201
|
Thomas RM, Chen C, Chunder N, Ma L, Taylor J, Pearce EJ, Wells AD. Ikaros silences T-bet expression and interferon-gamma production during T helper 2 differentiation. J Biol Chem 2009; 285:2545-53. [PMID: 19923223 DOI: 10.1074/jbc.m109.038794] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD4+ T cells can be instructed by nonantigen-specific signals to differentiate into functionally distinct lineages with mutually exclusive patterns of cytokine production. The molecular events that drive interferon-gamma (IFN gamma) production during Th1 development are well understood, but mechanisms that silence this cytokine during Th2 polarization are not clear. In this study, we find that the tbx21 gene encoding the Th1 master regulator T-bet is a direct target of the transcriptional repressor Ikaros. In Th2 cells, which do not express T-bet, strong Ikaros binding could be detected at the endogenous tbx21 promoter, whereas this gene was not occupied by Ikaros in T-bet-expressing Th1 cells. Inhibition of Ikaros DNA binding activity during Th2 polarization resulted in loss of Ikaros promoter occupancy, increased T-bet expression, and inappropriate T-bet-dependent production of IFN gamma. Ikaros was also required for epigenetic imprinting of the ifn gamma locus during Th2 polarization, and loss of Ikaros function in vivo led to an inappropriate Th1 response to the parasite Shistosoma mansoni. These studies demonstrate that Ikaros, a factor with an established role in lymphocyte development, also regulates the development of peripheral T helper responses.
Collapse
Affiliation(s)
- Rajan M Thomas
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine and The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
202
|
Dovat S, Payne KJ. Tumor suppression in T cell leukemia--the role of Ikaros. Leuk Res 2009; 34:416-7. [PMID: 19892402 DOI: 10.1016/j.leukres.2009.10.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 10/07/2009] [Accepted: 10/08/2009] [Indexed: 12/24/2022]
|
203
|
Copland M. Ikaros deletions are associated with poor prognosis in acute lymphoblastic leukemia. Future Oncol 2009; 5:455-8. [PMID: 19450174 DOI: 10.2217/fon.09.16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Evaluation of: Mullighan CG, Su X, Zhang J et al.: Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N. Engl. J. Med. 360, 470–480 (2009). Acute lymphoblastic leukemia (ALL) is the most common malignancy of childhood and despite impressive remission rates, approximately 20% of children with ALL relapse with disease that is often difficult to treat. Recently, genome-wide analysis has identified recurring genetic alterations in B-cell ALL, including mutation of PAX5 and deletions of IKZF1, IKZF3, E2A, EBF and LEF1. This large clinical study evaluates the prognostic impact of these genetic abnormalities in two independent cohorts of children with B-cell progenitor ALL and identifies deletion of IKZF1 (which encodes the lymphoid transcription factor Ikaros) as a predictor of poor outcome. This finding demonstrates the importance of IKZF1 status in pediatric ALL, and provides strong supporting evidence for its inclusion in pediatric ALL risk stratification for treatment protocols.
Collapse
Affiliation(s)
- Mhairi Copland
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Gartnavel General Hospital, 1053 Great Western Road, Glasgow, G12 0YN, UK.
| |
Collapse
|
204
|
Cai Q, Dierich A, Oulad-Abdelghani M, Chan S, Kastner P. Helios deficiency has minimal impact on T cell development and function. THE JOURNAL OF IMMUNOLOGY 2009; 183:2303-11. [PMID: 19620299 DOI: 10.4049/jimmunol.0901407] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Helios is a member of the Ikaros family of zinc finger transcription factors. It is expressed mainly in T cells, where it associates with Ikaros-containing complexes and has been proposed to act as a rate-limiting factor for Ikaros function. Overexpression of wild-type or dominant-negative Helios isoforms profoundly alters alphabeta T cell differentiation and activation, and endogenous Helios is expressed at strikingly high levels in regulatory T cells. Helios has also been implicated as a tumor suppressor in human T cell acute lymphoblastic leukemias. These studies suggest a central role for Helios in T cell development and homeostasis, but whether this protein is physiologically required in T cells is unclear. We report herein that inactivation of the Helios gene by homologous recombination does not impair the differentiation and effector cell function of alphabeta and gammadelta T cells, NKT cells, and regulatory T cells. These results suggest that Helios is not essential for T cells, and that its function can be compensated for by other members of the Ikaros family.
Collapse
Affiliation(s)
- Qi Cai
- Department of Cancer Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM Unité 964, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7104, Illkirch, France
| | | | | | | | | |
Collapse
|
205
|
Identification and molecular characterization of recurrent genomic deletions on 7p12 in the IKZF1 gene in a large cohort of BCR-ABL1-positive acute lymphoblastic leukemia patients: on behalf of Gruppo Italiano Malattie Ematologiche dell'Adulto Acute Leukemia Working Party (GIMEMA AL WP). Blood 2009; 114:2159-67. [PMID: 19589926 DOI: 10.1182/blood-2008-08-173963] [Citation(s) in RCA: 168] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The BCR-ABL1 fusion gene defines the subgroup of acute lymphoblastic leukemia (ALL) with the worst clinical prognosis. To identify oncogenic lesions that combine with BCR-ABL1 to cause ALL, we used Affymetrix Genome-Wide Human SNP arrays (250K NspI and SNP 6.0), fluorescence in situ hybridization, and genomic polymerase chain reaction to study 106 cases of adult BCR-ABL1-positive ALL. The most frequent somatic copy number alteration was a focal deletion on 7p12 of IKZF1, which encodes the transcription factor Ikaros and was identified in 80 (75%) of 106 patients. Different patterns of deletions occurred, but the most frequent were those characterized by a loss of exons 4 through 7 (Delta4-7) and by removal of exons 2 through 7 (Delta2-7). A variable number of nucleotides (patient specific) were inserted at the conjunction and maintained with fidelity at the time of relapse. The extent of the Delta4-7 deletion correlated with the expression of a dominant-negative isoform with cytoplasmic localization and oncogenic activity, whereas the Delta2-7 deletion resulted in a transcript lacking the translation start site. The IKZF1 deletion also was identified in the progression of chronic myeloid leukemia to lymphoid blast crisis (66%) but never in myeloid blast crisis or chronic-phase chronic myeloid leukemia or in patients with acute myeloid leukemia. Known DNA sequences and structural features were mapped along the breakpoint cluster regions, including heptamer recombination signal sequences recognized by RAG enzymes during V(D)J recombination, suggesting that IKZF1 deletions could arise from aberrant RAG-mediated recombination.
Collapse
|
206
|
|
207
|
Matulic M, Paradzik M, Cicin-Sain L, Kapitanovic S, Dubravcic K, Batinic D, Antica M. Ikaros family transcription factors in chronic and acute leukemia. Am J Hematol 2009; 84:375-7. [PMID: 19384937 DOI: 10.1002/ajh.21401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
208
|
Stage specific over-expression of the dominant negative Ikaros 6 reveals distinct role of Ikaros throughout human B-cell differentiation. Mol Immunol 2009; 46:1736-43. [DOI: 10.1016/j.molimm.2009.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 11/20/2022]
|
209
|
John LB, Yoong S, Ward AC. Evolution of the Ikaros gene family: implications for the origins of adaptive immunity. THE JOURNAL OF IMMUNOLOGY 2009; 182:4792-9. [PMID: 19342657 DOI: 10.4049/jimmunol.0802372] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Members of the Ikaros family of transcription factors are important for immune system development. Analysis of Ikaros-related genes from a range of species suggests the Ikaros family derived from a primordial gene, possibly related to the present-day protostome Hunchback genes. This duplicated before the divergence of urochordates to produce two distinct lineages: one that generated the Ikaros factor-like (IFL) 2 genes of urochordates/lower vertebrates and the Pegasus genes of higher vertebrates, and one that generated the IFL1 genes of urochordates/lower vertebrates, the IKFL1 and IKFL2 genes of agnathans and the remaining four Ikaros members of higher vertebrates. Expansion of the IFL1 lineage most likely occurred via the two intervening rounds of whole genome duplication. A proposed third whole genome duplication in teleost fish produced a further increase in complexity of the gene family with additional Pegasus and Eos members. These findings question the use of IFL sequences as evidence for the existence of adaptive immunity in early chordates and vertebrates. Instead, this study is consistent with a later emergence of adaptive immunity coincident with the appearance of the definitive lymphoid markers Ikaros, Aiolos, and Helios.
Collapse
Affiliation(s)
- Liza B John
- Center for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia.
| | | | | |
Collapse
|
210
|
Genome-wide lineage-specific transcriptional networks underscore Ikaros-dependent lymphoid priming in hematopoietic stem cells. Immunity 2009; 30:493-507. [PMID: 19345118 DOI: 10.1016/j.immuni.2009.01.014] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Revised: 12/17/2008] [Accepted: 01/26/2009] [Indexed: 10/20/2022]
Abstract
The mechanisms regulating lineage potential during early hematopoiesis were investigated. First, a cascade of lineage-affiliated gene expression signatures, primed in hematopoietic stem cells (HSCs) and differentially propagated in lineage-restricted progenitors, was identified. Lymphoid transcripts were primed as early as the HSC, together with myeloid and erythroid transcripts. Although this multilineage priming was resolved upon subsequent lineage restrictions, an unexpected cosegregation of lymphoid and myeloid gene expression and potential past a nominal myeloid restriction point was identified. Finally, we demonstrated that whereas the zinc finger DNA-binding factor Ikaros was required for induction of lymphoid lineage priming in the HSC, it was also necessary for repression of genetic programs compatible with self-renewal and multipotency downstream of the HSC. Taken together, our studies provide new insight into the priming and restriction of lineage potentials during early hematopoiesis and identify Ikaros as a key bivalent regulator of this process.
Collapse
|
211
|
Popescu M, Gurel Z, Ronni T, Song C, Hung KY, Payne KJ, Dovat S. Ikaros stability and pericentromeric localization are regulated by protein phosphatase 1. J Biol Chem 2009; 284:13869-13880. [PMID: 19282287 DOI: 10.1074/jbc.m900209200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Ikaros encodes a zinc finger protein that is involved in gene regulation and chromatin remodeling. The majority of Ikaros localizes at pericentromeric heterochromatin (PC-HC) where it regulates expression of target genes. Ikaros function is controlled by posttranslational modification. Phosphorylation of Ikaros by CK2 kinase determines its ability to bind DNA and exert cell cycle control as well as its subcellular localization. We report that Ikaros interacts with protein phosphatase 1 (PP1) via a conserved PP1 binding motif, RVXF, in the C-terminal end of the Ikaros protein. Point mutations of the RVXF motif abolish Ikaros-PP1 interaction and result in decreased DNA binding, an inability to localize to PC-HC, and rapid degradation of the Ikaros protein. The introduction of alanine mutations at CK2-phosphorylated residues increases the half-life of the PP1-nonbinding Ikaros mutant. This suggests that dephosphorylation of these sites by PP1 stabilizes the Ikaros protein and prevents its degradation. In the nucleus, Ikaros forms complexes with ubiquitin, providing evidence that Ikaros degradation involves the ubiquitin/proteasome pathway. In vivo, Ikaros can target PP1 to the nucleus, and a fraction of PP1 colocalizes with Ikaros at PC-HC. These data suggest a novel function for the Ikaros protein; that is, the targeting of PP1 to PC-HC and other chromatin structures. We propose a model whereby the function of Ikaros is controlled by the CK2 and PP1 pathways and that a balance between these two signal transduction pathways is essential for normal cellular function and for the prevention of malignant transformation.
Collapse
Affiliation(s)
- Marcela Popescu
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Zafer Gurel
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Tapani Ronni
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Chunhua Song
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Ka Ying Hung
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108
| | - Kimberly J Payne
- Center for Health Disparities and Molecular Medicine and Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, California 92350
| | - Sinisa Dovat
- Department of Pediatrics, University of Wisconsin, Madison, Wisconsin 53792-4108.
| |
Collapse
|
212
|
Sassano A, Lo Iacono M, Antico G, Jordan A, Uddin S, Calogero RA, Platanias LC. Regulation of leukemic cell differentiation and retinoid-induced gene expression by statins. Mol Cancer Ther 2009; 8:615-25. [PMID: 19240159 DOI: 10.1158/1535-7163.mct-08-1196] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
There is emerging evidence that, beyond their cholesterol-lowering properties, statins exhibit important antileukemic effects in vitro and in vivo, but the precise mechanisms by which they generate such responses remain to be determined. We have previously shown that statins promote differentiation of acute promyelocytic leukemia cells and enhance generation of all-trans retinoic acid (ATRA)-dependent antileukemic responses. We now provide evidence that statin-dependent leukemic cell differentiation requires engagement and activation of the c-Jun NH2-terminal kinase kinase pathway. In addition, in experiments, to define the molecular targets and mediators of statin-induced differentiation, we found a remarkable effect of statins on ATRA-dependent gene transcription, evidenced by the selective induction of over 400 genes by the combination of atorvastatin and ATRA. Altogether, our studies identify novel statin molecular targets linked to differentiation, establish that statins modulate ATRA-dependent transcription, and suggest that combined use of statins with retinoids may provide a novel approach to enhance antileukemic responses in acute promyelocytic leukemia and possibly other leukemias.
Collapse
Affiliation(s)
- Antonella Sassano
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School, 303 East Superior Street, Lurie 3-107, Chicago, IL 60611, USA
| | | | | | | | | | | | | |
Collapse
|
213
|
Abstract
A key goal in cancer research is to identify the total complement of genetic and epigenetic alterations that contribute to tumorigenesis. We are currently witnessing the rapid evolution and convergence of multiple genome-wide platforms that are making this goal a reality. Leading this effort are studies of the molecular lesions that underlie pediatric acute lymphoblastic leukemia (ALL). The recent application of microarray-based analyses of DNA copy number abnormalities (CNAs) in pediatric ALL, complemented by transcriptional profiling, resequencing and epigenetic approaches, has identified a high frequency of common genetic alterations in both B-progenitor and T-lineage ALL. These approaches have identified abnormalities in key pathways, including lymphoid differentiation, cell cycle regulation, tumor suppression, and drug responsiveness. Moreover, the nature and frequency of CNAs differ markedly among ALL genetic subtypes. In this article, we review the key findings from the published data on genome-wide analyses of ALL and highlight some of the technical aspects of data generation and analysis that must be carefully controlled to obtain optimal results.
Collapse
|
214
|
Teitell MA, Pandolfi PP. Molecular Genetics of Acute Lymphoblastic Leukemia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:175-98. [DOI: 10.1146/annurev.pathol.4.110807.092227] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Michael A. Teitell
- Departments of Pathology and Pediatrics, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, and California NanoSystems Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095-1732;
| | - Pier Paolo Pandolfi
- Departments of Medicine and Pathology, Harvard Medical School, Boston, Massachusetts 02115
- Division of Cancer Genetics and Department of Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215;
| |
Collapse
|
215
|
Mullighan CG, Su X, Zhang J, Radtke I, Phillips LAA, Miller CB, Ma J, Liu W, Cheng C, Schulman BA, Harvey RC, Chen IM, Clifford RJ, Carroll WL, Reaman G, Bowman WP, Devidas M, Gerhard DS, Yang W, Relling MV, Shurtleff SA, Campana D, Borowitz MJ, Pui CH, Smith M, Hunger SP, Willman CL, Downing JR. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009; 360:470-80. [PMID: 19129520 PMCID: PMC2674612 DOI: 10.1056/nejmoa0808253] [Citation(s) in RCA: 1047] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Despite best current therapy, up to 20% of pediatric patients with acute lymphoblastic leukemia (ALL) have a relapse. Recent genomewide analyses have identified a high frequency of DNA copy-number abnormalities in ALL, but the prognostic implications of these abnormalities have not been defined. METHODS We studied a cohort of 221 children with high-risk B-cell-progenitor ALL with the use of single-nucleotide-polymorphism microarrays, transcriptional profiling, and resequencing of samples obtained at diagnosis. Children with known very-high-risk ALL subtypes (i.e., BCR-ABL1-positive ALL, hypodiploid ALL, and ALL in infants) were excluded from this cohort. A copy-number abnormality was identified as a predictor of poor outcome, and it was then tested in an independent validation cohort of 258 patients with B-cell-progenitor ALL. RESULTS More than 50 recurring copy-number abnormalities were identified, most commonly involving genes that encode regulators of B-cell development (in 66.8% of patients in the original cohort); PAX5 was involved in 31.7% and IKZF1 in 28.6% of patients. Using copy-number abnormalities, we identified a predictor of poor outcome that was validated in the independent validation cohort. This predictor was strongly associated with alteration of IKZF1, a gene that encodes the lymphoid transcription factor IKAROS. The gene-expression signature of the group of patients with a poor outcome revealed increased expression of hematopoietic stem-cell genes and reduced expression of B-cell-lineage genes, and it was similar to the signature of BCR-ABL1-positive ALL, another high-risk subtype of ALL with a high frequency of IKZF1 deletion. CONCLUSIONS Genetic alteration of IKZF1 is associated with a very poor outcome in B-cell-progenitor ALL.
Collapse
Affiliation(s)
- Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
216
|
Chari S, Winandy S. Ikaros regulates Notch target gene expression in developing thymocytes. THE JOURNAL OF IMMUNOLOGY 2009; 181:6265-74. [PMID: 18941217 DOI: 10.4049/jimmunol.181.9.6265] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Both Ikaros and Notch are essential for normal T cell development. Collaborative mutations causing a reduction in Ikaros activity and an increase in Notch activation promote T cell leukemogenesis. Although the molecular mechanisms of this cooperation have been studied, its consequences in thymocyte development remain unexplored. In this study, we show that Ikaros regulates expression of a subset of Notch target genes, including Hes1, Deltex1, pTa, Gata3, and Runx1, in both Ikaros null T cell leukemia lines and Ikaros null primary thymocytes. In Ikaros null leukemia cells, Notch deregulation occurs at both the level of Notch receptor cleavage and expression of Notch target genes, because re-expression of Ikaros in these cells down-regulates Notch target gene expression without affecting levels of intracellular cleaved Notch. In addition, abnormal expression of Notch target genes is observed in Ikaros null double-positive thymocytes, in the absence of detectable intracellular cleaved Notch. Finally, we show that this role of Ikaros is specific to double-positive and single-positive thymocytes because derepression of Notch target gene expression is not observed in Ikaros null double-negative thymocytes or lineage-depleted bone marrow. Thus, in this study, we provide evidence that Ikaros and Notch play opposing roles in regulation of a subset of Notch target genes and that this role is restricted to developing thymocytes where Ikaros is required to appropriately regulate the Notch program as they progress through T cell development.
Collapse
Affiliation(s)
- Sheila Chari
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | |
Collapse
|
217
|
Hogan MC, Manganelli L, Woollard JR, Masyuk AI, Masyuk TV, Tammachote R, Huang BQ, Leontovich AA, Beito TG, Madden BJ, Charlesworth MC, Torres VE, LaRusso NF, Harris PC, Ward CJ. Characterization of PKD protein-positive exosome-like vesicles. J Am Soc Nephrol 2009; 20:278-88. [PMID: 19158352 DOI: 10.1681/asn.2008060564] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proteins associated with autosomal dominant and autosomal recessive polycystic kidney disease (polycystin-1, polycystin-2, and fibrocystin) localize to various subcellular compartments, but their functional site is thought to be on primary cilia. PC1+ vesicles surround cilia in Pkhd1(del2/del2) mice, which led us to analyze these structures in detail. We subfractionated urinary exosome-like vesicles (ELVs) and isolated a subpopulation abundant in polycystin-1, fibrocystin (in their cleaved forms), and polycystin-2. This removed Tamm-Horsfall protein, the major contaminant, and subfractionated ELVs into at least three different populations, demarcated by the presence of aquaporin-2, polycystin-1, and podocin. Proteomic analysis of PKD ELVs identified 552 proteins (232 not yet in urinary proteomic databases), many of which have been implicated in signaling, including the molecule Smoothened. We also detected two other protein products of genes involved in cystic disease: Cystin, the product of the mouse cpk locus, and ADP-ribosylation factor-like 6, the product of the human Bardet-Biedl syndrome gene (BBS3). Our proteomic analysis confirmed that cleavage of polycystin-1 and fibrocystin occurs in vivo, in manners consistent with cleavage at the GPS site in polycystin-1 and the proprotein convertase site in fibrocystin. In vitro, these PKD ELVs preferentially interacted with primary cilia of kidney and biliary epithelial cells in a rapid and highly specific manner. These data suggest that PKD proteins are shed in membrane particles in the urine, and these particles interact with primary cilia.
Collapse
Affiliation(s)
- Marie C Hogan
- Division of Nephrology & Hypertension, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Meleshko AN, Movchan LV, Belevtsev MV, Savitskaja TV. Relative expression of different Ikaros isoforms in childhood acute leukemia. Blood Cells Mol Dis 2008; 41:278-83. [PMID: 18675565 DOI: 10.1016/j.bcmd.2008.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 06/23/2008] [Indexed: 11/25/2022]
Abstract
Ikaros is a zinc-finger transcriptional factor playing an essential role in lymphoid lineage commitment and differentiation. Animal models and analysis of human Ikaros in leukemic cells demonstrate deregulation of Ikaros expression. Short isoforms with a truncated DNA-binding domain suppress functions of Ikaros in a dominant-negative manner. Previous studies demonstrated that human leukemias are heterogeneous for Ikaros expression. We estimate the relative level of Ikaros mRNA transcripts in 80 childhood ALL cases in comparison with AML and healthy donor groups. We detected eight major isoforms and several minor mutant isoforms in most patients with acute lymphoblastic and myeloid leukemia and in healthy donors, but the relative level of expression varied. The relatively high level of Ik4A isoform, rarely mentioned in previous reports, was detected in all analyzed groups. The ratio between functional and all isoforms was used to determine functional activity of Ikaros. The ratio was significantly less in AML (p=0.027) and BCR-ABL positive ALL (p=0.0028) than in healthy bone marrow. We found a negative association between the Ikaros ratio and myeloid coexpression in B-cell ALL, the most prominent was for CD15. The Ikaros ratio positively correlates with CD5 and negatively with CD7 expression in T-ALL. We suggest that an anti-proliferation and anti-activation effect of full-length Ikaros may be mediated through regulation of CD5 and CD7.
Collapse
Affiliation(s)
- Alexander N Meleshko
- Belarusian Research Center for Pediatric Oncology and Hematology, Minsk, Belarus.
| | | | | | | |
Collapse
|
219
|
Pei Y, Obaji J, Dupuis A, Paterson AD, Magistroni R, Dicks E, Parfrey P, Cramer B, Coto E, Torra R, San Millan JL, Gibson R, Breuning M, Peters D, Ravine D. Unified criteria for ultrasonographic diagnosis of ADPKD. J Am Soc Nephrol 2008; 20:205-12. [PMID: 18945943 DOI: 10.1681/asn.2008050507] [Citation(s) in RCA: 466] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Individuals who are at risk for autosomal dominant polycystic kidney disease are often screened by ultrasound using diagnostic criteria derived from individuals with mutations in PKD1. Families with mutations in PKD2 typically have less severe disease, suggesting a potential need for different diagnostic criteria. In this study, 577 and 371 at-risk individuals from 58 PKD1 and 39 PKD2 families, respectively, were assessed by renal ultrasound and molecular genotyping. Using sensitivity data derived from genetically affected individuals and specificity data derived from genetically unaffected individuals, various diagnostic criteria were compared. In addition, data sets were created to simulate the PKD1 and PKD2 case mix expected in practice to evaluate the performance of diagnostic criteria for families of unknown genotype. The diagnostic criteria currently in use performed suboptimally for individuals with mutations in PKD2 as a result of reduced test sensitivity. In families of unknown genotype, the presence of three or more (unilateral or bilateral) renal cysts is sufficient for establishing the diagnosis in individuals aged 15 to 39 y, two or more cysts in each kidney is sufficient for individuals aged 40 to 59 y, and four or more cysts in each kidney is required for individuals > or = 60 yr. Conversely, fewer than two renal cysts in at-risk individuals aged > or = 40 yr is sufficient to exclude the disease. These unified diagnostic criteria will be useful for testing individuals who are at risk for autosomal dominant polycystic kidney disease in the usual clinical setting in which molecular genotyping is seldom performed.
Collapse
Affiliation(s)
- York Pei
- Division of Nephrology, University of Toronto, 8N838, 585 University Avenue, Toronto, Ontario, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
220
|
Identification of new microRNA genes and aberrant microRNA profiles in childhood acute lymphoblastic leukemia. Leukemia 2008; 23:313-22. [DOI: 10.1038/leu.2008.286] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
221
|
Ikaros represses the transcriptional response to Notch signaling in T-cell development. Mol Cell Biol 2008; 28:7465-75. [PMID: 18852286 DOI: 10.1128/mcb.00715-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Notch activity is essential for early T-cell differentiation, but aberrant activity induces T-cell transformation. Thus, Notch target genes must be efficiently silenced in cells where Notch activity is no longer required. How these genes are repressed remains poorly understood. We report here that the Ikaros transcription factor plays a crucial role in repressing the transcriptional response to Notch signaling in T-cell development. Using the Notch target gene Hes-1 as a model, we show that Ikaros and RBP-Jkappa, the transcriptional mediator of Notch signaling, compete for binding to two elements in the Hes-1 promoter in immature thymocytes. This antagonistic interaction likely occurs at the CD4(-) CD8(-) CD3(-) double-negative 4 (DN4) stage, where Ikaros levels and binding to the Hes-1 promoter increase sharply and wild-type thymocytes lose their capacity to transcribe Hes-1 upon Notch stimulation. Nonresponsiveness to Notch signaling requires Ikaros, as Ikaros-deficient DN4 and CD4(+) CD8(+) double-positive (DP) cells remain competent to express Hes-1 after Notch activation. Further, Hes-1 promoter sequences from Ikaros-deficient DP cells show reduced trimethylated H3K27, a modification associated with silent chromatin. These results indicate that Ikaros functions as a transcriptional checkpoint to repress Notch target gene expression in T cells.
Collapse
|
222
|
Bellavia D, Checquolo S, Campese AF, Felli MP, Gulino A, Screpanti I. Notch3: from subtle structural differences to functional diversity. Oncogene 2008; 27:5092-8. [DOI: 10.1038/onc.2008.230] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
223
|
|
224
|
Ruiz A, Williams O, Brady HJM. The Ikaros splice isoform, Ikaros 6, immortalizes murine haematopoietic progenitor cells. Int J Cancer 2008; 123:1240-5. [PMID: 18623087 DOI: 10.1002/ijc.23706] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alternative pre-mRNA splicing is emerging as a major control point in both the initiation and progression of tumourigenesis. Overexpression of the dominant negative Ikaros splice isoform, Ik6, is found in many human cancers particularly leukaemias. Ik6 has been demonstrated to have a role in cell survival in both myeloid- and lymphoid cytokine-dependent cell lines. To investigate the oncogenic potential of Ik6, we retrovirally transduced murine haematopoietic progenitor cells with Ik6 and have analysed the effects on proliferation and differentiation of these precursors using myeloid and lymphoid in vitro colony formation assays. We found that Ik6 can immortalize haematopoietic progenitor cells in myeloid conditions. Using an in vivo transplantation assay, we found that Ik6 favours reconstitution by haematopoietic precursors. These findings suggest that Ik6 may play an important role in the generation of the leukaemic phenotype.
Collapse
Affiliation(s)
- Anna Ruiz
- Molecular Haematology and Cancer Biology Unit, Institute of Child Health, University College London, London, United Kingdom
| | | | | |
Collapse
|
225
|
Kano G, Morimoto A, Takanashi M, Hibi S, Sugimoto T, Inaba T, Yagi T, Imashuku S. Ikaros dominant negative isoform (Ik6) induces IL-3-independent survival of murine pro-B lymphocytes by activating JAK-STAT and up-regulating Bcl-xl levels. Leuk Lymphoma 2008; 49:965-73. [PMID: 18464116 DOI: 10.1080/10428190801993462] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ikaros is an essential regulator of lymphocyte differentiation. Mice transgenic for the Ikaros dominant negative (DN) mutation rapidly develop lymphoid malignancies. Various human leukemias have also been reported to express Ikaros DN isoforms, but its role in leukemogenesis is yet to be defined. We demonstrate that overexpressed Ikaros DN (Ik6) prolonged the survival of two different murine pro-B cell lines in cytokine deprived condition, and this was associated with increased expression of Bcl-xl. A survey of the upstream controller(s) of Bcl-xl expression revealed Ik6 overexpression enhanced the phosphorylation of JAK2 and STAT5. Interestingly, the Ik6 expressing cell lines showed reduced expression of B-cell differentiation surface marker CD45R (B220), which is also known as a JAK2 inhibitor. Although further evaluation with human clinical materials are required, these results propose a putative role of Ik6 in the development of B-lineage acute lymphoblastic leukemia, by activating the JAK2-STAT5 pathway and thus stimulating the production of Bcl-xl.
Collapse
Affiliation(s)
- Gen Kano
- Department of Paediatrics, Kyoto Prefectural University of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
226
|
Expression of spliced oncogenic Ikaros isoforms in Philadelphia-positive acute lymphoblastic leukemia patients treated with tyrosine kinase inhibitors: implications for a new mechanism of resistance. Blood 2008; 112:3847-55. [PMID: 18650450 DOI: 10.1182/blood-2007-09-112631] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ikaros plays an important role in the control of differentiation and proliferation of all lymphoid lineages. The expression of short isoforms lacking DNA-binding motifs alters the differentiation capacities of hematopoietic progenitors, arresting lineage commitment. We sought to determine whether molecular abnormalities involving the IKZF1 gene were associated with resistance to tyrosine kinase inhibitors (TKIs) in Ph+ acute lymphoblastic leukemia (ALL) patients. Using reverse-transcribed polymerase chain reaction, cloning, and nucleotide sequencing, only the non-DNA-binding Ik6 isoform was detected in 49% of Ph+ ALL patients. Ik6 was predominantly localized to the cytoplasm versus DNA-binding Ik1 or Ik2 isoforms, which showed nuclear localization. There was a strong correlation between nonfunctional Ikaros isoforms and BCR-ABL transcript level. Furthermore, patient-derived leukemia cells expressed oncogenic Ikaros isoforms before TKI treatment, but not during response to TKIs, and predominantly at the time of relapse. In vitro overexpression of Ik6 strongly increased DNA synthesis and inhibited apoptosis in TKI-sensitive cells. Genomic sequence and computational analyses of exon splice junction regions of IKZF1 in Ph+ ALL patients predicted several mutations that may alter alternative splicing. These results establish a previously unknown link between specific molecular defects that involve alternative splicing of the IKZF1 gene and the resistance to TKIs in Ph+ ALL patients.
Collapse
|
227
|
Loeper S, Asa SL, Ezzat S. Ikaros modulates cholesterol uptake: a link between tumor suppression and differentiation. Cancer Res 2008; 68:3715-23. [PMID: 18483254 DOI: 10.1158/0008-5472.can-08-0103] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ikaros is a transcription factor that directs lymphoid lineage commitment and pituitary neuroendocrine cell expansion and function. Here, we show that Ikaros regulates the low-density lipoprotein receptor (LDL-R) to alter metabolism in pituitary corticotroph cells. The DNA-binding Ikaros isoform Ik1 binds and enhances activity of the LDL-R promoter. Ik1 decreases methylation and increases acetylation of histone H3 (Lys(9)) at the LDL-R promoter. Confocal microscopy and quantitative fluorometry show enhanced LDL endocytosis in Ik1-transfected cells that exhibit abundant endoplasmic reticulum, large Golgi complexes, and prominent secretory granule formation, consistent with more robust cholesterol incorporation into functionally relevant membrane-rich organelles. Consistent with these data, LDL-R(-/-) mice, like Ik(-/-) mice, have decreased circulating levels of adrenocorticotropic hormone. These findings expand the repertoire of Ikaros actions to include regulation of the cholesterol uptake metabolic pathway with therapeutic implications for lipid-modifying drugs in Ikaros-associated cancers.
Collapse
Affiliation(s)
- Siobhan Loeper
- Departments of Medicine and Pathology, University Health Network, Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | |
Collapse
|
228
|
Kathrein KL, Chari S, Winandy S. Ikaros directly represses the notch target gene Hes1 in a leukemia T cell line: implications for CD4 regulation. J Biol Chem 2008; 283:10476-84. [PMID: 18287091 PMCID: PMC2447659 DOI: 10.1074/jbc.m709643200] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 01/30/2008] [Indexed: 12/20/2022] Open
Abstract
Ikaros and Notch1, two regulators of gene transcription, are critically important at many stages of T cell development. Deregulation of Ikaros and Notch activities cooperate to promote T cell leukemogenesis, providing evidence that they function in converging pathways in developing T cells. In this report, a mechanism for Ikaros:Notch cooperativity is described, revealing a non-redundant role for Ikaros in regulating expression of the Notch target gene Hes1 in a leukemia T cell line. We provide evidence that Ikaros directly represses Hes1 in concert with the transcriptional repressor, RBP-Jkappa, allowing for cross-talk between Notch and Ikaros that impacts regulation of CD4 expression. Taken together, these data describe a potential mechanism for Ikaros' function during T cell development and define Ikaros as an obligate repressor of Hes1.
Collapse
Affiliation(s)
- Katie L Kathrein
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
229
|
Mullighan CG, Miller CB, Radtke I, Phillips LA, Dalton J, Ma J, White D, Hughes TP, Le Beau MM, Pui CH, Relling MV, Shurtleff SA, Downing JR. BCR-ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008; 453:110-4. [PMID: 18408710 DOI: 10.1038/nature06866] [Citation(s) in RCA: 789] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 02/25/2008] [Indexed: 11/10/2022]
Abstract
The Philadelphia chromosome, a chromosomal abnormality that encodes BCR-ABL1, is the defining lesion of chronic myelogenous leukaemia (CML) and a subset of acute lymphoblastic leukaemia (ALL). To define oncogenic lesions that cooperate with BCR-ABL1 to induce ALL, we performed a genome-wide analysis of diagnostic leukaemia samples from 304 individuals with ALL, including 43 BCR-ABL1 B-progenitor ALLs and 23 CML cases. IKZF1 (encoding the transcription factor Ikaros) was deleted in 83.7% of BCR-ABL1 ALL, but not in chronic-phase CML. Deletion of IKZF1 was also identified as an acquired lesion at the time of transformation of CML to ALL (lymphoid blast crisis). The IKZF1 deletions resulted in haploinsufficiency, expression of a dominant-negative Ikaros isoform, or the complete loss of Ikaros expression. Sequencing of IKZF1 deletion breakpoints suggested that aberrant RAG-mediated recombination is responsible for the deletions. These findings suggest that genetic lesions resulting in the loss of Ikaros function are an important event in the development of BCR-ABL1 ALL.
Collapse
Affiliation(s)
- Charles G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
230
|
Affiliation(s)
- Patrick A Zweidler-McKay
- The Children's Cancer Hospital at the University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
231
|
Thomas RM, Chunder N, Chen C, Umetsu SE, Winandy S, Wells AD. Ikaros enforces the costimulatory requirement for IL2 gene expression and is required for anergy induction in CD4+ T lymphocytes. THE JOURNAL OF IMMUNOLOGY 2008; 179:7305-15. [PMID: 18025173 DOI: 10.4049/jimmunol.179.11.7305] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell activation results in dynamic remodeling of the chromatin at the IL2 promoter and induction of IL2 gene transcription. These processes are each dependent upon CD28 costimulation, but the molecular basis for this requirement is not clear. The IL2 promoter contains consensus-binding elements for Ikaros, a lymphocyte-specific zinc-finger DNA-binding protein that can regulate gene expression by recruiting chromatin-remodeling complexes. We find that native Ikaros in CD4(+) T cells exhibits sequence-specific binding to these elements in vitro, and interacts with the endogenous IL2 promoter in vivo, in a manner dependent upon its DNA-binding domain. This binding has important consequences on the regulation of the IL2 gene, because CD4(+) T cells with reduced Ikaros DNA-binding activity no longer require signals from the TCR or CD28 for histone acetylation at the endogenous IL2 promoter, and no longer require CD28 costimulation for expression of the IL2 gene. Furthermore, CD4(+) T cells with reduced Ikaros activity are resistant to clonal anergy induced by TCR ligation in the absence of either CD28 or IL-2R signals. These results establish Ikaros as a transcriptional repressor of the IL2 gene that functions through modulation of chromatin structure and has an obligate role in the induction of anergy.
Collapse
Affiliation(s)
- Rajan M Thomas
- Joseph Stokes, Jr Research Institute, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
232
|
Abstract
Abstract
Ikaros—a factor that positively or negatively controls gene transcription—is active in murine adult erythroid cells, and involved in fetal to adult globin switching. Mice with Ikaros mutations have defects in erythropoiesis and anemia. In this paper, we have studied the role of Ikaros in human erythroid development for the first time. Using a gene-transfer strategy, we expressed Ikaros 6 (Ik6)—a known dominant-negative protein that interferes with normal Ikaros activity—in cord blood or apheresis CD34+ cells that were induced to differentiate along the erythroid pathway. Lentivirally induced Ik6-forced expression resulted in increased cell death, decreased cell proliferation, and decreased expression of erythroid-specific genes, including GATA1 and fetal and adult globins. In contrast, we observed the maintenance of a residual myeloid population that can be detected in this culture system, with a relative increase of myeloid gene expression, including PU1. In secondary cultures, expression of Ik6 favored reversion of sorted and phenotypically defined erythroid cells into myeloid cells, and prevented reversion of myeloid cells into erythroid cells. We conclude that Ikaros is involved in human adult or fetal erythroid differentiation as well as in the commitment between erythroid and myeloid cells.
Collapse
|
233
|
Gurel Z, Ronni T, Ho S, Kuchar J, Payne KJ, Turk CW, Dovat S. Recruitment of ikaros to pericentromeric heterochromatin is regulated by phosphorylation. J Biol Chem 2008; 283:8291-300. [PMID: 18223295 DOI: 10.1074/jbc.m707906200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Ikaros encodes a zinc finger protein that is involved in heritable gene silencing. In hematopoietic cells, Ikaros localizes to pericentromeric heterochromatin (PC-HC) where it recruits its target genes, resulting in their activation or repression via chromatin remodeling. The function of Ikaros is controlled by post-translational modifications. CK2 kinase has been shown to phosphorylate Ikaros at its C terminus, affecting cell cycle progression. Using in vivo labeling of murine thymocytes followed by phosphopeptide mapping, we identified four novel Ikaros phosphorylation sites. Functional analysis of phosphomimetic mutants showed that the phosphorylation of individual amino acids determines the affinity of Ikaros toward probes derived from PC-HC. In vivo experiments demonstrated that targeting of Ikaros to PC-HC is regulated by phosphorylation. The ability of Ikaros to bind the upstream regulatory elements of its known target gene terminal deoxynucleotidyltransferase (TdT) was decreased by phosphorylation of two amino acids. In thymocytes, Ikaros acts as a repressor of the TdT gene. Induction of differentiation of thymocytes with phorbol 12-myristate 13-acetate plus ionomycin results in transcriptional repression of TdT expression. This process has been associated with increased binding of Ikaros to the upstream regulatory element of TdT. Phosphopeptide analysis of in vivo-labeled thymocytes revealed that Ikaros undergoes dephosphorylation during induction of thymocyte differentiation and that dephosphorylation is responsible for increased DNA binding affinity of Ikaros toward the TdT promoter. We propose a model whereby reversible phosphorylation of Ikaros at specific amino acids controls the subcellular localization of Ikaros as well as its ability to regulate TdT expression during thymocyte differentiation.
Collapse
Affiliation(s)
- Zafer Gurel
- Department of Pediatrics, University of Wisconsin, Madison, WI 53792-4108, USA
| | | | | | | | | | | | | |
Collapse
|
234
|
Differential epigenetic regulation of Aiolos expression in human tumoral cell lines and primary cells. FEBS Lett 2008; 582:457-67. [DOI: 10.1016/j.febslet.2008.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 12/20/2007] [Accepted: 01/10/2008] [Indexed: 11/21/2022]
|
235
|
Yoshida MA, Nakata A, Akiyama M, Kakinuma S, Sado T, Nishimura M, Shimada Y. Distinct structural abnormalities of chromosomes 11 and 12 associated with loss of heterozygosity in X-ray-induced mouse thymic lymphomas. ACTA ACUST UNITED AC 2008; 179:1-10. [PMID: 17981208 DOI: 10.1016/j.cancergencyto.2007.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 06/28/2007] [Indexed: 11/26/2022]
Abstract
Loss of heterozygosity (LOH) plays an important role in leukemogenesis via inactivation of tumor suppressor genes. Recent studies have demonstrated that mouse thymic lymphomas (TL), a suitable model for the mechanistic study of human acute lymphoblastic leukemia, show frequent LOH on chromosomes 4 (p15/p16), 11 (Ikaros), 12 (Bcl11b), 19 (Pten), and X. To date, however, little data are available regarding the mechanism of LOH. In this study, we re-evaluated chromosomal abnormality and loss of heterozygosity in 26 TL-induced by x-rays in C57BL/6 (B6), C3H, and F1 (B6 x C3H) mice, using the quinacrine-Hoechst double-staining method and chromosome painting technique. Chromosomally abnormal cells were present in 25 TL examined (25/26, 96%). The most frequent abnormality was trisomy or partial trisomy of chromosome 15 (16/26, 62%), which is consistent with previous studies. Structural abnormalities of chromosome 11 with interstitial deletion of proximal region and chromosome 12 with translocation with deletion of distal region were newly identified in 7 (27%) and 12 (46%) cases, respectively. These results indicate that the distinct mechanism contributes to the LOH of each tumor suppressor gene on different chromosomal locations.
Collapse
Affiliation(s)
- Mitsuaki A Yoshida
- Biodosimetry Section, Department of Radiation Dosimetry, Research Center for Radiation Emergency Medicine, Anagawa, Inage-ku, Chiba 263-8555, Japan.
| | | | | | | | | | | | | |
Collapse
|
236
|
The leukemogenic CALM/AF10 fusion protein alters the subcellular localization of the lymphoid regulator Ikaros. Oncogene 2007; 27:2886-96. [PMID: 18037964 DOI: 10.1038/sj.onc.1210945] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The t(10;11)(p13;q14) translocation leads to the fusion of the CALM and AF10 genes. This translocation can be found as the sole cytogenetic abnormality in acute lymphoblastic leukemia, acute myeloid leukemia and in malignant lymphomas. The expression of CALM/AF10 in primary murine bone marrow cells results in the development of an aggressive leukemia in a murine bone marrow transplantation model. Using a yeast two-hybrid screen, we identified the lymphoid regulator Ikaros as an AF10 interacting protein. Interestingly, Ikaros is required for normal development of lymphocytes, and aberrant expression of Ikaros has been found in leukemia. In a murine model, the expression of a dominant negative isoform of Ikaros causes leukemias and lymphomas. The Ikaros interaction domain of AF10 was mapped to the leucine zipper domain of AF10, which is required for malignant transformation both by the CALM/AF10 and the MLL/AF10 fusion proteins. The interaction between AF10 and Ikaros was confirmed by GST pull down and co-immunoprecipitation. Coexpression of CALM/AF10 but not of AF10 alters the subcellular localization of Ikaros in murine fibroblasts. The transcriptional repressor activity of Ikaros is reduced by AF10. These results suggest that CALM/AF10 might interfere with normal Ikaros function, and thereby block lymphoid differentiation in CALM/AF10 positive leukemias.
Collapse
|
237
|
Interferon regulatory factors 4 and 8 induce the expression of Ikaros and Aiolos to down-regulate pre-B-cell receptor and promote cell-cycle withdrawal in pre-B-cell development. Blood 2007; 111:1396-403. [PMID: 17971486 DOI: 10.1182/blood-2007-08-110106] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pre-B lymphocytes consist of 2 distinct cell populations: large pre-B and small pre-B. The large pre-B cells are newly generated pre-B cells that express pre-B-cell receptor (pre-BCR) on the surface and are highly proliferative; small pre-B cells are derived from large pre-B cells that have down-regulated pre-BCR and withdrawn from cell cycle. The molecular events that mediate the transition from cycling pre-B to small, resting pre-B have not been fully elucidated. Here, we show that interferon regulatory factors 4 and 8 (IRF4,8) suppress surrogate light chain expression and down-regulate pre-BCR in pre-B cells. Our studies further reveal that IRF4,8 induce the expression of Ikaros and Aiolos in pre-B cells, and reconstitution of expression of either one is sufficient to suppress surrogate light chain expression and down-regulate pre-BCR in pre-B cells lacking IRF4,8. Interestingly, our results also indicate that pre-B cells undergo growth inhibition and cell-cycle arrest in the presence of IRF4,8. Moreover, we provide evidence that Ikaros and Aiolos are indispensable for the down-regulation of pre-BCR and the cell-cycle withdrawal mediated by IRF4,8. Thus, IRF4,8 orchestrate the transition from large pre-B to small pre-B cells by inducing the expression of Ikaros and Aiolos.
Collapse
|
238
|
Maser RS, Choudhury B, Campbell PJ, Feng B, Wong KK, Protopopov A, O'Neil J, Gutierrez A, Ivanova E, Perna I, Lin E, Mani V, Jiang S, McNamara K, Zaghlul S, Edkins S, Stevens C, Brennan C, Martin ES, Wiedemeyer R, Kabbarah O, Nogueira C, Histen G, Aster J, Mansour M, Duke V, Foroni L, Fielding AK, Goldstone AH, Rowe JM, Wang YA, Look AT, Stratton MR, Chin L, Futreal PA, DePinho RA. Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers. Nature 2007; 447:966-71. [PMID: 17515920 PMCID: PMC2714968 DOI: 10.1038/nature05886] [Citation(s) in RCA: 304] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 04/30/2007] [Indexed: 01/07/2023]
Abstract
Highly rearranged and mutated cancer genomes present major challenges in the identification of pathogenetic events driving the neoplastic transformation process. Here we engineered lymphoma-prone mice with chromosomal instability to assess the usefulness of mouse models in cancer gene discovery and the extent of cross-species overlap in cancer-associated copy number aberrations. Along with targeted re-sequencing, our comparative oncogenomic studies identified FBXW7 and PTEN to be commonly deleted both in murine lymphomas and in human T-cell acute lymphoblastic leukaemia/lymphoma (T-ALL). The murine cancers acquire widespread recurrent amplifications and deletions targeting loci syntenic to those not only in human T-ALL but also in diverse human haematopoietic, mesenchymal and epithelial tumours. These results indicate that murine and human tumours experience common biological processes driven by orthologous genetic events in their malignant evolution. The highly concordant nature of genomic events encourages the use of genomically unstable murine cancer models in the discovery of biological driver events in the human oncogenome.
Collapse
Affiliation(s)
- Richard S Maser
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Rossetti S, Consugar MB, Chapman AB, Torres VE, Guay-Woodford LM, Grantham JJ, Bennett WM, Meyers CM, Walker DL, Bae K, Zhang QJ, Thompson PA, Miller JP, Harris PC. Comprehensive molecular diagnostics in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 2007; 18:2143-60. [PMID: 17582161 DOI: 10.1681/asn.2006121387] [Citation(s) in RCA: 306] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mutation-based molecular diagnostics of autosomal dominant polycystic kidney disease (ADPKD) is complicated by genetic and allelic heterogeneity, large multi-exon genes, duplication of PKD1, and a high level of unclassified variants (UCV). Present mutation detection levels are 60 to 70%, and PKD1 and PKD2 UCV have not been systematically classified. This study analyzed the uniquely characterized Consortium for Radiologic Imaging Study of PKD (CRISP) ADPKD population by molecular analysis. A cohort of 202 probands was screened by denaturing HPLC, followed by direct sequencing using a clinical test of 121 with no definite mutation (plus controls). A subset was also screened for larger deletions, and reverse transcription-PCR was used to test abnormal splicing. Definite mutations were identified in 127 (62.9%) probands, and all UCV were assessed for their potential pathogenicity. The Grantham Matrix Score was used to score the significance of the substitution and the conservation of the residue in orthologs and defined domains. The likelihood for aberrant splicing and contextual information about the UCV within the patient (including segregation analysis) was used in combination to define a variant score. From this analysis, 44 missense plus two atypical splicing and seven small in-frame changes were defined as probably pathogenic and assigned to a mutation group. Mutations were thus defined in 180 (89.1%) probands: 153 (85.0%) PKD1 and 27 (15.0%) PKD2. The majority were unique to a single family, but recurrent mutations accounted for 30.0% of the total. A total of 190 polymorphic variants were identified in PKD1 (average of 10.1 per patient) and eight in PKD2. Although nondefinite mutation data must be treated with care in the clinical setting, this study shows the potential for molecular diagnostics in ADPKD that is likely to become increasingly important as therapies become available.
Collapse
Affiliation(s)
- Sandro Rossetti
- Division of Nephrology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Agoston DV, Szemes M, Dobi A, Palkovits M, Georgopoulos K, Gyorgy A, Ring MA. Ikaros is expressed in developing striatal neurons and involved in enkephalinergic differentiation. J Neurochem 2007; 102:1805-1816. [PMID: 17504264 DOI: 10.1111/j.1471-4159.2007.04653.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Ikaros (Ik) gene encodes alternatively spliced zinc-finger proteins originally identified in developing hematopoietic organs and acts as master regulator of lymphoid development. During our search for transcription factors that control the developmental expression of the enkephalin (ENK) gene we found that Ik-1 and Ik-2 isoforms are specifically expressed in the embryonic striatum and bind the Ik-like cis-regulatory DNA element present on the ENK gene. Ik proteins are expressed by both proliferating (BrdU+/nestin+) and by post-mitotic differentiating (MAP2+) cells in the developing striatum between embryonic day 12 and post-natal day 2 and mRNAs encoding for the Ik and ENK genes are co-expressed by a subset of differentiating striatal neurons. Blocking the DNA binding of Ik proteins in differentiating embryonic striatal neuronal cultures resulted in decreased ENK expression and mutant animals lacking the DNA-binding domain of Ik had a deficit in the number of ENK but not in dynorphin or substance P mRNA+ cells. Animals lacking the protein interaction domain of Ik showed no deficit. These results demonstrate that Ik-1 and Ik-2 proteins through their DNA binding act as positive regulators of ENK gene expression in the developing striatum and participate in regulating enkephalinergic differentiation.
Collapse
Affiliation(s)
- Denes V Agoston
- Department of Anatomy, Physiology and Genetics, USUHS, Bethesda, Maryland, USALCB, NIMH, NIH, Bethesda, Maryland, USACutaneous Biology Research Center, MGH, Harvard Medical School, Charlestown, Massachusetts, USAGraduate Program in Genetics, The George Washington University, Washington, District of Columbia, USA
| | - Marianna Szemes
- Department of Anatomy, Physiology and Genetics, USUHS, Bethesda, Maryland, USALCB, NIMH, NIH, Bethesda, Maryland, USACutaneous Biology Research Center, MGH, Harvard Medical School, Charlestown, Massachusetts, USAGraduate Program in Genetics, The George Washington University, Washington, District of Columbia, USA
| | - Albert Dobi
- Department of Anatomy, Physiology and Genetics, USUHS, Bethesda, Maryland, USALCB, NIMH, NIH, Bethesda, Maryland, USACutaneous Biology Research Center, MGH, Harvard Medical School, Charlestown, Massachusetts, USAGraduate Program in Genetics, The George Washington University, Washington, District of Columbia, USA
| | - Miklos Palkovits
- Department of Anatomy, Physiology and Genetics, USUHS, Bethesda, Maryland, USALCB, NIMH, NIH, Bethesda, Maryland, USACutaneous Biology Research Center, MGH, Harvard Medical School, Charlestown, Massachusetts, USAGraduate Program in Genetics, The George Washington University, Washington, District of Columbia, USA
| | - Katia Georgopoulos
- Department of Anatomy, Physiology and Genetics, USUHS, Bethesda, Maryland, USALCB, NIMH, NIH, Bethesda, Maryland, USACutaneous Biology Research Center, MGH, Harvard Medical School, Charlestown, Massachusetts, USAGraduate Program in Genetics, The George Washington University, Washington, District of Columbia, USA
| | - Andrea Gyorgy
- Department of Anatomy, Physiology and Genetics, USUHS, Bethesda, Maryland, USALCB, NIMH, NIH, Bethesda, Maryland, USACutaneous Biology Research Center, MGH, Harvard Medical School, Charlestown, Massachusetts, USAGraduate Program in Genetics, The George Washington University, Washington, District of Columbia, USA
| | - Mary A Ring
- Department of Anatomy, Physiology and Genetics, USUHS, Bethesda, Maryland, USALCB, NIMH, NIH, Bethesda, Maryland, USACutaneous Biology Research Center, MGH, Harvard Medical School, Charlestown, Massachusetts, USAGraduate Program in Genetics, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
241
|
Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, Girtman K, Mathew S, Ma J, Pounds SB, Su X, Pui CH, Relling MV, Evans WE, Shurtleff SA, Downing JR. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 2007; 446:758-64. [PMID: 17344859 DOI: 10.1038/nature05690] [Citation(s) in RCA: 1355] [Impact Index Per Article: 79.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2006] [Accepted: 02/20/2007] [Indexed: 01/19/2023]
Abstract
Chromosomal aberrations are a hallmark of acute lymphoblastic leukaemia (ALL) but alone fail to induce leukaemia. To identify cooperating oncogenic lesions, we performed a genome-wide analysis of leukaemic cells from 242 paediatric ALL patients using high-resolution, single-nucleotide polymorphism arrays and genomic DNA sequencing. Our analyses revealed deletion, amplification, point mutation and structural rearrangement in genes encoding principal regulators of B lymphocyte development and differentiation in 40% of B-progenitor ALL cases. The PAX5 gene was the most frequent target of somatic mutation, being altered in 31.7% of cases. The identified PAX5 mutations resulted in reduced levels of PAX5 protein or the generation of hypomorphic alleles. Deletions were also detected in TCF3 (also known as E2A), EBF1, LEF1, IKZF1 (IKAROS) and IKZF3 (AIOLOS). These findings suggest that direct disruption of pathways controlling B-cell development and differentiation contributes to B-progenitor ALL pathogenesis. Moreover, these data demonstrate the power of high-resolution, genome-wide approaches to identify new molecular lesions in cancer.
Collapse
Affiliation(s)
- Charles G Mullighan
- Department of Pathology, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Zhu X, Asa SL, Ezzat S. Ikaros Is Regulated through Multiple Histone Modifications and Deoxyribonucleic Acid Methylation in the Pituitary. Mol Endocrinol 2007; 21:1205-15. [PMID: 17341593 DOI: 10.1210/me.2007-0053] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
The transcription factor Ikaros (Ik) is at the center of a functionally diverse chromatin-remodeling network that is critical for the development and regulation of both the immune and endocrine systems. Dominant negative forms of Ik result in neoplastic growth in mouse genetic studies and have been identified in human tumors. Ik modulates chromatin accessibility through associations with members of the NURD complex including histone deacetylase complexes. We show here that Ik expression in mouse pituitary corticotroph cells is itself regulated through histone modifications as well as DNA methylation. Examination of primary human pituitary specimens also identified a correlation of loss of Ik expression with the presence of DNA methylation in the untranslated exon 1 CpG island. These findings have important implications for the understanding of Ikaros’ role in epigenetic functions and suggest a potential role for demethylating agents in the treatment of related disorders.
Collapse
Affiliation(s)
- Xuegong Zhu
- Department of Medicine, Mount Sinai Hospital and University of Toronto, Canada
| | | | | |
Collapse
|
243
|
Rossetti S, Harris PC. Genotype-phenotype correlations in autosomal dominant and autosomal recessive polycystic kidney disease. J Am Soc Nephrol 2007; 18:1374-80. [PMID: 17429049 DOI: 10.1681/asn.2007010125] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The phenotypes that are associated with the common forms of polycystic kidney disease (PKD)--autosomal dominant (ADPKD) and autosomal recessive (ARPKD)--are highly variable in penetrance. This is in terms of severity of renal disease, which can range from neonatal death to adequate function into old age, characteristics of the liver disease, and other extrarenal manifestations in ADPKD. Influences of the germline mutation are at the genic and allelic levels, but intrafamilial variability indicates that genetic background and environmental factors are also key. In ADPKD, the gene involved, PKD1 or PKD2, is a major factor, with ESRD occurring 20 yr later in PKD2. Mutation position may also be significant, especially in terms of the likelihood of vascular events, with 5' mutations most detrimental. Variance component analysis in ADPKD populations indicates that genetic modifiers are important, but few such factors (beyond co-inheritance of a TSC2 mutation) have been identified. Hormonal influences, especially associated with more severe liver disease in female individuals, indicate a role for nongenetic factors. In ARPKD, the combination of mutations is critical to the phenotypic outcome. Patients with two truncating mutations have a lethal phenotype, whereas the presence of at least one missense change can be compatible with life, indicating that many missense changes are hypomorphic alleles that generate partially functional protein. Clues from animal models and other forms of PKD highlight potential modifiers. The information that is now available on both genes is of considerable prognostic value with the prospects from the ongoing genetic revolution that additional risk factors will be revealed.
Collapse
Affiliation(s)
- Sandro Rossetti
- Division of Nephrology and Hypertension, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | |
Collapse
|
244
|
Wojcik H, Griffiths E, Staggs S, Hagman J, Winandy S. Expression of a non-DNA-binding Ikaros isoform exclusively in B cells leads to autoimmunity but not leukemogenesis. Eur J Immunol 2007; 37:1022-32. [PMID: 17357110 DOI: 10.1002/eji.200637026] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ikaros is a transcriptional regulator whose function is essential for B cell development. It is expressed in the hematopoietic stem cell (HSC) through the mature B cell stage. Using genetically engineered mice in which the endogenous Ikaros gene is disrupted, it has been shown that a lack of Ikaros leads to a block in B cell development and that its severe diminution results in a hyperresponsive B cell compartment. Ikaros expression within the HSC has led to speculation as to whether the role of Ikaros in B cell biology is largely accomplished prior to B cell specification. In addition, widespread expression of Ikaros in hematopoietic cells leads to the possibility that some or all of the observed defects are not B cell autonomous. In this report, we demonstrate that over-expression of a dominant interfering Ikaros isoform exclusively in B cells has profound effects on mature B cell function. We provide evidence that continued high-level expression of Ikaros is essential for homeostasis of peripheral lymphocytes and maintenance of B cell tolerance. We also show that deregulation of Ikaros activity does not rapidly result in B cell leukemogenesis as it does with 100% penetrance within the T cell lineage.
Collapse
Affiliation(s)
- Heather Wojcik
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
245
|
Bellavia D, Mecarozzi M, Campese AF, Grazioli P, Talora C, Frati L, Gulino A, Screpanti I. Notch3 and the Notch3-upregulated RNA-binding protein HuD regulate Ikaros alternative splicing. EMBO J 2007; 26:1670-80. [PMID: 17332745 PMCID: PMC1829386 DOI: 10.1038/sj.emboj.7601626] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Accepted: 02/05/2007] [Indexed: 11/08/2022] Open
Abstract
Constitutive activation of the transmembrane receptor, Notch3, and loss of function of the hematopoietic transcription repressor, Ikaros (IK), play direct roles in T-cell differentiation and leukemogenesis that are dependent on pre-T-cell receptor (pre-TCR) signaling. We demonstrate the occurrence of crosstalk between Notch3 and IK that results in transcriptional regulation of the gene encoding the pTalpha chain of the pre-TCR. We also show that, in the presence of the pre-TCR, constitutive activation of Notch3 in thymocytes causes increased expression of dominantnegative non-DNA-binding IK isoforms, which are able to restrain the IK inhibition of Notch3's transcriptional activation of pTalpha. This effect appears to be mediated by Notch3's pre-TCR-dependent upregulation of the RNA-binding protein, HuD. Notch3 signaling thus appears to play a critical role in the diminished IK activity described in several lymphoid leukemias. By exerting transcription-activating and transcription-repressing effects on the pTalpha promoter, Notch3 and IK cooperate in the fine-tuning of pre-TCR expression and function, which has important implications for the regulation of thymocyte differentiation and proliferation.
Collapse
Affiliation(s)
- Diana Bellavia
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | - Marco Mecarozzi
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | - Antonio F Campese
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | - Paola Grazioli
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | - Claudio Talora
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
| | | | - Alberto Gulino
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
- Neuromed Institute, Pozzilli, Italy
| | - Isabella Screpanti
- Department of Experimental Medicine, University ‘La Sapienza', Roma, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, University ‘La Sapienza', Roma, Italy
- Laboratory of Molecular Pathology, Dipartimento di Medicina Sperimentale, University ‘La Sapienza', Viale Regina Elena 324, Roma 00161, Italy. Tel.: +39 06 44700816; Fax: +39 06 4464129; E-mail:
| |
Collapse
|
246
|
Ohi H, Mishima Y, Kamimura K, Maruyama M, Sasai K, Kominami R. Multi-step lymphomagenesis deduced from DNA changes in thymic lymphomas and atrophic thymuses at various times after gamma-irradiation. Oncogene 2007; 26:5280-9. [PMID: 17325664 DOI: 10.1038/sj.onc.1210325] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Whole-body gamma-irradiation to mice causes thymic atrophy where a population of precancerous cells with mutation can be found. Thus, clonal growth and DNA changes at Bcl11b, Ikaros, Pten, Notch1 and Myc were examined in not only thymic lymphomas but also in atrophic thymuses at various times after irradiation. Clonal expansion was detected from the distinct patterns of rearrangements at the TCRbeta receptor locus in a fraction of atrophic thymuses at as early as 30 days after irradiation. This expansion may be in part owing to the rearranged TCRbeta signaling because the transfer of bone marrow cells with the rearrangement and the wild-type locus into severe-combined immunodeficiency mice showed preferential growth of the rearranged thymocytes in atrophic thymus. Loss of heterozygosity (LOH) at Bcl11b and trisomy of Myc were found at high frequencies in both lymphomas and atrophic thymuses, and in contrast, LOH at Ikaros and Pten were rare in atrophic thymuses but prevalent in lymphomas. Notch1 activation was detected in lymphomas and in atrophic thymuses only at a late stage. Similar patterns of DNA changes were found in atrophic thymuses induced in Bcl11b(+/-) mice. These results suggest the order of genetic changes during lymphomagenesis, Bcl11b and Myc being at the early stage; whereas Ikaros, Pten and Notch1 at the late stage.
Collapse
Affiliation(s)
- H Ohi
- Department of Molecular Genetics, Graduate School of Medical and Dental Sciences, Niigata University, Asahimachi, Niigata, Japan
| | | | | | | | | | | |
Collapse
|
247
|
Tabayashi T, Ishimaru F, Takata M, Kataoka I, Nakase K, Kozuka T, Tanimoto M. Characterization of the short isoform of Helios overexpressed in patients with T-cell malignancies. Cancer Sci 2007; 98:182-8. [PMID: 17297655 PMCID: PMC11159431 DOI: 10.1111/j.1349-7006.2006.00372.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In an earlier report, we demonstrated overexpression of a short isoform of Helios, Hel-5, which lacks three of four N-terminal zinc fingers, in patients with adult T-cell leukemia/lymphoma. Here, we characterized Hel-5 using immunoprecipitation, and gel shift and luciferase promoter assays, and found that Hel-5 lacks the repressor function observed with a full-length isoform of Helios. Moreover, Hel-5 associates with the full-length isoforms of the Ikaros gene family, Ikaros, Aiolos and Helios, and inhibits their DNA binding activity when present in excess, leading to dominant-negative effects on the full-length isoforms of the Ikaros gene family. Our results suggest a critical role for Helios in the mechanism of leukemogenesis.
Collapse
Affiliation(s)
- Takayuki Tabayashi
- Department of Medicine, University of Okayama, 2-5-1 Shikatacho, Okayama 700-8558, Japan
| | | | | | | | | | | | | |
Collapse
|
248
|
Ronni T, Payne KJ, Ho S, Bradley MN, Dorsam G, Dovat S. Human Ikaros Function in Activated T Cells Is Regulated by Coordinated Expression of Its Largest Isoforms. J Biol Chem 2007; 282:2538-47. [PMID: 17135265 DOI: 10.1074/jbc.m605627200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ikaros gene is alternately spliced to generate multiple zinc finger proteins involved in gene regulation and chromatin remodeling. Whereas murine studies have provided important information regarding the role of Ikaros in the mouse, little is known of Ikaros function in human. We report functional analyses of the two largest human Ikaros (hIK) isoforms, hIK-VI and hIK-H, in T cells. Abundant expression of hIK-H, the largest described isoform, is restricted to human hematopoietic cells. We find that the DNA binding affinity of hIK-H differs from that of hIK-VI. Co-expression of hIk-H with hIk-VI alters the ability of Ikaros complexes to bind DNA motifs found in pericentromeric heterochromatin (PC-HC). In the nucleus, hIK-VI is localized solely in PC-HC, whereas the hIK-H protein exhibits dual centromeric and non-centromeric localization. Mutational analysis defined the amino acids responsible for the distinct DNA binding ability of hIK-H, as well as the sequence required for the specific subcellular localization of this isoform. In proliferating cells, the binding of hIK-H to the upstream regulatory region of known Ikaros target genes correlates with their positive regulation by Ikaros. Results suggest that expression of hIK-H protein restricts affinity of Ikaros protein complexes toward specific PC-HC repeats. We propose a model, whereby the binding of hIK-H-deficient Ikaros complexes to the regulatory sequence of target genes would recruit these genes to the restrictive pericentromeric compartment, resulting in their repression. The presence of hIK-H in the Ikaros complex would alter its affinity for PC-HC, leading to chromatin remodeling and activation of target genes.
Collapse
Affiliation(s)
- Tapani Ronni
- Mattel Children's Hospital, Los Angeles, California 90095, USA
| | | | | | | | | | | |
Collapse
|
249
|
Zhang Z, Swindle CS, Bates JT, Ko R, Cotta CV, Klug CA. Expression of a non-DNA-binding isoform of Helios induces T-cell lymphoma in mice. Blood 2006; 109:2190-7. [PMID: 17110463 PMCID: PMC1801072 DOI: 10.1182/blood-2005-01-031930] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Helios is a zinc-finger protein belonging to the Ikaros family of transcriptional regulators. It is expressed, along with Ikaros, throughout early stages of thymocyte development where it quantitatively associates with Ikaros through C-terminal zinc-finger domains that mediate heterodimerization between Ikaros family members. To understand the role of Helios in T-cell development, we used a retroviral vector to express full-length Helios or a Helios isoform that lacked the N-terminal DNA-binding domain in hematopoietic progenitor cells of reconstituted mice. Constitutive expression of full-length Helios resulted in an inhibition of T-cell development at the double-negative stage within the thymus. Although expression of the DNA-binding mutant of Helios did not contribute to developmental abnormalities at early times after transplantation, 60% of animals that expressed the Helios DNA-binding mutant developed an aggressive and transplantable T-cell lymphoma 4 to 10 months after transplantation. These results demonstrate a vital function for Helios in maintaining normal homeostasis of developing T cells and formally show that non-DNA-binding isoforms of Helios are lymphomagenic if aberrantly expressed within the T-cell lineage.
Collapse
MESH Headings
- Animals
- Cell Differentiation
- Cell Proliferation
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cells, Cultured
- DNA-Binding Proteins/classification
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression
- Killer Cells, Natural/cytology
- Killer Cells, Natural/metabolism
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Lymphoma, T-Cell/pathology
- Mice
- Mice, Inbred C57BL
- Mutation/genetics
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Thymus Gland/cytology
- Thymus Gland/metabolism
- Transcription Factors/classification
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Microbiology, Division of Developmental and Clinical Immunology, University of Alabama at Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
250
|
Kakinuma S, Kodama Y, Amasaki Y, Yi S, Tokairin Y, Arai M, Nishimura M, Monobe M, Kojima S, Shimada Y. Ikaros is a mutational target for lymphomagenesis in Mlh1-deficient mice. Oncogene 2006; 26:2945-9. [PMID: 17086208 DOI: 10.1038/sj.onc.1210100] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Deficiencies in DNA mismatch repair (MMR) result in replication errors within key tumor suppressor genes or oncogenes, and cause hereditary nonpolyposis colorectal cancer (HNPCC). Hematological malignancy with microsatellite instability is also associated with defective MMR, but little is known about the target genes for MMR. Here we identified Ikaros, a master transcription factor of lymphoid lineage commitment and differentiation, as a mutational target in spontaneous and radiation-induced T-cell lymphomas in Mlh1-deficient mice. Three quarters of lymphomas lacked Ikaros protein expression, which resulted from a frameshift mutation that created a stop codon. Mononucleotide repeat sequences at 1029-1034(C)6 and 1567-1572(G)6 in Ikaros were mutational hot spots with a one-base deletion occurring with a frequency of 45 and 50%, respectively. Point mutations and splicing alterations were also observed. In total, 85% of the lymphomas showed aberrations in Ikaros. The characteristic of Mlh1-deficient lymphomas is harboring of multiple mutations simultaneously in the same tumor, displaying a combination of two frameshift mutations at different repeats, frameshift and point mutations, and/or deletion mutations. This is the first report of Ikaros mutations coupled with Mlh1 deficiency in lymphomagenesis.
Collapse
Affiliation(s)
- S Kakinuma
- Experimental Radiobiology for Children's Health Research Group, National Institute of Radiological Sciences, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|