201
|
Abstract
Cancer arises from a stepwise accumulation of genetic changes that liberates neoplastic cells from the homeostatic mechanisms that govern normal cell proliferation. In humans, at least four to six mutations are required to reach this state, but fewer seem to be required in mice. By rationalizing the shared and unique elements of human and mouse models of cancer, we should be able to identify the molecular circuits that function differently in humans and mice, and use this knowledge to improve existing models of cancer.
Collapse
Affiliation(s)
- William C Hahn
- Whitehead Institute for Biomedical Research, Massachusetts 02142, USA.
| | | |
Collapse
|
202
|
Moens U, Van Ghelue M, Kristoffersen AK, Johansen B, Rekvig OP, Degré M, Rollag H. Simian virus 40 large T-antigen, but not small T-antigen, trans-activates the human cytomegalovirus major immediate early promoter. Virus Genes 2002; 23:215-26. [PMID: 11724277 DOI: 10.1023/a:1011877112214] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cytomegalovirus infection is a major cause of morbidity in immunocompromised patients. The major immediate early promoter/enhancer (MIEP) of the human cytomegalovirus controls the expression of the immediate early genes 1 and 2 which play a central role both in primary and reactivated human cytomegalovirus (HCMV)-infections. Our previous studies have shown that co-infection of A549 cells with human cytomegalovirus and human polyomavirus BK resulted in enhanced expression of the immediate early genes 1 and 2 and that the early gene products of BK virus trans-activated the MIEP. However, neither the MIEP sequences required for mediating this trans-activation, nor the contribution of the individual BK virus early gene products were examined. The MIEP contains multiple binding sites for the transcription factors CREB, AP1, Sp1 and NFkappaB, which may mediate polyomavirus large T- or small t-antigens-induced promoter activation. Transient transfection studies in A549 cells demonstrated that SV40 large T-antigen, but not small t-antigen, trans-activated MIEP activity approximately 9-fold. Mutations in individual binding motifs in the context of the complete MIEP did not impair traits-activation by large T-antigen. The level of induction of a truncated MIEP consisting of a single set of CRE/AP1, NFkappaB, and Sp1 binding motifs by large T-antigen was reduced 2-fold compared to the full length MIEP. Extended truncations diminished trans-activation by large T-antigen. To determine the contribution of a single binding motif in the trans-activation by large T-antigen, a CRE/AP1, an NFkappaB, an Sp1, or a non-consensus Sp1-motif, respectively, was linked to the MIEP TATA-sequence respecting the natural spacing between the two transcription regulatory elements. Only the MIEP TATA-box with the correctly spaced non-consensus Sp1 binding site (GT-motif) was stimulated by large T-antigen. These results suggest that an isolated non-consensus Sp1-motif is important for trans-activation of the MIEP by large T-antigen, but that other cis-acting elements can compensate for this element in the context of the whole MIEP.
Collapse
Affiliation(s)
- U Moens
- Department of Molecular Genetics, Institute of Medical Biology, University of Tromso, Norway.
| | | | | | | | | | | | | |
Collapse
|
203
|
Silverstein AM, Barrow CA, Davis AJ, Mumby MC. Actions of PP2A on the MAP kinase pathway and apoptosis are mediated by distinct regulatory subunits. Proc Natl Acad Sci U S A 2002; 99:4221-6. [PMID: 11904383 PMCID: PMC123629 DOI: 10.1073/pnas.072071699] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2001] [Accepted: 02/06/2002] [Indexed: 11/18/2022] Open
Abstract
Individual subunits of protein phosphatase 2A (PP2A), protein phosphatase 4, and protein phosphatase 5 were knocked out in Drosophila Schneider 2 cells by using RNA interference. Ablation of either the scaffold (A) or catalytic (C) subunits of PP2A caused the disappearance of all PP2A subunits. Treating cells with double-stranded RNA targeting all four of the Drosophila PP2A regulatory subunits caused the disappearance of both the A and C subunits. The loss of PP2A subunits was associated with decreased protein stability indicating that only the heterotrimeric forms of PP2A are stable in intact cells. Ablation of total PP2A by using double-stranded RNA against either the A or C subunit, or specific ablation of the R2/B regulatory subunit, enhanced insulin-induced ERK activation. These results indicated that the R2/B subunit targets PP2A to the mitogen-activated protein (MAP) kinase cascade in Schneider 2 cells, where it acts as a negative regulator. A severe loss of viability occurred in cells in which total PP2A or both isoforms of the Drosophila R5/B56 subunit had been ablated. The reduced viability of these cells correlated with the induction of markers of apoptosis including membrane blebbing and stimulation of caspase-3-like activity. These observations indicated that PP2A has a powerful antiapoptotic activity that is specifically mediated by the R5/B56 regulatory subunits. In contrast to PP2A, ablation of protein phosphatase 4 caused only a slight reduction in cell growth but had no effect on MAP kinase signaling or apoptosis. Depletion of protein phosphatase 5 had no effects on MAP kinase, cell growth, or apoptosis.
Collapse
Affiliation(s)
- Adam M Silverstein
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9041, USA
| | | | | | | |
Collapse
|
204
|
Luo H, Yanagawa B, Zhang J, Luo Z, Zhang M, Esfandiarei M, Carthy C, Wilson JE, Yang D, McManus BM. Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. J Virol 2002; 76:3365-73. [PMID: 11884562 PMCID: PMC136021 DOI: 10.1128/jvi.76.7.3365-3373.2002] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackievirus B3 (CVB3) is the most common human pathogen for viral myocarditis. We have previously shown that the signaling protein p21(ras) GTPase-activating protein (RasGAP) is cleaved and that mitogen-activated protein kinases (MAPKs) ERK1/2 are activated in the late phase of CVB3 infection. However, the role of intracellular signaling pathways in CVB3-mediated myocarditis and the relative advantages of such pathways to host or virus remain largely unclear. In this study we extended our prior studies by examining the interaction between CVB3 replication and intracellular signaling pathways in HeLa cells. We observed that CVB3 infection induced a biphasic activation of ERK1/2, early transient activation versus late sustained activation, which were regulated by different mechanisms. Infection by UV-irradiated, inactivated virus capable of receptor binding and endocytosis triggered early ERK1/2 activation, but was insufficient to trigger late ERK1/2 activation. By using a general caspase inhibitor (zVAD.fmk) we further demonstrated that late ERK1/2 activation was not a result of CVB3-mediated caspase cleavage. Treatment of cells with U0126, a selective inhibitor of MAPK kinase (MEK), significantly inhibited CVB3 progeny release and decreased virus protein production. Furthermore, inhibition of ERK1/2 activation circumvented CVB3-induced apoptosis and viral protease-mediated RasGAP cleavage. Taken together, these data suggest that ERK1/2 activation is important for CVB3 replication and contributes to virus-mediated changes in host cells. Our findings demonstrate coxsackievirus takeover of a particular host signaling mechanism and uncover a prospective approach to stymie virus spread and preserve myocardial integrity.
Collapse
Affiliation(s)
- Honglin Luo
- Department of Pathology and Laboratory Medicine, McDonald Research Laboratories/The iCAPTURE Center, St. Paul's Hospital/Providence Health Care-University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Ugi S, Imamura T, Ricketts W, Olefsky JM. Protein phosphatase 2A forms a molecular complex with Shc and regulates Shc tyrosine phosphorylation and downstream mitogenic signaling. Mol Cell Biol 2002; 22:2375-87. [PMID: 11884620 PMCID: PMC133677 DOI: 10.1128/mcb.22.7.2375-2387.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a multimeric serine/threonine phosphatase that carries out multiple functions. Although numerous observations suggest that PP2A plays a major role in downregulation of the mitogen-activated protein (MAP) kinase pathway, the precise mechanisms are unknown. To clarify the role of PP2A in growth factor (insulin, epidermal growth factor [EGF], and insulin-like growth factor 1 [IGF-1]) stimulation of the Ras/MAP kinase pathway, simian virus 40 small t antigen was expressed in Rat-1 fibroblasts which overexpress insulin receptors. Small t antigen is known to specifically inhibit PP2A by binding to the A PP2A regulatory subunit, interfering with the ability of PP2A to bind to its cellular substrates. Overexpressed small t protein was coimmunoprecipitated with PP2A and inhibited cellular PP2A activity but did not inhibit protein phosphatase 1 (PP1) activity. Insulin, IGF-1, and EGF stimulation also inhibited PP2A activity. Growth factor-stimulated Ras, Raf-1, MAP kinase, and mitogen-activated extracellular-signal-regulated kinase kinase (MEK) activities were elevated in small-t-antigen-expressing cells. Furthermore, Shc tyrosine phosphorylation and its association with Grb2 were also elevated in small-t-antigen-expressing cells. Expression levels of Shc, Ras, MEK, or MAP kinase and phosphorylation of insulin, EGF, and IGF-1 receptors were not altered. Interestingly, we found that PP2A associated with Shc in the basal state and dissociated in response to insulin and EGF and that this dissociation was inhibited by 65% in small-t-antigen-expressing cells. In addition, we found that PP2A associates with the phosphotyrosine-binding domain (PTB domain) of Shc and that phosphorylation of tyrosine 317 of Shc was required for PP2A-Shc dissociation. We conclude (i) that PP2A negatively regulates the Ras/MAP kinase pathway by binding to Shc, inhibiting tyrosine phosphorylation; (ii) that the Shc-PP2A association is mediated by the Shc PTB domain but the interaction is independent of phosphotyrosine binding, indicating a new molecular function for the PTB domain; (iii) that growth factor stimulation, or small-t-antigen expression, causes dissociation of the PP2A-Shc complex, facilitating Shc phosphorylation and downstream activations of the Ras/MAP kinase pathway; and (iv) that this defines a new mechanism of small-t-antigen action to promote mitogenesis.
Collapse
Affiliation(s)
- Satoshi Ugi
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, California 92093-0673, USA
| | | | | | | |
Collapse
|
206
|
Hahn WC, Dessain SK, Brooks MW, King JE, Elenbaas B, Sabatini DM, DeCaprio JA, Weinberg RA. Enumeration of the simian virus 40 early region elements necessary for human cell transformation. Mol Cell Biol 2002; 22:2111-23. [PMID: 11884599 PMCID: PMC133688 DOI: 10.1128/mcb.22.7.2111-2123.2002] [Citation(s) in RCA: 467] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2001] [Revised: 11/29/2001] [Accepted: 01/07/2002] [Indexed: 11/20/2022] Open
Abstract
While it is clear that cancer arises from the accumulation of genetic mutations that endow the malignant cell with the properties of uncontrolled growth and proliferation, the precise combinations of mutations that program human tumor cell growth remain unknown. The study of the transforming proteins derived from DNA tumor viruses in experimental models of transformation has provided fundamental insights into the process of cell transformation. We recently reported that coexpression of the simian virus 40 (SV40) early region (ER), the gene encoding the telomerase catalytic subunit (hTERT), and an oncogenic allele of the H-ras gene in normal human fibroblast, kidney epithelial, and mammary epithelial cells converted these cells to a tumorigenic state. Here we show that the SV40 ER contributes to tumorigenic transformation in the presence of hTERT and oncogenic H-ras by perturbing three intracellular pathways through the actions of the SV40 large T antigen (LT) and the SV40 small t antigen (ST). LT simultaneously disables the retinoblastoma (pRB) and p53 tumor suppressor pathways; however, complete transformation of human cells requires the additional perturbation of protein phosphatase 2A by ST. Expression of ST in this setting stimulates cell proliferation, permits anchorage-independent growth, and confers increased resistance to nutrient deprivation. Taken together, these observations define the elements of the SV40 ER required for the transformation of human cells and begin to delineate a set of intracellular pathways whose disruption, in aggregate, appears to be necessary to generate tumorigenic human cells.
Collapse
Affiliation(s)
- William C Hahn
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | |
Collapse
|
207
|
McCluskey A, Sim ATR, Sakoff JA. Serine-threonine protein phosphatase inhibitors: development of potential therapeutic strategies. J Med Chem 2002; 45:1151-75. [PMID: 11881984 DOI: 10.1021/jm010066k] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Adam McCluskey
- School of Biological & Chemical Science, Medicinal Chemistry Group, The University of Newcastle, Callaghan, NSW 2308, Australia.
| | | | | |
Collapse
|
208
|
Yang SW, Jin E, Chung IK, Kim WT. Cell cycle-dependent regulation of telomerase activity by auxin, abscisic acid and protein phosphorylation in tobacco BY-2 suspension culture cells. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 29:617-26. [PMID: 11874574 DOI: 10.1046/j.0960-7412.2001.01244.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Telomerase is a specialized RNA-directed DNA polymerase that adds telomeric repeats onto the ends of linear eukaryotic chromosomes. It was recently reported that the low, basal level of telomerase activity markedly increased at early S-phase of the cell cycle, and auxin further increased the S-phase-specific telomerase activity in tobacco BY-2 cells. In this study we show that abscisic acid (ABA), a phytohormone known to induce the cyclin-dependent protein kinase inhibitor, effectively abolished both the auxin- and S-phase-specific activation of telomerase in a concentration- and time-dependent fashion in synchronized tobacco BY-2 cells. These results suggest that there exists a hormonal cross-talk between auxin and ABA for the regulation of telomerase activity during the cell cycle of tobacco cells. Treatment of synchronized BY-2 cells with the protein kinase inhibitor staurosporine or H-7 effectively prevented the S-phase-specific activation of telomerase activity. By contrast, when okadaic acid or cantharidin, potent inhibitors of protein phosphatase 2A (PP2A), was applied to the cells, the S-phase-specific high level of telomerase activity was continuously maintained in the cell cycle for at least 14 h after release from M-phase arrest. Incubation of tobacco cell extracts with exogenous PP2A rapidly abrogated in vitro telomerase activity, while okadaic acid and cantharidin blocked the action of PP2A, effectively restoring in vitro telomerase activity. Taken together, these findings are discussed in the light of the suggestion that antagonistic functions of auxin and ABA, and reciprocal phosphorylation and dephosphorylation of telomerase complex, are necessarily involved in the cell cycle-dependent modulation of telomerase activity in tobacco cells.
Collapse
Affiliation(s)
- Seong Wook Yang
- Department of Biology, College of Science, Yonsei University, Seoul 120-749, Korea
| | | | | | | |
Collapse
|
209
|
Sheard MA, Vojtesek B. Simian virus-40 infection inhibits DNA damage-induced enhancement of CD95 expression and function. Oncogene 2002; 21:190-7. [PMID: 11803462 DOI: 10.1038/sj.onc.1205043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2001] [Revised: 09/30/2001] [Accepted: 10/09/2001] [Indexed: 12/20/2022]
Abstract
Many viruses are known to disarm or suppress the cell death machinery of infected cells. Apoptotic cell death can be activated by aggregation of the CD95 cell surface death receptor in sensitive cells, and in most insensitive cells treated with sensitizing agents such as interferon-gamma or inhibitors of protein synthesis. We show that, subsequent to sequestration and inactivation of the p53 tumour suppressor protein, SV40 abrogates p53-dependent, DNA damage-inducible up-regulation of CD95 surface expression. Loss of surface up-regulation of CD95 after sub-lethal mitomycin C treatment resulted in an impaired enhancement of both caspase-8 cleavage and apoptotic cell death following CD95 aggregation. We conclude that infection of human cells with SV40 virus strongly inhibits DNA damage-induced enhancement of CD95-mediated apoptosis.
Collapse
Affiliation(s)
- Michael A Sheard
- Laboratory of Apoptosis Research, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, The Czech Republic.
| | | |
Collapse
|
210
|
Barber SA, Bruett L, Douglass BR, Herbst DS, Zink MC, Clements JE. Visna virus-induced activation of MAPK is required for virus replication and correlates with virus-induced neuropathology. J Virol 2002; 76:817-28. [PMID: 11752171 PMCID: PMC136850 DOI: 10.1128/jvi.76.2.817-828.2002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is well accepted that viruses require access to specific intracellular environments in order to proliferate or, minimally, to secure future proliferative potential as latent reservoirs. Hence, identification of essential virus-cell interactions should both refine current models of virus replication and proffer alternative targets for therapeutic intervention. In the present study, we examined the activation states of mitogen-activated protein kinases (MAPKs), ERK-1/2, in primary cells susceptible to visna virus and report that virus infection induces and sustains activation of the ERK/MAPK pathway. Treatment of infected cells with PD98059, a specific inhibitor of the ERK/MAPK pathway, abolishes visna virus replication, as evidenced by extremely low levels of Gag protein expression and reverse transcriptase activity in culture supernatants. In addition, although visna virus-induced activation of MAPK is detectable within 15 min, early events of viral replication (i.e., reverse transcription, integration, and transcription) are largely unaffected by PD98059. Interestingly, further examination demonstrated that treatment with PD98059 results in decreased cytoplasmic expression of gag and env, but not rev, mRNA, highly suggestive of an ERK/MAPK-dependent defect in Rev function. In vivo analysis of ERK-1/2 activation in brains derived from visna virus-infected sheep demonstrates a strong correlation between ERK/MAPK activation and virus-associated encephalitis. Moreover, double-labeling experiments revealed that activation of MAPK occurs not only in cells classically infected by visna virus (i.e., macrophages and microglia), but also in astrocytes, cells not considered to be major targets of visna virus replication, suggesting that activation of the ERK/MAPK pathway may contribute to the virus-induced processes leading to neurodegenerative pathology.
Collapse
MESH Headings
- Animals
- Astrocytes/enzymology
- Astrocytes/virology
- Brain/enzymology
- Brain/pathology
- Brain/virology
- Butadienes/pharmacology
- Cells, Cultured
- Encephalitis, Viral/enzymology
- Encephalitis, Viral/pathology
- Encephalitis, Viral/virology
- Enzyme Activation/drug effects
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Gene Products, env/biosynthesis
- Gene Products, env/genetics
- Gene Products, gag/biosynthesis
- Gene Products, gag/genetics
- Gene Products, rev/biosynthesis
- Gene Products, rev/genetics
- Goats/virology
- Immunohistochemistry
- MAP Kinase Kinase 1
- MAP Kinase Signaling System/drug effects
- Macrophages/enzymology
- Macrophages/virology
- Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Nitriles/pharmacology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Sheep/virology
- Virulence
- Virus Replication/drug effects
- Visna-maedi virus/drug effects
- Visna-maedi virus/genetics
- Visna-maedi virus/pathogenicity
- Visna-maedi virus/physiology
Collapse
Affiliation(s)
- Sheila A Barber
- Division of Comparative Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
211
|
Li X, Virshup DM. Two conserved domains in regulatory B subunits mediate binding to the A subunit of protein phosphatase 2A. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:546-52. [PMID: 11856313 DOI: 10.1046/j.0014-2956.2001.02680.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Protein phosphatase 2A (PP2A) is an abundant heterotrimeric serine/threonine phosphatase containing highly conserved structural (A) and catalytic (C) subunits. Its diverse functions in the cell are determined by its association with a highly variable regulatory and targeting B subunit. At least three distinct gene families encoding B subunits are known: B/B55/CDC55, B'/B56/RTS1 and B"/PR72/130. No homology has been identified among the B families, and little is known about how these B subunits interact with the PP2A A and C subunits. In vitro expression of a series of B56alpha fragments identified two distinct domains that bound independently to the A subunit. Sequence alignment of these A subunit binding domains (ASBD) identified conserved residues in B/B55 and PR72 family members. The alignment successfully predicted domains in B55 and PR72 subunits that similarly bound to the PP2A A subunit. These results suggest that these B subunits share a common core structure and mode of interaction with the PP2A holoenzyme.
Collapse
Affiliation(s)
- Xinghai Li
- Department of Oncological Sciences, Center for Children, Huntsman Cancer Institute, University of Utah, Salt Lake City 84112, USA
| | | |
Collapse
|
212
|
Clarke P, Meintzer SM, Widmann C, Johnson GL, Tyler KL. Reovirus infection activates JNK and the JNK-dependent transcription factor c-Jun. J Virol 2001; 75:11275-83. [PMID: 11689607 PMCID: PMC114712 DOI: 10.1128/jvi.75.23.11275-11283.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viral infection often perturbs host cell signaling pathways including those involving mitogen-activated protein kinases (MAPKs). We now show that reovirus infection results in the selective activation of c-Jun N-terminal kinase (JNK). Reovirus-induced JNK activation is associated with an increase in the phosphorylation of the JNK-dependent transcription factor c-Jun. Reovirus serotype 3 prototype strains Abney (T3A) and Dearing (T3D) induce significantly more JNK activation and c-Jun phosphorylation than does the serotype 1 prototypic strain Lang (T1L). T3D and T3A also induce more apoptosis in infected cells than T1L, and there was a significant correlation between the ability of these viruses to phosphorylate c-Jun and induce apoptosis. However, reovirus-induced apoptosis, but not reovirus-induced c-Jun phosphorylation, is inhibited by blocking TRAIL/receptor binding, suggesting that apoptosis and c-Jun phosphorylation involve parallel rather than identical pathways. Strain-specific differences in JNK activation are determined by the reovirus S1 and M2 gene segments, which encode viral outer capsid proteins (sigma1 and mu1c) involved in receptor binding and host cell membrane penetration. These same gene segments also determine differences in the capacity of reovirus strains to induce apoptosis, and again a significant correlation between the capacity of T1L x T3D reassortant reoviruses to both activate JNK and phosphorylate c-Jun and to induce apoptosis was shown. The extracellular signal-related kinase (ERK) is also activated in a strain-specific manner following reovirus infection. Unlike JNK activation, ERK activation could not be mapped to specific reovirus gene segments, suggesting that ERK activation and JNK activation are triggered by different events during virus-host cell interaction.
Collapse
Affiliation(s)
- P Clarke
- Departments of Neurology, University of Colorado Health Science Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
213
|
Branton PE, Roopchand DE. The role of adenovirus E4orf4 protein in viral replication and cell killing. Oncogene 2001; 20:7855-65. [PMID: 11753668 DOI: 10.1038/sj.onc.1204862] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It has only been within the last few years that insights have been gained into the remarkable diversity of functions of the adenovirus early transcription region 4 (E4) products. The polypeptide encoded by E4 open reading frame 4 (E4orf4) has emerged as an enigmatic product. Although it accomplishes certain functions that propel viral replication, it has also been shown to be highly toxic, an effect that could dampen the infectious cycle, but that also might serve to facilitate release of viral progeny. When expressed alone, E4orf4 induces a novel form of p53-independent apoptosis in cancer cells but not in normal human cells, thus making it of potential use in cancer gene therapy. In addition, knowledge of its mechanism of action, especially with regard to its interaction with protein phosphatase 2A (PP2A), could provide insights to develop new small molecule anti-cancer drugs. Thus future studies on E4orf4 should be both informative and potentially valuable therapeutically. In this study we review the current status of knowledge on E4orf4.
Collapse
Affiliation(s)
- P E Branton
- Department of Biochemistry, McGill University, McIntyre Medical Building, 3655 Promenade Sir William Osler, Montreal, Quebec, H3G 1Y6, Canada.
| | | |
Collapse
|
214
|
Affiliation(s)
- M J Imperiale
- Department of Microbiology and Immunology, and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
215
|
Abstract
Regulation of protein phosphatase 2A (PP2A) activity and NMDA receptor (NMDAR) phosphorylation state contribute to the modulation of synaptic plasticity, yet these two mechanisms have not been functionally linked. The NMDAR subunit NR3A is equipped with a unique carboxyl domain that is different from other NMDAR subunits. We hypothesized that the NR3A C-terminal intracellular domain might serve as synaptic anchor for the phosphatase in the developing CNS. A cDNA library was screened by the yeast two-hybrid method using the NR3A carboxyl domain as the bait. The catalytic subunit of the serine-threonine PP2A was found to be associated with the NR3A carboxyl domain. Immunoprecipitation studies indicated that the NR3A subunit formed a stable complex with PP2A in the rat brain in vivo. Association of PP2A with NMDARs led to an increase in the phosphatase activity of PP2A and the dephosphorylation of serine 897 of the NMDAR subunit NR1. Stimulation of NMDARs led to the dissociation of PP2A from the complex and the reduction of PP2A activity. A peptide corresponding to the PP2A-NR3A binding domain functioned as a negative regulator of PP2A activity. These data suggest that NMDARs are allosteric modulators of PP2A, which in turn controls their phosphorylation state. The data delineate a mechanistic model of the dynamic regulation of a PP2A-NMDAR signaling complex, mediated by the interaction of NR3A and PP2A, and suggest a novel NMDAR-mediated signaling mechanism in addition to the traditional ionotropic functions of NMDARs.
Collapse
|
216
|
Kang HS, Choi I. Protein phosphatase 2A modulates the proliferation of human multiple myeloma cells via regulation of the production of reactive oxygen intermediates and anti-apoptotic factors. Cell Immunol 2001; 213:34-44. [PMID: 11747354 DOI: 10.1006/cimm.2001.1861] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To understand the roles of reactive oxygen intermediates (ROI) in Fas-mediated apoptosis of myeloma cells, the effects of antioxidants were tested. Fas-mediated apoptosis was further increased in the presence of antioxidants such as N-acetyl-L-cysteine and glutathione, but it was decreased when hydrogen peroxide was added. The intracellular ROI level was significantly decreased in myeloma cells treated with okadaic acid, an inhibitor of protein phosphatases 1 and 2A (PP1/PP2A). To clarify the direct roles of PP2A in myeloma cell growth, the PP2A transfected cell lines, sense- or antisense-PP2A transfectants, were established. Spontaneous cell growth of antisense-PP2A transfectants was reduced compared with that of vector transfectants. The intracellular ROI level was significantly decreased in antisense-PP2A transfectants but increased in sense-PP2A transfectants compared with vector controls. In addition, anti-apoptotic factors such as bcl-2 and IL-6 were reduced in antisense-PP2A transfectants. Taken together, these results indicate that PP2A is an essential factor for survival and growth of myeloma cells via regulation of intracellular ROI and anti-apoptotic factors.
Collapse
Affiliation(s)
- H S Kang
- Laboratory of Immunology, Korea Research Institute of Bioscience and Biotechnology, Yusong, Taejon, 305-333, Republic of Korea
| | | |
Collapse
|
217
|
Abstract
Simian virus 40 small t antigen (st) is required for optimal transformation and replication properties of the virus. We find that in certain cell types, such as the human osteosarcoma cell line U2OS, st is capable of inducing apoptosis, as evidenced by a fragmented nuclear morphology and positive terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling staining of transfected cells. The cell death can be p53 independent, since it also occurs in p53-deficient H1299 cells. Genetic analysis indicates that two specific mutants affect apoptosis induction. One of these (C103S) has been frequently used as a PP2A binding mutant. The second mutant (TR4) lacks the final four amino acids of st, which have been reported to be unimportant for PP2A binding in vitro. However, TR4 unexpectedly fails to bind PP2A in vivo. Furthermore, a long-term colony assay reveals a potent colony inhibition upon st expression, and the behavior of st mutants in this assay reflects the relative frequency of nuclear fragmentation observed in transfections using the same mutants. Notably, either Bcl-2 coexpression or broad caspase inhibitor treatment could restore normal nuclear morphology. Finally, fluorescence-activated cell sorting analysis suggests a correlation between the ability of st to modulate cell cycle progression and apoptosis. Taken together, these observations underscore that st does not always promote proliferation but may, depending on conditions and cell type, effect a cell death response.
Collapse
Affiliation(s)
- O Gjoerup
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
218
|
Gaillard S, Fahrbach KM, Parkati R, Rundell K. Overexpression of simian virus 40 small-T antigen blocks centrosome function and mitotic progression in human fibroblasts. J Virol 2001; 75:9799-807. [PMID: 11559813 PMCID: PMC114552 DOI: 10.1128/jvi.75.20.9799-9807.2001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recombinant adenoviruses that express high levels of the simian virus 40 (SV40) small-t (ST) antigen have been used to study the requirement for ST to drive cell cycle proliferation of confluent human diploid fibroblasts. This occurs when either large-T (LT) antigen or serum is added to provide a second signal. While cells readily completed S phase in these experiments, they were found to accumulate with 4N DNA content. Cellular and nuclear morphology, as well as the biochemical status of cyclin B complexes, showed that these cells entered mitosis but were blocked prior to mitotic metaphase. The defect appears to reflect an inability of cells overexpressing ST to form organized centrosomes that duplicate and separate normally during the cell cycle and, therefore, the absence of a mitotic spindle. The ability of ST to bind protein phosphatase 2A was required for this pattern, suggesting that altered phosphorylation of key centrosomal components may occur when ST is overexpressed. Although the possible significance of ST effects on the centrosome cycle is not fully understood, these findings suggest that ST could influence chromosomal instability patterns that are a hallmark of SV40-transformed cells and LT expression.
Collapse
Affiliation(s)
- S Gaillard
- Department of Microbiology-Immunology and the Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611-3010, USA
| | | | | | | |
Collapse
|
219
|
Abstract
The serine/threonine protein phosphatase 2A (PP2A) appears to be critically involved in cellular growth control and potentially in the development of cancer. A few studies indicated that this enzyme might actually exert tumor suppressive function. However, other findings demonstrated the requirement for PP2A in cell growth and survival, which is not a characteristic of a typical tumor suppressor. This apparent discrepancy might be due to the fact that PP2A is a multitask enzyme system, rather than a single enzyme. Its individual subunits are encoded by a heterogeneous group of genes which give rise to a multitude of different PP2A holoenzyme complexes. Thus, the puzzling observation that PP2A exerts inhibitory, as well as stimulatory, effects on cell growth could be due to the activity of different PP2A complexes with distinct subcellular location and divers substrate specificity. At the same time, this abundance of PP2A components provides a large target for mutations that might derail proper enzyme function and could contribute to the process of tumorigenesis. So far, however, it has not been unequivocally established whether such mutations, examples of which have indeed been found in human cancer cells, result in the activation of an oncogenic function or rather in the inactivation of the presumed tumor suppressive role of PP2A. Therefore, the general opinion of PP2A as being a tumor suppressor needs to be viewed with caution.
Collapse
Affiliation(s)
- A H Schönthal
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, HMR-405, Los Angeles, CA 90033, USA.
| |
Collapse
|
220
|
Zhan XL, Wishart MJ, Guan KL. Nonreceptor tyrosine phosphatases in cellular signaling: regulation of mitogen-activated protein kinases. Chem Rev 2001; 101:2477-96. [PMID: 11749384 DOI: 10.1021/cr000245u] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- X L Zhan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
221
|
Jackson MD, Denu JM. Molecular reactions of protein phosphatases--insights from structure and chemistry. Chem Rev 2001; 101:2313-40. [PMID: 11749375 DOI: 10.1021/cr000247e] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M D Jackson
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon 97201, USA
| | | |
Collapse
|
222
|
Gillet R, Cavard C, Grimber G, Briand P, Joulin V. Hepatic expression of SV40 small-T antigen blocks the in vivo CD95-mediated apoptosis. Biochem Biophys Res Commun 2001; 284:369-76. [PMID: 11394888 DOI: 10.1006/bbrc.2001.4988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously demonstrated that CD95-mediated apoptosis of hepatocytes is blocked in a murine model of hepatocarcinogenesis due to the expression of SV40 early sequences encoding the large-T and small-t antigens. In this study, we set out to pinpoint the sequences involved in this apoptosis-resistant phenotype, and tested several mutants of the SV40 early region for their ability to confer protection against CD95-induced apoptosis in transgenic mice. We show that resistance to apoptosis is independent of the transforming character of the mutants and demonstrate that the expression of the small-t antigen alone in transgenic mice is sufficient to confer this resistance. Our data also reveal an increased level of activated Akt kinase in these transgenic mice, and this could account for this hitherto unknown function of the SV40 small-t antigen.
Collapse
Affiliation(s)
- R Gillet
- INSERM U380, Institut Cochin de Génétique Moléculaire, 22 rue Méchain, Paris, 75014, France
| | | | | | | | | |
Collapse
|
223
|
Forsyth CJ, Dounay AB, Sabes SF, Urbanek RA. Biotherapeutic potential and synthesis of okadaic acid. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2001:57-102. [PMID: 11077606 DOI: 10.1007/978-3-662-04042-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- C J Forsyth
- Department of Chemistry, University of Minnesota, Minneapolis 55455-0431, USA
| | | | | | | |
Collapse
|
224
|
Yen A, Placanica L, Bloom S, Varvayanis S. Polyomavirus small t antigen prevents retinoic acid-induced retinoblastoma protein hypophosphorylation and redirects retinoic acid-induced G0 arrest and differentiation to apoptosis. J Virol 2001; 75:5302-14. [PMID: 11333911 PMCID: PMC114935 DOI: 10.1128/jvi.75.11.5302-5314.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polyomavirus small t antigen (ST) impedes late features of retinoic acid (RA)-induced HL-60 myeloid differentiation as well as growth arrest, causing apoptosis instead. HL-60 cells were stably transfected with ST. ST slowed the cell cycle, retarding G2/M in particular. Treated with RA, the ST transfectants continued to proliferate and underwent apoptosis. ST also impeded the normally RA-induced hypophosphorylation of the retinoblastoma tumor suppressor protein consistent with failure of the cells to arrest growth. The RA-treated transfectants expressed CD11b, an early cell surface differentiation marker, but inducible oxidative metabolism, a later and more mature functional differentiation marker, was largely inhibited. Instead, the cells underwent apoptosis. ST affected significant known components of RA signaling that result in G0 growth arrest and differentiation in wild-type HL-60. ST increased the basal amount of activated ERK2, which normally increases when wild-type cells are treated with RA. ST caused increased RARalpha expression, which is normally down regulated in RA-treated wild-type cells. The effects of ST on RA-induced myeloid differentiation did not extend to monocytic differentiation and G0 arrest induced by 1,25-dihydroxy vitamin D3, whose receptor is also a member of the steroid-thyroid hormone superfamily. In this case, ST abolished the usually induced G0 arrest and retarded, but did not block, differentiation without inducing apoptosis, thus uncoupling growth arrest and differentiation. In sum, the data show that ST disrupted the normal RA-induced program of G0 arrest and differentiation, causing the cells to abort differentiation and undergo apoptosis.
Collapse
Affiliation(s)
- A Yen
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | |
Collapse
|
225
|
Huss WJ, Maddison LA, Greenberg NM. Autochthonous mouse models for prostate cancer: past, present and future. Semin Cancer Biol 2001; 11:245-60. [PMID: 11407949 DOI: 10.1006/scbi.2001.0373] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prostate cancer continues to be the second leading cancer related death among men. In order to more fully develop effective prevention and intervention strategies for this prevalent disease, the underlying molecular mechanisms of initiation, progression and metastatic spread must be understood. To this end mouse models have an essential role in prostate cancer research in that they can closely mimic the pathological and biochemical features of the disease. In this review we discuss the history of autochthonous murine models of prostate cancer, the essentials of the idealized mouse model for prostate cancer and speculate on approaches towards this goal.
Collapse
Affiliation(s)
- W J Huss
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | |
Collapse
|
226
|
Payne E, Bowles MR, Don A, Hancock JF, McMillan NA. Human papillomavirus type 6b virus-like particles are able to activate the Ras-MAP kinase pathway and induce cell proliferation. J Virol 2001; 75:4150-7. [PMID: 11287564 PMCID: PMC114160 DOI: 10.1128/jvi.75.9.4150-4157.2001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The initial step in viral infection is the attachment of the virus to the host cell via an interaction with its receptor. We have previously shown that a receptor for human papillomavirus is the alpha6 integrin. The alpha6 integrin is involved in the attachment of epithelial cells with the basement membrane, but recent evidence suggests that ligation of many integrins results in intracellular signaling events that influence cell proliferation. Here we present evidence that exposure of A431 human epithelial cells to human papillomavirus type 6b L1 virus-like particles (VLPs) results in a dose-dependent increase in cell proliferation, as measured by bromodeoxyuridine incorporation. This proliferation is lost if VLPs are first denatured or incubated with a monoclonal antibody against L1 protein. The MEK1 inhibitor PB98059 inhibits the VLP-mediated increase in cell proliferation, suggesting involvement of the Ras-MAP kinase pathway. Indeed, VLP binding results in rapid phosphorylation of the beta4 integrin upon tyrosine residues and subsequent recruitment of the adapter protein Shc to beta4. Within 30 min, the activation of Ras, Raf, and Erk2 was observed. Finally, the upregulation of c-myc mRNA was observed at 60 min. These data indicate that human papillomavirus type 6b is able to signal cells via the Ras-MAP kinase pathway to induce cell proliferation. We hypothesize that such a mechanism would allow papillomaviruses to infect hosts more successfully by increasing the potential pool of cells they are able to infect via the initiation of proliferation in resting keratinocyte stem and suprabasal cells.
Collapse
Affiliation(s)
- E Payne
- Molecular Virology Laboratory, Centre for Immunology and Cancer Research, P.A. Hospital, University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
227
|
Affiliation(s)
- D T Simmons
- Department of Biological Sciences, University of Delaware, Newark 19716, USA
| |
Collapse
|
228
|
Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22:153-83. [PMID: 11294822 DOI: 10.1210/edrv.22.2.0428] [Citation(s) in RCA: 1318] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitogen-activated protein (MAP) kinases comprise a family of ubiquitous proline-directed, protein-serine/threonine kinases, which participate in signal transduction pathways that control intracellular events including acute responses to hormones and major developmental changes in organisms. MAP kinases lie in protein kinase cascades. This review discusses the regulation and functions of mammalian MAP kinases. Nonenzymatic mechanisms that impact MAP kinase functions and findings from gene disruption studies are highlighted. Particular emphasis is on ERK1/2.
Collapse
Affiliation(s)
- G Pearson
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | |
Collapse
|
229
|
Zhu Y, Loukola A, Monni O, Kuokkanen K, Franssila K, Elonen E, Vilpo J, Joensuu H, Kere J, Aaltonen L, Knuutila S. PPP2R1B gene in chronic lymphocytic leukemias and mantle cell lymphomas. Leuk Lymphoma 2001; 41:177-83. [PMID: 11342371 DOI: 10.3109/10428190109057968] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Deletion of chromosome bands 11q22-q23 is one of the most common structural chromosome alterations in chronic lymphocytic leukemia (CLL) and mantle cell lymphoma (MCL). The PPP2R1B gene is located very close to the minimal common deletion region of 11q22-q23 in CLL and MCL. Recently, the PPP2R1B gene was found to be mutated in human lung and colon cancers. To evaluate the role of the PPP2R1B gene in the pathogenesis of CLL and MCL, we performed RT-PCR analysis and cDNA sequencing on 10 CLL RNA samples and SSCP analysis on 26 CLL and 37 MCL genomic DNA samples. A deletion of exon 3 was found in one CLL sample. No mutation was detected in the SSCP analysis. To exclude the possibility of large genomic deletions we performed Southern blotting analysis. One MCL sample showed abnormal bands. Our results do not suggest that the PPP2R1B gene has a major pathogenic role in CLL and MCL.
Collapse
MESH Headings
- Base Sequence
- Chromosomes, Human, Pair 11
- DNA Mutational Analysis
- Deoxyribonuclease EcoRI
- Deoxyribonucleases, Type II Site-Specific
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/enzymology
- Leukemia, Lymphocytic, Chronic, B-Cell/etiology
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Lymphoma, Mantle-Cell/enzymology
- Lymphoma, Mantle-Cell/etiology
- Lymphoma, Mantle-Cell/genetics
- Neoplasm Proteins
- Phosphoprotein Phosphatases/genetics
- Protein Phosphatase 2
- Proteins/genetics
- Sequence Deletion
Collapse
Affiliation(s)
- Y Zhu
- Department of Medical Genetics, Haartman Institute; Helsinki University Central Hospital, University of Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Minakuchi M, Kakazu N, Gorrin-Rivas MJ, Abe T, Copeland TD, Ueda K, Adachi Y. Identification and characterization of SEB, a novel protein that binds to the acute undifferentiated leukemia-associated protein SET. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1340-51. [PMID: 11231286 DOI: 10.1046/j.1432-1327.2001.02000.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SET, the translocation breakpoint-encoded protein in acute undifferentiated leukemia (AUL), is a 39-kDa nuclear phosphoprotein and has an inhibitory activity for protein phosphatase 2A (PP2A). SET is fused to a putative oncoprotein, CAN/NUP214, in AUL and is thought to play a key role in leukemogenesis by its nuclear localization, protein-protein interactions and PP2A inhibitory activity. Here, we describe the isolation and characterization of a novel cDNA encoding a protein with 1542 amino-acid residues that specifically interacts in a yeast two-hybrid system as well as in human cells with SET. This new protein, which we name SEB (SET-binding protein), is identified as a 170-kDa protein by immunoprecipitation with a specific antibody and is localized predominantly in the nucleus. SEB1238--1434 is determined as a SET-binding region that specifically binds to SET182--223. SEB also has an oncoprotein Ski homologous region (amino acids 654--858), six PEST sequences and three sequential PPLPPPPP repeats at the C-terminus. SEB mRNA is expressed ubiquitously in all human adult tissues and cells examined. The SEB gene locus is assigned to the chromosome 18q21.1 that contains candidate tumor suppressor genes associated with deletions in cancer and leukemia. Although the function of SEB is not known, we propose that SEB plays a key role in the mechanism of SET-related leukemogenesis and tumorigenesis, perhaps by suppressing SET function or by regulating the transforming activity of Ski in the nucleus.
Collapse
Affiliation(s)
- M Minakuchi
- Laboratory of Molecular Clinical Chemistry, Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
| | | | | | | | | | | | | |
Collapse
|
231
|
Rundell K, Parakati R. The role of the SV40 ST antigen in cell growth promotion and transformation. Semin Cancer Biol 2001; 11:5-13. [PMID: 11243894 DOI: 10.1006/scbi.2000.0341] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The simian virus 40 small-t (ST) antigen plays a key role in permissive and nonpermissive infections, increasing virus yields in lytic cycles of primate cells and enhancing the ability of large-T (LT) to transform rodent or even human cells. In the absence of ST, tumors in rodent model systems appear primarily in lymphoid and other proliferative tissues and transformation is reduced in several in vitro systems. The functions of ST largely reflect its binding and inhibition of protein phosphatase 2A, although a recently described dnaJ domain also contributes to its biology. The dnaJ domain is present in LT and a third early gene product, the 17kT protein, for which a potential role in transformation deserves further evaluation.
Collapse
Affiliation(s)
- K Rundell
- Department of Microbiology-Immunology, Northwestern University, and The Robert H. Lurie Comprehensive Cancer Center, Chicago, IL 60611, USA.
| | | |
Collapse
|
232
|
Janssens V, Goris J. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem J 2001; 353:417-39. [PMID: 11171037 PMCID: PMC1221586 DOI: 10.1042/0264-6021:3530417] [Citation(s) in RCA: 924] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Protein phosphatase 2A (PP2A) comprises a family of serine/threonine phosphatases, minimally containing a well conserved catalytic subunit, the activity of which is highly regulated. Regulation is accomplished mainly by members of a family of regulatory subunits, which determine the substrate specificity, (sub)cellular localization and catalytic activity of the PP2A holoenzymes. Moreover, the catalytic subunit is subject to two types of post-translational modification, phosphorylation and methylation, which are also thought to be important regulatory devices. The regulatory ability of PTPA (PTPase activator), originally identified as a protein stimulating the phosphotyrosine phosphatase activity of PP2A, will also be discussed, alongside the other regulatory inputs. The use of specific PP2A inhibitors and molecular genetics in yeast, Drosophila and mice has revealed roles for PP2A in cell cycle regulation, cell morphology and development. PP2A also plays a prominent role in the regulation of specific signal transduction cascades, as witnessed by its presence in a number of macromolecular signalling modules, where it is often found in association with other phosphatases and kinases. Additionally, PP2A interacts with a substantial number of other cellular and viral proteins, which are PP2A substrates, target PP2A to different subcellular compartments or affect enzyme activity. Finally, the de-regulation of PP2A in some specific pathologies will be touched upon.
Collapse
Affiliation(s)
- V Janssens
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Herestraat 49, B-3000 Leuven, Belgium
| | | |
Collapse
|
233
|
Warmka J, Hanneman J, Lee J, Amin D, Ota I. Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Mol Cell Biol 2001; 21:51-60. [PMID: 11113180 PMCID: PMC86567 DOI: 10.1128/mcb.21.1.51-60.2001] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2000] [Accepted: 09/09/2000] [Indexed: 11/20/2022] Open
Abstract
The HOG (high-osmolarity glycerol) mitogen-activated protein kinase (MAPK) pathway regulates the osmotic stress response in the yeast Saccharomyces cerevisiae. Three type 2C Ser/Thr phosphatases (PTCs), Ptc1, Ptc2, and Ptc3, have been isolated as negative regulators of this pathway. Previously, multicopy expression of PTC1 and PTC3 was shown to suppress lethality of the sln1Delta strain due to hyperactivation of the HOG pathway. In this work, we show that PTC2 also suppresses sln1Delta lethality. Furthermore, the phosphatase activity of these PTCs was needed for suppression, as mutation of a conserved Asp residue, likely to coordinate a metal ion, inactivated PTCs. Further analysis of Ptc1 function in vivo showed that it inactivates the MAPK, Hog1, but not the MEK, Pbs2. In the wild type, Hog1 kinase activity increased transiently, approximately 12-fold in response to osmotic stress, while overexpression of PTC1 limited activation to approximately 3-fold. In contrast, overexpression of PTC1 did not inhibit phosphorylation of Hog1 Tyr in the phosphorylation lip, suggesting that Ptc1 does not act on Pbs2. Deletion of PTC1 also strongly affected Hog1, leading to high basal Hog1 activity and sustained Hog1 activity in response to osmotic stress, the latter being consistent with a role for Ptc1 in adaptation. In vitro, Ptc1 but not the metal binding site mutant, Ptc1D58N, inactivated Hog1 by dephosphorylating the phosphothreonine but not the phosphotyrosine residue in the phosphorylation lip. Consistent with its role as a negative regulator of Hog1, which accumulates in the nucleus upon activation, Ptc1 was found in both the nucleus and the cytoplasm. Thus, one function of Ptc1 is to inactivate Hog1.
Collapse
Affiliation(s)
- J Warmka
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | | | | | | | |
Collapse
|
234
|
Abstract
Dynamic phosphorylation and dephosphorylation of proteins are fundamental mechanisms utilized by cells to transduce signals. Whereas transduction by protein kinases has been a major focus of studies in the last decade, protein phosphatase 2A (PP2A) enzymes emerge in this millenium as the most fashionable players in cellular signaling. Viral proteins target specific PP2A enzymes in order to deregulate chosen cellular pathways in the host and promote viral progeny. The observation that a variety of viruses utilize PP2A to alienate cellular behavior emphasizes the fundamental importance of PP2A in signal transduction. This review will primarily focus on discussing the uniqueness of PP2A regulation and uncovering the critical role played by protein-protein interactions in the modulation of PP2A signaling. Moreover, the place of PP2A in signaling pathways and its functional significance for human diseases will be discussed.
Collapse
Affiliation(s)
- E Sontag
- Department of Pathology/Neuropathology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9073, USA.
| |
Collapse
|
235
|
Polyoma virus middle t-antigen: growth factor receptor mimic. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0168-7069(01)05004-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
236
|
Fukukawa C, Shima H, Tanuma N, Ogawa K, Kikuchi K. Up-regulation of I-2(PP2A)/SET gene expression in rat primary hepatomas and regenerating livers. Cancer Lett 2000; 161:89-95. [PMID: 11078917 DOI: 10.1016/s0304-3835(00)00598-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
I-2(PP2A)/SET, an inhibitor of protein phosphatase 2A, is supposed to be one of the oncoproteins associated with human myeloid leukemia. The I-2(PP2A)/SET gene expression was observed ubiquitously among all the rat tissues examined, but low in liver. Of interest is that the expression in the rat primary hepatomas and hyperplastic nodules was significantly elevated. The experiments using regenerating livers after partial hepatectomy showed that the expression of I-2(PP2A)/SET mRNA was low at the quiescent hepatocytes, but up-regulated at 12-24 h after partial hepatectomy, which corresponds to the mid G1 to S transition in the cell cycle. These results suggested the importance of I-2(PP2A)/SET in the hepatocarcinogenesis and hepatic cell proliferation.
Collapse
Affiliation(s)
- C Fukukawa
- Division of Biochemical Oncology and Immunology, Institute for Genetic Medicine, Hokkaido University, Kita-15, Nishi-7, Kita-ku, 060-0815, Sapporo, Japan
| | | | | | | | | |
Collapse
|
237
|
Castigli E, Arcuri C, Giovagnoli L, Luciani R, Giovagnoli L, Secca T, Gianfranceschi GL, Bocchini V. Interleukin-1beta induces apoptosis in GL15 glioblastoma-derived human cell line. Am J Physiol Cell Physiol 2000; 279:C2043-9. [PMID: 11078722 DOI: 10.1152/ajpcell.2000.279.6.c2043] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Interleukin 1-beta (IL-1beta) induces apoptosis in a glioblastoma-derived human cell line, exhibiting a poorly differentiated astrocytic phenotype. The apoptotic effect was demonstrated by analyzing nuclear morphology, in situ DNA fragmentation, and by ELISA detection of cytoplasmatic nucleosomes. We correlated the degree of differentiation of GL15 cells with the apoptotic response: 1) 4',6-diamidino-2-phenylindole staining, combined with glial fibrillary acidic protein (GFAP) immunofluorescence, showed that the cells with apoptotic nuclei express low levels of GFAP; and 2) at 13 days of subculture, in a more differentiated state, GL15 cells did not respond with apoptosis to IL-1beta. In this cell line, nonrandom chromosome changes and the expression of SV40 early region have been previously shown. The involvement of p42/p44 mitogen-activated protein kinase (MAPK) pathway in the induction of apoptosis by IL-1beta was hypothesized. Previous studies have shown that SV40 small T antigen partially inhibits phosphatase 2A, leading to an enhancement of the steady-state activity of p42/p44 MAPK pathway. PD-098059, specific inhibitor of p42/p44 MAPK pathway, counteracts the apoptotic effect of IL-1beta, whereas SB-203580, specific inhibitor of p38 stress-activated protein kinase (SAPK) pathway, is ineffective. The imbalance between MAPK and SAPK pathways has been proposed as a key factor in determination of cell fate. Our results demonstrate that a further stimulation of p42/p44 MAPK pathway can constitute a death signal in tumor cells in which genomic damage and MAPK pathway control alterations occur.
Collapse
Affiliation(s)
- E Castigli
- Section of Physiology and Biophysics, Department of Cellular and Molecular Biology, University of Perugia, 06100 Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
238
|
Chen J, Stinski MF. Activation of transcription of the human cytomegalovirus early UL4 promoter by the Ets transcription factor binding element. J Virol 2000; 74:9845-57. [PMID: 11024111 PMCID: PMC102021 DOI: 10.1128/jvi.74.21.9845-9857.2000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The human cytomegalovirus (HCMV) early UL4 promoter has served as a useful model for studying the activation of early viral gene expression. Previous transient-transfection experiments detected cis-acting elements (the NF-Y site and site 2) upstream of the transcriptional start site (L. Huang and M. F. Stinski, J. Virol. 69:7612-7621, 1995). The roles of two of these sites, the NF-Y site and site 2, in the context of the viral genome were investigated further by comparing mRNA levels from the early UL4 promoter in human foreskin fibroblasts infected by recombinant viruses with either wild-type or mutant cis-acting elements. Steady-state mRNA levels from the UL4 promoter with a mutation in the NF-Y site were comparable to that of wild type. A mutation in an Elk-1 site plus putative IE86 protein binding sites decreased the steady-state mRNA levels compared to the wild type at early times after infection. Electrophoretic mobility shift assays and antibody supershifts detected the binding of cellular transcription factor Elk-1 to site 2 DNA with infected nuclear extracts but not with mock-infected nuclear extracts. The role of cellular transcription factors activated by the mitogen activated protein kinase/extracellular signal-regulated kinase pathway in activating transcription from early viral promoters is discussed.
Collapse
Affiliation(s)
- J Chen
- Department of Microbiology, College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
239
|
Mackova M, Man JR, Chik CL, Ho AK. p38MAPK inhibition enhances basal and norepinephrine-stimulated p42/44MAPK phosphorylation in rat pinealocytes. Endocrinology 2000; 141:4202-8. [PMID: 11089554 DOI: 10.1210/endo.141.11.7797] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Interaction between p38MAPK and p42/44MAPK in rat pinealocytes was examined by determining the effects of p38MAPK inhibitors on the phosphorylation of p42/44MAPK using Western blot analysis. Treatment with SB202190, a specific inhibitor of p38MAPK, increased p42/44MAPK phosphorylation in a concentration-dependent manner. SB202190 also enhanced the magnitude and the duration of norepinephrine-activated p42/44MAPK phosphorylation. The effect of SB202190 on p42/44MAPK phosphorylation was abolished by PD98059 or UO126, inhibitors of MEK, suggesting that SB202190 is acting upstream of MEK in activating p42/44MAPK. The SB202190-induced phosphorylation of p42/44MAPK was not blocked by inhibitors of cGMP-dependent kinase (KT5823), protein kinase C (calphostin C) or Ca2+/calmodulin dependent kinase (KN93) suggesting that these pathways may not be involved in the effect of SB202190. SB202190 further increased p42/44MAPK phosphorylation that was stimulated by 8-bromo-cGMP, 4beta phorbol 12-myristate 13-acetate, or ionomycin. In contrast, inhibition of p42/44MAPK phosphorylation by dibutyryl-cAMP persisted when p42/44MAPK phosphorylation was increased by SB202190. Furthermore, inhibition of p42/44MAPK phosphorylation had no effect on p38MAPK activation. These results suggest that inhibition of p38MAPK causes activation of p42/44MAPK and acts synergistically with norepinephrine in the regulation of p42/44MAPK activation in rat pinealocytes.
Collapse
Affiliation(s)
- M Mackova
- Department of Physiology, Faculty of Medicine, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
240
|
Tolstykh T, Lee J, Vafai S, Stock JB. Carboxyl methylation regulates phosphoprotein phosphatase 2A by controlling the association of regulatory B subunits. EMBO J 2000; 19:5682-91. [PMID: 11060019 PMCID: PMC305779 DOI: 10.1093/emboj/19.21.5682] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Phosphoprotein phosphatase 2A (PP2A) is a major phosphoserine/threonine protein phosphatase in all eukaryotes. It has been isolated as a heterotrimeric holoenzyme composed of a 65 kDa A subunit, which serves as a scaffold for the association of the 36 kDa catalytic C subunit, and a variety of B subunits that control phosphatase specificity. The C subunit is reversibly methyl esterified by specific methyltransferase and methylesterase enzymes at a completely conserved C-terminal leucine residue. Here we show that methylation plays an essential role in promoting PP2A holoenzyme assembly and that demethylation has an opposing effect. Changes in methylation indirectly regulate PP2A phosphatase activity by controlling the binding of regulatory B subunits to AC dimers.
Collapse
Affiliation(s)
- T Tolstykh
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | | | | | | |
Collapse
|
241
|
Ricciardiello L, Laghi L, Ramamirtham P, Chang CL, Chang DK, Randolph AE, Boland CR. JC virus DNA sequences are frequently present in the human upper and lower gastrointestinal tract. Gastroenterology 2000; 119:1228-35. [PMID: 11054380 DOI: 10.1053/gast.2000.19269] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS JC virus (JCV), a human polyomavirus, has been found in a limited number of normal human tissues and cancers. The oncogenic potential of this virus is mediated by a transforming protein, the T antigen (TAg). We have previously demonstrated the presence of JCV-TAg in colorectal cancers, in adjacent normal colonic mucosa from these patients, and in the human colon cancer cell line SW480. The mode of transmission of this virus is unclear, and we hypothesized that the gastrointestinal (GI) tract may be a reservoir for the virus. METHODS DNA was extracted from 129 normal GI tissue samples collected from 33 patients. Topoisomerase I-assisted polymerase chain reaction (PCR) was used to detect the virus using exact and degenerate primers. Nested PCR and Southern blot analysis confirmed the identity of the PCR products. Single-stranded conformation polymorphism (SSCP) analysis and sequencing were used to evaluate the presence of viral quasispecies. RESULTS JCV sequences were found in 75.8% of patients (70.6% of upper GI and 81.2% of colonic samples); no significant differences in rates of infection were found by site. The use of degenerate primers combined with topoisomerase I treatment led to viral detection in 58.9% of samples, compared with 27.9% of samples using exact primers and topoisomerase I (P < 0.01). SSCP and sequencing analysis confirmed the amplification of viral quasispecies and the authenticity of TAg sequences. CONCLUSIONS The results show that JCV DNA sequences are highly prevalent in the human upper and lower gastrointestinal tract of immunocompetent individuals.
Collapse
Affiliation(s)
- L Ricciardiello
- Department of Medicine and Cancer Center, University of California San Diego, and San Diego Veteran Affairs Medical Center, La Jolla, California 92093-0688, USA
| | | | | | | | | | | | | |
Collapse
|
242
|
Smith CC, Nelson J, Aurelian L, Gober M, Goswami BB. Ras-GAP binding and phosphorylation by herpes simplex virus type 2 RR1 PK (ICP10) and activation of the Ras/MEK/MAPK mitogenic pathway are required for timely onset of virus growth. J Virol 2000; 74:10417-29. [PMID: 11044086 PMCID: PMC110916 DOI: 10.1128/jvi.74.22.10417-10429.2000] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We used a herpes simplex virus type 2 (HSV-2) mutant with a deletion in the RR1 (ICP10) PK domain (ICP10DeltaPK) and an MEK inhibitor (PD98059) to examine the role of ICP10 PK in virus growth. In HSV-2-infected cells, ICP10 PK binds and phosphorylates the GTPase activating protein Ras-GAP. In vitro binding and peptide competition assays indicated that Ras-GAP N-SH2 and PH domains, respectively, bind ICP10 at phosphothreonines 117 and 141 and a WD40-like motif at positions 160 to 173. Binding and phosphorylation did not occur in cells infected with ICP10DeltaPK. GTPase activity was significantly lower in HSV-2- than in ICP10DeltaPK-infected cells. Conversely, the levels of activated Ras and mitogen-activated protein kinase (MAPK), and the expression and stabilization of the transcription factor c-Fos were significantly increased in cells infected with HSV-2 or a revertant virus [HSV-2(R)] but not with ICP10DeltaPK. PD98059 inhibited MAPK activation and induction-stabilization of c-Fos. Expression from the ICP10 promoter was increased in cells infected with HSV-2 but not with ICP10DeltaPK, and increased expression was ablated by PD98059. ICP10 DNA formed a complex with nuclear extracts from HSV-2-infected cells which was supershifted by c-Fos antibody and was not seen with extracts from ICP10DeltaPK-infected cells. Complex formation was abrogated by PD98059. Onset of HSV-2 replication was significantly delayed by PD98059 (14 h versus 2 h in untreated cells), a delay similar to that seen for ICP10DeltaPK. The data indicate that Ras-GAP phosphorylation by ICP10 PK is involved in the activation of the Ras/MEK/MAPK mitogenic pathway and c-Fos induction and stabilization. This results in increased ICP10 expression and the timely onset of HSV-2 growth.
Collapse
Affiliation(s)
- C C Smith
- Departments of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | |
Collapse
|
243
|
Pei L. Activation of mitogen-activated protein kinase cascade regulates pituitary tumor-transforming gene transactivation function. J Biol Chem 2000; 275:31191-8. [PMID: 10906323 DOI: 10.1074/jbc.m002451200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pituitary tumor-transforming gene (PTTG) is a recently characterized oncogene that can act as a transcriptional activator. In this study, we have characterized the transactivation domain of PTTG. Transient transfection of fusion constructs containing GAL4 DNA-binding domain and different parts of PTTG indicated the transactivation domain of PTTG is located between amino acids 119 and 164. Mitogen-activated protein (MAP) kinase cascade is important in the regulation of cell growth, apoptosis, and differentiation. Therefore, we have explored the possibility that this kinase cascade plays a role in regulating PTTG transactivation function. Activation of the MAP kinase cascade by epidermal growth factor or an expression vector for a constitutively active form of the MAP kinase kinase (MEK1) led to stimulation of PTTG transactivation activity. We showed that PTTG is phosphorylated in vitro on Ser(162) by MAP kinase and that this phosphorylation site plays an essential role in PTTG transactivation function. We demonstrated that PTTG interacts directly with MEK1 through a putative SH3 domain-binding site located between amino acids 51 and 54 and that this interaction is crucial for PTTG transactivation function. In addition, we showed that activation of MAP kinase phosphorylation cascade resulted in nuclear translocation of PTTG. Together, our data establish that a growth factor-stimulated MAP kinase plays an important role in modulating PTTG function.
Collapse
Affiliation(s)
- L Pei
- Division of Endocrinology and Metabolism, Cedars-Sinai Research Institute-UCLA School of Medicine, Los Angeles, California 90048, USA.
| |
Collapse
|
244
|
Lecuona E, Garcia A, Sznajder JI. A novel role for protein phosphatase 2A in the dopaminergic regulation of Na,K-ATPase. FEBS Lett 2000; 481:217-20. [PMID: 11007967 DOI: 10.1016/s0014-5793(00)02009-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stimulation of dopaminergic type 1 (D(1)) receptors increases lung edema clearance by regulating Na,K-ATPase function in the alveolar epithelium. We studied the role of serine/threonine protein phosphatases in the Na,K-ATPase regulation by D(1) agonists in A549 cells. We found that low doses of the type 1/2A protein phosphatase inhibitor okadaic acid as well as SV40 small t antigen transiently transfected into A549 cells prevented the D(1) agonist-induced increase in Na,K-ATPase activity and translocation from intracellular pools to the plasma membrane. This was associated with a rapid and transient increase in protein phosphatase 2A activity. We conclude that D(1) stimulation regulates Na,K-ATPase activity by promoting recruitment of Na,K-ATPases from intracellular pools into the basolateral membranes of A549 cells via a type 2A protein phosphatase.
Collapse
Affiliation(s)
- E Lecuona
- Division of Pulmonary and Critical Care Medicine, Northwestern University, 300 East Superior Street, Tarry Building 14-707, Chicago, IL 60611, USA
| | | | | |
Collapse
|
245
|
Chuang E, Fisher TS, Morgan RW, Robbins MD, Duerr JM, Vander Heiden MG, Gardner JP, Hambor JE, Neveu MJ, Thompson CB. The CD28 and CTLA-4 receptors associate with the serine/threonine phosphatase PP2A. Immunity 2000; 13:313-22. [PMID: 11021529 DOI: 10.1016/s1074-7613(00)00031-5] [Citation(s) in RCA: 229] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD28 and CTLA-4 are related members of a family of T lymphocyte cell surface receptors that function to regulate T cell activation. We have found that the cytoplasmic domains of both CTLA-4 and CD28 can associate with members of the PP2A family of serine/threonine phosphatases. The association of PP2A with CD28 was negatively regulated by tyrosine phosphorylation of the CD28 cytoplasmic domain. Inhibition of PP2A activity in Jurkat leukemia T cells by treatment with okadaic acid or by expression of a dominant-negative mutant enhanced T cell activation induced by CD28 engagement. Interactions between cell surface receptors such as CTLA-4 and CD28 and serine/threonine phosphatases may represent a novel mechanism for modulating the intracellular signal transduction pathways associated with cell activation.
Collapse
Affiliation(s)
- E Chuang
- Gwen Knapp Center for Lupus and Immunobiology Research, University of Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
246
|
Brewis N, Ohst K, Fields K, Rapacciuolo A, Chou D, Bloor C, Dillmann W, Rockman H, Walter G. Dilated cardiomyopathy in transgenic mice expressing a mutant A subunit of protein phosphatase 2A. Am J Physiol Heart Circ Physiol 2000; 279:H1307-18. [PMID: 10993798 DOI: 10.1152/ajpheart.2000.279.3.h1307] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protein phosphatase 2A (PP2A) holoenzyme consists of a catalytic subunit, C, and two regulatory subunits, A and B. The PP2A core enzyme is composed of subunits A and C. Both the holoenzyme and the core enzyme are similarly abundant in heart tissue. Transgenic mice were generated expressing high levels of a dominant negative mutant of the A subunit (A delta 5) in the heart, skeletal muscle, and smooth muscle that competes with the endogenous A subunit for binding the C subunit but does not bind B subunits. We found that the ratio of core enzyme to holoenzyme was increased in A delta 5-expressing hearts. Importantly, already at day 1 after birth, A delta 5-transgenic mice had an increased heart weight-to-body weight ratio that persisted throughout life. Echocardiographic analysis of A delta 5-transgenic hearts revealed increased end-diastolic and end-systolic dimensions and decreased fractional shortening. In addition, the thickness of the septum and of the left ventricular posterior wall was significantly reduced. On the basis of these findings, we consider the heart phenotype of A delta 5-transgenic mice to be a form of dilated cardiomyopathy that frequently leads to premature death.
Collapse
MESH Headings
- Animals
- Body Weight
- Cardiomyopathy, Dilated/enzymology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Echocardiography
- Exons/genetics
- Gene Expression/genetics
- Genes, Dominant/genetics
- Holoenzymes/genetics
- Holoenzymes/metabolism
- Mice
- Mice, Transgenic/genetics
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Muscle, Smooth/enzymology
- Muscle, Smooth/pathology
- Mutagenesis, Site-Directed
- Myocardium/enzymology
- Myocardium/pathology
- Organ Size
- Organ Specificity/genetics
- Phosphoprotein Phosphatases/genetics
- Phosphoprotein Phosphatases/metabolism
- Protein Binding/genetics
- Protein Phosphatase 2
- Sequence Deletion/genetics
- Transgenes/genetics
Collapse
Affiliation(s)
- N Brewis
- Department of Pathology, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
247
|
Abstract
MAP kinases function as key signal integration points for a vast number of external stimuli that affect the life and death of cells and are therefore subject to rigorous regulation. Here we review the numerous protein phosphatases that directly counteract MAP kinase activation. To simplify the complexity, we attempt to integrate the information into a 'sequential phosphatase model' of MAP kinase regulation.
Collapse
Affiliation(s)
- M Saxena
- Laboratory of Signal Transduction, La Jolla Cancer Research Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
248
|
Abraham D, Podar K, Pacher M, Kubicek M, Welzel N, Hemmings BA, Dilworth SM, Mischak H, Kolch W, Baccarini M. Raf-1-associated protein phosphatase 2A as a positive regulator of kinase activation. J Biol Chem 2000; 275:22300-4. [PMID: 10801873 DOI: 10.1074/jbc.m003259200] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Raf-1 kinase plays a key role in relaying proliferation signals elicited by mitogens or oncogenes. Raf-1 is regulated by complex and incompletely understood mechanisms including phosphorylation. A number of studies have indicated that phosphorylation of serines 259 and 621 can inhibit the Raf-1 kinase. We show that both serines are hypophosphorylated during early mitogenic stimulation and that hypophosphorylation correlates with peak Raf-1 activation. Concentrations of okadaic acid that selectively inhibit protein phosphatase 2A (PP2A) induce phosphorylation of these residues and prevent maximal activation of the Raf-1 kinase. This effect is mediated via phosphorylation of serine 259. The PP2A core heterodimer forms complexes with Raf-1 in vivo and in vitro. These data identify PP2A as a positive regulator of Raf-1 activation and are the first indication that PP2A may support the activation of an associated kinase.
Collapse
Affiliation(s)
- D Abraham
- Vienna Biocenter, Institute of Microbiology and Genetics, Dr. Bohr Gasse 9, A 1030 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Novikova GV, Moshkov IE, Smith AR, Hall MA. The effect of ethylene on MAPKinase-like activity in Arabidopsis thaliana. FEBS Lett 2000; 474:29-32. [PMID: 10828445 DOI: 10.1016/s0014-5793(00)01565-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protein kinase activity was studied in cytosolic extracts from leaves of wild type Arabidopsis thaliana, the ethylene-insensitive mutant, etr1, and the constitutive triple-response mutant, ctr1. Treatment of wild type with ethylene resulted in increased myelin basic protein (MBP) phosphorylation. In etr1, constitutive protein kinase activity was lower than in wild type, but in ctr1, activity was enhanced. A protein of M(r) approximately 47 kDa associated with MBP-phosphorylating activity was detected using in gel protein kinase assays and phosphorylation of this protein was promoted by ethylene treatment in wild type while activity in the mutants reflected that of MBP phosphorylation. Both MAPKinase (ERK 1) and phosphotyrosine antibodies immunoprecipitated MBP-phosphorylating activity and detected a polypeptide band at M(r) approximately 47 kDa. Immunoprecipitated MBP-phosphorylating activity was again much lower in etr1 compared to wild type but much higher in ctr1. Antibodies to phosphorylated MAPKinase recognised proteins at approximately 47 kDa and the signal was upregulated in response to ethylene. The data obtained suggest that the detected protein(s) is a MAPKinase and provide further evidence confirming that a MAPKinase cascade(s) is involved in ethylene signal transduction.
Collapse
Affiliation(s)
- G V Novikova
- Institute of Biological Sciences, University of Wales, SY23 3DA, Aberystwyth, UK
| | | | | | | |
Collapse
|
250
|
Taylor BK, Stoops TD, Everett AD. Protein phosphatase inhibitors arrest cell cycle and reduce branching morphogenesis in fetal rat lung cultures. Am J Physiol Lung Cell Mol Physiol 2000; 278:L1062-70. [PMID: 10781439 DOI: 10.1152/ajplung.2000.278.5.l1062] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Protein phosphatase 2A (PP2A) is a key signal transduction intermediate in the regulation of cellular proliferation and differentiation in vitro. However, the role of PP2A in the context of a developing organ is unknown. To explore the role of PP2A in the regulation of lung development, we studied the effect of PP2A inhibition on new airway branching, induction of apoptosis, DNA synthesis, and expression of epithelial marker genes in whole organ explant cultures of embryonic (E14) rat lung. Microdissected lung primordia were cultured in medium containing one of either two PP2A inhibitors, okadaic acid (OA, 0-9 nM) or cantharidin (Can, 0-3,600 nM), or with the PP2B inhibitor deltamethrin (Del, 0-10 microM) as a control for a PP2A-specific effect for 48 h. PP2A inhibition with OA and Can significantly inhibited airway branching and overall lung growth. PP2B inhibition with Del did not affect lung growth or new airway development. Histologically, both PP2A- and PP2B-inhibited explants were similar to controls. Increased apoptosis was not the mechanism of decreased lung growth and new airway branching inasmuch as OA-treated explant sections subjected to the terminal deoxynucleotidyltransferase dUTP nick end labeling reaction demonstrated a decrease in apoptosis. However, PP2A inhibition with OA increased DNA content and 5-bromo-2'-deoxyuridine uptake that correlated with a G(2)/M cell cycle arrest. PP2A inhibition also resulted in altered differentiation of the respiratory epithelium as evidenced by decreased mRNA levels of the early epithelial marker surfactant protein C. These findings suggest that inhibition of protein phosphatases with OA and Can halted mesenchymal cell cycle progression and reduced branching morphogenesis in fetal rat lung explant culture.
Collapse
Affiliation(s)
- B K Taylor
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia 22908-1356, USA
| | | | | |
Collapse
|