth Factor-β, Mitogen-Activated Protein Kinase signaling, and Wnt signaling pathways. The discovery of miRNAs has provided new insights into kidney pathologies and may provide new innovative and effective therapeutic strategies. Research has demonstrated the role of miRNAs in a variety of kidney diseases including renal cell carcinoma, diabetic nephropathy, nephritic syndrome, renal fibrosis, lupus nephritis and acute pyelonephritis. MiRNAs are implicated as playing a role in these diseases due to their role in apoptosis, cell proliferation, differentiation and development. As miRNAs have been detected in a stable condition in different biological fluids, they have the potential to be tools to study the pathogenesis of human diseases with a great potential to be used in disease prognosis and diagnosis. The purpose of this review is to examine the role of miRNA in kidney disease.
Collapse
Affiliation(s)
- Sydwell Mukhadi
- Forensic Science Laboratory, 730 Pretorius street, Arcadia 0083, South Africa.
| | - Rodney Hull
- College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida 1709, Johannesburg 1709, South Africa.
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag x1106, Sovenga 0727, South Africa.
| | - Zodwa Dlamini
- Research, Innovation & Engagements Portfolio, Mangosuthu University of Technology, Durban 4031, South Africa.
| |
Collapse
|
221
|
Meng XM, Zhang Y, Huang XR, Ren GL, Li J, Lan HY. Treatment of renal fibrosis by rebalancing TGF-β/Smad signaling with the combination of asiatic acid and naringenin. Oncotarget 2015; 6:36984-97. [PMID: 26474462 PMCID: PMC4741910 DOI: 10.18632/oncotarget.6100] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/09/2015] [Indexed: 12/17/2022] Open
Abstract
We recently showed that imbalance of TGF-β/Smad signaling with over-activation of Smad3 but lower levels of Smad7 is a central mechanism of tissue fibrosis. In the present study, we report here that inhibition of Smad3 with naringenin (NG) and upregulation of Smad7 with asiatic acid (AA) produced an additive effect on inhibition of renal fibrosis in a mouse model of obstructive nephropathy. We found that AA, a triterpene from Centella Asiatica, functioned as a Smad7 agonist and suppressed TGF-β/Smad3-mediated renal fibrosis by inducing Smad7. Whereas, NG, a flavonoid from grapefruits and citrus fruits, was a Smad3 inhibitor that inhibited renal fibrosis by blocking Smad3 phosphorylation and transcription. The combination of AA and NG produced an additive effect on inhibition of renal fibrosis by blocking Smad3 while upregulating Smad7. Thus, rebalancing the disorder of TGF-β/Smad signaling by treatment with AA and NG may represent as a novel and effective therapy for chronic kidney disease associated with fibrosis.
Collapse
Affiliation(s)
- Xiao-ming Meng
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
- School of Pharmacy, Anhui Medical University, An Hui, China
| | - Yun Zhang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
- Department of Dermatology, Foshan Hospital of TCM, Foshan, China
| | - Xiao-Ru Huang
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| | - Gui-ling Ren
- School of Pharmacy, Anhui Medical University, An Hui, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, An Hui, China
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR
| |
Collapse
|
222
|
Bhatt K, Kato M, Natarajan R. Mini-review: emerging roles of microRNAs in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 2015; 310:F109-18. [PMID: 26538441 DOI: 10.1152/ajprenal.00387.2015] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/30/2015] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNA) are endogenously produced short noncoding regulatory RNAs that can repress gene expression by posttranscriptional mechanisms. They can therefore influence both normal and pathological conditions in diverse biological systems. Several miRNAs have been detected in kidneys, where they have been found to be crucial for renal development and normal physiological functions as well as significant contributors to the pathogenesis of renal disorders such as diabetic nephropathy, acute kidney injury, lupus nephritis, polycystic kidney disease, and others, due to their effects on key genes involved in these disease processes. miRNAs have also emerged as novel biomarkers in these renal disorders. Due to increasing evidence of their actions in various kidney segments, in this mini-review we discuss the functional significance of altered miRNA expression during the development of renal pathologies and highlight emerging miRNA-based therapeutics and diagnostic strategies for early detection and treatment of kidney diseases.
Collapse
Affiliation(s)
- Kirti Bhatt
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| | - Mitsuo Kato
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| | - Rama Natarajan
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolic Research Institute, Beckman Research Institute of the City of Hope, Duarte, California
| |
Collapse
|
223
|
Muñoz-Félix JM, González-Núñez M, Martínez-Salgado C, López-Novoa JM. TGF-β/BMP proteins as therapeutic targets in renal fibrosis. Where have we arrived after 25 years of trials and tribulations? Pharmacol Ther 2015; 156:44-58. [PMID: 26493350 DOI: 10.1016/j.pharmthera.2015.10.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The understanding of renal fibrosis in chronic kidney disease (CKD) remains as a challenge. More than 10% of the population of developed countries suffer from CKD. Proliferation and activation of myofibroblasts and accumulation of extracellular matrix proteins are the main features of kidney fibrosis, a process in which a large number of cytokines are involved. Targeting cytokines responsible for kidney fibrosis development might be an important strategy to face the problem of CKD. The increasing knowledge of the signaling pathway network of the transforming growth factor beta (TGF-β) superfamily members, such as the profibrotic cytokine TGF-β1 or the bone morphogenetic proteins (BMPs), and their involvement in the regulation of kidney fibrosis, has stimulated numerous research teams to look for potential strategies to inhibit profibrotic cytokines or to enhance the anti-fibrotic actions of other cytokines. The consequence of all these studies is a better understanding of all these canonical (Smad-mediated) and non-canonical signaling pathways. In addition, the different receptors involved for signaling of each cytokine, the different combinations of type I-type II receptors, and the presence and function of co-receptors that can influence the biological response have been also described. However, are these studies leading to suitable strategies to block the appearance and progression of kidney fibrosis? In this review, we offer a critical perspective analyzing the achievements using the most important strategies developed up till now: TGF-β antibodies, chemical inhibitors of TGF-β receptors, miRNAs and signaling pathways and BMP agonists with a potential role as therapeutic molecules against kidney fibrosis.
Collapse
Affiliation(s)
- José M Muñoz-Félix
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - María González-Núñez
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain
| | - Carlos Martínez-Salgado
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain; Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Hospital Universitario de Salamanca, Salamanca, Spain
| | - José M López-Novoa
- Unidad de Fisiopatología Renal y Cardiovascular, Instituto Reina Sofía de Investigación Nefrológica, Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
224
|
miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clin Sci (Lond) 2015; 129:1237-49. [PMID: 26415649 DOI: 10.1042/cs20150427] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/25/2015] [Indexed: 01/18/2023]
Abstract
The cytokine transforming growth factor (TGF)-β1 plays a central role in diabetic nephropathy (DN) with data implicating the miRNA (miR) miR-21 as a key modulator of its prosclerotic actions. In the present study, we demonstrate data indicating that miR-21 up-regulation positively correlates with the severity of fibrosis and rate of decline in renal function in human DN. Furthermore, concomitant analyses of various models of fibrotic renal disease and experimental DN, confirm tubular miR-21 up-regulation. The fibrotic changes associated with increased miR-21 levels are proposed to include the regulation of TGF-β1-mediated mothers against decapentaplegic homolog 3 (SMAD3)- and phosphoinositide 3-kinase (PI3K)-dependent signalling pathways via co-ordinated repression of mothers against decapentaplegic homolog 7 (SMAD7) and phosphatase and tensin homologue (PTEN) respectively. This represents a previously uncharacterized interaction axis between miR-21 and PTEN-SMAD7. Targeting of these proteins by miR-21 resulted in de-repression of the respective pathways as reflected by increases in SMAD3 and V-Akt murine thymoma viral oncogene homolog 1 (AKT) phosphorylation. Many of the changes typically induced by TGF-β1, including phosphorylation of signalling mediators, were further enhanced by miR-21. Collectively, these data present a unified model for a key role for miR-21 in the regulation of renal tubular extracellular matrix (ECM) synthesis and accumulation and provide important insights into the molecular pathways implicated in the progression of DN.
Collapse
|
225
|
Gutiérrez-Escolano A, Santacruz-Vázquez E, Gómez-Pérez F. Dysregulated microRNAs involved in contrast-induced acute kidney injury in rat and human. Ren Fail 2015; 37:1498-506. [PMID: 26337190 DOI: 10.3109/0886022x.2015.1077322] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Contrast-induced nephropathy (CIN) is a complex syndrome of acute nephropathy that occurs following infusion of intravascular contrast agents, and is associated with an increased risk for adverse cardiovascular events. While there is no ideal biomarker for making an early diagnosis of CIN, we hypothesized that levels of specific circulating microRNA (miRNA) species might serve such a role. METHODS miRNA microarray assays were used to detect miRNAs in the kidney tissue of rats studied as an animal model of CIN. Real-time PCR was performed to validate results of the microarray assays. Kidney-enriched miRNAs detected in rat plasma were used as biomarkers to screen for CIN. Results obtained from the rat model of CIN were further validated in human patients with CIN. RESULTS Fifty-one miRNAs were aberrantly expressed in the kidney tissues between CIN and control rats; and among these, 17 miRNAs showed a >2-fold change of expression in the kidney tissues of CIN rats when compared with their expressions in non-CIN control rats. Among the 17 miRNAs aberrantly-expressed miRNAs screened from kidney tissue, only six also showed significantly different expression in the plasma of CIN rats. When compared with their levels in non-CIN control rats, the levels of three miR-30 family members (miR-30a, miR-30c, and miR-30e), as well as miR-320, were significantly increased in the plasma of CIN rats, while the plasma levels of miRNAs let-7a and miR-200a were significantly decreased. In a validation study of these results conducted with human plasma samples, only miR-30a, miR-30c, and miR-30e showed > 2-fold increases in CIN patients when compared with non-CIN patients. Receiver operating curves constructed to examine the abilities of miR-30a, miR-30c, and miR-30e to discriminate CIN patients from non-CIN patients showed AUCs of 0.954, 0.888, and 0.835, respectively. CONCLUSIONS Our study provides the first evidence that plasma miRNAs, and especially three miR-30 family members (miR-30a, miR-30c, and miR-30e), might serve as early biomarkers and (or) target candidates for CIN.
Collapse
Affiliation(s)
- A Gutiérrez-Escolano
- a Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México , México DF , Mexico
| | - E Santacruz-Vázquez
- a Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México , México DF , Mexico
| | - F Gómez-Pérez
- a Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México , México DF , Mexico
| |
Collapse
|
226
|
Kato M, Natarajan R. MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Ann N Y Acad Sci 2015; 1353:72-88. [PMID: 25877817 PMCID: PMC4607544 DOI: 10.1111/nyas.12758] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that regulate gene expression by posttranscriptional and epigenetic mechanisms and thereby affect many cellular processes and disease states. Over 2,000 human mature miRNAs have been identified, and at least 60% of all human protein-coding genes are known to be regulated by miRNAs. MicroRNA biogenesis involves classical transcription regulation and processing by key ribonucleases, as well as other protein factors and epigenetic mechanisms. Diabetic nephropathy (DN), a severe microvascular complication frequently associated with diabetes mellitus, is a major cause of renal failure. Although several mechanisms of regulation of key renal genes implicated in DN pathogenesis have been identified, a greater understanding is needed to develop better treatment modalities. Recent studies show that miRNAs induced in renal cells in vivo and in vitro under diabetic conditions can promote the accumulation of extracellular matrix proteins related to fibrosis and glomerular dysfunction. In this review, we highlight the significance of the expression of miRNAs in various stages of DN and emerging approaches to exploit them as biomarkers for early detection or novel therapeutic targets to prevent progression of DN.
Collapse
Affiliation(s)
- Mitsuo Kato
- Department of Diabetes Complications, Beckman Research Institute of City of Hope, Duarte, California
| | - Rama Natarajan
- Department of Diabetes Complications, Beckman Research Institute of City of Hope, Duarte, California
| |
Collapse
|
227
|
Lui PY, Jin DY, Stevenson NJ. MicroRNA: master controllers of intracellular signaling pathways. Cell Mol Life Sci 2015; 72:3531-42. [PMID: 26059472 PMCID: PMC11113591 DOI: 10.1007/s00018-015-1940-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 05/05/2015] [Accepted: 05/26/2015] [Indexed: 12/20/2022]
Abstract
Signaling pathways are essential intracellular networks that coordinate molecular outcomes to external stimuli. Tight regulation of these pathways is essential to ensure an appropriate response. MicroRNA (miRNA) is a class of small, non-coding RNA that regulates gene expression at a post-transcriptional level by binding to the complementary sequence on target mRNA, thus limiting protein translation. Intracellular pathways are controlled by protein regulators, such as suppressor of cytokine signaling and A20. Until recently, expression of these classical protein regulators was thought to be controlled solely by transcriptional induction and proteasomal degradation; however, there is a growing body of evidence describing their regulation by miRNA. This new information has transformed our understanding of cell signaling by adding a previously unknown layer of regulatory control. This review outlines the miRNA regulation of these classical protein regulators and describes their broad effects at both cellular and disease levels. We review the regulation of three important signaling pathways, including the JAK/STAT, NF-κB, and TGF-β pathways, and summarize an extensive catalog of their regulating miRNAs. This information highlights the importance of the miRNA regulon and reveals a previously unknown regulatory landscape that must be included in the identification and development of novel therapeutic targets for clinical disorders.
Collapse
Affiliation(s)
- Pak-Yin Lui
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- Department of Biochemistry, The University of Hong Kong, Pokfulam, Hong Kong
| | - Nigel J. Stevenson
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
228
|
Pezzolesi MG, Satake E, McDonnell KP, Major M, Smiles AM, Krolewski AS. Circulating TGF-β1-Regulated miRNAs and the Risk of Rapid Progression to ESRD in Type 1 Diabetes. Diabetes 2015; 64:3285-93. [PMID: 25931475 PMCID: PMC4542435 DOI: 10.2337/db15-0116] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/27/2015] [Indexed: 12/19/2022]
Abstract
We investigated whether circulating TGF-β1-regulated miRNAs detectable in plasma are associated with the risk of rapid progression to end-stage renal disease (ESRD) in a cohort of proteinuric patients with type 1 diabetes (T1D) and normal eGFR. Plasma specimens obtained at entry to the study were examined in two prospective subgroups that were followed for 7-20 years (rapid progressors and nonprogressors), as well as a reference panel of normoalbuminuric T1D patients. Of the five miRNAs examined in this study, let-7c-5p and miR-29a-3p were significantly associated with protection against rapid progression and let-7b-5p and miR-21-5p were significantly associated with the increased risk of ESRD. In logistic analysis, controlling for HbA1c and other covariates, let-7c-5p and miR-29a-3p were associated with more than a 50% reduction in the risk of rapid progression (P ≤ 0.001), while let-7b-5p and miR-21-5p were associated with a >2.5-fold increase in the risk of ESRD (P ≤ 0.005). This study is the first prospective study to demonstrate that circulating TGF-β1-regulated miRNAs are deregulated early in T1D patients who are at risk for rapid progression to ESRD.
Collapse
Affiliation(s)
- Marcus G Pezzolesi
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA Department of Medicine, Harvard Medical School, Boston, MA
| | - Eiichiro Satake
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA Department of Medicine, Harvard Medical School, Boston, MA
| | - Kevin P McDonnell
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA
| | - Melissa Major
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA
| | - Adam M Smiles
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA
| | - Andrzej S Krolewski
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Boston, MA Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
229
|
Stinghen AEM, Massy ZA, Vlassara H, Striker GE, Boullier A. Uremic Toxicity of Advanced Glycation End Products in CKD. J Am Soc Nephrol 2015; 27:354-70. [PMID: 26311460 DOI: 10.1681/asn.2014101047] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Advanced glycation end products (AGEs), a heterogeneous group of compounds formed by nonenzymatic glycation reactions between reducing sugars and amino acids, lipids, or DNA, are formed not only in the presence of hyperglycemia, but also in diseases associated with high levels of oxidative stress, such as CKD. In chronic renal failure, higher circulating AGE levels result from increased formation and decreased renal clearance. Interactions between AGEs and their receptors, including advanced glycation end product-specific receptor (RAGE), trigger various intracellular events, such as oxidative stress and inflammation, leading to cardiovascular complications. Although patients with CKD have a higher burden of cardiovascular disease, the relationship between AGEs and cardiovascular disease in patients with CKD is not fully characterized. In this paper, we review the various deleterious effects of AGEs in CKD that lead to cardiovascular complications and the role of these AGEs in diabetic nephropathy. We also discuss potential pharmacologic approaches to circumvent these deleterious effects by reducing exogenous and endogenous sources of AGEs, increasing the breakdown of existing AGEs, or inhibiting AGE-induced inflammation. Finally, we speculate on preventive and therapeutic strategies that focus on the AGE-RAGE axis to prevent vascular complications in patients with CKD.
Collapse
Affiliation(s)
- Andréa E M Stinghen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France
| | - Ziad A Massy
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France; Division of Nephrology, Ambroise Paré University Medical Center, Assistance Publique-Hôpitaux de Paris (APHP), University of Paris Ouest, University Versailles-Saint Quentin, Boulogne Billancourt/Paris, France
| | - Helen Vlassara
- Division of Experimental Diabetes and Aging, Departments of Geriatrics and Palliative Care and Medicine and Division of Experimental Diabetes and Aging, Department of Geriatrics and Aging and Division of Nephrology, Department of Medicine, Icahn School of Medicine, New York, New York; and
| | - Gary E Striker
- Division of Experimental Diabetes and Aging, Departments of Geriatrics and Palliative Care and Medicine and Division of Experimental Diabetes and Aging, Department of Geriatrics and Aging and Division of Nephrology, Department of Medicine, Icahn School of Medicine, New York, New York; and
| | - Agnès Boullier
- Institut National de la Santé et de la Recherche Médicale (INSERM) U-1088, Jules Verne University of Picardie, Amiens, France; Biochemistry Laboratory, Amiens University Medical Center, Amiens, France
| |
Collapse
|
230
|
Van der Hauwaert C, Savary G, Hennino MF, Pottier N, Glowacki F, Cauffiez C. [MicroRNAs in kidney fibrosis]. Nephrol Ther 2015. [PMID: 26216507 DOI: 10.1016/j.nephro.2015.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal fibrosis represents the final stage of most chronic kidney diseases and contributes to the progressive and irreversible decline in kidney function with accumulation of extracellular matrix components in the renal parenchyma. The molecular mechanisms governing the renal fibrosis process are complex and remain poorly understood. Recently, the profibrotic role of several microRNAs (miRNAs) has been described in kidney fibrosis. MiRNAs are a new class of, small non-coding RNAs of about 20 nucleotides that act as gene expression negative regulators at the post-transcriptional level. Seminal studies have highlighted the potential importance of miRNA as new therapeutic targets and innovative diagnostic and/or prognostic biomarkers. This review summarizes recent scientific advances on the role played by miRNAs in kidney fibrogenesis and discusses potential clinical applications as well as future research directions.
Collapse
Affiliation(s)
- Cynthia Van der Hauwaert
- EA4483, pôle recherche, faculté de médecine de Lille, université de Lille, 1, place de Verdun, 59045 Lille cedex, France
| | - Grégoire Savary
- EA4483, pôle recherche, faculté de médecine de Lille, université de Lille, 1, place de Verdun, 59045 Lille cedex, France
| | - Marie-Flore Hennino
- EA4483, pôle recherche, faculté de médecine de Lille, université de Lille, 1, place de Verdun, 59045 Lille cedex, France
| | - Nicolas Pottier
- EA4483, pôle recherche, faculté de médecine de Lille, université de Lille, 1, place de Verdun, 59045 Lille cedex, France
| | - François Glowacki
- EA4483, pôle recherche, faculté de médecine de Lille, université de Lille, 1, place de Verdun, 59045 Lille cedex, France; Service de néphrologie, hôpital Huriez, CHRU de Lille, boulevard Michel-Polonovski, 59037 Lille cedex, France.
| | - Christelle Cauffiez
- EA4483, pôle recherche, faculté de médecine de Lille, université de Lille, 1, place de Verdun, 59045 Lille cedex, France
| |
Collapse
|
231
|
Wang D, Deuse T, Stubbendorff M, Chernogubova E, Erben RG, Eken SM, Jin H, Li Y, Busch A, Heeger CH, Behnisch B, Reichenspurner H, Robbins RC, Spin JM, Tsao PS, Schrepfer S, Maegdefessel L. Local MicroRNA Modulation Using a Novel Anti-miR-21-Eluting Stent Effectively Prevents Experimental In-Stent Restenosis. Arterioscler Thromb Vasc Biol 2015; 35:1945-53. [PMID: 26183619 DOI: 10.1161/atvbaha.115.305597] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/05/2015] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Despite advances in stent technology for vascular interventions, in-stent restenosis (ISR) because of myointimal hyperplasia remains a major complication. APPROACH AND RESULTS We investigated the regulatory role of microRNAs in myointimal hyperplasia/ISR, using a humanized animal model in which balloon-injured human internal mammary arteries with or without stenting were transplanted into Rowett nude rats, followed by microRNA profiling. miR-21 was the only significantly upregulated candidate. In addition, miR-21 expression was increased in human tissue samples from patients with ISR compared with coronary artery disease specimen. We systemically repressed miR-21 via intravenous fluorescein-tagged-locked nucleic acid-anti-miR-21 (anti-21) in our humanized myointimal hyperplasia model. As expected, suppression of vascular miR-21 correlated dose dependently with reduced luminal obliteration. Furthermore, anti-21 did not impede reendothelialization. However, systemic anti-miR-21 had substantial off-target effects, lowering miR-21 expression in liver, heart, lung, and kidney with concomitant increase in serum creatinine levels. We therefore assessed the feasibility of local miR-21 suppression using anti-21-coated stents. Compared with bare-metal stents, anti-21-coated stents effectively reduced ISR, whereas no significant off-target effects could be observed. CONCLUSION This study demonstrates the efficacy of an anti-miR-coated stent for the reduction of ISR.
Collapse
Affiliation(s)
- Dong Wang
- From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.)
| | - Tobias Deuse
- From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.)
| | - Mandy Stubbendorff
- From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.)
| | - Ekaterina Chernogubova
- From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.)
| | - Reinhold G Erben
- From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.)
| | - Suzanne M Eken
- From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.)
| | - Hong Jin
- From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.)
| | - Yuhuang Li
- From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.)
| | - Albert Busch
- From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.)
| | - Christian-H Heeger
- From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.)
| | - Boris Behnisch
- From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.)
| | - Hermann Reichenspurner
- From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.)
| | - Robert C Robbins
- From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.)
| | - Joshua M Spin
- From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.)
| | - Philip S Tsao
- From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.)
| | - Sonja Schrepfer
- From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.).
| | - Lars Maegdefessel
- From the Department of Cardiovascular Surgery, TSI-Laboratory (D.W., T.D., M.S., S.S.) and Department of Cardiovascular Surgery (T.D., H.R.), University Heart Center Hamburg, Hamburg, Germany; Department of Cardiovascular Surgery, Cardiovascular Research Center Hamburg (CVRC) and DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Luebeck, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (D.W., T.D., M.S., S.S.); Atherosclerosis Research Unit, Department of Medicine, Karolinska Institute, CMM L8:03, Stockholm, Sweden (E.C., S.M.E., H.J., Y.L., A.B., L.M.); Unit of Physiology, Pathophysiology, and Experimental Endocrinology, University of Veterinary Medicine, Vienna, Austria (R.G.E.); Department of Cardiology Asklepios Clinic St. Georg, Hamburg, Germany (C.-H.H.); Translumina GmbH, Hechingen, Germany (B.B.); Department of Cardiothoracic Surgery, Stanford Cardiovascular Institute, Stanford University, CA (R.C.R., S.S.); Department of Cardiovascular Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA (J.M.S., P.S.T.); and Department of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University, CA (J.M.S., P.S.T.)
| |
Collapse
|
232
|
Wang Y, Lu X, He J, Zhao W. Influence of erythropoietin on microvesicles derived from mesenchymal stem cells protecting renal function of chronic kidney disease. Stem Cell Res Ther 2015; 6:100. [PMID: 25998259 PMCID: PMC4469245 DOI: 10.1186/s13287-015-0095-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 05/12/2015] [Indexed: 01/05/2023] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) play a central role in the remediation of cell and tissue damage. Erythropoietin (EPO) may enhance the beneficial influence of MSCs during recovery from tissue and organ injuries. Microvesicles (MVs) released from MSCs contribute to the restoration of kidney damage. We studied the influence of EPO on MVs derived from MSCs, and the protective effects of these factors in subjects with chronic kidney disease (CKD). Methods The MVs derived from untreated MSCs (MSC-MVs) or from MSCs incubated in different concentrations of EPO (1, 10, 100, and 500 IU/ml EPO-MVs) were used to treat renal injury of unilateral ureteral obstruction (UUO) in vivo, and transforming growth factor-β1 (TGF-β1)-induced fibrosis in a human renal proximal tubular epithelial (HK2) cell line in vitro. Western blot and reverse transcription polymerase chain reaction (RT-PCR) analyses were used to evaluate the expression of epithelial and mesenchymal markers in the renal tissue and HK2 cells. Flow cytometry was used to assess apoptosis within the HK2 cells, and microRNA (miRNA) microarray assays were used to determine the expression profiles of miRNA in the MSC-MVs and EPO-MVs. Results Compared to MSC-MVs (untreated), there was a significant increase in the number of EPO-MVs derived from MSCs treated with 1–100 IU/ml EPO, and these EPO-MVs had a greater benefit in UUO mice on days 7 and 14. Moreover, the EPO-MVs had a better restorative effect following TGF-β1-induced fibrosis in HK2 cells at 24 h and 48 h. The flow cytometry results revealed that both types of MVs, especially EPO-MVs, play an important anti-apoptotic role in HK2 cells treated with TGF-β1. The miRNA profiles of the MVs revealed that EPO-MVs changed 212 miRNAs (fold-change ≥ 1.5), including miR-299, miR-499, miR-302, and miRNA-200, and that 70.28 % of these changes involved upregulation. The changed miRNA in EPO-MVs may have contributed to their enhanced protective effects following renal injury compared to MSC-MVs. Conclusions There was a dose-dependent increase in the level of EPO-MVs within the range of 1–100 IU/ml EPO. Although both MSC-MVs and EPO-MVs protect the kidney from fibrosis-related damage, there is a superior effect of EPO-MVs. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0095-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yan Wang
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Xingyan Lu
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Juan He
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Weihong Zhao
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
233
|
Wang B, Ricardo S. Role of microRNA machinery in kidney fibrosis. Clin Exp Pharmacol Physiol 2015; 41:543-50. [PMID: 24798583 DOI: 10.1111/1440-1681.12249] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/10/2014] [Accepted: 04/25/2014] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are critical regulators of gene expression at the post-transcriptional level. The miRNAs constitute an abundant class of RNAs conserved from plants to animals and, as such, play key roles in diverse biological processes, including inflammation, development, differentiation and apoptosis. More recently, it has become apparent that changes in miRNA expression contribute to a wide spectrum of human pathologies, including heart and kidney disease, organ developmental abnormalities and neuronal degeneration. Moreover, inflammation and the development of kidney fibrosis is accompanied by changes in miRNA expression. This review summarizes the emerging field deciphering the complex connections between human miRNA biology and different aspects of kidney injury, focusing on kidney fibrosis. The miRNA-regulated fibrosis is discussed based on the classification of pivotal mechanisms, notably involving the transforming growth factor-β1 signalling pathway. In addition, the challenge of miRNA delivery vehicles as mechanisms of cellular transfer are reviewed, as is the use of miRNA as a potential biomarker for disease.
Collapse
Affiliation(s)
- Bo Wang
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
234
|
MicroRNAs and their applications in kidney diseases. Pediatr Nephrol 2015; 30:727-40. [PMID: 24928414 PMCID: PMC4265577 DOI: 10.1007/s00467-014-2867-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/12/2014] [Accepted: 05/21/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are short, non-coding RNAs that employ classic Watson-Crick base-pairing to identify their target genes, ultimately resulting in destabilization of their target mRNAs and/or inhibition of their translation. The role of miRNAs in a wide range of human diseases, including those afflicting the kidney, has been intensely investigated. However, there is still a vast dearth of knowledge regarding their specific mode of action and therapeutic effects in various kidney diseases. This review discusses the latest efforts to further our understanding of the basic biology of miRNAs, their impact on various kidney diseases and their potential as novel biomarkers and therapeutic agents. We initially provide an overview of miRNA biology and the canonical pathway implicated in their biogenesis. We then discuss commonly employed experimental strategies for miRNA research and highlight some of the newly described state-of-the-art technologies to identify miRNAs and their target genes. Finally, we carefully examine the emerging role of miRNAs in the pathogenesis of various kidney diseases.
Collapse
|
235
|
Wu JS, Shi R, Lu X, Ma YM, Cheng NN. Combination of active components of Xiexin decoction ameliorates renal fibrosis through the inhibition of NF-κB and TGF-β1/Smad pathways in db/db diabetic mice. PLoS One 2015; 10:e0122661. [PMID: 25803610 PMCID: PMC4372382 DOI: 10.1371/journal.pone.0122661] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 02/12/2015] [Indexed: 11/22/2022] Open
Abstract
Xiexin decoction, a herbal therapeutic agent commonly used in traditional Chinese medicine, is recognized for its beneficial effects on diabetic nephropathy exerted through the combined action of multiple components, including Rhizoma Coptidis alkaloids (A), Radix et Rhizoma Rhei polysaccharides (P), and Radix Scutellaria flavones (F). Our previous studies have shown that a combination of A, P, and F (APF) exhibits renoprotective effects against diabetic nephropathy. This study was aimed at determining the effects of APF on renal fibrosis in diabetic nephropathy and elucidating the underlying molecular mechanisms. To evaluate the effects of APF, in vivo, db/db diabetic mice were orally administered a low or high dose of APF (300 or 600 mg/kg, respectively) once a day for 8 weeks. We evaluated the blood and urine indices of metabolic and renal function, renal tissue histopathology, renal inflammation, and fibrosis. APF treatment significantly ameliorated glucose and lipid metabolism dysfunction, decreased urinary albumin excretion, normalized creatinine clearance, and reduced the morphological changes in renal tissue. Additionally, APF administration in db/db diabetic mice reduced the elevated levels of renal inflammation mediators such as intercellular adhesion molecule-1, monocyte chemotactic protein-1, tumor necrosis factor-α, interleukin-1β, and active nuclear factor κB (NF-κB). APF treatment also reduced type I and IV collagen, transforming growth factor-β1 (TGF-β1), and TGF-β1 type II receptor expression levels, and decreased the phosphorylation of Smad2/3 in the kidneys of db/db diabetic mice. These results suggest that APF reduces renal fibrosis in diabetic nephropathy through the NF-κB and TGF-β1/Smad signaling pathways. In vitro, APF treatment reduced cell proliferation and protein expression of α-smooth muscle actin, collagen I, TGF-β1 and NF-κB in mesangial cells cultured with high glucose concentrations. Our findings indicate that treatment with multi-component herbal therapeutic formulations may be a useful approach for the treatment of diabetic nephropathy.
Collapse
Affiliation(s)
- Jia-Sheng Wu
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Shi
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiong Lu
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue-Ming Ma
- Department of Pharmacology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- * E-mail: (YMM); (NNC)
| | - Neng-Neng Cheng
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
- * E-mail: (YMM); (NNC)
| |
Collapse
|
236
|
Meng XM, Tang PMK, Li J, Lan HY. TGF-β/Smad signaling in renal fibrosis. Front Physiol 2015; 6:82. [PMID: 25852569 PMCID: PMC4365692 DOI: 10.3389/fphys.2015.00082] [Citation(s) in RCA: 509] [Impact Index Per Article: 56.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/03/2015] [Indexed: 12/26/2022] Open
Abstract
TGF-β (transforming growth factor-β) is well identified as a central mediator in renal fibrosis. TGF-β initiates canonical and non-canonical pathways to exert multiple biological effects. Among them, Smad signaling is recognized as a major pathway of TGF-β signaling in progressive renal fibrosis. During fibrogenesis, Smad3 is highly activated, which is associated with the down-regulation of an inhibitory Smad7 via an ubiquitin E3-ligases-dependent degradation mechanism. The equilibrium shift between Smad3 and Smad7 leads to accumulation and activation of myofibroblasts, overproduction of ECM (extracellular matrix), and reduction in ECM degradation in the diseased kidney. Therefore, overexpression of Smad7 has been shown to be a therapeutic agent for renal fibrosis in various models of kidney diseases. In contrast, another downstream effecter of TGF-β/Smad signaling pathway, Smad2, exerts its renal protective role by counter-regulating the Smad3. Furthermore, recent studies demonstrated that Smad3 mediates renal fibrosis by down-regulating miR-29 and miR-200 but up-regulating miR-21 and miR-192. Thus, overexpression of miR-29 and miR-200 or down-regulation of miR-21 and miR-192 is capable of attenuating Smad3-mediated renal fibrosis in various mouse models of chronic kidney diseases (CKD). Taken together, TGF-β/Smad signaling plays an important role in renal fibrosis. Targeting TGF-β/Smad3 signaling may represent a specific and effective therapy for CKD associated with renal fibrosis.
Collapse
Affiliation(s)
- Xiao-Ming Meng
- School of Pharmacy, Anhui Medical University Hefei, China
| | - Patrick Ming-Kuen Tang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong Hong Kong, China ; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong Hong Kong, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University Hefei, China
| | - Hui Yao Lan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong Hong Kong, China ; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong Hong Kong, China ; Shenzhen Research Institute, The Chinese University of Hong Kong Shenzhen, China
| |
Collapse
|
237
|
Geraci NS, Tan JC, McDowell MA. Characterization of microRNA expression profiles in Leishmania-infected human phagocytes. Parasite Immunol 2015; 37:43-51. [PMID: 25376316 DOI: 10.1111/pim.12156] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/29/2014] [Indexed: 12/14/2022]
Abstract
Leishmania are intracellular protozoa that influence host immune responses eliciting parasite species-specific pathologies. MicroRNAs (miRNAs) are short single-stranded ribonucleic acids that complement gene transcripts to block protein translation and have been shown to regulate immune system molecular mechanisms. Human monocyte-derived dendritic cells (DC) and macrophages (MP) were infected in vitro with Leishmania major or Leishmania donovani parasites. Small RNAs were isolated from total RNA and sequenced to identify mature miRNAs associated with leishmanial infections. Normalized sequence read count profiles revealed a global downregulation in miRNA expression among host cells following infection. Most identified miRNAs were expressed at higher levels in L. donovani-infected cells relative to L. major-infected cells. Pathway enrichments using in silico-predicted gene targets of differentially expressed miRNAs showed evidence of potentially universal MAP kinase signalling pathway effects. Whereas JAK-STAT and TGF-β signalling pathways were more highly enriched using targets of miRNAs upregulated in L. donovani-infected cells, these data provide evidence in support of a selective influence on host cell miRNA expression and regulation in response to differential Leishmania infections.
Collapse
Affiliation(s)
- N S Geraci
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | | | | |
Collapse
|
238
|
Abstract
MicroRNAs (miRNAs) are endogenous short non-coding RNAs that regulate most of important cellular processes by inhibiting gene expression through the post-transcriptional repression of their target mRNAs. In kidneys, miRNAs have been associated in renal development, homeostasis, and physiological functions. Results from clinical and experimental animal studies demonstrate that miRNAs play essential roles in the pathogenesis of various renal diseases. Chronic kidney diseases (CKD) is characterized by renal fibrosis. Transforming growth factor beta (TGF-β) is recognized as a major mediator of renal fibrosis because it is able to stimulate the accumulation of extracellular matrix (ECM) proteins to impair normal kidney function. Recently, emerging evidence demonstrate the relationship between TGF-β signaling and miRNAs expression during renal diseases. TGF-β regulates expression of several microRNAs, such as miR-21, miR-192, miR-200, miR-433, and miR-29. MiR-21, miR-192, and miR-433 which are positively induced by TGF-β signaling play a pathological role in kidney diseases. In contrast, members in both miR-29 and miR-200 families which are inhibited by TGF-β signaling protect kidneys from renal fibrosis by suppressing the deposition of ECM and preventing epithelial-to-mesenchymal transition, respectively. Clinically, the presence of miRNAs in blood and urine has been examined to be early biomarkers for detecting renal diseases. From experimental animal studies of CKD, targeting microRNAs also provides evidence about therapeutic potential of miRNAs during renal diseases. Now, it comes to the stage to examine the exact mechanisms of miRNAs during the initiation and progression of renal diseases. Therefore, determining the function of miRNAs in renal fibrosis may facilitate the development of both early diagnosis and treatment of renal diseases.
Collapse
Affiliation(s)
- Arthur C-K Chung
- Partner State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University Hong Kong, China ; HKBU Institute for Research and Continuing Education Shenzhen, China
| | - Hui Y Lan
- Department of Medicine and Therapeutics, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
239
|
Murugaiyan G, da Cunha AP, Ajay AK, Joller N, Garo LP, Kumaradevan S, Yosef N, Vaidya VS, Weiner HL. MicroRNA-21 promotes Th17 differentiation and mediates experimental autoimmune encephalomyelitis. J Clin Invest 2015; 125:1069-80. [PMID: 25642768 DOI: 10.1172/jci74347] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 12/16/2014] [Indexed: 12/18/2022] Open
Abstract
Accumulation of IL-17-producing Th17 cells is associated with the development of multiple autoimmune diseases; however, the contribution of microRNA (miRNA) pathways to the intrinsic control of Th17 development remains unclear. Here, we demonstrated that miR-21 expression is elevated in Th17 cells and that mice lacking miR-21 have a defect in Th17 differentiation and are resistant to experimental autoimmune encephalomyelitis (EAE). Furthermore, we determined that miR-21 promotes Th17 differentiation by targeting and depleting SMAD-7, a negative regulator of TGF-β signaling. Moreover, the decreases in Th17 differentiation in miR-21-deficient T cells were associated with defects in SMAD-2/3 activation and IL-2 suppression. Finally, we found that treatment of WT mice with an anti-miR-21 oligonucleotide reduced the clinical severity of EAE, which was associated with a decrease in Th17 cells. Thus, we have characterized a T cell-intrinsic miRNA pathway that enhances TGF-β signaling, limits the autocrine inhibitory effects of IL-2, and thereby promotes Th17 differentiation and autoimmunity.
Collapse
|
240
|
Sheedy FJ. Turning 21: Induction of miR-21 as a Key Switch in the Inflammatory Response. Front Immunol 2015; 6:19. [PMID: 25688245 PMCID: PMC4310327 DOI: 10.3389/fimmu.2015.00019] [Citation(s) in RCA: 355] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/09/2015] [Indexed: 12/16/2022] Open
Abstract
miR-21 is one of the most highly expressed members of the small non-coding microRNA family in many mammalian cell types. Its expression is further enhanced in many diseased states including solid tumors, cardiac injury, and inflamed tissue. While the induction of miR-21 by inflammatory stimuli cells has been well documented in both hematopoietic cells of the immune system (particularly monocytes/macrophages but also dendritic and T-cells) and non-hematopoietic tumorigenic cells, the exact functional outcome of this elevated miR-21 is less obvious. Recent studies have confirmed a key role for miR-21 in the resolution of inflammation and in negatively regulating the pro-inflammatory response induced by many of the same stimuli that trigger miR-21 induction itself. In particular, miR-21 has emerged as a key mediator of the anti-inflammatory response in macrophages. This suggests that miR-21 inhibition in leukocytes will promote inflammation and may enhance current therapies for defective immune responses such as cancer, mycobacterial vaccines, or Th2-associated allergic inflammation. At the same time, miR-21 has been shown to promote inflammatory mediators in non-hematopoietic cells resulting in neoplastic transformation. This review will focus on functional studies of miR-21 during inflammation, which is complicated by the numerous molecular targets and processes that have emerged as miR-21 sensitive. It may be that the exact functional outcome of miR-21 is determined by multiple features including the cell type affected, the inducing signal, the transcriptomic profile of the cell, which ultimately affect the availability and ability to engage different target mRNAs and bring about its unique responses. Reviewing this data may illustrate that RNA-based oligonucleotide therapies for different diseases based upon miR-21 may have to target the unique and operative miRNA:mRNA interactions’ functionally active in disease.
Collapse
Affiliation(s)
- Frederick J Sheedy
- TB Immunology Laboratory, Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin , Dublin , Ireland
| |
Collapse
|
241
|
Melnik BC. The pathogenic role of persistent milk signaling in mTORC1- and milk-microRNA-driven type 2 diabetes mellitus. Curr Diabetes Rev 2015; 11:46-62. [PMID: 25587719 PMCID: PMC4428476 DOI: 10.2174/1573399811666150114100653] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/08/2015] [Accepted: 01/09/2015] [Indexed: 12/12/2022]
Abstract
Milk, the secretory product of the lactation genome, promotes growth of the newborn mammal. Milk delivers insulinotropic amino acids, thus maintains a molecular crosstalk with the pancreatic β-cell of the milk recipient. Homeostasis of β-cells and insulin production depend on the appropriate magnitude of mTORC1 signaling. mTORC1 is activated by branched-chain amino acids (BCAAs), glutamine, and palmitic acid, abundant nutrient signals of cow´s milk. Furthermore, milk delivers bioactive exosomal microRNAs. After milk consumption, bovine microRNA-29b, a member of the diabetogenic microRNA-29- family, reaches the systemic circulation and the cells of the milk consumer. MicroRNA-29b downregulates branchedchain α-ketoacid dehydrogenase, a potential explanation for increased BCAA serum levels, the metabolic signature of insulin resistance and type 2 diabetes mellitus (T2DM). In non-obese diabetic mice, microRNA-29b downregulates the antiapoptotic protein Mcl-1, which leads to early β-cell death. In all mammals except Neolithic humans, milk-driven mTORC1 signaling is physiologically restricted to the postnatal period. In contrast, chronic hyperactivated mTORC1 signaling has been associated with the development of age-related diseases of civilization including T2DM. Notably, chronic hyperactivation of mTORC1 enhances endoplasmic reticulum stress that promotes apoptosis. In fact, hyperactivated β-cell mTORC1 signaling induced early β-cell apoptosis in a mouse model. The EPIC-InterAct Study demonstrated an association between milk consumption and T2DM in France, Italy, United Kingdom, Germany, and Sweden. In contrast, fermented milk products and cheese exhibit an inverse correlation. Since the early 1950´s, refrigeration technology allowed widespread consumption of fresh pasteurized milk, which facilitates daily intake of bioactive bovine microRNAs. Persistent uptake of cow´s milk-derived microRNAs apparently transfers an overlooked epigenetic diabetogenic program that should not reach the human food chain.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabruck, Sedanstraße 115, D-49090 Osnabrück, Germany.
| |
Collapse
|
242
|
Noncoding RNAs in diabetes vascular complications. J Mol Cell Cardiol 2014; 89:42-50. [PMID: 25536178 DOI: 10.1016/j.yjmcc.2014.12.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 11/18/2014] [Accepted: 12/05/2014] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is the most common metabolic disorder and is recognised as a dominant health threat of our time. Diabetes induces a widespread damage of the macro- and microvasculature in different organs and tissues and disrupts the endogenous vascular repair mechanisms, thus causing diffuse and severe complications. Moreover, diabetic patients respond poorly to surgical interventions aiming to "revascularise" (i.e., to restore blood flow supply) the ischemic myocardium or lower limbs. The molecular causes underpinning diabetes vascular complications are still underappreciated and druggable molecular targets for therapeutic interventions have not yet clearly emerged. Moreover, diabetes itself and diabetes complications are often silent killers, requiring new prognostic, diagnostic and predictive biomarkers for use in the clinical practice. Noncoding RNA (ncRNAs) are emerging as new fundamental regulators of gene expression. The small microRNAs (miRNAs, miRs) have opened the field capturing the attention of basic and clinical scientists for their potential to become new therapeutic targets and clinical biomarkers. More recently, long ncRNAs (lncRNAs) have started to be actively investigated, leading to first exciting reports, which further suggest their important and yet largely unexplored contribution to vascular physiology and disease. This review introduces the different ncRNA types and focuses at the ncRNA roles in diabetes vascular complications. Furthermore, we discuss the potential value of ncRNAs as clinical biomarkers, and we examine the possibilities for therapeutic intervention targeting ncRNs in diabetes. This article is part of a Special Issue titled: Non-coding RNAs.
Collapse
|
243
|
Gomez IG, MacKenna DA, Johnson BG, Kaimal V, Roach AM, Ren S, Nakagawa N, Xin C, Newitt R, Pandya S, Xia TH, Liu X, Borza DB, Grafals M, Shankland SJ, Himmelfarb J, Portilla D, Liu S, Chau BN, Duffield JS. Anti-microRNA-21 oligonucleotides prevent Alport nephropathy progression by stimulating metabolic pathways. J Clin Invest 2014; 125:141-56. [PMID: 25415439 DOI: 10.1172/jci75852] [Citation(s) in RCA: 298] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/23/2014] [Indexed: 02/06/2023] Open
Abstract
MicroRNA-21 (miR-21) contributes to the pathogenesis of fibrogenic diseases in multiple organs, including the kidneys, potentially by silencing metabolic pathways that are critical for cellular ATP generation, ROS production, and inflammatory signaling. Here, we developed highly specific oligonucleotides that distribute to the kidney and inhibit miR-21 function when administered subcutaneously and evaluated the therapeutic potential of these anti-miR-21 oligonucleotides in chronic kidney disease. In a murine model of Alport nephropathy, miR-21 silencing did not produce any adverse effects and resulted in substantially milder kidney disease, with minimal albuminuria and dysfunction, compared with vehicle-treated mice. miR-21 silencing dramatically improved survival of Alport mice and reduced histological end points, including glomerulosclerosis, interstitial fibrosis, tubular injury, and inflammation. Anti-miR-21 enhanced PPARα/retinoid X receptor (PPARα/RXR) activity and downstream signaling pathways in glomerular, tubular, and interstitial cells. Moreover, miR-21 silencing enhanced mitochondrial function, which reduced mitochondrial ROS production and thus preserved tubular functions. Inhibition of miR-21 was protective against TGF-β-induced fibrogenesis and inflammation in glomerular and interstitial cells, likely as the result of enhanced PPARα/RXR activity and improved mitochondrial function. Together, these results demonstrate that inhibition of miR-21 represents a potential therapeutic strategy for chronic kidney diseases including Alport nephropathy.
Collapse
|
244
|
|
245
|
|
246
|
Abstract
Interstitial fibrosis represents the final common pathway of any form of progressive renal disease. The severity of tubular interstitial damage is highly correlated to the degree of decline of renal function, even better than the glomerular lesions do. Angiotensin II (Ang II), the main effector of the renin-angiotensin system, is a critical promoter of fibrogenesis. It represents a nexus among glomerular capillary hypertension, barrier dysfunction, and renal tubular injury caused by abnormally filtered proteins. Transforming growth factor (TGF)-β1 and reactive oxygen species (ROS) are the key mediators of the pro-fibrotic effect of Ang II causing apoptosis and epithelial-to-mesenchymal transition of the renal tubular epithelium. Recent studies link fibrosis to changes of microRNA (miRNA) modulated by Ang II through TGF-β1, unraveling that antifibrotic action of Ang II antagonism is attributable to epigenetic control of fibrosis-associated genes. Other mechanisms of Ang II-induced fibrosis include ROS-dependent activation of hypoxia-inducible factor-1. Finally, Ang II via angiotensin type 1 receptor regulates the activation and transdifferentiation of pericytes and fibrocytes into scar-forming myofibroblasts. Detachment and phenotypic changes of the former can lead to the loss of peritubular capillaries and also contribute to hypoxia-dependent fibrosis.
Collapse
|
247
|
Tang PMK, Lan HY. MicroRNAs in TGF-β/Smad-mediated Tissue Fibrosis. CURRENT PATHOBIOLOGY REPORTS 2014. [DOI: 10.1007/s40139-014-0060-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
248
|
|
249
|
He F, Peng F, Xia X, Zhao C, Luo Q, Guan W, Li Z, Yu X, Huang F. MiR-135a promotes renal fibrosis in diabetic nephropathy by regulating TRPC1. Diabetologia 2014; 57:1726-36. [PMID: 24908566 DOI: 10.1007/s00125-014-3282-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The contribution of aberrantly expressed microRNAs (miRNAs) to diabetic nephropathy in vivo is poorly understood. METHODS Integrated comparative miRNA array profiling was used to examine the expression of serum miRNAs in patients with diabetic nephropathy. The abundance of miRNA-135a (miR-135a) was measured by real-time quantitative PCR in the serum and kidney tissues of patients with diabetic nephropathy. The luciferase assay combined with mutation and immunoblotting was used to screen and verify the bioinformatically predicted miRNAs. Ca(2+) entry or intracellular Ca(2+) ([Ca(2+)]i) was performed by imaging Fura-2/AM-loaded cells using a fluorescence microscopy system. The role of miR-135a in vivo was explored with locked nucleic acid antisense oligonucleotides. RESULTS MiR-135a was markedly upregulated in serum and renal tissue from patients with diabetic nephropathy, as well from db/db mice, and this was associated with the development of microalbuminuria and renal fibrosis. Furthermore, we identified transient receptor potential cation channel, subfamily C, member 1 (TRPC1) as a target of miR-135a during renal injury. We demonstrated that overexpression of TRPC1 was able to reverse the pathological effects of miR-135a on promoting proliferation of mesangial cells and increasing synthesis of extracellular matrix proteins. Moreover, miR-135a attenuated store depletion-induced Ca(2+) entry into cells by regulating TRPC1. Importantly, knockdown of miR-135a in diabetic kidneys restored levels of TRPC1 and reduced synthesis of fibronectin and collagen I in vivo. Suppressing TRPC1 levels to prevent Ca(2+) entry into cells may be a mechanism whereby miR-135a promotes renal fibrosis in diabetic kidney injury. CONCLUSIONS/INTERPRETATION These findings suggest an important role for miR-135a in renal fibrosis and inhibition of miR-135a might be an effective therapy for diabetic nephropathy.
Collapse
Affiliation(s)
- Feng He
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-Sen University, 58th, Zhongshan Road II, 510080, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
250
|
Rippo MR, Olivieri F, Monsurrò V, Prattichizzo F, Albertini MC, Procopio AD. MitomiRs in human inflamm-aging: A hypothesis involving miR-181a, miR-34a and miR-146a. Exp Gerontol 2014; 56:154-63. [DOI: 10.1016/j.exger.2014.03.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/27/2014] [Accepted: 03/01/2014] [Indexed: 12/30/2022]
|