201
|
Job N, Datta S. PIF3/HY5 module regulates BBX11 to suppress protochlorophyllide levels in dark and promote photomorphogenesis in light. THE NEW PHYTOLOGIST 2021; 230:190-204. [PMID: 33330975 DOI: 10.1111/nph.17149] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/09/2020] [Indexed: 05/04/2023]
Abstract
Greening of cotyledons during de-etiolation is critical for harvesting light energy and sustaining plant growth. PIF3 and HY5 antagonistically regulate protochlorophyllide synthesis in the dark. However, the mechanism by which the PIF3/HY5 module regulates genes involved in protochlorophyllide synthesis is not clear. Using genetic, molecular and biochemical techniques we identified that the B-BOX protein BBX11 acts directly downstream of PIF3 and HY5 to transcriptionally modulate genes involved in protochlorophyllide synthesis. Dark-grown bbx11 and 35S:BBX11 seedlings exhibit an enhanced and reduced ability to green, respectively, when exposed to light. Transcript levels of HEMA1 and CHLH are upregulated in 35S:BBX11 seedlings that accumulate high levels of protochlorophyllide in the dark and undergo photobleaching upon illumination. PIF3 inhibits BBX11 in the dark by directly binding to its promoter. bbx11 suppresses the cotyledon greening defect of pif3 after prolonged dark, indicating that the PIF3-mediated regulation of greening is dependent on BBX11. The enhanced greening of hy5 is also suppressed in hy5 lines overexpressing BBX11. In light, HY5 directly binds to the promoter of BBX11 and activates its expression to regulate BBX11-mediated hypocotyl inhibition. We show that a PIF3/HY5 module regulates BBX11 expression in opposite ways to optimise protochlorophyllide accumulation in the dark and promote photomorphogenesis in light.
Collapse
Affiliation(s)
- Nikhil Job
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| | - Sourav Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, Madhya Pradesh, 462066, India
| |
Collapse
|
202
|
Zhou L, Lu Y, Huang J, Sha Z, Mo W, Xue J, Ma S, Shi W, Yang Z, Gao J, Bian M. Arabidopsis CIB3 regulates photoperiodic flowering in an FKF1-dependent way. Biosci Biotechnol Biochem 2021; 85:765-774. [PMID: 33686404 DOI: 10.1093/bbb/zbaa120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 01/29/2023]
Abstract
Arabidopsis cryptochrome 2 (CRY2) and FLAVIN-BINDING, KELCH REPEAT, and F-BOX 1 (FKF1) are blue light receptors mediating light regulation of growth and development, such as photoperiodic flowering. CRY2 interacts with a basic helix-loop-helix transcription factor CIB1 in response to blue light to activate the transcription of the flowering integrator gene FLOWERING LOCUS T (FT). CIB1, CIB2, CIB4, and CIB5 function redundantly to promote flowering in a CRY2-dependent way and form various heterodimers to bind to the noncanonical E-box sequence in the FT promoter. However, the function of CIB3 has not been described. We discovered that CIB3 promotes photoperiodic flowering independently of CRY2. Moreover, CIB3 does not interact with CRY2 but interacts with CIB1 and functions synergistically with CIB1 to promote the transcription of the GI gene. FKF1 is required for CIB3 to promote flowering and enhances the CIB1-CIB3 interaction in response to blue light.
Collapse
Affiliation(s)
- Lianxia Zhou
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Yi Lu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Jie Huang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Zhiwei Sha
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Weiliang Mo
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Jiayi Xue
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China.,Humen Foreign Language School, Dongguan, China
| | - Shuodan Ma
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Wuliang Shi
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Zhenming Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Jie Gao
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| | - Mingdi Bian
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
203
|
Talar U, Kiełbowicz-Matuk A. Beyond Arabidopsis: BBX Regulators in Crop Plants. Int J Mol Sci 2021; 22:ijms22062906. [PMID: 33809370 PMCID: PMC7999331 DOI: 10.3390/ijms22062906] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 01/16/2023] Open
Abstract
B-box proteins represent diverse zinc finger transcription factors and regulators forming large families in various plants. A unique domain structure defines them—besides the highly conserved B-box domains, some B-box (BBX) proteins also possess CCT domain and VP motif. Based on the presence of these specific domains, they are mostly classified into five structural groups. The particular members widely differ in structure and fulfill distinct functions in regulating plant growth and development, including seedling photomorphogenesis, the anthocyanins biosynthesis, photoperiodic regulation of flowering, and hormonal pathways. Several BBX proteins are additionally involved in biotic and abiotic stress response. Overexpression of some BBX genes stimulates various stress-related genes and enhanced tolerance to different stresses. Moreover, there is evidence of interplay between B-box and the circadian clock mechanism. This review highlights the role of BBX proteins as a part of a broad regulatory network in crop plants, considering their participation in development, physiology, defense, and environmental constraints. A description is also provided of how various BBX regulators involved in stress tolerance were applied in genetic engineering to obtain stress tolerance in transgenic crops.
Collapse
|
204
|
An JP, Wang XF, Zhang XW, You CX, Hao YJ. Apple B-box protein BBX37 regulates jasmonic acid mediated cold tolerance through the JAZ-BBX37-ICE1-CBF pathway and undergoes MIEL1-mediated ubiquitination and degradation. THE NEW PHYTOLOGIST 2021; 229:2707-2729. [PMID: 33119890 DOI: 10.1111/nph.17050] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/23/2020] [Indexed: 05/03/2023]
Abstract
The plant hormone jasmonic acid (JA) is involved in the cold stress response, and the inducer of CBF expression 1 (ICE1)- C-repeat binding factor (CBF) regulatory cascade plays a key role in the regulation of cold stress tolerance. In this study, we showed that a novel B-box (BBX) protein MdBBX37 positively regulates JA-mediated cold-stress resistance in apple. We found that MdBBX37 bound to the MdCBF1 and MdCBF4 promoters to activate their transcription, and also interacted with MdICE1 to enhance the transcriptional activity of MdICE1 on MdCBF1, thus promoting its cold tolerance. Two JA signaling repressors, MdJAZ1 and MdJAZ2 (JAZ, JAZMONATE ZIM-DOMAIN), interacted with MdBBX37 to repress the transcriptional activity of MdBBX37 on MdCBF1 and MdCBF4, and also interfered with the interaction between MdBBX37 and MdICE1, thus negatively regulating JA-mediated cold tolerance. E3 ligase MdMIEL1 (MIEL1, MYB30-Interacting E3 Ligase1) reduced MdBBX37-improved cold resistance by mediating ubiquitination and degradation of the MdBBX37 protein. The data reveal that MIEL1 and JAZ proteins co-regulate JA-mediated cold stress tolerance through the BBX37-ICE1-CBF module in apple. These results will aid further examination of the post-translational modification of BBX proteins and the regulatory mechanism of JA-mediated cold stress tolerance.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Xiao-Wei Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong, 271018, China
| |
Collapse
|
205
|
Cao D, Lin Z, Huang L, Damaris RN, Li M, Yang P. A CONSTANS-LIKE gene of Nelumbo nucifera could promote potato tuberization. PLANTA 2021; 253:65. [PMID: 33564987 DOI: 10.1007/s00425-021-03581-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/30/2021] [Indexed: 05/27/2023]
Abstract
CONSTANS-LIKE 5 of Nelumbo nucifera is capable of promoting potato tuberization through CONSTANS-FLOWERING LOCUS T and gibberellin signaling pathways with a probable association with lotus rhizome enlargement. Lotus (Nelumbo nucifera) is an aquatic plant that is affiliated to the Nelumbonaceace family. It is widely used as an ornamental, vegetable, and medicinal herb with its rhizome being a popular vegetable. To explore the molecular mechanism underlying its rhizome enlargement, we conducted a systematic analysis on the CONSTANS-LIKE (COL) gene family, with the results, indicating that this gene plays a role in regulating potato tuber expansion. These analyses included phylogenetic relationships, gene structure, and expressional patterns of lotus COL family genes. Based on these analyses, NnCOL5 was selected for further study on its potential function in lotus rhizome formation. NnCOL5 was shown to be located in the nucleus, and its expression was positively associated with the enlargement of lotus rhizome. Besides, the overexpression of NnCOL5 in potato led to increased tuber weight and starch content under short-day conditions without changing the number of tubers. Further analysis suggested that the observed tuber changes might be mediated by affecting the expression of genes in CO-FT and GA signaling pathways. These results provide valuable insight in understanding the functions of COL gene as well as the enlargement of lotus rhizome.
Collapse
Affiliation(s)
- Dingding Cao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhongyuan Lin
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Longyu Huang
- Institute of Cotton Research of Chinese Academy of Agriculture Science, Anyang, 455000, China
| | - Rebecca Njeri Damaris
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Ming Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
206
|
Wang Y, Zhai Z, Sun Y, Feng C, Peng X, Zhang X, Xiao Y, Zhou X, Wang W, Jiao J, Li T. Genome-Wide Identification of the B- BOX Genes that Respond to Multiple Ripening Related Signals in Sweet Cherry Fruit. Int J Mol Sci 2021; 22:ijms22041622. [PMID: 33562756 PMCID: PMC7914455 DOI: 10.3390/ijms22041622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/24/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022] Open
Abstract
B-BOX proteins are zinc finger transcription factors that play important roles in plant growth, development, and abiotic stress responses. In this study, we identified 15 PavBBX genes in the genome database of sweet cherry. We systematically analyzed the gene structures, clustering characteristics, and expression patterns of these genes during fruit development and in response to light and various hormones. The PavBBX genes were divided into five subgroups. The promoter regions of the PavBBX genes contain cis-acting elements related to plant development, hormones, and stress. qRT-PCR revealed five upregulated and eight downregulated PavBBX genes during fruit development. In addition, PavBBX6, PavBBX9, and PavBBX11 were upregulated in response to light induction. We also found that ABA, BR, and GA3 contents significantly increased in response to light induction. Furthermore, the expression of several PavBBX genes was highly correlated with the expression of anthocyanin biosynthesis genes, light-responsive genes, and genes that function in multiple hormone signaling pathways. Some PavBBX genes were strongly induced by ABA, GA, and BR treatment. Notably, PavBBX6 and PavBBX9 responded to all three hormones. Taken together, BBX proteins likely play major roles in regulating anthocyanin biosynthesis in sweet cherry fruit by integrating light, ABA, GA, and BR signaling pathways.
Collapse
|
207
|
Mengarelli DA, Roldán Tewes L, Balazadeh S, Zanor MI. FITNESS Acts as a Negative Regulator of Immunity and Influences the Plant Reproductive Output After Pseudomonas syringae Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:606791. [PMID: 33613599 PMCID: PMC7889524 DOI: 10.3389/fpls.2021.606791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Plants, as sessile organisms, are continuously threatened by multiple factors and therefore their profitable production depends on how they can defend themselves. We have previously reported on the characterization of fitness mutants which are more tolerant to environmental stresses due to the activation of defense mechanisms. Here, we demonstrate that in fitness mutants, which accumulate moderate levels of salicylic acid (SA) and have SA signaling activated, pathogen infection is restricted. Also, we demonstrate that NPR1 is essential in fitness mutants for SA storage and defense activation but not for SA synthesis after Pseudomonas syringae (Pst) infection. Additionally, these mutants do not appear to be metabolically impared, resulting in a higher seed set even after pathogen attack. The FITNESS transcriptional network includes defense-related transcription factors (TFs) such as ANAC072, ORA59, and ERF1 as well as jasmonic acid (JA) related genes including LIPOXYGENASE2 (LOX2), CORONATINE INSENSITIVE1 (COI1), JASMONATE ZIM-domain3 (JAZ3) and JAZ10. Induction of FITNESS expression leads to COI1 downregulation, and to JAZ3 and JAZ10 upregulation. As COI1 is an essential component of the bioactive JA perception apparatus and is required for most JA-signaling processes, elevated FITNESS expression leads to modulated JA-related responses. Taken together, FITNESS plays a crucial role during pathogen attack and allows a cost-efficient way to prevent undesirable developmental effects.
Collapse
Affiliation(s)
- Diego Alberto Mengarelli
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) Ocampo y Esmeralda PREDIO CCT-Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - Lara Roldán Tewes
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) Ocampo y Esmeralda PREDIO CCT-Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| | - Salma Balazadeh
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - María Inés Zanor
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET) Ocampo y Esmeralda PREDIO CCT-Facultad de Ciencias Bioquímicas y Farmacéuticas (UNR), Rosario, Argentina
| |
Collapse
|
208
|
Zong W, Ren D, Huang M, Sun K, Feng J, Zhao J, Xiao D, Xie W, Liu S, Zhang H, Qiu R, Tang W, Yang R, Chen H, Xie X, Chen L, Liu Y, Guo J. Strong photoperiod sensitivity is controlled by cooperation and competition among Hd1, Ghd7 and DTH8 in rice heading. THE NEW PHYTOLOGIST 2021; 229:1635-1649. [PMID: 33089895 PMCID: PMC7821112 DOI: 10.1111/nph.16946] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/05/2020] [Indexed: 05/19/2023]
Abstract
Rice (Oryza sativa) is a short-day (SD) plant originally having strong photoperiod sensitivity (PS), with SDs promoting and long days (LDs) suppressing flowering. Although the evolution of PS in rice has been extensively studied, there are few studies that combine the genetic effects and underlying mechanism of different PS gene combinations with variations in PS. We created a set of isogenic lines among the core PS-flowering genes Hd1, Ghd7 and DTH8 using CRISPR mutagenesis, to systematically dissect their genetic relationships under different day-lengths. We investigated their monogenic, digenic, and trigenic effects on target gene regulation and PS variation. We found that Hd1 and Ghd7 have the primary functions for promoting and repressing flowering, respectively, regardless of day-length. However, under LD conditions, Hd1 promotes Ghd7 expression and is recruited by Ghd7 and/or DTH8 to form repressive complexes that collaboratively suppress the Ehd1-Hd3a/RFT1 pathway to block heading, but under SD conditions Hd1 competes with the complexes to promote Hd3a/RFT1 expression, playing a tradeoff relationship with PS flowering. Natural allelic variations of Hd1, Ghd7 and DTH8 in rice populations have resulted in various PS performances. Our findings reveal that rice PS flowering is controlled by crosstalk of two modules - Hd1-Hd3a/RFT1 in SD conditions and (Hd1/Ghd7/DTH8)-Ehd1-Hd3a/RFT1 in LD conditions - and the divergences of these genes provide the basis for rice adaptation to broad regions.
Collapse
Affiliation(s)
- Wubei Zong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Ding Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Minghui Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Kangli Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Jinglei Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Jing Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Dongdong Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Wenhao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Shiqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Han Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Rong Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Wenjing Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Ruqi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Hongyi Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Yao‐Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| | - Jingxin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesCollege of Life SciencesSouth China Agricultural University, SCAUGuangzhou510642China
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhou510642China
| |
Collapse
|
209
|
Kaur S, Atri C, Akhatar J, Mittal M, Kaur R, Banga SS. Genetics of days to flowering, maturity and plant height in natural and derived forms of Brassica rapa L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:473-487. [PMID: 33084931 DOI: 10.1007/s00122-020-03707-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Genome wide association studies enabled prediction of many candidate genes for flowering, maturity and plant height under differing day-length conditions. Some genes were envisaged only from derived B. rapa. Flowering and plant height are the key life history traits. These are crucial for adaptation and productivity. Current investigations aimed to examine genotypic differences governing days to flowering, maturity and plant height under contrasting day-length conditions; and identify genomic regions governing the observed phenotypic variations. An association panel comprising 195 inbred lines, representing natural (NR) and derived (DR) forms of Brassica rapa (AA; 2n = 20), was evaluated at two sowing dates and two locations, representing different day-length regimes. Derived B. rapa is a unique pre-breeding material extracted from B. juncea (AABB; 2n = 36). Population structure analysis, using DArT genotypes established derived B. rapa as a genetic resource distinct from natural B. rapa. Genome wide association studies facilitated detection of many trait associated SNPs. Chromosomes A03, A05 and A09 harboured majority of these. Functional annotation of the associated SNPs and surrounding genome space(s) helped to predict 43 candidate genes. Many of these were predicted under specific day-length conditions. Important among these were the genes encoding floral meristem identity (SPL3, SPL15, AP3, BAM2), photoperiodic responses (COL2, AGL18, SPT, NF-YC4), gibberellic acid biosynthesis (GA1) and regulation of flowering (EBS). Some of the predicted genes were detected for DR subpanel alone. Genes controlling hormones, auxins and gibberellins appeared important for the regulation of plant height. Many of the significant SNPs were located on chromosomes harbouring previously reported QTLs and candidate genes. The identified loci may be used for marker-assisted selection after due validation.
Collapse
Affiliation(s)
- Snehdeep Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Chhaya Atri
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Javed Akhatar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Meenakshi Mittal
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Rimaljeet Kaur
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Surinder S Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India.
| |
Collapse
|
210
|
Cai M, Zhu S, Wu M, Zheng X, Wang J, Zhou L, Zheng T, Cui S, Zhou S, Li C, Zhang H, Chai J, Zhang X, Jin X, Cheng Z, Zhang X, Lei C, Ren Y, Lin Q, Guo X, Zhao L, Wang J, Zhao Z, Jiang L, Wang H, Wan J. DHD4, a CONSTANS-like family transcription factor, delays heading date by affecting the formation of the FAC complex in rice. MOLECULAR PLANT 2021; 14:330-343. [PMID: 33246053 DOI: 10.1016/j.molp.2020.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 10/03/2020] [Accepted: 11/18/2020] [Indexed: 05/21/2023]
Abstract
Heading date (or flowering time) is one of the most important agronomic traits in rice, influencing its regional adaptability and crop yield. Many major-effect genes for rice heading date have been identified, but in practice they are difficult to be used for rice molecular breeding because of their dramatic effects on heading date. Genes with minor effects on heading date, which are more desirable for fine-tuning flowering time without significant yield penalty, were seldom reported. In this study, we identified a new minor-effect heading date repressor, Delayed Heading Date 4 (DHD4). The dhd4 mutant shows a slightly earlier flowering phenotype without a notable yield penalty compared with wild-type plants under natural long-day conditions. DHD4 encodes a CONSTANS-like transcription factor localized in the nucleus. Molecular, biochemical, and genetic assays show that DHD4 can compete with 14-3-3 to interact with OsFD1, thus affecting the formation of the Hd3a-14-3-3-OsFD1 tri-protein FAC complex, resulting in reduced expression of OsMADS14 and OsMADS15, and ultimately delaying flowering. Taken together, these results shed new light on the regulation of flowering time in rice and provide a promising target for fine-tuning flowering time to improve the regional adaptability of rice.
Collapse
Affiliation(s)
- Maohong Cai
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mingming Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiachang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianhui Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Song Cui
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shirong Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chaonan Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Huan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Juntao Chai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyue Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Jin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lei Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
211
|
Molecular and Genetic Aspects of Grain Number Determination in Rice ( Oryza sativa L.). Int J Mol Sci 2021; 22:ijms22020728. [PMID: 33450933 PMCID: PMC7828406 DOI: 10.3390/ijms22020728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Rice grain yield is a complex trait determined by three components: panicle number, grain number per panicle (GNPP) and grain weight. GNPP is the major contributor to grain yield and is crucial for its improvement. GNPP is determined by a series of physiological and biochemical steps, including inflorescence development, formation of rachis branches such as primary rachis branches and secondary rachis branches, and spikelet specialisation (lateral and terminal spikelets). The molecular genetic basis of GNPP determination is complex, and it is regulated by numerous interlinked genes. In this review, panicle development and the determination of GNPP is described briefly, and GNPP-related genes that influence its determination are categorised according to their regulatory mechanisms. We introduce genes related to rachis branch development and their regulation of GNPP, genes related to phase transition (from rachis branch meristem to spikelet meristem) and their regulation of GNPP, and genes related to spikelet specialisation and their regulation of GNPP. In addition, we describe other GNPP-related genes and their regulation of GNPP. Research on GNPP determination suggests that it is possible to cultivate rice varieties with higher grain yield by modifying GNPP-related genes.
Collapse
|
212
|
Mengarelli DA, Zanor MI. Genome-wide characterization and analysis of the CCT motif family genes in soybean (Glycine max). PLANTA 2021; 253:15. [PMID: 33392793 DOI: 10.1007/s00425-020-03537-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/11/2020] [Indexed: 05/27/2023]
Abstract
MAIN CONCLUSION Soybean possesses 19 CMF genes which mainly arose from duplication events. Their features and motifs are highly conserved but transcriptional data indicated functional diversity in metabolism and stress responses. CCT [for CONSTANS, CONSTANS-like (CO-like), and timing of CAB expression1 (TOC1)] domain-containing genes play important roles in regulating flowering, plant growth, and grain yield and are also involved in stress responses. The CMF (CCT motif family) genes, included in the CCT family, contain a single CCT domain as the only identifiable domain in their predicted protein sequence and are interesting targets for breeding programs. In this study, we identified 19 putative GmCMF genes, based on the latest soybean (Glycine max) genome annotation. The predicted GmCMF proteins were characterized based on conserved structural features, and a phylogenetic tree was constructed including all CMF proteins from rice and Arabidopsis as representative examples of the monocotyledonous (monocot) and dicotyledonous (dicot) plants, respectively. High similarities in the conserved motifs of the protein sequences and the gene structures were found. In addition, by analyzing the CMF gene family in soybean, we identified seven pairs of genes that originated from segmental chromosomal duplication events attributable to the most recent whole-genome duplication (WGD) event in the Glycine lineage. Expression analysis of GmCMF genes in various tissues and after specific treatments demonstrated tissue and stress-response specific differential expression. Gene expression analysis was complemented by the identification of putative cis-elements present in the promoter regions of the genes through a bioinformatics approach, using the existing soybean reference genome sequence and gene models. Co-functional networks inferred from distinct types of genomics data-including microarrays and RNA-seq samples from soybean-revealed that GmCMF genes might play crucial roles in metabolism and transport processes. The results of this study, the first systematic analysis of the soybean CCT gene family, can serve as a strong foundation for further elucidation of their physiological functions and biological roles.
Collapse
|
213
|
Osnato M, Cereijo U, Sala J, Matías-Hernández L, Aguilar-Jaramillo AE, Rodríguez-Goberna MR, Riechmann JL, Rodríguez-Concepción M, Pelaz S. The floral repressors TEMPRANILLO1 and 2 modulate salt tolerance by regulating hormonal components and photo-protection in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:7-21. [PMID: 33111454 DOI: 10.1111/tpj.15048] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/21/2020] [Indexed: 05/18/2023]
Abstract
Members of the plant specific RAV family of transcription factors regulate several developmental and physiological processes. In the model plant Arabidopsis thaliana, the RAV TEMPRANILLO 1 (TEM1) and TEM2 control important phase changes such as the juvenile to adult and the vegetative to reproductive transitions. Besides their known regulatory function in plant development, a transcriptomics analysis of transgenic plants overexpressing TEM1 also revealed overrepresentation of Gene Ontology (GO) categories related to abiotic stress responses. Therefore, to investigate the biological relevance of these TEM-dependent transcriptomic changes and elucidate whether TEMs contribute to the modulation of plant growth in response to salinity, we analyzed the behavior of TEM gain and loss of function mutants subjected to mild and high salt stresses at different development stages. With respect to increasing salinity, TEM overexpressing plants were hypersensitive whereas the tem1 tem2 double mutants were more tolerant. Precisely, tem1 tem2 mutants germinated and flowered faster than the wild-type plants under salt stress conditions. Also, tem1 tem2 plants showed a delay in salt-induced leaf senescence, possibly as a consequence of downregulation of jasmonic acid biosynthesis genes. Besides a shorter life cycle and delayed senescence, tem1 tem2 mutants appeared to be better suited to withstand oxidative stress as they accumulated higher levels of α-tocopherol (an important antioxidant metabolite) and displayed a slower degradation of photosynthetic pigments. Taken together, our studies suggest novel and crucial roles for TEM in adaptive growth as they modulate plant development in response to environmental changes such as increasing soil salinity.
Collapse
Affiliation(s)
- Michela Osnato
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, 08193, Spain
| | - Unai Cereijo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, 08193, Spain
| | - Jan Sala
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, 08193, Spain
| | - Luis Matías-Hernández
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, 08193, Spain
| | - Andrea E Aguilar-Jaramillo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, 08193, Spain
| | | | - José Luis Riechmann
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| | | | - Soraya Pelaz
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, 08193, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, 08010, Spain
| |
Collapse
|
214
|
Shi R, Xu W, Liu T, Cai C, Li S. VrLELP controls flowering time under short-day conditions in Arabidopsis. JOURNAL OF PLANT RESEARCH 2021; 134:141-149. [PMID: 33084994 DOI: 10.1007/s10265-020-01235-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/15/2020] [Indexed: 05/22/2023]
Abstract
Flowering time has a critically important effect on the reproduction of plants, and many components involved in flowering-time regulation have been identified in multiple plant species. However, studies of the flowering-time genes in mungbean (Vigna radiata) have been limited. Here, we characterized a novel mungbean gene, VrLELP, involved in flowering-time regulation in transgenic Arabidopsis. Subcellular localization analysis revealed that VrLELP was localized in the membrane, cytoplasm and nucleus and the nucleus and membrane contained higher signal than cytoplasm, similar to the empty vector control. The expression of VrLELP was higher in leaves and pods and lower in nodule roots relative to other tissues. The expression of VrLELP varied during flower development. The expression of VrLELP also varied during the day, reaching a peak after 12 h of illumination under long-day conditions. In contrast, under short-day conditions, the abundance of VrLELP transcripts changed little throughout the day. In addition, VrLELP delayed flowering time in transgenic Arabidopsis plants by suppressing the expression of the flowering-time genes CO and FT under short-day conditions. However, VrLELP did not affect flowering time under long-day conditions in Arabidopsis. Our study provides essential information for future studies of the molecular mechanisms of the flowering-time regulation system in mungbean.
Collapse
Affiliation(s)
- Renxing Shi
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Wenying Xu
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Tong Liu
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Chunmei Cai
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Shuai Li
- College of Life Sciences, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
215
|
Ye JY, Tian WH, Zhou M, Zhu QY, Du WX, Jin CW. Improved Plant Nitrate Status Involves in Flowering Induction by Extended Photoperiod. FRONTIERS IN PLANT SCIENCE 2021; 12:629857. [PMID: 33643357 PMCID: PMC7907640 DOI: 10.3389/fpls.2021.629857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/19/2021] [Indexed: 05/06/2023]
Abstract
The floral transition stage is pivotal for sustaining plant populations and is affected by several environmental factors, including photoperiod. However, the mechanisms underlying photoperiodic flowering responses are not fully understood. Herein, we have shown that exposure to an extended photoperiod effectively induced early flowering in Arabidopsis plants, at a range of different nitrate concentrations. However, these photoperiodic flowering responses were attenuated when the nitrate levels were suboptimal for flowering. An extended photoperiod also improved the root nitrate uptake of by NITRATE TRANSPORTER 1.1 (NRT1.1) and NITRATE TRANSPORTER 2.1 (NRT2.1), whereas the loss of function of NRT1.1/NRT2.1 in the nrt1.1-1/2.1-2 mutants suppressed the expression of the key flowering genes CONSTANS (CO) and FLOWERING LOCUS T (FT), and reduced the sensitivity of the photoperiodic flowering responses to elevated levels of nitrate. These results suggest that the upregulation of root nitrate uptake during extended photoperiods, contributed to the observed early flowering. The results also showed that the sensitivity of photoperiodic flowering responses to elevated levels of nitrate, were also reduced by either the replacement of nitrate with its assimilation intermediate product, ammonium, or by the dysfunction of the nitrate assimilation pathway. This indicates that nitrate serves as both a nutrient source for plant growth and as a signaling molecule for floral induction during extended photoperiods.
Collapse
Affiliation(s)
- Jia Yuan Ye
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Wen Hao Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China
| | - Miao Zhou
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Qing Yang Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Wen Xin Du
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
| | - Chong Wei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou, China
- *Correspondence: Chong Wei Jin,
| |
Collapse
|
216
|
Lei X, Tan B, Liu Z, Wu J, Lv J, Gao C. ThCOL2 Improves the Salt Stress Tolerance of Tamarix hispida. FRONTIERS IN PLANT SCIENCE 2021; 12:653791. [PMID: 34079567 PMCID: PMC8166225 DOI: 10.3389/fpls.2021.653791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/09/2021] [Indexed: 05/20/2023]
Abstract
The CONSTANS-LIKE (COL) transcription factor has been reported to play important roles in regulating plant flowering and the response to abiotic stress. To clone and screen COL genes with excellent salt tolerance from the woody halophyte Tamarix hispida, 8 ThCOL genes were identified in this study. The expression patterns of these genes under different abiotic stresses (high salt, osmotic, and heavy metal) and abscisic acid (ABA) treatment were detected using quantitative real-time PCR (qRT-PCR). The expression levels of 8 ThCOL genes changed significantly after exposure to one or more stresses, indicating that these genes were all stress-responsive genes and may be involved in the stress resistance response of T. hispida. In particular, the expression level of ThCOL2 changed significantly at most time points in the roots and leaves of T. hispida under salt stress and after ABA treatments, which may play an important role in the response process of salt stress through a mechanism dependent on the ABA pathway. The recombinant vectors pROKII-ThCOL2 and pFGC5941-ThCOL2 were constructed for the transient transformation of T. hispida, and the transient infection of T. hispida with the pROKII empty vector was used as the control to further verify whether the ThCOL2 gene was involved in the regulation of the salt tolerance response of T. hispida. Overexpression of the ThCOL2 gene in plants under 150 mM NaCl stress increased the ability of transgenic T. hispida cells to remove reactive oxygen species (ROS) by regulating the activity of protective enzymes and promoting a decrease in the accumulation of O2- and H2O2, thereby reducing cell damage or cell death and enhancing salt tolerance. The ThCOL2 gene may be a candidate gene associated with excellent salt tolerance. Furthermore, the expression levels of some genes related to the ABA pathway were analyzed using qRT-PCR. The results showed that the expressions of ThNCED1 and ThNCED4 were significantly higher, and the expressions of ThNCED3, ThZEP, and ThAAO3 were not significantly altered in OE compared with CON under normal conditions. But after 24 h of salt stress, the expressions of all five studied genes all were lower than the normal condition. In the future, the downstream genes directly regulated by the ThCOL2 transcription factor will be searched and identified to analyze the salt tolerance regulatory network of ThCOL2.
Collapse
|
217
|
Han R, Truco MJ, Lavelle DO, Michelmore RW. A Composite Analysis of Flowering Time Regulation in Lettuce. FRONTIERS IN PLANT SCIENCE 2021; 12:632708. [PMID: 33763095 PMCID: PMC7982828 DOI: 10.3389/fpls.2021.632708] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/16/2021] [Indexed: 05/08/2023]
Abstract
Plants undergo profound physiological changes when transitioning from vegetative to reproductive growth. These changes affect crop production, as in the case of leafy vegetables. Lettuce is one of the most valuable leafy vegetable crops in the world. Past genetic studies have identified multiple quantitative trait loci (QTLs) that affect the timing of the floral transition in lettuce. Extensive functional molecular studies in the model organism Arabidopsis provide the opportunity to transfer knowledge to lettuce to explore the mechanisms through which genetic variations translate into changes in flowering time. In this review, we integrated results from past genetic and molecular studies for flowering time in lettuce with orthology and functional inference from Arabidopsis. This summarizes the basis for all known genetic variation underlying the phenotypic diversity of flowering time in lettuce and how the genetics of flowering time in lettuce projects onto the established pathways controlling flowering time in plants. This comprehensive overview reveals patterns across experiments as well as areas in need of further study. Our review also represents a resource for developing cultivars with delayed flowering time.
Collapse
Affiliation(s)
- Rongkui Han
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
- Plant Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - Maria José Truco
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
| | - Dean O. Lavelle
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
| | - Richard W. Michelmore
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- *Correspondence: Richard W. Michelmore,
| |
Collapse
|
218
|
Liu B, Long H, Yan J, Ye L, Zhang Q, Chen H, Gao S, Wang Y, Wang X, Sun S. A HY5-COL3-COL13 regulatory chain for controlling hypocotyl elongation in Arabidopsis. PLANT, CELL & ENVIRONMENT 2021; 44:130-142. [PMID: 33011994 DOI: 10.1111/pce.13899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 05/23/2023]
Abstract
CONSTANS-LIKE (COL) family members are commonly implicated in light signal transduction during early photomorphogenesis. However, some of their functions remain unclear. Here, we propose a role for COL13 in hypocotyl elongation in Arabidopsis thaliana. We found that COL13 RNA accumulates at high levels in hypocotyls and that a disruption in the COL13 function via a T-DNA insertion or RNAi led to the formation of longer hypocotyls of Arabidopsis seedlings under red light. On the contrary, overexpression of COL13 resulted in the formation of shorter hypocotyls. Using various genetic, genomic, and biochemical assays, we proved that another COL protein, COL3, directly binds to the promoter of COL13, and the promoter region of COL3 was targeted by the transcription factor LONG HYPOCOTYL 5 (HY5), to form an HY5-COL3-COL13 regulatory chain for regulating hypocotyl elongation under red light. Additionally, further study demonstrated that COL13 interacts with COL3, and COL13 promotes the interaction between COL3 and CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), suggesting a possible COP1-dependent COL3-COL13 feedback pathway. Our results provide new information regarding the gene network in mediating hypocotyl elongation.
Collapse
Affiliation(s)
- Bin Liu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, China
- Department of Plant Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Hong Long
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jing Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lili Ye
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Qin Zhang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Hongmei Chen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sujuan Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yaqin Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Xiaojing Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Shulan Sun
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
219
|
Liu C, Zhang Q, Zhu H, Cai C, Li S. Characterization of Mungbean CONSTANS-LIKE Genes and Functional Analysis of CONSTANS-LIKE 2 in the Regulation of Flowering Time in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:608603. [PMID: 33613600 PMCID: PMC7890258 DOI: 10.3389/fpls.2021.608603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/11/2021] [Indexed: 05/05/2023]
Abstract
CONSTANS-LIKE (COL) genes play important roles in the regulation of plant growth and development, and they have been analyzed in many plant species. However, few studies have examined COL genes in mungbean (Vigna radiata). In this study, we identified and characterized 31 mungbean genes whose proteins contained B-Box domains. Fourteen were designated as VrCOL genes and were distributed on 7 of the 11 mungbean chromosomes. Based on their phylogenetic relationships, VrCOLs were clustered into three groups (I, II, and III), which contained 4, 6, and 4 members, respectively. The gene structures and conserved motifs of the VrCOL genes were analyzed, and two duplicated gene pairs, VrCOL1/VrCOL2 and VrCOL8/VrCOL9, were identified. A total of 82 cis-acting elements were found in the VrCOL promoter regions, and the numbers and types of cis-acting elements in each VrCOL promoter region differed. As a result, the expression patterns of VrCOLs varied in different tissues and throughout the day under long-day and short-day conditions. Among these VrCOL genes, VrCOL2 showed a close phylogenetic relationship with Arabidopsis thaliana CO and displayed daily oscillations in expression under short-day conditions but not long-day conditions. In addition, overexpression of VrCOL2 accelerated flowering in Arabidopsis under short-day conditions by affecting the expression of the flowering time genes AtFT and AtTSF. Our study lays the foundation for further investigation of VrCOL gene functions.
Collapse
Affiliation(s)
- Chenyang Liu
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qianqian Zhang
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Hong Zhu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Chunmei Cai
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Shuai Li
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
- *Correspondence: Shuai Li,
| |
Collapse
|
220
|
Serrano-Bueno G, Sánchez de Medina Hernández V, Valverde F. Photoperiodic Signaling and Senescence, an Ancient Solution to a Modern Problem? FRONTIERS IN PLANT SCIENCE 2021; 12:634393. [PMID: 33777070 PMCID: PMC7988197 DOI: 10.3389/fpls.2021.634393] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/12/2021] [Indexed: 05/22/2023]
Abstract
The length of the day (photoperiod) is a robust seasonal signal originated by earth orbital and translational movements, a resilient external cue to the global climate change, and a predictable hint to initiate or complete different developmental programs. In eukaryotic algae, the gene expression network that controls the cellular response to photoperiod also regulates other basic physiological functions such as starch synthesis or redox homeostasis. Land plants, evolving in a novel and demanding environment, imbued these external signals within the regulatory networks controlling organogenesis and developmental programs. Unlike algae that largely have to deal with cellular physical cues, within the course of evolution land plants had to transfer this external information from the receiving organs to the target tissues, and mobile signals such as hormones were recruited and incorporated in the regulomes. Control of senescence by photoperiod, as suggested in this perspective, would be an accurate way to feed seasonal information into a newly developed function (senescence) using an ancient route (photoperiodic signaling). This way, the plant would assure that two coordinated aspects of development such as flowering and organ senescence were sequentially controlled. As in the case of senescence, there is growing evidence to support the idea that harnessing the reliability of photoperiod regulation over other, more labile signaling pathways could be used as a robust breeding tool to enhance plants against the harmful effects of climate change.
Collapse
|
221
|
Zhao T, Wu T, Pei T, Wang Z, Yang H, Jiang J, Zhang H, Chen X, Li J, Xu X. Overexpression of SlGATA17 Promotes Drought Tolerance in Transgenic Tomato Plants by Enhancing Activation of the Phenylpropanoid Biosynthetic Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:634888. [PMID: 33796125 PMCID: PMC8008128 DOI: 10.3389/fpls.2021.634888] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/05/2021] [Indexed: 05/13/2023]
Abstract
GATA transcription factors (TFs) are widely distributed in eukaryotes. Some GATA TFs have been shown to be related to photosynthesis, germination, circadian rhythm, and other functions in plants. Our previous study found that some members of this family have obvious responses when tomato plants are subjected to drought stress, in which the SlGATA17 gene is significantly upregulated. To further verify the function of this gene under drought stress, we constructed tomato lines with this gene overexpressed. Phenotypic and physiological indicators indicated that the SlGATA17-overexpressing plants were more drought tolerant than the wild-type plants. Transcriptomic sequencing results showed that the overexpression of the SlGATA17 gene improved the activity of the phenylpropanoid biosynthesis pathway. The PAL enzyme activity assay results confirmed that the initial activity of this pathway was enhanced in transgenic plants, especially in the initial response stage, indicating that the SlGATA17 gene regulates the drought resistance of tomato plants by regulating the activity of the phenylpropanoid biosynthesis pathway.
Collapse
Affiliation(s)
- Tingting Zhao
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Tairu Wu
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Tong Pei
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Ziyu Wang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Huanhuan Yang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Jingbin Jiang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - He Zhang
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Xiuling Chen
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Jingfu Li
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Xiangyang Xu
- Laboratory of Genetic Breeding in Tomato, College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
- *Correspondence: Xiangyang Xu,
| |
Collapse
|
222
|
Lebedeva MA, Dodueva IE, Gancheva MS, Tvorogova VE, Kuznetsova KA, Lutova LA. The Evolutionary Aspects of Flowering Control: Florigens and Anti-Florigens. RUSS J GENET+ 2020. [DOI: 10.1134/s102279542011006x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
223
|
Abdul‐Awal SM, Chen J, Xin Z, Harmon FG. A sorghum gigantea mutant attenuates florigen gene expression and delays flowering time. PLANT DIRECT 2020; 4:e00281. [PMID: 33210074 PMCID: PMC7665845 DOI: 10.1002/pld3.281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/20/2020] [Indexed: 06/11/2023]
Abstract
GIGANTEA (GI) is a conserved plant-specific gene that modulates a range of environmental responses in multiple plant species, including playing a key role in photoperiodic regulation of flowering time. The C4 grass Sorghum bicolor is an important grain and subsistence crop, animal forage, and cellulosic biofuel feedstock that is tolerant of abiotic stresses and marginal soils. To understand sorghum flowering time regulatory networks, we characterized the sbgi-ems1 nonsense mutant allele of the sorghum GIGANTEA (SbGI) gene from a sequenced M4 EMS-mutagenized BTx623 population. sbgi-ems1 plants flowered later than wild type siblings under both long-day or short-day photoperiods. Delayed flowering in sbgi-ems1 plants accompanied an increase in node number, indicating an extended vegetative growth phase prior to flowering. sbgi-ems1 plants had reduced expression of floral activator genes SbCO and SbEHD1 and downstream FT-like florigen genes SbFT, SbCN8, and SbCN12. Therefore, SbGI plays a role in regulating SbCO and SbEHD1 expression that serves to accelerate flowering. SbGI protein physically interacts with the sorghum FLAVIN-BINDING, KELCH REPEAT, F-BOX1-like (SbFFL) protein, a conserved flowering-associated blue light photoreceptor, and the SbGI-SbFFL interaction is stimulated by blue light. This work demonstrates that SbGI is an activator of sorghum flowering time upstream of florigen genes under short- and long-day photoperiods, likely in association with the activity of the blue light photoreceptor SbFFL. SIGNIFICANCE STATEMENT This study elucidates molecular details of flowering time networks for the adaptable C4 cereal crop Sorghum bicolor, including demonstration of a role for blue light sensing in sorghum GIGANTEA activity. This work validates the utility of a large publicly available sequenced EMS-mutagenized sorghum population to determine gene function.
Collapse
Affiliation(s)
- S. M. Abdul‐Awal
- Plant Gene Expression CenterUSDA‐ARSAlbanyCAUSA
- Department of Plant & Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
- Biotechnology & Genetic Engineering DisciplineKhulna UniversityKhulnaBangladesh
| | - Junping Chen
- Plant Stress and Germplasm Development UnitUSDA‐ARSLubbockTXUSA
| | - Zhanguo Xin
- Plant Stress and Germplasm Development UnitUSDA‐ARSLubbockTXUSA
| | - Frank G. Harmon
- Plant Gene Expression CenterUSDA‐ARSAlbanyCAUSA
- Department of Plant & Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| |
Collapse
|
224
|
Shen C, Liu H, Guan Z, Yan J, Zheng T, Yan W, Wu C, Zhang Q, Yin P, Xing Y. Structural Insight into DNA Recognition by CCT/NF-YB/YC Complexes in Plant Photoperiodic Flowering. THE PLANT CELL 2020; 32:3469-3484. [PMID: 32843433 PMCID: PMC7610279 DOI: 10.1105/tpc.20.00067] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 08/07/2020] [Accepted: 08/25/2020] [Indexed: 05/18/2023]
Abstract
CONSTANS, CONSTANS-LIKE, and TIMING OF CAB EXPRESSION1 (CCT) domain-containing proteins are a large family unique to plants. They transcriptionally regulate photoperiodic flowering, circadian rhythms, vernalization, and other related processes. Through their CCT domains, CONSTANS and HEADING DATE1 (HD1) coordinate with the NUCLEAR FACTOR Y (NF-Y) B/C dimer to specifically target a conserved 'CCACA' motif within the promoters of their target genes. However, the mechanism underlying DNA recognition by the CCT domain remains unclear. Here we determined the crystal structures of the rice (Oryza sativa) NF-YB/YC dimer and the florigen gene Heading date 3a (Hd3a)-bound HD1CCT/NF-YB/YC trimer with resolutions of 2.0 Å and 2.55 Å, respectively. The CCT domain of HD1 displays an elongated structure containing two α-helices and two loops, tethering Hd3a to the NF-YB/YC dimer. Helix α2 and loop 2 are anchored into the minor groove of the 'CCACA' motif, which determines the specific base recognition. Our structures reveal the interaction mechanism among the CCT domain, NF-YB/YC dimer, and the target DNA. These results not only provide insight into the network between the CCT proteins and NF-Y subunits, but also offer potential approaches for improving productivity and global adaptability of crops by manipulating florigen expression.
Collapse
Affiliation(s)
- Cuicui Shen
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyang Liu
- College of Agriculture, Yangtze University, Jingzhou 434000, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
- College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junjie Yan
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ting Zheng
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhao Yan
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Changyin Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
225
|
Molecular and genetic pathways for optimizing spikelet development and grain yield. ABIOTECH 2020; 1:276-292. [PMID: 36304128 PMCID: PMC9590455 DOI: 10.1007/s42994-020-00026-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/11/2020] [Indexed: 01/25/2023]
Abstract
The spikelet is a unique structure of inflorescence in grasses that generates one to many flowers depending on its determinate or indeterminate meristem activity. The growth patterns and number of spikelets, furthermore, define inflorescence architecture and yield. Therefore, understanding the molecular mechanisms underlying spikelet development and evolution are attractive to both biologists and breeders. Based on the progress in rice and maize, along with increasing numbers of genetic mutants and genome sequences from other grass families, the regulatory networks underpinning spikelet development are becoming clearer. This is particularly evident for domesticated traits in agriculture. This review focuses on recent progress on spikelet initiation, and spikelet and floret fertility, by comparing results from Arabidopsis with that of rice, sorghum, maize, barley, wheat, Brachypodium distachyon, and Setaria viridis. This progress may benefit genetic engineering and molecular breeding to enhance grain yield.
Collapse
|
226
|
Hu R, Xiao J, Zhang Q, Gu T, Chang J, Yang G, He G. A light-regulated gene, TaLWD1L-A, affects flowering time in transgenic wheat (Triticum aestivum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110623. [PMID: 32900433 DOI: 10.1016/j.plantsci.2020.110623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/14/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Flowering time is an important agronomic trait that greatly influences plant architecture and grain yield in cereal crops. The present study identified a light-regulated gene, TaLWD1L-A, from hexaploid wheat that encodes a WD40 domain-containing protein. TaLWD1L-A was localized in the nucleus. Phenotypic analysis demonstrated that TaLWD1L-A overexpression in transgenic wheat led to an obvious early flowering phenotype. Upregulation of the floral activator gene TaFT1 caused the early flowering phenotype in transgenic wheat plants. TaLWD1L-A also affected the expression of circadian clock genes, including TaTOC1, TaLHY, TaPRR59, TaPRR73 and TaPRR95, and indirectly regulated the expression of the TaFT1 in transgenic plants by affecting the expression of vernalization-related genes TaVRN1 and TaVRN2 and photoperiod-related genes TaPpd-1 and TaGI. The early flowering phenotype in TaLWD1L-A-overexpressing transgenic lines led to a relatively shorter phenotype and yield reduction. Our results revealed that TaLWD1L-A affected the expression of circadian clock-related genes and played an important role in wheat flowering regulation by influencing the expression of genes related to vernalization and photoperiod pathways.
Collapse
Affiliation(s)
- Rui Hu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jie Xiao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Qian Zhang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ting Gu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Guangxiao Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| | - Guangyuan He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan 430074, China.
| |
Collapse
|
227
|
Wei H, Wang X, Xu H, Wang L. Molecular basis of heading date control in rice. ABIOTECH 2020; 1:219-232. [PMID: 36304129 PMCID: PMC9590479 DOI: 10.1007/s42994-020-00019-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/06/2020] [Indexed: 01/25/2023]
Abstract
Flowering time is of great significance for crop reproduction, yield, and regional adaptability, which is intricately regulated by various environmental cues and endogenous signals. Genetic approaches in Arabidopsis have revealed the elaborate underlying mechanisms of sensing the dynamic change of photoperiod via a coincidence between light signaling and circadian clock, the cellular time keeping system, to precisely control photoperiodic flowering time, and many other signaling pathways including internal hormones and external temperature cues. Extensive studies in rice (Oryza sativa.), one of the short-day plants (SDP), have uncovered the multiple major genetic components in regulating heading date, and revealed the underlying mechanisms for regulating heading date. Here we summarize the current progresses on the molecular basis for rice heading date control, especially focusing on the integration mechanism between photoperiod and circadian clock, and epigenetic regulation and heading procedures in response to abiotic stresses.
Collapse
Affiliation(s)
- Hua Wei
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiling Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hang Xu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
228
|
Cai Y, Bartholomew ES, Dong M, Zhai X, Yin S, Zhang Y, Feng Z, Wu L, Liu W, Shan N, Zhang X, Ren H, Liu X. The HD-ZIP IV transcription factor GL2-LIKE regulates male flowering time and fertility in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5425-5437. [PMID: 32490515 PMCID: PMC7501822 DOI: 10.1093/jxb/eraa251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 05/27/2020] [Indexed: 05/19/2023]
Abstract
Cucumber is dioecious by nature, having both male and female flowers, and is a model system for unisexual flower development. Knowledge related to male flowering is limited, but it is reported to be regulated by transcription factors and hormone signals. Here, we report functional characterization of the cucumber (Cucumis sativus) GL2-LIKE gene, which encodes a homeodomain leucine zipper (HD-ZIP) IV transcription factor that plays an important role in regulating male flower development. Spatial-temporal expression analyses revealed high-level expression of CsGL2-LIKE in the male flower buds and anthers. CsGL2-LIKE is closely related to AtGL2, which is known to play a key role in trichome development. However, ectopic expression of CsGL2-LIKE in Arabidopsis gl2-8 mutant was unable to rescue the gl2-8 phenotype. Interestingly, the silencing of CsGL2-LIKE delayed male flowering by inhibiting the expression of the florigen gene FT and reduced pollen vigor and seed viability. Protein-protein interaction assays showed that CsGL2-LIKE interacts with the jasmonate ZIM domain protein CsJAZ1 to form a HD-ZIP IV-CsJAZ1 complex. Collectively, our study indicates that CsGL2-LIKE regulates male flowering in cucumber, and reveals a novel function of a HD-ZIP IV transcription factor in regulating male flower development of cucumber.
Collapse
Affiliation(s)
- Yanling Cai
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Ezra S Bartholomew
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Mingming Dong
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Xuling Zhai
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Shuai Yin
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Yaqi Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Zhongxuan Feng
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Licai Wu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Wan Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Nan Shan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Xiao Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Huazhong Ren
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
| | - Xingwang Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Engineering Research Center of Breeding and Propagation of Horticultural Crops, Ministry of Education, College of Horticulture, China Agricultural University, Beijing, P. R. China
- Correspondence:
| |
Collapse
|
229
|
Cubry P, Pidon H, Ta KN, Tranchant-Dubreuil C, Thuillet AC, Holzinger M, Adam H, Kam H, Chrestin H, Ghesquière A, François O, Sabot F, Vigouroux Y, Albar L, Jouannic S. Genome Wide Association Study Pinpoints Key Agronomic QTLs in African Rice Oryza glaberrima. RICE (NEW YORK, N.Y.) 2020; 13:66. [PMID: 32936396 PMCID: PMC7494698 DOI: 10.1186/s12284-020-00424-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/31/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND African rice, Oryza glaberrima, is an invaluable resource for rice cultivation and for the improvement of biotic and abiotic resistance properties. Since its domestication in the inner Niger delta ca. 2500 years BP, African rice has colonized a variety of ecologically and climatically diverse regions. However, little is known about the genetic basis of quantitative traits and adaptive variation of agricultural interest for this species. RESULTS Using a reference set of 163 fully re-sequenced accessions, we report the results of a Genome Wide Association Study carried out for African rice. We investigated a diverse panel of traits, including flowering date, panicle architecture and resistance to Rice yellow mottle virus. For this, we devised a pipeline using complementary statistical association methods. First, using flowering time as a target trait, we found several association peaks, one of which co-localised with a well described gene in the Asian rice flowering pathway, OsGi, and identified new genomic regions that would deserve more study. Then we applied our pipeline to panicle- and resistance-related traits, highlighting some interesting genomic regions and candidate genes. Lastly, using a high-resolution climate database, we performed an association analysis based on climatic variables, searching for genomic regions that might be involved in adaptation to climatic variations. CONCLUSION Our results collectively provide insights into the extent to which adaptive variation is governed by sequence diversity within the O. glaberrima genome, paving the way for in-depth studies of the genetic basis of traits of interest that might be useful to the rice breeding community.
Collapse
Affiliation(s)
| | - Hélène Pidon
- DIADE, Univ Montpellier, IRD, Montpellier, France
- Present address: Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Kim Nhung Ta
- LMI RICE, AGI, IRD, Univ Montpellier, CIRAD, USTH, Hanoi, Vietnam
- Present address: National Institute of Genetics, Mishima, Shizuoka, Japan
| | | | | | | | - Hélène Adam
- DIADE, Univ Montpellier, IRD, Montpellier, France
| | | | | | | | - Olivier François
- Université Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble, France
| | | | | | | | - Stefan Jouannic
- DIADE, Univ Montpellier, IRD, Montpellier, France.
- LMI RICE, AGI, IRD, Univ Montpellier, CIRAD, USTH, Hanoi, Vietnam.
| |
Collapse
|
230
|
Song Z, Bian Y, Liu J, Sun Y, Xu D. B-box proteins: Pivotal players in light-mediated development in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1293-1309. [PMID: 32237198 DOI: 10.1111/jipb.12935] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/25/2020] [Indexed: 05/05/2023]
Abstract
Light signals mediate a number of physiological and developmental processes in plants, such as flowering, photomorphogenesis, and pigment accumulation. Emerging evidence has revealed that a group of B-box proteins (BBXs) function as central players in these light-mediated developmental processes. B-box proteins are a class of zinc-coordinated transcription factors or regulators that not only directly mediate the transcription of target genes but also interact with various other factors to create a complex regulatory network involved in the precise control of plant growth and development. This review summarizes and highlights the recent findings concerning the critical regulatory functions of BBXs in photoperiodic flowering, light signal transduction and light-induced pigment accumulation and their molecular modes of action at the transcriptional and post-translational levels in plants.
Collapse
Affiliation(s)
- Zhaoqing Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yeting Bian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiujie Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuting Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
231
|
Yu Y, Qiao L, Chen J, Rong Y, Zhao Y, Cui X, Xu J, Hou X, Dong CH. Arabidopsis REM16 acts as a B3 domain transcription factor to promote flowering time via directly binding to the promoters of SOC1 and FT. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1386-1398. [PMID: 32391591 DOI: 10.1111/tpj.14807] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 05/25/2023]
Abstract
Actin depolymerizing factor (ADF) is a key modulator for dynamic organization of actin cytoskeleton. Interestingly, it was found that the ADF1 gene silencing delays flowering, but its mechanism remains unclear. In this study, ADF1 was used as a bait to screen its interacting proteins by the yeast two-hybrid (Y2H) system. One of them, the REM16 transcription factor was identified. As one of the AP2/B3-like transcriptional factor family members, the REM16 contains two B3 domains and its transcript levels kept increasing during the floral transition stage. Overexpression of REM16 accelerates flowering while silencing of REM16 delays flowering. Gene expression analysis indicated that the key flowering activation genes such as CONSTANS (CO), FLOWERING LOCUS T (FT), LEAFY (LFY) and SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC1) were upregulated in the REM16 overexpression lines, while the transcription of the flowering suppression gene FLOWERING LOCUS C (FLC) was decreased. In contrast, the REM16 gene silencing lines contained lower transcript levels of the CO, FT, LFY and SOC1 but higher transcript levels of the FLC compared with the wild-type plants. It was proved that REM16 could directly bind to the promoter regions of SOC1 and FT by in vitro and in vivo assays. Genetic analysis supported that REM16 acts upstream of SOC1 and FT in flowering pathways. All these studies provided strong evidence demonstrating that REM16 promotes flowering by directly activating SOC1 and FT.
Collapse
Affiliation(s)
- Yanchong Yu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Longfei Qiao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jiacai Chen
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yongheng Rong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yuhang Zhao
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiankui Cui
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jinpeng Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xiaomin Hou
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Chun-Hai Dong
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
232
|
Cortinovis G, Di Vittori V, Bellucci E, Bitocchi E, Papa R. Adaptation to novel environments during crop diversification. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:203-217. [PMID: 32057695 DOI: 10.1016/j.pbi.2019.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
In the context of the global challenge of climate change, mitigation strategies are needed to adapt crops to novel environments. The main goal to address this is an understanding of the genetic basis of crop adaptation to different agro-ecological conditions. The movement of crops during the Colombian Exchange that started with the travels of Columbus in 1492 is an example of rapid adaptation to novel environments. Many diversification-related traits have been characterised in multiple crop species, and association-mapping analyses have identified loci involved in these. Here, we present an overview of current knowledge regarding the molecular basis related to the complex patterns of crop adaptation and dissemination, particularly outside their centres of origin. Investigation of the genomic basis of crop expansion offers a powerful contribution to the development of tools to identify and exploit valuable genetic diversity and to improve and design novel resilient crop varieties.
Collapse
Affiliation(s)
- Gaia Cortinovis
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Valerio Di Vittori
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Elisa Bellucci
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Elena Bitocchi
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| | - Roberto Papa
- Dipartimento di Scienze Agrarie, Alimentari ed Ambientali, Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy.
| |
Collapse
|
233
|
Wen S, Zhang Y, Deng Y, Chen G, Yu Y, Wei Q. Genomic identification and expression analysis of the BBX transcription factor gene family in Petunia hybrida. Mol Biol Rep 2020; 47:6027-6041. [PMID: 32725605 DOI: 10.1007/s11033-020-05678-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/19/2020] [Indexed: 11/28/2022]
Abstract
The B-box proteins (BBXs) are a class of zinc finger transcription factors containing one or two B-BOX domains that play important roles in plant growth, development and stress response. The petunia (Petunia hybrida) is a model ornamental plant, and its draft genome has been published. However, no systematic study of the BBX gene family in Petunia has been reported. In this study, a total of 28 BBX members from the Petunia genome were identified. We performed analyses of their phylogenetic relationships, structures, conserved motifs, promoter regions, and expression patterns. Based on the phylogenetic relationship, the PhBBXs were divided into six groups. Analysis of the gene structures and conserved motifs further confirmed the closer relationships in each group. Based on the RNA-seq data, the transcript abundance of PhBBXs in different tissues were divided into two major groups. The analysis of cis-elements showed that many stress responsive elements appeared in the promoter region of most PhBBX genes. The stress response patterns of PhBBXs were detected under drought, salinity, cold and heat treatments. Based on the RNA-seq data, we found that 3 genes responded to drought, 8 genes responded to salt, 18 genes responded to cold, and 15 genes responded to heat. In conclusion, this study may facilitate further functional studies of BBXs in Petunia.
Collapse
Affiliation(s)
- Shiyun Wen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Yue Zhang
- Non-timber Forestry Research and Development Center, Chinese Academy of Forestry, Zhengzhou, 450003, China.,Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of National Forestry and Grassland Administration, Zhengzhou, 450003, China
| | - Ying Deng
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Guoju Chen
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yixun Yu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Qian Wei
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
234
|
Shaw LM, Li C, Woods DP, Alvarez MA, Lin H, Lau MY, Chen A, Dubcovsky J. Epistatic interactions between PHOTOPERIOD1, CONSTANS1 and CONSTANS2 modulate the photoperiodic response in wheat. PLoS Genet 2020; 16:e1008812. [PMID: 32658893 PMCID: PMC7394450 DOI: 10.1371/journal.pgen.1008812] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/31/2020] [Accepted: 06/12/2020] [Indexed: 02/06/2023] Open
Abstract
In Arabidopsis, CONSTANS (CO) integrates light and circadian clock signals to promote flowering under long days (LD). In the grasses, a duplication generated two paralogs designated as CONSTANS1 (CO1) and CONSTANS2 (CO2). Here we show that in tetraploid wheat plants grown under LD, combined loss-of-function mutations in the A and B-genome homeologs of CO1 and CO2 (co1 co2) result in a small (3 d) but significant (P<0.0001) acceleration of heading time both in PHOTOPERIOD1 (PPD1) sensitive (Ppd-A1b, functional ancestral allele) and insensitive (Ppd-A1a, functional dominant allele) backgrounds. Under short days (SD), co1 co2 mutants headed 13 d earlier than the wild type (P<0.0001) in the presence of Ppd-A1a. However, in the presence of Ppd-A1b, spikes from both genotypes failed to emerge by 180 d. These results indicate that CO1 and CO2 operate mainly as weak heading time repressors in both LD and SD. By contrast, in ppd1 mutants with loss-of-function mutations in both PPD1 homeologs, the wild type Co1 allele accelerated heading time >60 d relative to the co1 mutant allele under LD. We detected significant genetic interactions among CO1, CO2 and PPD1 genes on heading time, which were reflected in complex interactions at the transcriptional and protein levels. Loss-of-function mutations in PPD1 delayed heading more than combined co1 co2 mutations and, more importantly, PPD1 was able to perceive and respond to differences in photoperiod in the absence of functional CO1 and CO2 genes. Similarly, CO1 was able to accelerate heading time in response to LD in the absence of a functional PPD1. Taken together, these results indicate that PPD1 and CO1 are able to respond to photoperiod in the absence of each other, and that interactions between these two photoperiod pathways at the transcriptional and protein levels are important to fine-tune the flowering response in wheat.
Collapse
Affiliation(s)
- Lindsay M. Shaw
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Currently at Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Daniel P. Woods
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Maria A. Alvarez
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Mei Y. Lau
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Andrew Chen
- Department of Plant Sciences, University of California, Davis, California, United States of America
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
235
|
Wang L, Sun J, Ren L, Zhou M, Han X, Ding L, Zhang F, Guan Z, Fang W, Chen S, Chen F, Jiang J. CmBBX8 accelerates flowering by targeting CmFTL1 directly in summer chrysanthemum. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1562-1572. [PMID: 31883436 PMCID: PMC7292546 DOI: 10.1111/pbi.13322] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 05/19/2023]
Abstract
For a flowering plant, the transition from vegetative stage to reproductive growth is probably the most critical developmental switch. In the model plant Arabidopsis thaliana, the product of BBX7, group II member of BBX family, acts to delay floral transition. In this study, a presumed chrysanthemum homolog of a second group gene AtBBX8, designated CmBBX8, had been isolated and characterized. The transcription of CmBBX8 followed a diurnal rhythm as the chrysanthemum floral transition regulator. Overexpression of CmBBX8 accelerated flowering, while its (artificial microRNAs) amiR-enabled knockdown delayed flowering in plants grown under both long- and short-day conditions. Global expression analysis revealed that genes associated with photoperiod were down-regulated in amiR-CmBBX8 lines compared with the wild type, which were verified to be up-regulated in overexpressing lines (OX-CmBBX8) by RT-PCR. A number of in vitro assays were used to show that CmBBX8 targets CmFTL1. Furthermore, the function of CmFTL1 as a floral inducer under long-day conditions was confirmed by the behaviour of engineered summer-flowering chrysanthemum plants. The conclusion is that the BBX8-FT regulatory module is an important determinant of reproductive development in summer-flowering chrysanthemum.
Collapse
Affiliation(s)
- Lijun Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of AgricultureCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jing Sun
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of AgricultureCollege of HorticultureNanjing Agricultural UniversityNanjingChina
- Present address:
College of Horticulture and Plant ProtectionYangzhou UniversityYangzhou225009China
| | - Liping Ren
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of AgricultureCollege of HorticultureNanjing Agricultural UniversityNanjingChina
- Present address:
School of Biological and Food EngineeringFuyang Normal UniversityFuyangAnhui236037China
| | - Min Zhou
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of AgricultureCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Xiaoying Han
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of AgricultureCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Lian Ding
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of AgricultureCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Fei Zhang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of AgricultureCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of AgricultureCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of AgricultureCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of AgricultureCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of AgricultureCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementKey Laboratory of LandscapingMinistry of AgricultureCollege of HorticultureNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
236
|
Yang CY, Sun CW. Sequence analysis and protein interactions of Arabidopsis CIA2 and CIL proteins. BOTANICAL STUDIES 2020; 61:20. [PMID: 32556735 PMCID: PMC7303255 DOI: 10.1186/s40529-020-00297-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/11/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND A previous screening of Arabidopsis thaliana for mutants exhibiting dysfunctional chloroplast protein transport identified the chloroplast import apparatus (cia) gene. The cia2 mutant has a pale green phenotype and reduced rate of protein import into chloroplasts, but leaf shape and size are similar to wild-type plants of the same developmental stage. Microarray analysis showed that nuclear CIA2 protein enhances expression of the Toc75, Toc33, CPN10 and cpRPs genes, thereby up-regulating protein import and synthesis efficiency in chloroplasts. CIA2-like (CIL) shares 65% sequence identity to CIA2, suggesting that CIL and CIA2 are homologous proteins in Arabidopsis. Here, we further assess the protein interactions and sequence features of CIA2 and CIL. RESULTS Subcellular localizations of truncated CIA2 protein fragments in our onion transient assay demonstrate that CIA2 contains two nuclear localization signals (NLS) located at amino acids (aa) 62-65 and 291-308, whereas CIL has only one NLS at aa 47-50. We screened a yeast two-hybrid (Y2H) Arabidopsis cDNA library to search for putative CIA2-interacting proteins and identified 12 nuclear proteins, including itself, CIL, and flowering-control proteins (such as CO, NF-YB1, NF-YC1, NF-YC9 and ABI3). Additional Y2H experiments demonstrate that CIA2 and CIL mainly interact with flowering-control proteins via their N-termini, but preferentially form homo- or hetero-dimers through their C-termini. Moreover, sequence alignment showed that the N-terminal sequences of CIA2, CIL and NF-YA are highly conserved. Therefore, NF-YA in the NF-Y complex could be substituted by CIA2 or CIL. CONCLUSIONS We show that Arabidopsis CIA2 and CIL can interact with CO and NF-Y complex, so not only may they contribute to regulate chloroplast function but also to modulate flower development.
Collapse
Affiliation(s)
- Chun-Yen Yang
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan
| | - Chih-Wen Sun
- Department of Life Science, National Taiwan Normal University, Taipei, 116, Taiwan.
| |
Collapse
|
237
|
Hu J, Liu Y, Tang X, Rao H, Ren C, Chen J, Wu Q, Jiang Y, Geng F, Pei J. Transcriptome profiling of the flowering transition in saffron (Crocus sativus L.). Sci Rep 2020; 10:9680. [PMID: 32541892 PMCID: PMC7295807 DOI: 10.1038/s41598-020-66675-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 02/19/2020] [Indexed: 01/08/2023] Open
Abstract
Saffron, derived from the stigma of Crocus sativus, is not only a valuable traditional Chinese medicine but also the expensive spice and dye. Its yield and quality are seriously influenced by its flowering transition. However, the molecular regulatory mechanism of the flowering transition in C. sativus is still unknown. In this study, we performed morphological, physiological and transcriptomic analyses using apical bud samples from C. sativus during the floral transition process. Morphological results indicated that the flowering transition process could be divided into three stages: an undifferentiated period, the early flower bud differentiation period, and the late flower bud differentiation period. Sugar, gibberellin (GA3), auxin (IAA) and zeatin (ZT) levels were steadily upregulated, while starch and abscisic acid (ABA) levels were gradually downregulated. Transcriptomic analysis showed that a total of 60 203 unigenes were identified, among which 19 490 were significantly differentially expressed. Of these, 165 unigenes were involved in flowering and were significantly enriched in the sugar metabolism, hormone signal transduction, cell cycle regulatory, photoperiod and autonomous pathways. Based on the above analysis, a hypothetical model for the regulatory networks of the saffron flowering transition was proposed. This study lays a theoretical basis for the genetic regulation of flowering in C. sativus.
Collapse
Affiliation(s)
- Jing Hu
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuping Liu
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiaohui Tang
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Huajing Rao
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Chaoxiang Ren
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jiang Chen
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qinghua Wu
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Jiang
- New Zealand Academy of Chinese Medicine Science, Christchurch, 8014, New Zealand
| | - Fuchang Geng
- The Good Doctor Pharmaceutical group co. LTD, Mianyang, 622650, China
| | - Jin Pei
- State Key Laboratory of Traditional Chinese Medicine Resources Research and Development, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
238
|
Li J, Gao K, Yang X, Khan WU, Guo B, Guo T, An X. Identification and characterization of the CONSTANS-like gene family and its expression profiling under light treatment in Populus. Int J Biol Macromol 2020; 161:999-1010. [PMID: 32531358 DOI: 10.1016/j.ijbiomac.2020.06.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/21/2020] [Accepted: 06/07/2020] [Indexed: 10/24/2022]
Abstract
The CONSTANS-like (COL) genes play an important role in the photoperiodic flowering pathway. Poplar is a perennial woody plant with a long juvenile phase, but the molecular characterization of COL genes in Populus is limited. In this study, 14 COL genes were identified in the Populus genome. Phylogenetic analysis indicated the PtCOL proteins were divided into three subgroups, and the members of each subgroup had similar gene structure and motif composition. Chromosome distribution analysis showed that 14 PtCOL genes were distributed on 10 chromosomes. Multiple sequence alignment indicated that these proteins contained a highly conserved B-box1 and a conserved CCT domain, but the B-box2 structure was divided into three different types. Promoter analysis found that there were several light-responsive cis-elements in the PtCOL genes. Furthermore, tissue-specific expression showed that all nine PtCOL genes were widely expressed in various tissues and organs of Populus, and were preferentially expressed in the leaves. Additionally, the transcription level of PtCOL exhibited a diurnal oscillation pattern in different light conditions. This study not only provided comprehensive information for further analysis of the function of the PtCOL gene family, but also revealed the biological roles of PtCOL genes in the photoperiod-dependent flowering process of Populus.
Collapse
Affiliation(s)
- Juan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Kai Gao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyu Yang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Wasif Ullah Khan
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Bin Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China; Shanxi Academy of Forest Sciences, Taiyuan, Shanxi 030012, China
| | - Ting Guo
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xinmin An
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
239
|
Chen Y, Song S, Gan Y, Jiang L, Yu H, Shen L. SHAGGY-like kinase 12 regulates flowering through mediating CONSTANS stability in Arabidopsis. SCIENCE ADVANCES 2020; 6:eaaw0413. [PMID: 32582842 PMCID: PMC7292628 DOI: 10.1126/sciadv.aaw0413] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 09/05/2019] [Accepted: 04/14/2020] [Indexed: 05/18/2023]
Abstract
Photoperiod is a major environmental cue that determines the floral transition from vegetative to reproductive development in flowering plants. Arabidopsis thaliana responds to photoperiodic signals mainly through a central regulator CONSTANS (CO). Although it has been suggested that phosphorylation of CO contributes to its role in photoperiodic control of flowering, how this is regulated so far remains unknown. Here, we report that a glycogen synthase kinase-3 member, SHAGGY-like kinase 12 (SK12), plays an important role in preventing precocious flowering through phosphorylating CO. Loss of function of SK12 causes early flowering. SK12 expression in seedlings is decreased during the floral transition, and its expression in vascular tissues is required for repressing flowering. SK12 interacts with and phosphorylates CO at threonine 119, thus facilitating CO degradation. Our findings suggest that site-specific phosphorylation of CO by SK12 is critical for modulating the photoperiodic output for the floral induction in Arabidopsis.
Collapse
Affiliation(s)
- Ying Chen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Shiyong Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Yinbo Gan
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Lixi Jiang
- State Key Laboratory of Rice Biology, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Zhejiang University, Hangzhou 310058, China
| | - Hao Yu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Corresponding author. (H.Y.); (L.S.)
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Corresponding author. (H.Y.); (L.S.)
| |
Collapse
|
240
|
Eguen T, Ariza JG, Brambilla V, Sun B, Bhati KK, Fornara F, Wenkel S. Control of flowering in rice through synthetic microProteins. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:730-736. [PMID: 31478602 DOI: 10.1111/jipb.12865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
Photoperiod-dependent flowering in rice is regulated by HEADING DATE 1 (Hd1), which acts as both an activator and repressor of flowering in a daylength-dependent manner. To investigate the use of microProteins as a tool to modify rice sensitivity to the photoperiod, we designed a synthetic Hd1 microProtein (Hd1miP) capable of interacting with Hd1 protein, and overexpressed it in rice. Transgenic OX-Hd1miP plants flowered significantly earlier than wild type plants when grown in non-inductive long day conditions. Our results show the potential of microProteins to serve as powerful tools for modulating crop traits and unraveling protein function.
Collapse
Affiliation(s)
- Tenai Eguen
- Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Jorge Gomez Ariza
- Department of Biosciences, Università degli Studi di Milano, 20133, Milano, Italy
| | - Vittoria Brambilla
- Department of Biosciences, Università degli Studi di Milano, 20133, Milano, Italy
| | - Bin Sun
- Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Kaushal Kumar Bhati
- Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - Fabio Fornara
- Department of Biosciences, Università degli Studi di Milano, 20133, Milano, Italy
| | - Stephan Wenkel
- Copenhagen Plant Science Centre, University of Copenhagen, 1871, Frederiksberg C, Denmark
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| |
Collapse
|
241
|
Miryeganeh M. Synchronization of senescence and desynchronization of flowering in Arabidopsis thaliana. AOB PLANTS 2020; 12:plaa018. [PMID: 32577195 PMCID: PMC7299267 DOI: 10.1093/aobpla/plaa018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
In a recent publication, we proposed that adjusting lifespan in order to synchronize senescence is important for timing of reproduction, and we quantified the synchrony of reproductive timing relative to germination timing. Here, in a second sequential seeding experiment (SSE), the germination timing of Arabidopsis thaliana accessions was manipulated and plants were then grown under two different temperature regimes. Life stage traits of plants in each temperature regime were analysed and it was evaluated whether the cohorts were grouped according to age and/or environmental conditions. While flowering-related traits showed desynchrony among cohorts, striking synchrony in the timing of senescence among cohorts for each group was found. A quantitative trait locus (QTL) analysis using a genotyped population of 'Cvi/Ler' recombinant inbred lines (RILs) was then conducted. Novel and known loci were assigned to flowering and senescence timing. However, senescence synchrony resulted in low variation in senescence time and weak QTL detection for flowering termination. Overlapping flowering and senescence genes with loci affecting either of those traits were found and suggest a potential interdependency of reproductive traits.
Collapse
Affiliation(s)
- Matin Miryeganeh
- Center for Ecological Research, Kyoto University, Hirano, Otsu, Japan
| |
Collapse
|
242
|
Segregation of an MSH1 RNAi transgene produces heritable non-genetic memory in association with methylome reprogramming. Nat Commun 2020; 11:2214. [PMID: 32371941 PMCID: PMC7200659 DOI: 10.1038/s41467-020-16036-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 04/09/2020] [Indexed: 12/23/2022] Open
Abstract
MSH1 is a plant-specific protein. RNAi suppression of MSH1 results in phenotype variability for developmental and stress response pathways. Segregation of the RNAi transgene produces non-genetic msh1 ‘memory’ with multi-generational inheritance. First-generation memory versus non-memory comparison, and six-generation inheritance studies, identifies gene-associated, heritable methylation repatterning. Genome-wide methylome analysis integrated with RNAseq and network-based enrichment studies identifies altered circadian clock networks, and phytohormone and stress response pathways that intersect with circadian control. A total of 373 differentially methylated loci comprising these networks are sufficient to discriminate memory from nonmemory full sibs. Methylation inhibitor 5-azacytidine diminishes the differences between memory and wild type for growth, gene expression and methylation patterning. The msh1 reprogramming is dependent on functional HISTONE DEACETYLASE 6 and methyltransferase MET1, and transition to memory requires the RNA-directed DNA methylation pathway. This system of phenotypic plasticity may serve as a potent model for defining accelerated plant adaptation during environmental change. Segregation of an MSH1 RNAi transgene produces non-genetic memory that displays transgenerational inheritance in Arabidopsis. Here, the authors compare memory and non-memory full-sib progenies to show the involvement of DNA methylation reprogramming, involving the RdDM pathway, in transition to a heritable memory state.
Collapse
|
243
|
Yan Z, Shen Z, Gao ZF, Chao Q, Qian CR, Zheng H, Wang BC. A comprehensive analysis of the lysine acetylome reveals diverse functions of acetylated proteins during de-etiolation in Zea mays. JOURNAL OF PLANT PHYSIOLOGY 2020; 248:153158. [PMID: 32240968 DOI: 10.1016/j.jplph.2020.153158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/02/2020] [Accepted: 02/02/2020] [Indexed: 06/11/2023]
Abstract
Lysine acetylation is one of the most important post-translational modifications and is involved in multiple cellular processes in plants. There is evidence that acetylation may play an important role in light-induced de-etiolation, a key developmental switch from skotomorphogenesis to photomorphogenesis. During this transition, establishment of photosynthesis is of great significance. However, studies on acetylome dynamics during de-etiolation are limited. Here, we performed the first global lysine acetylome analysis for Zea mays seedlings undergoing de-etiolation, using nano liquid chromatography coupled to tandem mass spectrometry, and identified 814 lysine-acetylated sites on 462 proteins. Bioinformatics analysis of this acetylome showed that most of the lysine-acetylated proteins are predicted to be located in the cytoplasm, nucleus, chloroplast, and mitochondria. In addition, we detected ten lysine acetylation motifs and found that the accumulation of 482 lysine-acetylated peptides corresponding to 289 proteins changed significantly during de-etiolation. These proteins include transcription factors, histones, and proteins involved in chlorophyll synthesis, photosynthesis light reaction, carbon assimilation, glycolysis, the TCA cycle, amino acid metabolism, lipid metabolism, and nucleotide metabolism. Our study provides an in-depth dataset that extends our knowledge of in vivo acetylome dynamics during de-etiolation in monocots. This dataset promotes our understanding of the functional consequences of lysine acetylation in diverse cellular metabolic regulatory processes, and will be a useful toolkit for further investigations of the lysine acetylome and de-etiolation in plants.
Collapse
Affiliation(s)
- Zhen Yan
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhuo Shen
- Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, China.
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100039, China.
| | - Chun-Rong Qian
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China.
| | - Haiyan Zheng
- Center for Advanced Biotechnology and Medicine, Biological Mass Spectrometry Facility, Rutgers University, Piscataway, New Jersey 08855, USA.
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China; The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
244
|
Ma L, Yi D, Yang J, Liu X, Pang Y. Genome-Wide Identification, Expression Analysis and Functional Study of CCT Gene Family in Medicago truncatula. PLANTS 2020; 9:plants9040513. [PMID: 32316208 PMCID: PMC7238248 DOI: 10.3390/plants9040513] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023]
Abstract
The control of flowering time has an important impact on biomass and the environmental adaption of legumes. The CCT (CO, COL and TOC1) gene family was elucidated to participate in the molecular regulation of flowering in plants. We identified 36 CCT genes in the M. truncatula genome and they were classified into three distinct subfamilies, PRR (7), COL (11) and CMF (18). Synteny and phylogenetic analyses revealed that CCT genes occurred before the differentiation of monocot and dicot, and CCT orthologous genes might have diversified among plants. The diverse spatial-temporal expression profiles indicated that MtCCT genes could be key regulators in flowering time, as well as in the development of seeds and nodules in M. truncatula. Notably, 22 MtCCT genes with typical circadian rhythmic variations suggested their different responses to light. The response to various hormones of MtCCT genes demonstrated that they participate in plant growth and development via varied hormones dependent pathways. Moreover, six MtCCT genes were dramatically induced by salinity and dehydration treatments, illustrating their vital roles in the prevention of abiotic injury. Collectively, our study provides valuable information for the in-depth investigation of the molecular mechanism of flowering time in M. truncatula, and it also provides candidate genes for alfalfa molecular breeding with ideal flowering time.
Collapse
Affiliation(s)
- Lin Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
| | - Dengxia Yi
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
| | - Junfeng Yang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Xiqiang Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
- Department of Grassland Science, China Agriculture University, Beijing 100193, China
| | - Yongzhen Pang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (L.M.); (D.Y.); (J.Y.); (X.L.)
- Correspondence: ; Tel.: +86-10-6287-6460
| |
Collapse
|
245
|
Nose M, Kurita M, Tamura M, Matsushita M, Hiraoka Y, Iki T, Hanaoka S, Mishima K, Tsubomura M, Watanabe A. Effects of day length- and temperature-regulated genes on annual transcriptome dynamics in Japanese cedar (Cryptomeria japonica D. Don), a gymnosperm indeterminate species. PLoS One 2020; 15:e0229843. [PMID: 32150571 PMCID: PMC7062269 DOI: 10.1371/journal.pone.0229843] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 02/15/2020] [Indexed: 11/29/2022] Open
Abstract
Seasonal phenomena in plants are primarily affected by day length and temperature. The shoot transcriptomes of trees grown in the field and a controlled-environment chamber were compared to characterize genes that control annual rhythms and the effects of day length- and temperature-regulated genes in the gymnosperm Japanese cedar (Cryptomeria japonica D. Don), which exhibits seasonally indeterminate growth. Annual transcriptome dynamics were clearly demonstrated by principal component analysis using microarray data obtained under field-grown conditions. Analysis of microarray data from trees grown in a controlled chamber identified 2,314 targets exhibiting significantly different expression patterns under short-day (SD) and long-day conditions, and 2,045 targets exhibited significantly different expression patterns at 15°C (LT; low temperature) versus 25°C. Interestingly, although growth was suppressed under both SD and LT conditions, approximately 80% of the SD- and LT-regulated targets differed, suggesting that each factor plays a unique role in the annual cycle. The top 1,000 up-regulated targets in the growth/dormant period in the field coincided with more than 50% of the SD- and LT-regulated targets, and gene co-expression network analysis of the annual transcriptome indicated a close relationship between the SD- and LT-regulated targets. These results indicate that the respective effects of day length and temperature interact to control annual transcriptome dynamics. Well-known upstream genes of signaling pathways responsive to environmental conditions, such as the core clock (LHY/CjLHYb and CCA1/CjLHYa) and PEBP family (MFT) genes, exhibited unique expression patterns in Japanese cedar compared with previous reports in other species, suggesting that these genes control differences in seasonal regulation mechanisms between species. The results of this study provide new insights into seasonal regulation of transcription in Japanese cedar.
Collapse
Affiliation(s)
- Mine Nose
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Manabu Kurita
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Miho Tamura
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| | - Michinari Matsushita
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Yuichiro Hiraoka
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Taiichi Iki
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - So Hanaoka
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Kentaro Mishima
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Miyoko Tsubomura
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
| | - Atsushi Watanabe
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, Japan
- Department of Forest Environmental Sciences, Faculty of Agriculture, Kyushu University, Fukuoka, Japan
| |
Collapse
|
246
|
Wei H, Wang P, Chen J, Li C, Wang Y, Yuan Y, Fang J, Leng X. Genome-wide identification and analysis of B-BOX gene family in grapevine reveal its potential functions in berry development. BMC PLANT BIOLOGY 2020; 20:72. [PMID: 32054455 PMCID: PMC7020368 DOI: 10.1186/s12870-020-2239-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/03/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND The B-BOX (BBX) proteins are the class of zinc-finger transcription factors and can regulate plant growth, development, and endure stress response. In plants, the BBX gene family has been identified in Arabidopsis, rice, and tomato. However, no systematic analysis of BBX genes has been undertaken in grapevine. RESULTS In this study, 24 grapevine BBX (VvBBX) genes were identified by comprehensive bioinformatics analysis. Subsequently, the chromosomal localizations, gene structure, conserved domains, phylogenetic relationship, gene duplication, and cis-acting elements were analyzed. Phylogenetic analysis divided VvBBX genes into five subgroups. Numerous cis-acting elements related to plant development, hormone and/or stress responses were identified in the promoter of the VvBBX genes. The tissue-specific expressional dynamics of VvBBX genes demonstrated that VvBBXs might play important role in plant growth and development. The transcript analysis from transcriptome data and qRT-PCR inferred that 11 VvBBX genes were down-regulated in different fruit developmental stages, while three VvBBX genes were up-regulated. It is also speculated that VvBBX genes might be involved in multiple hormone signaling (ABA, ethylene, GA3, and CPPU) as transcriptional regulators to modulate berry development and ripening. VvBBX22 seems to be responsive to multiple hormone signaling, including ABA, ethylene GA3, and CPPU. Some VvBBX genes were strongly induced by Cu, salt, waterlogging, and drought stress treatment. Furthermore, the expression of VvBBX22 proposed its involvement in multiple functions, including leaf senescence, abiotic stress responses, fruit development, and hormone response. CONCLUSIONS Our results will provide the reference for functional studies of BBX gene family, and highlight its functions in grapevine berry development and ripening. The results will help us to better understand the complexity of the BBX gene family in abiotic stress tolerance and provide valuable information for future functional characterization of specific genes in grapevine.
Collapse
Affiliation(s)
- Hongru Wei
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Peipei Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jianqing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Changjun Li
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Yongzhang Wang
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Yongbing Yuan
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| | - Xiangpeng Leng
- Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
- Institute of Grape Science and Engineering, College of Horticulture, Qingdao Agricultural University, Qingdao, 266109 People’s Republic of China
| |
Collapse
|
247
|
Shahzad K, Zhang X, Guo L, Qi T, Tang H, Zhang M, Zhang B, Wang H, Qiao X, Feng J, Wu J, Xing C. Comparative transcriptome analysis of inbred lines and contrasting hybrids reveals overdominance mediate early biomass vigor in hybrid cotton. BMC Genomics 2020; 21:140. [PMID: 32041531 PMCID: PMC7011360 DOI: 10.1186/s12864-020-6561-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 02/06/2020] [Indexed: 12/11/2022] Open
Abstract
Background Heterosis breeding is the most useful method for yield increase around the globe. Heterosis is an intriguing process to develop superior offspring to either parent in the desired character. The biomass vigor produced during seedling emergence stage has a direct influence on yield heterosis in plants. Unfortunately, the genetic basis of early biomass vigor in cotton is poorly understood. Results Three stable performing F1 hybrids varying in yield heterosis named as high, medium and low hybrids with their inbred parents were used in this study. Phenotypically, these hybrids established noticeable biomass heterosis during the early stage of seedling growth in the field. Transcriptome analysis of root and leaf revealed that hybrids showed many differentially expressed genes (DEGs) relative to their parents, while the comparison of inbred parents showed limited number of DEGs indicating similarity in their genetic constitution. Further analysis indicated expression patterns of most DEGs were overdominant in both tissues of hybrids. According to GO results, functions of overdominance genes in leaf were enriched for chloroplast, membrane, and protein binding, whereas functions of overdominance genes in root were enriched for plasma membrane, extracellular region, and responses to stress. We found several genes of circadian rhythm pathway related to LATE ELONGATED HYPOCOTYL (LHY) showed downregulated overdominant expressions in both tissues of hybrids. In addition to circadian rhythm, several leaf genes related to Aux/IAA regulation, and many root genes involved in peroxidase activity also showed overdominant expressions in hybrids. Twelve genes involved in circadian rhythm plant were selected to perform qRT-PCR analysis to confirm the accuracy of RNA-seq results. Conclusions Through genome-wide comparative transcriptome analysis, we strongly predict that overdominance at gene expression level plays a pivotal role in early biomass vigor of hybrids. The combinational contribution of circadian rhythm and other metabolic process may control vigorous growth in hybrids. Our result provides an important foundation for dissecting molecular mechanisms of biomass vigor in hybrid cotton.
Collapse
Affiliation(s)
- Kashif Shahzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Liping Guo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Tingxiang Qi
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Huini Tang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Meng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Bingbing Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Hailin Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Xiuqin Qiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Juanjuan Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China
| | - Jianyong Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China.
| | - Chaozhu Xing
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, 38 Huanghe Dadao, Anyang, 455000, China.
| |
Collapse
|
248
|
Hu J, Jin Q, Ma Y. AfLFY, a LEAFY homolog in Argyranthemum frutescens, controls flowering time and leaf development. Sci Rep 2020; 10:1616. [PMID: 32005948 PMCID: PMC6994665 DOI: 10.1038/s41598-020-58570-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 01/17/2020] [Indexed: 12/20/2022] Open
Abstract
Flowering is important for plant propagation and survival, and it is also closely related to human life. Identifying the molecular mechanisms underlying flower development is essential for plant improvement and breeding. Flower development is a complex physiological process that is regulated by multiple genes. LFY genes play important roles in the floral meristem transition and act as crucial integrators in regulating the floral gene network. Argyranthemum frutescens is an ornamental species cultivated for floral displays, yet little is known about molecular mechanisms driving its flower development. In this study, the LEAFY gene homologue, AfLFY, was identified and cloned from A. frutescens, and its role and expression patterns were characterized. Two distinct copies of AfLFY were found in the A. frutescens genome and both sequences contained a 1248 bp open reading frame that encoded 415 amino acids. The putative protein sequences have a typical LFY family domain. In addition, AfLFY was expressed at the highest levels in young leaves of the vegetative stage and in the shoot apical bud meristem of the reproductive stage. Phylogenetic analysis showed that AfLFY was most closely related to DFL from Chrysanthemum lavandulifolium. Subcellular localization studies revealed that AfLFY localized to the nucleus. Heterologous expression of AfLFY in transgenic tobacco plants shortened its period of vegetative growth, converted the lateral meristems into terminal flowers and promoted precocious flowering. In addition, transgenic plants exhibited obvious morphological changes in leaf shape. qRT-PCR analysis indicated that the expression levels genes related to flowering, FT, SOC1, and AP1 were significantly upregulated in AfLFY transgenic plants. Our findings suggested that the AfLFY gene plays a vital role in promoting flowering and leaf development in A. frutescens. These results laid a foundation for us to understand the mechanism of AfLFY in regulation flowering, and the results will be helpful in improving A. frutescens through molecular breeding.
Collapse
Affiliation(s)
- Jing Hu
- College of Life and Health Sciences, Northeastern University, Shenyang, 110004, China
| | - Qi Jin
- College of Life and Health Sciences, Northeastern University, Shenyang, 110004, China
| | - Yueping Ma
- College of Life and Health Sciences, Northeastern University, Shenyang, 110004, China.
| |
Collapse
|
249
|
Roles of Brassinosteroids in Plant Reproduction. Int J Mol Sci 2020; 21:ijms21030872. [PMID: 32013254 PMCID: PMC7037687 DOI: 10.3390/ijms21030872] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 01/06/2023] Open
Abstract
Brassinosteroids (BRs) are a group of steroid hormones, essentially important for plant development and growth. BR signaling functions to promote cell expansion and cell division, and plays a role in etiolation and reproduction. As the phytohormone originally identified in the pollen grains of Brassica napus, BR promotes the elongation of stigma. Recent studies have revealed that BR is also critical for floral transition, inflorescence stem architecture formation and other aspects of plant reproductive processes. In this review, we focus on the current understanding of BRs in plant reproduction, the spatial and temporal control of BR signaling, and the downstream molecular mechanisms in both the model plant Arabidopsis and crops. The crosstalk of BR with environmental factors and other hormones in reproduction will also be discussed.
Collapse
|
250
|
Nutan KK, Rathore RS, Tripathi AK, Mishra M, Pareek A, Singla-Pareek SL. Integrating the dynamics of yield traits in rice in response to environmental changes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:490-506. [PMID: 31410470 DOI: 10.1093/jxb/erz364] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/29/2019] [Indexed: 05/23/2023]
Abstract
Reductions in crop yields as a consequence of global climate change threaten worldwide food security. It is therefore imperative to develop high-yielding crop plants that show sustainable production under stress conditions. In order to achieve this aim through breeding or genetic engineering, it is crucial to have a complete and comprehensive understanding of the molecular basis of plant architecture and the regulation of its sub-components that contribute to yield under stress. Rice is one of the most widely consumed crops and is adversely affected by abiotic stresses such as drought and salinity. Using it as a model system, in this review we present a summary of our current knowledge of the physiological and molecular mechanisms that determine yield traits in rice under optimal growth conditions and under conditions of environmental stress. Based on physiological functioning, we also consider the best possible combination of genes that may improve grain yield under optimal as well as environmentally stressed conditions. The principles that we present here for rice will also be useful for similar studies in other grain crops.
Collapse
Affiliation(s)
- Kamlesh Kant Nutan
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ray Singh Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Amit Kumar Tripathi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Manjari Mishra
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|