201
|
Sebzda E, Mariathasan S, Ohteki T, Jones R, Bachmann MF, Ohashi PS. Selection of the T cell repertoire. Annu Rev Immunol 1999; 17:829-74. [PMID: 10358775 DOI: 10.1146/annurev.immunol.17.1.829] [Citation(s) in RCA: 358] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Advances in gene technology have allowed the manipulation of molecular interactions that shape the T cell repertoire. Although recognized as fundamental aspects of T lymphocyte development, only recently have the mechanisms governing positive and negative selection been examined at a molecular level. Positive selection refers to the active process of rescuing MHC-restricted thymocytes from programmed cell death. Negative selection refers to the deletion or inactivation of potentially autoreactive thymocytes. This review focuses on interactions during thymocyte maturation that define the T cell repertoire, with an emphasis placed on current literature within this field.
Collapse
Affiliation(s)
- E Sebzda
- Ontario Cancer Institute, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
202
|
Iritani BM, Alberola-Ila J, Forbush KA, Perimutter RM. Distinct signals mediate maturation and allelic exclusion in lymphocyte progenitors. Immunity 1999; 10:713-22. [PMID: 10403646 PMCID: PMC5310940 DOI: 10.1016/s1074-7613(00)80070-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Successful in-frame rearrangement of immunoglobulin heavy chain genes or T cell antigen receptor (TCR) beta chain genes in lymphocyte progenitors results in formation of pre-BCR and pre-TCR complexes. These complexes signal progenitor cells to mature, expand in cell number, and suppress further rearrangements at the immunoglobulin heavy chain or TCRbeta chain loci, thereby ensuring allelic exclusion. We used transgenic expression of a constitutively active form of c-Raf-1 (Raf-CAAX) to demonstrate that activation of the Map kinase pathway can stimulate both maturation and expansion of B and T lymphocytes, even in the absence of pre-TCR or pre-BCR formation. However, the same Raf signal did not mediate allelic exclusion. We conclude that maturation of lymphocyte progenitors and allelic exclusion require distinct signals.
Collapse
Affiliation(s)
- B M Iritani
- Department of Immunology, Howard Hughes Medical Institute, University of Washington, Seattle 98195, USA.
| | | | | | | |
Collapse
|
203
|
Ponniah S, Wang DZ, Lim KL, Pallen CJ. Targeted disruption of the tyrosine phosphatase PTPalpha leads to constitutive downregulation of the kinases Src and Fyn. Curr Biol 1999; 9:535-8. [PMID: 10339428 DOI: 10.1016/s0960-9822(99)80238-3] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A role for the receptor-like protein tyrosine phosphatase alpha (PTPalpha) in regulating the kinase activity of Src family members has been proposed because ectopic expression of PTPalpha enhances the dephosphorylation and activation of Src and Fyn [1] [2] [3]. We have generated mice lacking catalytically active PTPalpha to address the question of whether PTPalpha is a physiological activator of Src and Fyn, and to investigate its other potential functions in the context of the whole animal. Mice homozygous for the targeted PTPalpha allele (PTPalpha-/-) and lacking detectable PTPalpha protein exhibited no gross phenotypic defects. The kinase activities of Src and Fyn were significantly reduced in PTPalpha-/- mouse brain and primary embryonic fibroblasts, and this correlated with enhanced phosphorylation of the carboxy-terminal regulatory Tyr527 of Src in PTPalpha-/- mice. Thus, PTPalpha is a physiological positive regulator of the tyrosine kinases Src and Fyn. Increased tyrosine phosphorylation of several unidentified proteins was also apparent in PTPalpha-/- mouse brain lysates. These may be PTPalpha substrates or downstream signaling proteins. Taken together, the results indicate that PTPalpha has a dual function as a positive and negative regulator of tyrosine phosphorylation events, increasing phosphotyrosyl proteins through activation of Src and Fyn, and directly or indirectly removing tyrosine phosphate from other unidentified proteins.
Collapse
Affiliation(s)
- S Ponniah
- Cell Regulation Laboratory, In Vivo Model Systems Unit, Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore, 117609, Republic of Singapore
| | | | | | | |
Collapse
|
204
|
Klinghoffer RA, Sachsenmaier C, Cooper JA, Soriano P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J 1999; 18:2459-71. [PMID: 10228160 PMCID: PMC1171328 DOI: 10.1093/emboj/18.9.2459] [Citation(s) in RCA: 608] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Src family kinases (SFKs) have been implicated as important regulators of ligand-induced cellular responses including proliferation, survival, adhesion and migration. Analysis of SFK function has been impeded by extensive redundancy between family members. We have generated mouse embryos harboring functional null mutations of the ubiquitously expressed SFKs Src, Yes and Fyn. This triple mutation leads to severe developmental defects and lethality by E9.5. To elucidate the molecular mechanisms underlying this phenotype, SYF cells (deficient for Src, Yes and Fyn) were derived and tested for their ability to respond to growth factors or plating on extracellular matrix. Our studies reveal that while Src, Yes and Fyn are largely dispensable for platelet-derived growth factor (PDGF)-induced signaling, they are absolutely required to mediate specific functions regulated by extracellular matrix proteins. Fibronectin-induced tyrosine phosphorylation of focal adhesion proteins, including the focal adhesion kinase FAK, was nearly eliminated in the absence of Src, Yes and Fyn. Furthermore, consistent with previous reports demonstrating the importance of FAK for cell migration, SYF cells displayed reduced motility in vitro. These results demonstrate that SFK activity is essential during embryogenesis and suggest that defects observed in SYF triple mutant embryos may be linked to deficiencies in signaling by extracellular matrix-coupled receptors.
Collapse
Affiliation(s)
- R A Klinghoffer
- Program in Developmental Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North-Mailstop C3-168, PO Box 19204, Seattle, WA 98109-1024, USA
| | | | | | | |
Collapse
|
205
|
Johnson KG, LeRoy FG, Borysiewicz LK, Matthews RJ. TCR Signaling Thresholds Regulating T Cell Development and Activation Are Dependent upon SHP-1. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.7.3802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
An examination of thymocytes and peripheral T cells from SHP-1-deficient motheaten mice possessing a transgenic MHC class I-restricted TCR has implicated SHP-1 in regulating TCR signaling thresholds at three checkpoints in T cell development and activation. First, in the population of CD4−CD8− double negative thymocytes, SHP-1 appears capable of regulating signals from TCR complexes that control the maturation and proliferation of double negative thymocytes. Second, the loss of SHP-1 increased the number of CD4+CD8+ double positive thymocytes capable of maturing as TCRhigh single positive thymocytes. Third, the loss of SHP-1 altered the basal level of activation of naive lymph node T cells. Accordingly, SHP-1-deficient lymph node T cells bearing the transgenic TCR demonstrated a hyperresponsiveness to stimulation with cognate peptide. However, the loss of SHP-1 did not alter the cytolytic ability of mature effector cytotoxic T lymphocytes. Together these results suggest that SHP-1 contributes to establishing thresholds for TCR signaling in thymocytes and naive peripheral T cells.
Collapse
Affiliation(s)
- Kenneth G. Johnson
- Department of Medicine, Tenovus Building, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom
| | - Frances G. LeRoy
- Department of Medicine, Tenovus Building, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom
| | - Leszek K. Borysiewicz
- Department of Medicine, Tenovus Building, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom
| | - R. James Matthews
- Department of Medicine, Tenovus Building, University of Wales College of Medicine, Heath Park, Cardiff, United Kingdom
| |
Collapse
|
206
|
Abstract
Two-dimensional gel electrophoresis of anti-p59fyn immunoprecipitates obtained from non-transformed resting human T lymphocytes resulted in the identification of an oligomeric protein complex which is constitutively formed between Fyn and several additional phosphoproteins (pp43, pp72, pp85, the protein tyrosine kinase Pyk2, as well as the two recently cloned adaptor proteins, SKAP55 and SLAP-130). With the exception of pp85, these proteins seem to preferentially interact with Fyn since they are not detectable in Lck immunoprecipitates prepared under the same experimental conditions. Among the individual members of the Fyn-complex pp85, SKAP55 and pp43 are constitutively phosphorylated on tyrosine residue(s) in vivo and likely interact with Fyn via its src homology 2 (SH2)-domain. In contrast to non-transformed T lymphocytes, continuously proliferating transformed human T cell lines express an altered Fyn-complex. Thus, despite normal expression and tyrosine phosphorylation, SKAP55 does not associate with Fyn in Jurkat cells and in other human T cell lines. Instead two novel proteins interact with Fyn among which one has previously been identified as alpha-tubulin. Importantly, almost identical alterations of the Fyn-complex as observed in Jurkat cells are induced in non-transformed T lymphocytes following mitogenic stimulation. These data suggest that Fyn and its associated proteins could be involved in the control of human T cell proliferation. Moreover, the analogous constitutive alterations in transformed T cell lines could indicate that deregulation of the Fyn-complex might be functionally associated with the malignant phenotype of these cells.
Collapse
Affiliation(s)
- A Marie-Cardine
- Institute for Immunology, Immunomodulation Laboratory, Ruprecht-Karls University of Heidelberg, Germany.
| | | | | |
Collapse
|
207
|
Narisawa-Saito M, Silva AJ, Yamaguchi T, Hayashi T, Yamamoto T, Nawa H. Growth factor-mediated Fyn signaling regulates alpha-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor expression in rodent neocortical neurons. Proc Natl Acad Sci U S A 1999; 96:2461-6. [PMID: 10051665 PMCID: PMC26807 DOI: 10.1073/pnas.96.5.2461] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Src-family protein tyrosine kinases (PTKs) transduce signals to regulate neuronal development and synaptic plasticity. However, the nature of their activators and molecular mechanisms underlying these neural processes are unknown. Here, we show that brain-derived neurotrophic factor (BDNF) and platelet-derived growth factor enhance expression of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptor 1 and 2/3 proteins in rodent neocortical neurons via the Src-family PTK(s). The increase in AMPA receptor levels was blocked in cultured neocortical neurons by addition of a Src-family-selective PTK inhibitor. Accordingly, neocortical cultures from Fyn-knockout mice failed to respond to BDNF whereas those from wild-type mice responded. Moreover, the neocortex of young Fyn mutants exhibited a significant in vivo reduction in these AMPA receptor proteins but not in their mRNA levels. In vitro kinase assay revealed that BDNF can indeed activate the Fyn kinase: It enhanced tyrosine phosphorylation of Fyn as well as that of enolase supplemented exogenously. All of these results suggest that the Src-family kinase Fyn, activated by the growth factors, plays a crucial role in modulating AMPA receptor expression during brain development.
Collapse
MESH Headings
- Animals
- Brain-Derived Neurotrophic Factor/pharmacology
- Cells, Cultured
- Crosses, Genetic
- Epidermal Growth Factor/pharmacology
- Fibroblast Growth Factor 2/pharmacology
- Gene Expression Regulation/drug effects
- Growth Substances/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neocortex/physiology
- Neurons/cytology
- Neurons/physiology
- Platelet-Derived Growth Factor/pharmacology
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-fyn
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, AMPA/genetics
- Receptors, Glutamate/genetics
- Receptors, N-Methyl-D-Aspartate/genetics
- Signal Transduction/physiology
- Transcription, Genetic
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- M Narisawa-Saito
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | | | | | | | | |
Collapse
|
208
|
Zhang W, Sommers CL, Burshtyn DN, Stebbins CC, DeJarnette JB, Trible RP, Grinberg A, Tsay HC, Jacobs HM, Kessler CM, Long EO, Love PE, Samelson LE. Essential role of LAT in T cell development. Immunity 1999; 10:323-32. [PMID: 10204488 DOI: 10.1016/s1074-7613(00)80032-1] [Citation(s) in RCA: 449] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The linker molecule LAT is a substrate of the tyrosine kinases activated following TCR engagement. Phosphorylated LAT binds many critical signaling molecules. The central role of this molecule in TCR-mediated signaling has been demonstrated by experiments in a LAT-deficient cell line. To probe the role of LAT in T cell development, the LAT gene was disrupted by targeting. LAT-deficient mice appeared healthy. Flow cytometric analysis revealed normal B cell populations but the absence of any mature peripheral T cells. Intrathymic development was blocked within the CD4- CD8- stage. No gross abnormality of NK or platelet function was observed. LAT is thus critical to both T cell activation and development.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Carrier Proteins/physiology
- Cell Differentiation/immunology
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Membrane Proteins/physiology
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Phosphoproteins/genetics
- Phosphoproteins/immunology
- Phosphoproteins/physiology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/physiology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- W Zhang
- Section on Lymphocyte Signaling, Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
209
|
Würch A, Biro J, Falk I, Mossmann H, Eichmann K. Reduced Generation but Efficient TCRβ-Chain Selection of CD4+8+ Double-Positive Thymocytes in Mice with Compromised CD3 Complex Signaling. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.5.2741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Maturation to the CD4+8+ double-positive (DP) stage of thymocyte development is restricted to cells that have passed TCRβ selection, an important checkpoint at which immature CD4−8− double-negative (DN) cells that express TCRβ polypeptide chains are selected for further maturation. The generation of DP thymocytes following TCRβ selection is dependent on cellular survival, differentiation, and proliferation, and the entire process appears to be mediated by the pre-TCR/CD3 complex. In this study, we investigate the signaling requirements for TCRβ selection using mice single deficient and double deficient for CD3ζ/η and/or p56lck. While the numbers of DP cells are strongly reduced in the single-deficient mice, a further drastic reduction in the generation of DP thymocytes is seen in the double-deficient mice. The poor generation of DP cells in the mutant mice is primarily due to an impaired ability of CD25+ DN thymocytes to proliferate following expression of a TCRβ-chain. Nevertheless, the residual DP cells in all mutant mice are strictly selected for expression of TCRβ polypeptide chains. DN thymocytes of mutant mice expressed TCRβ and CD3ε at the cell surface and contained mRNA for pre-Tα, but not for clonotypic TCRα-chains, together suggesting that TCRβ selection is mediated by pre-TCR signaling in all cases. The data suggest differential requirements of pre-TCR signaling for cell survival on the one hand, and for the proliferative burst associated with TCRβ selection on the other.
Collapse
Affiliation(s)
- Andreas Würch
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | - Judit Biro
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | - Ingrid Falk
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | - Horst Mossmann
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| | - Klaus Eichmann
- Max-Planck-Institut für Immunbiologie, Freiburg, Germany
| |
Collapse
|
210
|
Hofmeister R, Khaled AR, Benbernou N, Rajnavolgyi E, Muegge K, Durum SK. Interleukin-7: physiological roles and mechanisms of action. Cytokine Growth Factor Rev 1999; 10:41-60. [PMID: 10379911 DOI: 10.1016/s1359-6101(98)00025-2] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Interleukin-7 (IL-7), a product of stromal cells, provides critical signals to lymphoid cells at early stages in their development. Two types of cellular responses to IL-7 have been identified in lymphoid progenitors: (1) a trophic effect and (2) an effect supporting V(D)J recombination. The IL-7 receptor is comprised of two chains, IL-7R alpha and gamma(c). Following receptor crosslinking, rapid activation of several classes of kinases occurs, including members of the Janus and Src families and PI3-kinase. A number of transcription factors are subsequently activated including STATs, c-myc, NFAT and AP-1. However, it remains to be determined which, if any, previously identified pathway leads to the trophic or V(D)J endpoints. The trophic response to IL-7 involves protecting lymphoid progenitors from a death process that resembles apoptosis. This protection is partly mediated by IL-7 induction of Bcl-2, however other IL-7-induced events are probably also involved in the trophic response. The V(D)J response to IL-7 is partly mediated through increased production of Rag proteins (which cleave the target locus) and partly by increasing the accessibility of a target locus to cleavage through chromatin remodeling.
Collapse
Affiliation(s)
- R Hofmeister
- Laboratory of Molecular Immunoregulation, NCI, USA
| | | | | | | | | | | |
Collapse
|
211
|
Dautigny N, Le Campion A, Lucas B. Timing and Casting for Actors of Thymic Negative Selection. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.3.1294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We have recently proposed a new model for the differentiation pathway of αβ TCR thymocytes, with the CD4 and CD8 coreceptors undergoing an unexpectedly complex series of expression changes. Taking into account this new insight, we reinvestigated the timing of thymic negative selection. We found that, although endogenous superantigen-driven thymic negative selection could occur at different steps during double-positive/single-positive cell transition, this event was never observed among CD4lowCD8low TCRint CD69+ thymocytes, i.e., within the first subset to be generated upon TCR-mediated activation of immature double-positive cells. We confirm a role for CD40/CD40L interaction, and the absence of involvement of CD28 costimulation, in thymic deletion in vivo. Surprisingly, we found that thymic negative selection was impaired in the absence of Fas, but not FasL, molecule expression. Finally, we show involvement in opposing directions for p59fyn and SHP-1 molecules in signaling for thymic negative selection.
Collapse
Affiliation(s)
- Nicole Dautigny
- Institut National de la Santé et de la Recherche Médicale, Unit 345, Institut Necker, Paris, France
| | - Armelle Le Campion
- Institut National de la Santé et de la Recherche Médicale, Unit 345, Institut Necker, Paris, France
| | - Bruno Lucas
- Institut National de la Santé et de la Recherche Médicale, Unit 345, Institut Necker, Paris, France
| |
Collapse
|
212
|
Motoya S, Kitamura K, Matsuda A, Maizel AL, Yamamoto H, Takeda A. Interaction between CD45-AP and protein-tyrosine kinases involved in T cell receptor signaling. J Biol Chem 1999; 274:1407-14. [PMID: 9880514 DOI: 10.1074/jbc.274.3.1407] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD45-AP associates specifically with CD45, a protein-tyrosine phosphatase essential for antigen receptor-mediated signal transduction. CD45 modulates the activity of Src family protein-tyrosine kinases involved at the onset of antigen receptor-mediated signaling by dephosphorylating their regulatory tyrosyl residues. We have shown that lymphocyte responses to antigen receptor stimulation are impaired in CD45-AP-null mice. To examine the possibility that CD45-AP coordinates the interaction between CD45 and its substrates, we investigated the associations of CD45-AP with several protein-tyrosine kinases. Endogenous CD45-AP coimmunoprecipitated with Lck and ZAP-70 in both CD45-positive T cells and their CD45-negative variants after stimulation by antigen receptor ligation. Concomitantly, CD45 coimmunoprecipitated with Lck and ZAP-70 after T cell receptor-mediated stimulation of CD45-positive cells. Recombinant CD45-AP exhibited specific binding to Lck and ZAP-70 protein-tyrosine kinases, but not to Fyn or Csk, in lysates of both CD45-positive and -negative T cells. Specific interactions were demonstrated between the respective recombinant proteins as well. These results demonstrate that CD45-AP associates directly and selectively with Lck and ZAP-70 in response to T cell receptor-mediated stimulation. The associations of CD45-AP with Lck and ZAP-70 may mediate the functional interactions of these kinases with CD45 during antigen receptor stimulation.
Collapse
Affiliation(s)
- S Motoya
- Department of Pathology, Roger Williams Medical Center-Boston University, Providence, Rhode Island 02908, USA
| | | | | | | | | | | |
Collapse
|
213
|
Lu YF, Kojima N, Tomizawa K, Moriwaki A, Matsushita M, Obata K, Matsui H. Enhanced synaptic transmission and reduced threshold for LTP induction in fyn-transgenic mice. Eur J Neurosci 1999; 11:75-82. [PMID: 9987012 DOI: 10.1046/j.1460-9568.1999.00407.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To elucidate the physiological role of Fyn, we analysed the properties of synaptic transmission and synaptic plasticity in hippocampal slices of mice overexpressing either wild-type Fyn (w-Fyn) or its constitutively active mutant (m-Fyn). These fyn-transgenes were driven by the calcium/calmodulin-dependent protein kinase II alpha promoter which turned on in the forebrain neurons including hippocampal pyramidal cells and in late neural development. In the hippocampal slices expressing m-Fyn the paired-pulse facilitation was reduced and the basal synaptic transmission was enhanced. A weak theta-burst stimulation, which was subthreshold for the induction of long-term potentiation (LTP) in control slices, elicited LTP in CA1 region of the slices expressing m-Fyn. When a relatively strong stimulation was applied, the magnitude of LTP in m-Fyn slices was similar to that in control slices. By contrast, the basal synaptic transmission and the threshold for the induction of LTP were not altered in the slices overexpressing wild-type Fyn. To examine the effect of expression of m-Fyn on GABAergic inhibitory system, we applied bicuculline, a GABAA receptor blocker, to the hippocampal slices. The ability of bicuculline to enhance excitatory postsynaptic potentials was attenuated in slices expressing m-Fyn, suggesting that the overexpression of m-Fyn reduced the GABAergic inhibition. The enhancement of synaptic transmission and the reduction of GABAergic inhibition may contribute to the enhanced seizure susceptibility in the mice expressing m-Fyn. Thus, these results suggest that regulation of Fyn tyrosine kinase activity is important for both synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Y F Lu
- First Department of Physiology, Okayama University Medical School, Japan
| | | | | | | | | | | | | |
Collapse
|
214
|
|
215
|
|
216
|
Rozdzial MM, Pleiman CM, Cambier JC, Finkel3 TH. pp56 Lck Mediates TCR ζ-Chain Binding to the Microfilament Cytoskeleton. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.10.5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The TCR ζ-chain (ζ) on mature murine T lymphocytes binds to the microfilament cytoskeleton in response to Ag receptor ligation. Here, we report the role of Src family kinases in ζ-cytoskeletal binding, using mutant mice and a cell-free model system. Binding of ζ to actin in the cell-free system has a specific requirement for ATP and divalent cations, with an apparent Michaelis-Menton constant for ATP in the millimolar range, and can be disrupted by either EDTA or the microfilament poison, cytochalasin D, suggesting that microfilaments provide the structural framework for an active process involving cellular kinases. Indeed, tyrosine-phosphorylated ζ is a predominant form of the ζ-chain bound to polymerized actin, while challenge with alkaline phosphatase prevents ζ-chain association in solution and releases ζ-chain from the bound state. Phosphorylated Src-family kinase pp56Lck also associates with membrane skeleton upon TCR engagement and is a component of the reconstituted cytoskeletal pellet. ζ-Chain phosphorylation and ζ-cytoskeletal binding are abrogated in cell lysates with reduced levels of pp56Lck and in activated mutant murine T cells lacking pp56Lck, implicating pp56Lck as the kinase involved in ζ-chain tyrosine phosphorylation and ζ-cytoskeletal binding. Finally, recombinant Lck Src homology 2 domain preferentially inhibits reconstituted ζ-cytoskeleton association, suggesting that ζ-microfilament binding is dependent on interactions between phosphorylated tyrosine residues in ζ-chain activation motifs and the Src homology 2 domain of the Lck protein tyrosine kinase.
Collapse
Affiliation(s)
- Moshe M. Rozdzial
- *Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206
| | - Chris M. Pleiman
- *Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206
| | - John C. Cambier
- *Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206
- †Department of Immunology, University of Colorado Health Sciences Center, Denver, CO 80262; and
| | - Terri H. Finkel3
- †Department of Immunology, University of Colorado Health Sciences Center, Denver, CO 80262; and
- ‡Departments of Pediatrics and Biochemistry & Molecular Genetics, University of Colorado Health Sciences Center, Denver, CO 80262
| |
Collapse
|
217
|
Kadlecek TA, van Oers NSC, Lefrancois L, Olson S, Finlay D, Chu DH, Connolly K, Killeen N, Weiss A. Differential Requirements for ZAP-70 in TCR Signaling and T Cell Development. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.9.4688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The Syk/ZAP-70 family of protein tyrosine kinases is indispensable for normal lymphoid development. Syk is necessary for the development of B cells and epithelial γδ T cells, whereas ZAP-70 is essential for the normal development of T cells and TCR signaling. In this study, we show that although development of the αβ lineage was arrested in the thymus, CD3-positive T cells, primarily of the γδ lineage, were present in the lymph nodes of mice lacking ZAP-70. Moreover, in the absence of ZAP-70, dendritic epidermal T cells were fewer in number and of abnormal morphology, and intestinal intraepithelial lymphocytes, normally containing a large proportion of γδ T cells, were markedly reduced. These data suggest that γδ T cells show a variable dependence upon ZAP-70 for their development. Biochemical analyses of thymocytes revealed a lack of basal ζ-chain tyrosine phosphorylation. However, several other substrates were inducibly tyrosine phosphorylated following TCR stimulation. Thus, TCR-mediated signaling in ZAP-70-deficient thymocytes is only partially impaired. These studies suggest that Syk compensates only partially for the loss of ZAP-70, and that there is an absolute requirement of ZAP-70 for αβ T cells and epithelial γδ T cells, but not for some γδ T cells in peripheral lymphoid tissues.
Collapse
Affiliation(s)
| | | | - Leo Lefrancois
- §Division of Rheumatology, Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | - Sara Olson
- §Division of Rheumatology, Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030
| | | | - David H. Chu
- *Howard Hughes Medical Institute, Department of Medicine,
- ‡Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; and
| | | | - Nigel Killeen
- ‡Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; and
| | - Arthur Weiss
- *Howard Hughes Medical Institute, Department of Medicine,
- ‡Department of Microbiology and Immunology, University of California, San Francisco, CA 94143; and
| |
Collapse
|
218
|
Kojima N, Ishibashi H, Obata K, Kandel ER. Higher Seizure Susceptibility and Enhanced Tyrosine Phosphorylation of N-Methyl-d-Aspartate Receptor Subunit 2B in fyn Transgenic Mice. Learn Mem 1998. [DOI: 10.1101/lm.5.6.429] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Earlier work has suggested that Fyn tyrosine kinase plays an important role in synaptic plasticity. To understand the downstream targets of Fyn signaling cascade in neurons, we generated transgenic mice expressing either a constitutively activated form of Fyn or native Fyn in neurons of the forebrain. Transgenic mice expressing mutant Fyn exhibited higher seizure activity and were prone to sudden death. Mice overexpressing native Fyn did not show such an obvious epileptic phenotype, but they exhibited accelerated kindling in response to once-daily stimulation of the amygdala. Tyrosine phosphorylation of at least three proteins was enhanced in the forebrains of both native and mutant fyn transgenic mice; tyrosine phosphorylation of these three proteins was reduced infyn knockout mice, suggesting that they are substrates of Fyn. One of these proteins was identified as the subunit 2B (NR2B) of theN-methyl-d-aspartate (NMDA) receptor. Administration of MK-801, a noncompetitive NMDA receptor antagonist, retarded kindling in mice overexpressing native Fyn, as well as wild-type mice, suggests that the accelerated kindling in mice overexpressing Fyn is also mediated by the NMDA receptor activity. Our results thus suggest that tyrosine phosphorylation by Fyn might be involved in regulation of the susceptibility of kindling, one form of the NMDA receptor-mediated neuronal plasticity.
Collapse
|
219
|
Marie-Cardine A, Hendricks-Taylor LR, Boerth NJ, Zhao H, Schraven B, Koretzky GA. Molecular interaction between the Fyn-associated protein SKAP55 and the SLP-76-associated phosphoprotein SLAP-130. J Biol Chem 1998; 273:25789-95. [PMID: 9748251 DOI: 10.1074/jbc.273.40.25789] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has previously been reported that in resting T-lymphocytes the protein tyrosine kinase p59 constitutively co-precipitates with four phosphoproteins of 43, 55, 85, and 120 kDa, respectively. We have recently cloned the 55-kDa protein that was termed Src kinase-associated phosphoprotein of 55 kDa (SKAP55). Here we demonstrate that the recently characterized SH2-domain-containing leukocyte protein 76-associated phosphoprotein of 130 kDa (SLAP-130) is one of the components of the Fyn complex and that it also co-precipitates with SKAP55 in human T-cells. We establish that SKAP55 and SLAP-130 associate with each other when both molecules are co-expressed in COS cells. By co-transfection of truncated mutants of SKAP55 and SLAP-130 as well as by using the two-hybrid selection system, we further demonstrate that the association between SLAP-130 and SKAP55 is direct and involves the Src homology 3 domain of SKAP55 and the proline-rich sequence of SLAP-130.
Collapse
Affiliation(s)
- A Marie-Cardine
- Ruprecht-Karls University of Heidelberg, Institute for Immunology, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
220
|
Abstract
T cells undergo a defined program of phenotypic and genetic changes during differentiation within the thymus. These changes define commitment of T-cell receptor (TCR) gamma delta and TCR alpha beta cells and lineage differentiation into CD4+ T helper and CD8+ cytotoxic T cells. T-cell differentiation and selection in the thymus constitute a tightly co-ordinated multistep journey through a network that can be envisaged as a three-dimensional informational highway made up of stromal cells and extracellular matrix molecules. This intrathymic journey is controlled by information exchange, with thymocytes depending on two-way cellular interactions with thymic stromal cells in order to receive essential signals for maturation and selection. Genetic inactivation of surface receptors, signal transduction molecules, and transcription factors using homologous recombination has provided novel insight into the signaling cascades that relay surface receptor engagement to gene transcription and subsequent progression of the developmental program. In this review we discuss molecular mechanisms of T lymphocyte development in mice that harbour genetic mutations in the guanine nucleotide exchange factor Vav and the interferon regulatory transcription factor 1 (IRF-1). We also propose a novel model of T-cell selection based on TCR alpha chain-directed signals for allelic exclusion and TCR alpha-based selection for single receptor usage.
Collapse
Affiliation(s)
- J M Penninger
- Amgen Institute, Department of Medical Biophysics, University of Toronto, Ontario, Canada.
| | | |
Collapse
|
221
|
Yamashita Y, Hooker SW, Jiang H, Laurent AB, Resta R, Khare K, Coe A, Kincade PW, Thompson LF. CD73 expression and fyn-dependent signaling on murine lymphocytes. Eur J Immunol 1998; 28:2981-90. [PMID: 9808167 DOI: 10.1002/(sici)1521-4141(199810)28:10<2981::aid-immu2981>3.0.co;2-d] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CD73 is a glycosyl phosphatidylinositol-anchored protein with both ecto-enzyme activity (ecto-5'-nucleotidase) and signal transducing capabilities for human T lymphocytes. We now report an analysis of the distribution and function of CD73 in murine lymphoid tissues made possible by the development of the first monoclonal antibodies (mAb) specific for murine CD73. Subsets of T and B lymphocytes are CD73+ and the level of expression increases with lymphocyte maturation in both species. Among B cells, CD73 is largely restricted to cells which have undergone isotype switching. The signal transmitting function of CD73 is also conserved, as splenic T cells treated with anti-CD73 mAb plus phorbol 12-myristate 13-acetate proliferate and secrete IL-2. Fyn-/- mice are unresponsive to CD73 ligation, however, demonstrating the requirement for this tyrosine kinase in CD73-mediated signal transduction. CD73 is down-regulated after mAb plus cross-linking, suggesting that expression may be controlled by interaction with a ligand. Only small numbers of thymocytes are CD73+, so CD73 receptor functions are unlikely to be important for developing T cells. However, immunohistochemical analysis reveals that reticular and vascular cells throughout the thymus and other lymphoid tissues are markedly CD73+. Therefore, CD73 might mediate lymphocyte-stromal cell interactions or condition the local microenvironment to facilitate lymphocyte development and/or function.
Collapse
Affiliation(s)
- Y Yamashita
- Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City 73104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
222
|
Campbell KS, Cooper S, Dessing M, Yates S, Buder A. Interaction of p59 fyn Kinase with the Dynein Light Chain, Tctex-1, and Colocalization During Cytokinesis. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.4.1728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The protein tyrosine kinase p59fyn (Fyn) plays important roles in both lymphocyte Ag receptor signaling and cytokinesis of proB cells. We utilized yeast two-hybrid cloning to identify the product of the tctex-1 gene as a protein that specifically interacts with Fyn, but not with other Src family kinases. Tctex-1 was recently identified as a component of the dynein cytoskeletal motor complex. The capacity of a Tctex-1-glutathione S-transferase fusion protein to effectively bind Fyn from cell lysates confirmed the authenticity of this interaction. Tctex-1 binding required the first 19 amino acids of Fyn and integrity of two lysine residues within this sequence that were previously shown to be important for Fyn interactions with the immunoreceptor tyrosine-based activation motifs (ITAMs) of lymphocyte Ag receptors. Expression of tctex-1 mRNA and protein was observed in all lymphoma lines analyzed, and immunofluorescence confocal microscopy localized the protein to the perinuclear region. Analysis of a T cell hybridoma revealed prominent colocalization of Tctex-1 and Fyn at the cleavage furrow and mitotic spindles in cells undergoing cytokinesis. Our results provide a unique insight into a mechanism by which Tctex-1 might mediate specific recruitment of Fyn to the dynein complex in lymphocytes, which may be a critical event in mediating the previously defined role of Fyn in cytokinesis.
Collapse
Affiliation(s)
| | | | - Mark Dessing
- Basel Institute for Immunology, Basel, Switzerland
| | - Sol Yates
- Basel Institute for Immunology, Basel, Switzerland
| | - Annie Buder
- Basel Institute for Immunology, Basel, Switzerland
| |
Collapse
|
223
|
Dodson GS, Guarnieri DJ, Simon MA. Src64 is required for ovarian ring canal morphogenesis during Drosophila oogenesis. Development 1998; 125:2883-92. [PMID: 9655810 DOI: 10.1242/dev.125.15.2883] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Src family of protein tyrosine kinases have been implicated as important regulators of cellular proliferation, differentiation and function. In order to understand further the role of Src family kinases, we have generated loss-of-function mutations in Src64, one of two Src family kinases known in Drosophila melanogaster. Animals with reduced Src64 function develop normally and are fully viable. However, Src64 female flies have reduced fertility, which is associated with the incomplete transfer of cytoplasm from nurse cells to the developing oocyte. Analysis of Src64 egg chambers showed defects in the ring canals that interconnect the oocyte and its 15 associated nurse cells. Src64 ring canals fail to accumulate the high levels of tyrosine phosphorylation that are normally present. Despite the reduced tyrosine phosphorylation, known ring canal components such as filamentous actin, a ring canal-specific product of the hu-li tai shao gene, and the kelch protein localize properly. However, Src64 ring canals are reduced in size and frequently degenerate. These results indicate that Src64 is required for the proper growth and stability of the ovarian ring canals.
Collapse
Affiliation(s)
- G S Dodson
- Department of Biological Sciences and Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
224
|
Lin H, Hutchcroft JE, Andoniou CE, Kamoun M, Band H, Bierer BE. Association of p59(fyn) with the T lymphocyte costimulatory receptor CD2. Binding of the Fyn Src homology (SH) 3 domain is regulated by the Fyn SH2 domain. J Biol Chem 1998; 273:19914-21. [PMID: 9677430 DOI: 10.1074/jbc.273.31.19914] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human CD2 is a 50-55-kDa cell surface receptor specifically expressed on the surface of T lymphocytes and NK cells. Stimulation of human peripheral blood T cells with mitogenic pairs of anti-CD2 monoclonal antibodies (mAbs) is sufficient to induce interleukin-2 production and T cell proliferation in the absence of an antigen-specific signal through the T cell receptor. CD2 has been shown previously to associate physically with the Src family protein-tyrosine kinases p56(lck) and p59(fyn). We now report that stimulation of T cells with mitogenic pairs of anti-CD2 mAbs enhanced the association of the Fyn polypeptide with the CD2 complex, whereas stimulation with single anti-CD2 mAb had minimal effect. Using glutathione S-transferase (GST) fusion proteins, we found that CD2 bound to the Src homology (SH) 3 domain of Fyn. Interestingly, the CD2-Fyn association was negatively regulated by the Fyn SH2 domain; CD2 bound poorly to GST fusion proteins expressing both the SH2 and SH3 domains of Fyn. However, the inhibitory effect of the Fyn SH2 domain on binding of the Fyn SH3 domain to CD2 was relieved by peptides containing a phosphorylated YEEI sequence that bound directly to the Fyn SH2 domain. In addition, we found that the ability of the Fyn SH2 domain to precipitate tyrosine-phosphorylated proteins, including the CD3zeta chain, was enhanced after T cell stimulation with mitogenic pairs of CD2 mAbs. Finally, overexpression of a mutated Fyn molecule, in which the ability of the Fyn SH2 domain to bind phosphotyrosine-containing proteins was abrogated, inhibited CD2-induced transcriptional activation of the nuclear factor of activated T cells (NFAT), suggesting a functional involvement of the Fyn SH2 domain in CD2-induced T cell signaling. We thus propose that stimulation through the CD2 receptor leads to the tyrosine phosphorylation of intracellular proteins, including CD3zeta itself, which in turn bind to the Fyn-SH2 domain, allowing the direct association of the Fyn SH3 domain with CD2 and the initiation of downstream signaling events.
Collapse
Affiliation(s)
- H Lin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Brigham and Woman's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
225
|
Pivniouk V, Tsitsikov E, Swinton P, Rathbun G, Alt FW, Geha RS. Impaired viability and profound block in thymocyte development in mice lacking the adaptor protein SLP-76. Cell 1998; 94:229-38. [PMID: 9695951 DOI: 10.1016/s0092-8674(00)81422-1] [Citation(s) in RCA: 308] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The adaptor protein SLP-76 is expressed in T lymphocytes and myeloid cells and is a substrate for ZAP-70 and Syk. We generated a SLP-76 null mutation in mice by homologous recombination in embryonic stem cells to evaluate the role of SLP-76 in T cell development and activation. SLP-76-deficient mice exhibited subcutaneous and intraperitoneal hemorrhaging and impaired viability. Analysis of lymphoid cells revealed a profound block in thymic development with absence of double-positive CD4+8+ thymocytes and of peripheral T cells. This block could not be overcome by in vivo treatment with anti-CD3. V-D-J rearrangement of the TCRbeta locus was not obviously affected. B cell development was normal. These results indicate that SLP-76 collects all pre-TCR signals that drive the development and expansion of double-positive thymocytes.
Collapse
Affiliation(s)
- V Pivniouk
- Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
226
|
Goldman FD, Ballas ZK, Schutte BC, Kemp J, Hollenback C, Noraz N, Taylor N. Defective expression of p56lck in an infant with severe combined immunodeficiency. J Clin Invest 1998; 102:421-9. [PMID: 9664084 PMCID: PMC508901 DOI: 10.1172/jci3205] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Severe combined immune deficiency (SCID) is a heterogeneous disorder characterized by profound defects in cellular and humoral immunity. We report here an infant with clinical and laboratory features of SCID and selective CD4 lymphopenia and lack of CD28 expression on CD8(+) T cells. T cells from this patient showed poor blastogenic responses to various mitogens and IL-2. Other T cell antigen receptor- induced responses, including upregulation of CD69, were similarly inhibited. However, more proximal T cell antigen receptor signaling events, such as anti-CD3 induced protein tyrosine phosphorylation, phosphorylation of mitogen-associated protein kinase, and calcium mobilization were intact. Although p59fyn and ZAP-70 protein tyrosine kinases were expressed at normal levels, a marked decrease in the level of p56lck was noted. Furthermore, this decrease was associated with the presence of an alternatively spliced lck transcript lacking the exon 7 kinase encoding domain. These data suggest that a deficiency in p56lck expression can produce a SCID phenotype in humans.
Collapse
Affiliation(s)
- F D Goldman
- Department of Pediatrics, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
227
|
|
228
|
Calautti E, Cabodi S, Stein PL, Hatzfeld M, Kedersha N, Paolo Dotto G. Tyrosine phosphorylation and src family kinases control keratinocyte cell-cell adhesion. J Cell Biol 1998; 141:1449-65. [PMID: 9628900 PMCID: PMC2132783 DOI: 10.1083/jcb.141.6.1449] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/1997] [Revised: 04/21/1998] [Indexed: 02/07/2023] Open
Abstract
In their progression from the basal to upper differentiated layers of the epidermis, keratinocytes undergo significant structural changes, including establishment of close intercellular contacts. An important but so far unexplored question is how these early structural events are related to the biochemical pathways that trigger differentiation. We show here that beta-catenin, gamma-catenin/plakoglobin, and p120-Cas are all significantly tyrosine phosphorylated in primary mouse keratinocytes induced to differentiate by calcium, with a time course similar to that of cell junction formation. Together with these changes, there is an increased association of alpha-catenin and p120-Cas with E-cadherin, which is prevented by tyrosine kinase inhibition. Treatment of E-cadherin complexes with tyrosine-specific phosphatase reveals that the strength of alpha-catenin association is directly dependent on tyrosine phosphorylation. In parallel with the biochemical effects, tyrosine kinase inhibition suppresses formation of cell adhesive structures, and causes a significant reduction in adhesive strength of differentiating keratinocytes. The Fyn tyrosine kinase colocalizes with E-cadherin at the cell membrane in calcium-treated keratinocytes. Consistent with an involvement of this kinase, fyn-deficient keratinocytes have strongly decreased tyrosine phosphorylation levels of beta- and gamma-catenins and p120-Cas, and structural and functional abnormalities in cell adhesion similar to those caused by tyrosine kinase inhibitors. Whereas skin of fyn-/- mice appears normal, skin of mice with a disruption in both the fyn and src genes shows intrinsically reduced tyrosine phosphorylation of beta-catenin, strongly decreased p120-Cas levels, and important structural changes consistent with impaired keratinocyte cell adhesion. Thus, unlike what has been proposed for oncogene-transformed or mitogenically stimulated cells, in differentiating keratinocytes tyrosine phosphorylation plays a positive role in control of cell adhesion, and this regulatory function appears to be important both in vitro and in vivo.
Collapse
Affiliation(s)
- E Calautti
- Cutaneous Biology Research Center, Harvard Medical School and Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | | | |
Collapse
|
229
|
Utting O, Teh SJ, Teh HS. T Cells Expressing Receptors of Different Affinity for Antigen Ligands Reveal a Unique Role for p59 fyn in T Cell Development and Optimal Stimulation of T Cells by Antigen. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.160.11.5410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Signaling from the TCR involves the protein tyrosine kinase p59fyn (Fyn). Previous studies have shown that T cell development occurs normally in Fyn−/− mice. In this study, we investigated the requirement for Fyn in the development and function of T cells expressing either the transgenic 2C TCR, with high affinity for its Ag ligand, or the transgenic H-Y TCR, representative of a low affinity TCR. Although Fyn was not essential for positive selection of thymocytes expressing either the 2C or the H-Y TCR, it facilitated the down-regulation of the heat-stable Ag in positively selected CD4−CD8+ thymocytes in both 2C and H-Y mice. Negative selection of thymocytes expressing the H-Y TCR also occurs efficiently in Fyn−/− mice. However, in Fyn−/− mice, there was a preferential survival of thymocytes that expressed higher levels of the CD8 coreceptor and the transgenic TCR. Positively selected CD4−CD8+ thymocytes and peripheral T cells expressing either the 2C or the H-Y TCR differed in their requirement of Fyn for optimal proliferation responses to stimulation by antigenic ligands. Whereas 2C Fyn−/− or 2C Fyn+/+ thymocytes and peripheral T cells responded optimally to stimulation by the specific Ag, H-Y Fyn−/− thymocytes and peripheral T cells were hyporesponsive compared with Fyn+/+ cells. Significantly, in response to a defined low affinity ligand, both 2C Fyn−/− thymocytes and peripheral T cells required Fyn for optimal response to Ag stimulation. Thus, Fyn plays a role during thymocyte development and is required for optimal responses to low affinity/avidity ligands.
Collapse
Affiliation(s)
- Oliver Utting
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Soo-Jeet Teh
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Hung-Sia Teh
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
230
|
Goffin V, Bouchard B, Ormandy CJ, Weimann E, Ferrag F, Touraine P, Bole-Feysot C, Maaskant RA, Clement-Lacroix P, Edery M, Binart N, Kelly PA. Prolactin: a hormone at the crossroads of neuroimmunoendocrinology. Ann N Y Acad Sci 1998; 840:498-509. [PMID: 9629276 DOI: 10.1111/j.1749-6632.1998.tb09588.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Prolactin (PRL), secreted by the pituitary, decidua, and lymphoid cells, has been shown to have a regulatory role in reproduction, immune function, and cell growth in mammals. The effects of PRL are mediated by a membrane-bound receptor that is a member of the superfamily of cytokine receptors. Formation of a trimer, consisting of one molecule of ligand and two molecules of receptor, appears to be a necessary prerequisite for biological activity. The function of these receptors is mediated, at least in part, by two families of signaling molecules: Janus tyrosine kinases (JAKs) and signal transducers and activators of transcription (STATs). To study these receptors, we have used two approaches: mutational analysis of their cytoplasmic domains coupled with functional tests and inactivation (knockout) of the receptor gene by homologous recombination in mice. We have produced mice by gene targeting in embryonic stem cells carrying a germline null mutation of the prolactin receptor gene. Heterozygous (+/-) females show almost complete failure to lactate, following their first, but not subsequent pregnancies. Homozygous (-/-) females are infertile as a result of multiple reproductive abnormalities, including ovulation of premiotic oocytes, reduced fertilization of oocytes, reduced preimplantation oocyte development, lack of embryo implantation, and the absence of pseudopregnancy. Half of the homozygous males are infertile or show reduced fertility. In view of the wide-spread distribution of PRL receptors, other phenotypes including those on the immune system, are currently being evaluated in -/- animals. This study establishes the prolactin receptor as a key regulator of mammalian reproduction and provides the first total ablation model to further study the role of the prolactin receptor and its ligands.
Collapse
Affiliation(s)
- V Goffin
- INSERM Unit 344, Faculté de Médecine Necker, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Abstract
Gene targeting in mice has enabled the study of antigen receptor signalling in primary lymphocytes. Furthermore, it has provided the tools to directly assess the function of individual signalling proteins by mutation of the genes that code for them. Some of the results that gene targeting has produced have confirmed previous views of the function of particular proteins. Others have given surprising results and overturned accepted viewpoints.
Collapse
Affiliation(s)
- V L Tybulewicz
- National Institute for Medical Research, Mill Hill, London, UK.
| |
Collapse
|
232
|
|
233
|
Gibson S, Truitt K, Lu Y, Lapushin R, Khan H, Imboden JB, Mills GB. Efficient CD28 signalling leads to increases in the kinase activities of the TEC family tyrosine kinase EMT/ITK/TSK and the SRC family tyrosine kinase LCK. Biochem J 1998; 330 ( Pt 3):1123-8. [PMID: 9494076 PMCID: PMC1219252 DOI: 10.1042/bj3301123] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Optimal T cell activation requires crosslinking of the T cell receptor (TCR) concurrently with an accessory receptor, most efficiently CD28. Crosslinking of CD28 leads to increased interleukin 2 (IL2) production, inhibition of anergy and prevention of programmed cell death. Crosslinking of CD28 leads to rapid increases in tyrosine phosphorylation of specific intracellular substrates including CD28 itself. Since CD28 does not encode an intrinsic tyrosine kinase domain, CD28 must activate an intracellular tyrosine kinase(s). Indeed, crosslinking of CD28 increases the activity of the intracellular tyrosine kinases EMT/ITK and LCK. The phosphatidylinositol 3-kinase (PI3K) and GRB2 binding site in CD28 is dispensable for optimal IL2 production in Jurkat T cells. We demonstrate herein that murine Y170 (equivalent to human Y173) in CD28 is also dispensable for activation of the SRC family tyrosine kinase LCK and the TEC family tyrosine kinase EMT/ITK. In contrast, the distal three tyrosines in CD28 are required for optimal IL2 production as well as for optimal activation of the LCK and EMT/ITK tyrosine kinases. The distal three tyrosines of CD28, however, are not required for recruitment of PI3K to CD28. Furthermore, PI3K is recruited to CD28 in JCaM1 cells which lack LCK and in which EMT/ITK is not activated by ligation of CD28. Thus optimal activation of LCK or EMT/ITK is not obligatory for recruitment of PI3K to CD28 and thus is also not required for tyrosine phosphorylation of the YMNM motif in CD28. Taken together the data indicate that the distal three tyrosines in CD28 are integral to the activation of LCK and EMT/ITK and for subsequent IL2 production.
Collapse
Affiliation(s)
- S Gibson
- The University of Texas M.D., Anderson Cancer Center, Department of Molecular Oncology, 1515 Holcombe Blvd., Box 92, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
234
|
Williams BL, Schreiber KL, Zhang W, Wange RL, Samelson LE, Leibson PJ, Abraham RT. Genetic evidence for differential coupling of Syk family kinases to the T-cell receptor: reconstitution studies in a ZAP-70-deficient Jurkat T-cell line. Mol Cell Biol 1998; 18:1388-99. [PMID: 9488454 PMCID: PMC108852 DOI: 10.1128/mcb.18.3.1388] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/1997] [Accepted: 12/08/1997] [Indexed: 02/06/2023] Open
Abstract
T-cell antigen receptor (TCR) engagement activates multiple protein tyrosine kinases (PTKs), including the Src family member, Lck, and the Syk-related PTK, ZAP-70. Studies in ZAP-70-deficient humans have demonstrated that ZAP-70 plays crucial roles in T-cell activation and development. However, progress toward a detailed understanding of the regulation and function of ZAP-70 during TCR signaling has been hampered by the lack of a suitable T-cell model for biochemical and genetic analyses. In this report, we describe the isolation and phenotypic characterization of a Syk- and ZAP-70-negative somatic mutant derived from the Jurkat T-cell line. The P116 cell line displays severe defects in TCR-induced signaling functions, including protein tyrosine phosphorylation, intracellular Ca2+ mobilization, and interleukin-2 promoter-driven transcription. These signaling defects were fully reversed by reintroduction of catalytically active versions of either Syk or ZAP-70 into the P116 cells. However, in contrast to ZAP-70 expression, Syk expression triggered a significant degree of cellular activation in the absence of TCR ligation. Transfection experiments with ZAP-70-Syk chimeric proteins indicated that both the amino-terminal regulatory regions and the carboxy-terminal catalytic domains of Syk and ZAP-70 contribute to the distinctive functional properties of these PTKs. These studies underscore the crucial role of ZAP-70 in TCR signaling and offer a powerful genetic model for further analyses of ZAP-70 regulation and function in T cells.
Collapse
Affiliation(s)
- B L Williams
- Department of Immunology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
235
|
Bishop AC, Shah K, Liu Y, Witucki L, Kung C, Shokat KM. Design of allele-specific inhibitors to probe protein kinase signaling. Curr Biol 1998; 8:257-66. [PMID: 9501066 DOI: 10.1016/s0960-9822(98)70198-8] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Deconvoluting protein kinase signaling pathways using conventional genetic and biochemical approaches has been difficult because of the overwhelming number of closely related kinases. If cell-permeable inhibitors of individual kinases could be designed, the role of each kinase could be systematically assessed. RESULTS We have devised an approach combining chemistry and genetics to develop the first highly specific cell-permeable inhibitor of the oncogenic tyrosine kinase v-Src. A functionally silent active-site mutation was made in v-Src to distinguish it from all other cellular kinases. A tight-binding cell-permeable inhibitor of this mutant kinase that does not inhibit wild-type kinases was designed and synthesized. In vitro and whole-cell assays established the unique specificity of the mutant v-Src-inhibitor pair. The inhibitor reversed cell transformation by the engineered but not the 'wild type' v-Src, establishing that changes in cellular signaling can be attributed to specific inhibition of the engineered kinase. The generality of the method was tested by engineering another tyrosine kinase, Fyn, to contain the corresponding active-site mutation to the one in v-Src. The same compound that inhibited mutant v-Src could also potently inhibit the engineered Fyn kinase. CONCLUSIONS Allele-specific cell-permeable inhibitors of individual Src family kinases can be rapidly developed in an approach that should be applicable to all kinases. This approach will be useful for the deconvolution of kinase-mediated cellular pathways and for validating novel kinases as good targets for drug discovery both in vitro and in vivo.
Collapse
Affiliation(s)
- A C Bishop
- Department of Chemistry Princeton University Princeton, New Jersey 08544, USA
| | | | | | | | | | | |
Collapse
|
236
|
Czyzyk JK, Fernsten PD, Brtva TR, Der CJ, Winfield JB. CD45 and Src-related protein tyrosine kinases regulate the T cell response to phorbol esters. Biochem Biophys Res Commun 1998; 243:444-50. [PMID: 9480828 DOI: 10.1006/bbrc.1998.8114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein kinase C (PKC)-dependent activation of the Ras signal transduction cascade is essential for induction of the IL-2 promoter during stimulation of T lymphocytes via the T cell receptor (TCR). In this study, the effects of PKC-activating phorbol myristate acetate (PMA) on Ras-dependent activation of transcription from the ets/AP-1 Ras-responsive promoter element were examined in human T cells. Pretreatment of Jurkat cells with the Src-family PTK inhibitor herbimycin A resulted in a 50% inhibition of transactivation of the reporter following incubation with PMA. Evidence was also obtained to suggest the participation of the leukocyte-specific protein tyrosine phosphatase CD45, a regulator of Src-like PTKs, in the PMA-induced activation of the Ras/Raf pathway. First, PMA-induced transactivation of ets/AP-1 is diminished 75% in CD45-negative variants, compared with CD45-positive cells. Second, engagement of CD45 by monoclonal antibodies suppresses the PMA response from the reporter construct. Taken together, these data suggest that Src-related proteins mediate PKC-dependent activation of the Ras/Raf pathway and implicate CD45 in the TCR-independent activation of T lymphocytes induced by agents such as PMA.
Collapse
Affiliation(s)
- J K Czyzyk
- Division of Rheumatology and Immunology, Thurston Arthritis Research Center, Chapel Hill, NC 27599-7280, USA
| | | | | | | | | |
Collapse
|
237
|
Abstract
Ligation of the TCR-CD3 complex initiates a cascade of tyrosine phosphorylation that results in T cell activation. Initial activation of tyrosine kinases depends on the phosphorylation of activation motifs on CD3 chains. We previously found that a 90-kDa protein was tyrosine phosphorylated upon TCR cross-linking and the induction of the phosphorylation was dependent on the structure of the CD3 complex. In this study, we further characterized p90 phosphorylation. Phosphorylation of p90 was induced only by stimulation through the TCR-CD3 complex but not by other kinds of stimulation including CD28- or hydrogen peroxide-mediated activation and was dynamically regulated. Phosphorylated p90 was associated with the TCR-CD3 complex upon T cell activation. In a normal T cell population, thymocytes but not splenic T cells induced the tyrosine phosphorylation of p90 upon TCR cross-linking. These results suggest that p90 is a novel phosphoprotein associated with the TCR-CD3 complex and may play a role in TCR signaling during thymocyte differentiation.
Collapse
Affiliation(s)
- K Wakizaka
- Center for Biomedical Science, Third Department of Internal Medicine, Chiba University School of Medicine, Japan
| | | | | |
Collapse
|
238
|
Abstract
Src family protein tyrosine kinases are activated following engagement of many different classes of cellular receptors and participate in signaling pathways that control a diverse spectrum of receptor-induced biological activities. While several of these kinases have evolved to play distinct roles in specific receptor pathways, there is considerable redundancy in the functions of these kinases, both with respect to the receptor pathways that activate these kinases and the downstream effectors that mediate their biological activities. This chapter reviews the evidence implicating Src family kinases in specific receptor pathways and describes the mechanisms leading to their activation, the targets that interact with these kinases, and the biological events that they regulate.
Collapse
Affiliation(s)
- S M Thomas
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
239
|
Gleeson JG, Allen KM, Fox JW, Lamperti ED, Berkovic S, Scheffer I, Cooper EC, Dobyns WB, Minnerath SR, Ross ME, Walsh CA. Doublecortin, a brain-specific gene mutated in human X-linked lissencephaly and double cortex syndrome, encodes a putative signaling protein. Cell 1998; 92:63-72. [PMID: 9489700 DOI: 10.1016/s0092-8674(00)80899-5] [Citation(s) in RCA: 713] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
X-linked lissencephaly and "double cortex" are allelic human disorders mapping to Xq22.3-Xq23 associated with arrest of migrating cerebral cortical neurons. We identified a novel 10 kb brain-specific cDNA interrupted by a balanced translocation in an XLIS patient that encodes a novel 40 kDa predicted protein named Doublecortin. Four double cortex/X-linked lissencephaly families and three sporadic double cortex patients show independent doublecortin mutations, at least one of them a de novo mutation. Doublecortin contains a consensus Abl phosphorylation site and other sites of potential phosphorylation. Although Doublecortin does not contain a kinase domain, it is homologous to the amino terminus of a predicted kinase protein, indicating a likely role in signal transduction. Doublecortin, along with the newly characterized mDab1, may define an Abl-dependent pathway regulating neuronal migration.
Collapse
Affiliation(s)
- J G Gleeson
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
|
241
|
Abstract
Itk is a member of the Btk/Tec/Itk family of nonreceptor protein tyrosine kinases (PTKs), and has been implicated in T cell antigen receptor (TCR) signal transduction. Lck and Fyn are the Src-family nonreceptor PTKs that are involved in TCR signaling. To address the question of how these members of different families of PTKs functionally contribute to T cell development and to T cell activation, mice deficient for both Itk and either Lck or Fyn were generated. The Itk/Lck doubly deficient mice exhibited a phenotype similar to that of Lck-deficient mice. The phenotype of the Itk/Fyn doubly deficient mice was similar to that of Itk deficient mice. However the Itk/Fyn doubly deficient mice exhibited a more severe defect in TCR-induced proliferation of thymocytes and peripheral T cells than did mice deficient in either kinase alone. These data support the notion that Itk and Fyn both make independent contributions to TCR-induced T cell activation.
Collapse
Affiliation(s)
- X C Liao
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
242
|
Kalb TH, Yio XY, Mayer L. Human airway epithelial cells stimulate T-lymphocyte lck and fyn tyrosine kinase. Am J Respir Cell Mol Biol 1997; 17:561-70. [PMID: 9374107 DOI: 10.1165/ajrcmb.17.5.2512] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previous studies have shown that human airway epithelial cells (AEC) can stimulate allogeneic peripheral blood T-lymphocyte (PBT) proliferation. We now sought to determine which AEC surface molecule/T-cell coreceptors are involved in this process. AEC-induced PBT proliferation was inhibited by 25 microM genestein or herbamycin A (0.9 and 1.8 microM), both tyrosine kinase inhibitors. Anti-phosphotyrosine immunoblots performed on PBT lysates after coculture with AEC demonstrated phosphorylation of 56kD and 60kD bands. To determine whether CD3 associated p59fyn, or CD4 and CD8 associated p56lck phosphotyrosine kinases (PTK) were involved, we assayed kinase activity in lymphocyte lysates immunoprecipitated with anti-p56lck and p59fyn mAbs. PBT cells or murine T-cell line transfectants expressing human CD4 (3G4) or human CD8alpha (3G8) were cocultured with AEC or A549, an alveolar-like cell line lacking class II Ag expression. After A549 or AEC coculture, p56lck activity in PB T-cells peaked at 2 min whereas p59fyn kinase activity continued to rise at 8 min. AEC (expressing class II Ags) stimulate PTK activity in both 3G8 and 3G4 cells. A549 stimulated p56lck in 3G8, but not in 3G4 cells. This activation of p56lck was not blocked by preincubation of A549 with anti-class I or anti-CD1d mAbs. An antibody generated in our laboratory, which recognizes an epithelial specific surface molecule (mAb L12) and which blocks AEC driven PBT proliferation, was shown to block PTK activity of peripheral blood T-cell lysates, though not of 3G8 lysates. These studies suggest that AEC are capable of stimulating CD4 and CD8 associated lck and CD3 associated fyn kinases through class II dependent and independent pathways.
Collapse
Affiliation(s)
- T H Kalb
- Department of Medicine, Mt. Sinai Medical Center, New York, New York 10029, USA
| | | | | |
Collapse
|
243
|
Increased Enzymatic Activity of the T-Cell Antigen Receptor-Associated Fyn Protein Tyrosine Kinase in Asymptomatic Patients Infected With the Human Immunodeficiency Virus. Blood 1997. [DOI: 10.1182/blood.v90.9.3603] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe immune system of patients infected with human immunodeficiency virus (HIV) is in a state of chronic activation; however, the nature of HIV-related immune activation is unknown. As normal T-cell activation involves early tyrosine phosphorylation induced by the T-cell antigen receptor-associated src-family protein tyrosine kinase p59fyn(T) (Fyn), we examined a potential role for this kinase in HIV-related immune dysfunction. We determined the relative specific kinase activity of Fyn in lysates of peripheral blood mononuclear cells from 47 normal control individuals tested negative for HIV-1 and -2, human T-cell lymphotropic virus Type I, hepatitis B virus (HBV), hepatitis C virus (HCV), and syphilis; 14 asymptomatic HIV-infected patients having near-normal CD4+ T-cell counts (350 to 980 CD4+ cells/μL); 4 patients with symptomatic acquired immunodeficiency syndrome (AIDS) (<30 CD4+ cells/μL); 13 patients having chronic infection with HBV (6 patients) or HCV (7 patients); and 6 patients with systemic lupus erythematosis (SLE). All patients with asymptomatic HIV disease were shown to have a profound increase (mean increase of 19-fold; range threefold to 56-fold increase; p = 1.33 × 10−9) in the relative specific kinase activity of Fyn compared to uninfected controls or patients with hepatitis or SLE. In contrast, patients with AIDS had an Fyn-specific kinase activity that was much less affected (mean increase of threefold; range onefold to sevenfold increase; p = 1.30 × 10−5). It was further shown that HIV infection affects the Fyn-specific kinase activity in CD8+-enriched cells, suggesting abnormal Fyn activity in both CD8+ as well as CD4+ T lymphocytes. Initial results implicate a role for the CSK protein tyrosine kinase as responsible for the abnormal Fyn kinase activity observed in HIV-infected patients. These data indicate early and chronic activation of Fyn as a unique HIV-related effect that has the potential to be diagnostic for early HIV infection and/or may serve as a prognostic indicator for advancement to full-blown AIDS. More importantly, sustained activation of the protein tyrosine kinase associated with T-cell antigen receptor function may result in, or contribute to, the immunopathogenic effects associated with HIV infection.
Collapse
|
244
|
Affiliation(s)
- M E Elder
- Department of Pediatrics, University of California, San Francisco 94143-0105, USA
| |
Collapse
|
245
|
Tamma SM, Chirmule N, McCloskey TW, Oyaizu N, Kalyanaraman VS, Pahwa S. Signals transduced through the CD4 molecule interfere with TCR/CD3-mediated ras activation leading to T cell anergy/apoptosis. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1997; 85:195-201. [PMID: 9344703 DOI: 10.1006/clin.1997.4424] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It has been previously demonstrated that the occupancy of CD4 molecules by the HIV-1 envelope glycoprotein gp120 results in marked inhibition of T cell receptor-CD3 complex (TCR/CD3) activation-induced IL-2 secretion. To elucidate the mechanism of inhibitory effects of gp160 on T cell signaling, we have investigated the intracellular biochemical events and biological output in response to anti-CD3 mAb activation of purified peripheral blood CD4+ T cells from healthy donors with and without prior exposure to HIV-1 gp160. Pretreatment with gp160 resulted in marked inhibition of tyrosine phosphorylation of p59(fyn), PLC-gamma1, ras activation, and TNF-alpha secretion in anti-CD3 mAb activated CD4+ T cells, and a subset of CD4+ cells underwent activation-induced cell death. The data presented here provide insight into the mechanism by which the interaction of HIV-1 envelope glycoproteins with CD4 molecules may alter TCR/CD3-activation-induced signal transduction resulting in anergy and apoptosis with consequent functional deficiency of CD4+ T cells.
Collapse
Affiliation(s)
- S M Tamma
- Department of Pediatrics, North Shore University Hospital-New York University School of Medicine, Manhasset, New York 11030, USA
| | | | | | | | | | | |
Collapse
|
246
|
Melford SK, Turner M, Briddon SJ, Tybulewicz VL, Watson SP. Syk and Fyn are required by mouse megakaryocytes for the rise in intracellular calcium induced by a collagen-related peptide. J Biol Chem 1997; 272:27539-42. [PMID: 9346887 DOI: 10.1074/jbc.272.44.27539] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Stimulation of platelets by collagen leads to activation of a tyrosine kinase cascade resulting in secretion and aggregation. We have recently shown that this pathway involves rapid tyrosine phosphorylation of an Fc receptor gamma chain, which contains an immunoreceptor tyrosine-based activation motif (ITAM), enabling interaction with the tandem SH2 domains of the tyrosine kinase Syk. Activation of Syk lies upstream of tyrosine phosphorylation of phospholipase Cgamma2. In the present study we sought to test directly the role of the ITAM/Syk interaction and the role of the Src-related kinases in collagen receptor signaling using mouse megakaryocytes. We demonstrate that the calcium-mobilizing action of a collagen-related peptide (CRP) is kinase-dependent, inhibited by the microinjection of the tandem SH2 domains of Syk and abolished in Syk-deficient mice. Furthermore, the CRP response is abolished by the Src family kinase inhibitor PP1 and inhibited in Fyn-deficient mice. In contrast, the calcium response to the G-protein-linked receptor agonist thrombin is not significantly altered under these conditions. These results provide direct evidence of the functional importance of Fyn and Syk in collagen receptor signaling and support the megakaryocyte as a model for the study of proteins involved in this pathway.
Collapse
Affiliation(s)
- S K Melford
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | | | | | | | | |
Collapse
|
247
|
zur Hausen JD, Burn P, Amrein KE. Co-localization of Fyn with CD3 complex, CD45 or CD28 depends on different mechanisms. Eur J Immunol 1997; 27:2643-9. [PMID: 9368621 DOI: 10.1002/eji.1830271025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Src family protein tyrosine kinase Fyn (p59fyn) plays an important role in thymocyte development and T cell receptor (TCR) signal transduction. Fyn has been shown to associate with the TCR-CD3 complex, the protein tyrosine phosphatase CD45 and several co-receptors such as CD28 which are crucial for initiating T cell activation and proliferation. The molecular basis of how Fyn is associated with these transmembrane proteins is largely unknown. To investigate the Fyn association with the TCR-CD3 complex, CD45 and CD28 at the molecular level, various Fyn/beta-galactosidase fusion proteins were constructed and expressed in Jurkat cells. Co-localization experiments applying antibody-induced co-capping and double immunofluorescence staining techniques were used to study the association of these fusion proteins with the TCR-CD3 complex, CD45 and CD28. Our results revealed that co-localization of Fyn with the TCR-CD3 complex requires the unique N terminus whereas co-localization with CD45 depends on the unique N terminus, the Src homology (SH)3- and a functional SH2 domain. CD28 co-localizes with Fyn molecules that contain the N terminus and a functional SH2 domain. These results suggest that Fyn association with the TCR-CD3 complex, CD45 and CD28 is mediated by different molecular mechanisms.
Collapse
Affiliation(s)
- J D zur Hausen
- Roche Research Center, Hoffmann-La Roche Inc., Nutley, USA
| | | | | |
Collapse
|
248
|
Nosjean O, Briolay A, Roux B. Mammalian GPI proteins: sorting, membrane residence and functions. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1331:153-86. [PMID: 9325440 DOI: 10.1016/s0304-4157(97)00005-1] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- O Nosjean
- Université Claude Bernard--Lyon 1, Laboratoire de Physico-chimie Biologique--UPRESA CNRS 5013, Villeurbanne, France.
| | | | | |
Collapse
|
249
|
Gong Q, White L, Johnson R, White M, Negishi I, Thomas M, Chan AC. Restoration of thymocyte development and function in zap-70-/- mice by the Syk protein tyrosine kinase. Immunity 1997; 7:369-77. [PMID: 9324357 DOI: 10.1016/s1074-7613(00)80358-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Syk family of protein tyrosine kinases, consisting of ZAP-70 and Syk, associate with the pre- and alphabeta T cell antigen receptors (TCRs) and undergo tyrosine phosphorylation and activation following receptor engagement. Thymocyte development in zap-70-/- mice is blocked at the CD4+CD8+ TCR(lo) stage. The presence of Syk in the thymus has raised the possibility that Syk may be able to mediate TCR function. To determine if Syk can play a role in thymocyte development, we generated zap-70-/- mice expressing a human syk cDNA. Syk expression restored both thymocyte development and function. In addition, Syk function required the CD45 transmembrane protein tyrosine phosphatase. Hence, ZAP-70 and Syk can play overlapping functions and exhibit similar regulatory mechanisms in mediating alphabeta T cell development.
Collapse
Affiliation(s)
- Q Gong
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
250
|
Kabouridis PS, Magee AI, Ley SC. S-acylation of LCK protein tyrosine kinase is essential for its signalling function in T lymphocytes. EMBO J 1997; 16:4983-98. [PMID: 9305640 PMCID: PMC1170133 DOI: 10.1093/emboj/16.16.4983] [Citation(s) in RCA: 300] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
LCK is a non-receptor protein tyrosine kinase required for signal transduction via the T-cell antigen receptor (TCR). LCK N-terminus is S-acylated on Cys3 and Cys5, in addition to its myristoylation on Gly2. Here the role of S-acylation in LCK function was examined. Transient transfection of COS-18 cells, which express a CD8-zeta chimera on their surface, revealed that LCK mutants that were singly S-acylated were able to target to the plasma membrane and to phosphorylate CD8-zeta. A non-S-acylated LCK mutant did not target to the plasma membrane and failed to phosphorylate CD8-zeta, although it was catalytically active. Fusion of non-S-acylated LCK to a transmembrane protein, CD16:7, allowed its plasma membrane targeting and also phosphorylation of CD8-zeta when expressed in COS-18 cells. Thus S-acylation targets LCK to the plasma membrane where it can interact with the TCR. When expressed in LCK-negative JCam-1.6 T cells, delocalized, non-S-acylated LCK was completely non-functional. Singly S-acylated LCK mutants, which were expressed in part at the plasma membrane, efficiently reconstituted the induced association of phospho-zeta with ZAP-70 and intracellular Ca2+ fluxes triggered by the TCR. Induction of the late signalling proteins, CD69 and NFAT, was also reconstituted, although at reduced levels. The transmembrane LCK chimera also supported the induction of tyrosine phosphorylation and Ca2+ flux by the TCR in JCam-1.6 cells. However, induction of ERK MAP kinase was reduced and the chimera was incapable of reconstituting induced CD69 or NFAT expression. These data indicate that LCK must be attached to the plasma membrane via dual acylation of its N-terminus to function properly in TCR signalling.
Collapse
Affiliation(s)
- P S Kabouridis
- Division of Cellular Immunology, National Institute for Medical Research, Mill Hill, London, UK
| | | | | |
Collapse
|