201
|
Di Giovanni G, Esposito E, Di Matteo V. In vivo microdialysis in Parkinson's research. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2009:223-43. [PMID: 20411781 DOI: 10.1007/978-3-211-92660-4_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder that is primarily characterized by the degeneration of dopamine (DA) neurons in the nigrostriatal system, which in turn produces profound neurochemical changes within the basal ganglia, representing the neural substrate for parkinsonian motor symptoms. The pathogenesis of the disease is still not completely understood, but environmental and genetic factors are thought to play important roles. Research into the pathogenesis and the development of new therapeutic intervention strategies that will slow or stop the progression of the disease in human has rapidly advanced by the use of neurotoxins that specifically target DA neurons. Over the years, a broad variety of experimental models of the disease has been developed and applied in diverse animal species. The two most common toxin models used employ 6-hydroxydopamine (6-OHDA) and the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine/1-methyl-4-phenilpyridinium ion (MPTP/MPP+), either given systemically or locally applied into the nigrostriatal pathway, to resemble PD features in animals. Both neurotoxins selectively and rapidly destroy catecolaminergic neurons, although with different mechanisms. Since in vivo microdialysis coupled to high-performance liquid chromatography is an established technique for studying physiological, pharmacological, and pathological changes of a wide range of low molecular weight substances in the brain extracellular fluid, here we review the most prominent animal and human data obtained by the use of this technique in PD research.
Collapse
Affiliation(s)
- Giuseppe Di Giovanni
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia Umana, G. Pagano, Universitá degli Studi di Palermo, 90134, Palermo, Italy
| | | | | |
Collapse
|
202
|
Galan-Rodriguez B, Suarez J, Gonzalez-Aparicio R, Bermudez-Silva FJ, Maldonado R, Robledo P, Rodriguez de Fonseca F, Fernandez-Espejo E. Oleoylethanolamide exerts partial and dose-dependent neuroprotection of substantia nigra dopamine neurons. Neuropharmacology 2008; 56:653-64. [PMID: 19070629 DOI: 10.1016/j.neuropharm.2008.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 10/28/2008] [Accepted: 11/25/2008] [Indexed: 01/23/2023]
Abstract
Oleoylethanolamide (OEA), agonist of nuclear PPAR-alpha receptors and antagonist of vanilloid TRPV1 receptors, has been reported to show cytoprotective properties. In this study, OEA-induced neuroprotection has been tested in vitro and in vivo models of 6-OHDA-induced degeneration of substantia nigra dopamine neurons. First, PPAR-alpha receptors were confirmed to be located in the nigrostriatal circuit, these receptors being expressed by dopamine neurons of the substantia nigra, and intrinsic neurons and fibers bundles of the dorsal striatum. In the substantia nigra, their location was confined to the ventral tier. The in vitro study showed that 1 microM OEA exerted a significantly neuroprotective effect on cultured nigral dopamine neurons, effects following U-shaped dose-response curves. Regarding the in vivo study, rats were locally injected with OEA into the right striatum and vehicle into the left striatum 30 min before 6-OHDA-induced striatal lesion. In the short term, signals of heme oxygenase-1 (oxidation marker, 24 and 48 h post-lesion) and OX6 (reactive microglia marker, 96 h post-lesion) were found to be significantly less intense in the striatum pretreated with 5 microM OEA. In the long term (1 month), reduction in striatal TH and synaptophysin was less intense whether the right striatum was pretreated with 5 microM OEA, and nigral TH+ neuron death was significantly reduced after pretreatment with 1 and 5 microM OEA. In vivo effects also followed U-shaped dose-response curves. In conclusion, OEA shows U-shaped partial and dose-dependent neuroprotective properties both in vitro and in vivo models of substantia nigra dopamine neuron degeneration. The occurrence of U-shaped dose-response relationships normally suggests toxicity due to high drug concentration or that opposing intracellular pathways are activated by different OEA doses.
Collapse
Affiliation(s)
- B Galan-Rodriguez
- Departamento de Fisiologia Medica y Biofisica, Universidad de Sevilla, Av. Sanchez Pizjuan 4, E-41009 Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|
203
|
Cieślak M, Komoszyński M, Wojtczak A. Adenosine A(2A) receptors in Parkinson's disease treatment. Purinergic Signal 2008; 4:305-12. [PMID: 18438720 PMCID: PMC2583202 DOI: 10.1007/s11302-008-9100-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Accepted: 03/17/2008] [Indexed: 02/07/2023] Open
Abstract
Latest results on the action of adenosine A(2A) receptor antagonists indicate their potential therapeutic usefulness in the treatment of Parkinson's disease. Basal ganglia possess high levels of adenosine A(2A) receptors, mainly on the external surfaces of neurons located at the indirect tracts between the striatum, globus pallidus, and substantia nigra. Experiments with animal models of Parkinson's disease indicate that adenosine A(2A) receptors are strongly involved in the regulation of the central nervous system. Co-localization of adenosine A(2A) and dopaminergic D2 receptors in striatum creates a milieu for antagonistic interaction between adenosine and dopamine. The experimental data prove that the best improvement of mobility in patients with Parkinson's disease could be achieved with simultaneous activation of dopaminergic D2 receptors and inhibition of adenosine A(2A) receptors. In animal models of Parkinson's disease, the use of selective antagonists of adenosine A(2A) receptors, such as istradefylline, led to the reversibility of movement dysfunction. These compounds might improve mobility during both monotherapy and co-administration with L-DOPA and dopamine receptor agonists. The use of adenosine A(2A) receptor antagonists in combination therapy enables the reduction of the L-DOPA doses, as well as a reduction of side effects. In combination therapy, the adenosine A(2A) receptor antagonists might be used in both moderate and advanced stages of Parkinson's disease. The long-lasting administration of adenosine A(2A) receptor antagonists does not decrease the patient response and does not cause side effects typical of L-DOPA therapy. It was demonstrated in various animal models that inhibition of adenosine A(2A) receptors not only decreases the movement disturbance, but also reveals a neuroprotective activity, which might impede or stop the progression of the disease. Recently, clinical trials were completed on the use of istradefylline (KW-6002), an inhibitor of adenosine A(2A) receptors, as an anti-Parkinson drug.
Collapse
Affiliation(s)
- Marek Cieślak
- Neurological Department, WSZ Hospital, Toruń, Poland
| | | | | |
Collapse
|
204
|
Effects of calpain inhibition on dopaminergic markers and motor function following intrastriatal 6-hydroxydopamine administration in rats. Neuroscience 2008; 158:558-69. [PMID: 19007862 DOI: 10.1016/j.neuroscience.2008.10.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2008] [Revised: 10/15/2008] [Accepted: 10/18/2008] [Indexed: 11/21/2022]
Abstract
The neurotoxin 6-hydroxydopamine has been widely used to model aspects of Parkinson's disease in rodents, but the mechanisms underlying toxin-induced dopaminergic degeneration and functional impairment have not been fully elucidated. The main aim of the present study was to assess a possible role for calpains in neurochemical and behavioral deficits following unilateral infusion of intrastriatal 6-hydroxydopamine in adult rats. Toxin administration produced a profound dopaminergic denervation, as indicated by a 90-95% reduction in dopamine transporter radiolabeling measured in the caudate-putamen at 2 weeks post-lesion. Treatment with 6-hydroxydopamine also resulted in calpain activation in both caudate-putamen and substantia nigra, as measured by the appearance of calpain-specific spectrin breakdown products. Calpain activation peaked at 24 h after 6-hydroxydopamine infusion and remained elevated at later time points. In contrast, caspase-3-mediated spectrin cleavage subsided within 48 h in both brain areas. In a subsequent experiment, calpain inhibition was achieved by intrastriatal infusion of an adenovirus expressing the endogenous calpain inhibitor, calpastatin. Calpastatin delivery abolished the lesion-induced calpain-mediated spectrin cleavage and alleviated forelimb asymmetries resulting from unilateral intrastriatal 6-hydroxydopamine. Unexpectedly, dopamine transporter and tyrosine hydroxylase labeling revealed significant neuroprotection, not in the nigrostriatal pathway but rather in the ventral tegmental area. These findings support a role for calpain activation in 6-hydroxydopamine-induced degeneration of dopaminergic neurons. However, after near-total dopaminergic depletion, the primary benefit of calpain inhibition may not occur within the nigrostriatal dopaminergic pathway itself.
Collapse
|
205
|
Unilateral axonal or terminal injection of 6-hydroxydopamine causes rapid-onset nigrostriatal degeneration and contralateral motor impairments in the rat. Brain Res Bull 2008; 77:312-9. [PMID: 18817852 DOI: 10.1016/j.brainresbull.2008.08.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 08/14/2008] [Accepted: 08/26/2008] [Indexed: 11/20/2022]
Abstract
Unilateral injection of the catecholamine neurotoxin 6-hydroxydopamine into the axons or terminals of the nigrostriatal pathway is commonly used to model Parkinson's disease in experimental animals. Although the terminal lesion paradigm is considered to induce a more progressive lesion when compared to the axonal lesion, few studies have directly compared the early time-course for lesion development in these two models. Thus, this experiment sought to establish the temporal pattern of nigrostriatal degeneration and emergence of contralateral motor impairment in these models. Young adult male Lister Hooded rats were used. After baseline testing on a battery of spontaneous motor tests, standard stereotaxic techniques were used to inject 6-hydroxydopamine into the nigrostriatal axons or terminals at the level of the medial forebrain bundle or striatum respectively. From the day after lesion surgery, a subset of the rats was tested for motor performance, while another subset was used for immunohistochemical analysis. Quantitative tyrosine hydroxylase immunohistochemistry revealed that although both lesions caused a similar temporal pattern of immunopositive cell loss from the substantia nigra, the terminal lesion caused a more rapid loss of immunopositive terminals from the striatum. Despite these differences in striatal dopaminergic deafferentation, both lesion types caused a profound loss of contralateral motor function from the first day after lesion surgery. These findings illustrate the rapidity of the neuropathological and behavioural consequences of either axonal or terminal injection of 6-hydroxydopamine into the nigrostriatal pathway, and further highlight the need for a more progressive model of human Parkinson's disease.
Collapse
|
206
|
Branchi I, D'Andrea I, Armida M, Cassano T, Pèzzola A, Potenza RL, Morgese MG, Popoli P, Alleva E. Nonmotor symptoms in Parkinson's disease: investigating early-phase onset of behavioral dysfunction in the 6-hydroxydopamine-lesioned rat model. J Neurosci Res 2008; 86:2050-61. [PMID: 18335518 DOI: 10.1002/jnr.21642] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To investigate the psychiatric symptoms accompanying the early phases of Parkinson's disease (PD), we injected adult rats with 10.5 microg 6-hydroxydopamine (6-OHDA) bilaterally into the dorsal striatum. The resulting neurodegeneration led, 12 weeks after injection, to a mild (36%) reduction of striatal dopamine. We tested the behavioral response of sham and 6-OHDA-lesioned animals at different time points after injection to evaluate the onset and progression of behavioral abnormalities. The results showed that such a mild reduction of dopamine levels was associated with a decrease in anxiety-like behavior, an increase in "depression"-like behavior, and a marked change in social behavior. Learning and memory abilities were not affected. Overall, the PD rat model used here displays behavioral alterations having face validity with psychiatric symptoms of the pathology and thus appears to be a valuable tool for investigating the neural bases of the early phases of PD.
Collapse
Affiliation(s)
- Igor Branchi
- Section of Behavioural Neurosciences, Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
207
|
Coelln RV, Kügler S, Bähr M, Weller M, Dichgans J, Schulz JB. Rescue from death but not from functional impairment: caspase inhibition protects dopaminergic cells against 6-hydroxydopamine-induced apoptosis but not against the loss of their terminals. J Neurochem 2008. [DOI: 10.1046/j.1471-4159.2001.00236.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
208
|
A nitric oxide synthase inhibitor decreases 6-hydroxydopamine effects on tyrosine hydroxylase and neuronal nitric oxide synthase in the rat nigrostriatal pathway. Brain Res 2008; 1203:160-9. [DOI: 10.1016/j.brainres.2008.01.088] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/29/2008] [Accepted: 01/31/2008] [Indexed: 11/20/2022]
|
209
|
Meredith GE, Sonsalla PK, Chesselet MF. Animal models of Parkinson's disease progression. Acta Neuropathol 2008; 115:385-98. [PMID: 18273623 PMCID: PMC2562277 DOI: 10.1007/s00401-008-0350-x] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder whose etiology is not understood. This disease occurs both sporadically and through inheritance of single genes, although the familial types are rare. Over the past decade or so, experimental and clinical data suggest that PD could be a multifactorial, neurodegenerative disease that involves strong interactions between the environment and genetic predisposition. Our understanding of the pathophysiology and motor deficits of the disease relies heavily on fundamental research on animal models and the last few years have seen an explosion of toxin-, inflammation-induced and genetically manipulated models. The insight gained from the use of such models has strongly advanced our understanding of the progression and stages of the disease. The models have also aided the development of novel therapies to improve symptomatic management, and they are critical for the development of neuroprotective strategies. This review critically evaluates these in vivo models and the roles they play in mimicking the progression of PD.
Collapse
Affiliation(s)
- Gloria E Meredith
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| | | | | |
Collapse
|
210
|
Bouchez G, Sensebé L, Vourc'h P, Garreau L, Bodard S, Rico A, Guilloteau D, Charbord P, Besnard JC, Chalon S. Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson's disease. Neurochem Int 2008; 52:1332-42. [PMID: 18372079 DOI: 10.1016/j.neuint.2008.02.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/06/2008] [Indexed: 11/29/2022]
Abstract
Cellular therapy with adult stem cells appears as an opportunity for treatment of Parkinson's disease. To validate this approach, we studied the effects of transplantation of rat adult bone-marrow mesenchymal stem cells in a rat model of Parkinson's disease. Animals were unilaterally lesioned in the striatum with 6-hydroxydopamine. Two weeks later, group I did not undergo grafting, group II underwent sham grafting, group III was intra-striatal grafted with cells cultured in an enriched medium and group IV was intra-striatal grafted with cells cultured in a standard medium. Rotational amphetamine-induced behavior was measured weekly until animals were killed 6 weeks later. One week after graft, the number of rotations/min was stably decreased by 50% in groups III and IV as compared with groups I and II. At 8 weeks post-lesion, the density of dopaminergic markers in the nerve terminals and cell bodies, i.e. immunoreactive tyrosine hydroxylase, membrane dopamine transporter and vesicular monoamine transporter-2 was significantly higher in group III as compared with group I. Moreover, using microdialysis studies, we observed that while the rate of pharmacologically induced release of dopamine was significantly reduced in lesioned versus intact striatum in no grafted rats, it was similar in both sides in animals transplanted with mesemchymal stem cells. These data demonstrate that graft of adult mesemchymal stem cells reduces behavioral effects induced by 6-hydroxydopamine lesion and partially restores the dopaminergic markers and vesicular striatal pool of dopamine. This cellular approach might be a restorative therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Gaëlle Bouchez
- INSERM U930, Laboratory Biophysique médicale & pharmaceutique, UFR Pharmacie, 31 avenue Monge, Tours, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Galan-Rodriguez B, del-Marco A, Flores J, Ramiro-Fuentes S, Gonzalez-Aparicio R, Tunez I, Tasset I, Fernandez-Espejo E. Grafts of extra-adrenal chromaffin cells as aggregates show better survival rate and regenerative effects on parkinsonian rats than dispersed cell grafts. Neurobiol Dis 2008; 29:529-42. [DOI: 10.1016/j.nbd.2007.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Revised: 10/29/2007] [Accepted: 11/17/2007] [Indexed: 11/28/2022] Open
|
212
|
Ebert AD, Hann HJ, Bohn MC. Progressive degeneration of dopamine neurons in 6-hydroxydopamine rat model of parkinson's disease does not involve activation of caspase-9 and caspase-3. J Neurosci Res 2008; 86:317-25. [PMID: 17787016 DOI: 10.1002/jnr.21480] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
6-Hydroxydopamine (6-OHDA), a neurotoxin that causes the death of dopamine (DA) neurons, is commonly used to produce experimental models of Parkinson's disease (PD) in rodents. In the rat model of PD first described by Sauer and Oertel, DA neurons progressively die over several weeks following a striatal injection of 6-OHDA. It is generally assumed that DA neurons die through apoptosis after exposure to 6-OHDA, but data supporting activation of a caspase enzymatic cascade are lacking. In this study, we sought to determine if caspases involved in the intrinsic apoptotic cascade play a role in the initial stages of 6-OHDA-induced death of DA neurons in the progressively lesioned rat model of PD. We found that injection of 6-OHDA into adult rat striatum did not activate caspase-9 or caspase-3 or increase levels of caspase-dependent cleavage products in the substantia nigra at various survival times up to 7 days after the lesion, even though this paradigm produced DA neuronal loss. These data suggest that in the adult rat brain DA neurons whose terminals are challenged with 6-OHDA do not die through a classical caspase-dependent apoptotic mechanism.
Collapse
Affiliation(s)
- Allison D Ebert
- Department of Pediatrics, Neurobiology Program, Children's Memorial Research Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60614-4314, USA
| | | | | |
Collapse
|
213
|
Richter F, Hamann M, Richter A. Moderate degeneration of nigral neurons after repeated but not after single intrastriatal injections of low doses of 6-hydroxydopamine in mice. Brain Res 2008; 1188:148-56. [DOI: 10.1016/j.brainres.2007.09.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 11/27/2022]
|
214
|
Fiandaca M, Forsayeth J, Bankiewicz K. Current status of gene therapy trials for Parkinson's disease. Exp Neurol 2008; 209:51-7. [PMID: 17920059 DOI: 10.1016/j.expneurol.2007.08.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/07/2007] [Accepted: 08/16/2007] [Indexed: 10/22/2022]
Abstract
The incidence of Parkinson's disease (PD) increases greatly with age, and the baby-boomer population can expect to generate a large number of individuals with the disease, all of whom will have significantly increased medical care needs over periods of 20 years or more. This emerging healthcare burden to our society calls for accelerated efforts to understand this disease better and treat it more effectively. The growing interest in gene therapy grew out of a recognition that new medicines may be needed to combat the relentless progression of the disease in the face of conventional pharmaco-therapies and surgical interventions that have so far failed to offer more than palliative relief. The potential of gene therapy to alter dramatically the course of the disease lies very much with the challenge of converting a research tool into a medical option, a process that clearly requires a unique combination of rigor and flexibility. In this review, we examine the unique aspects of gene therapy that make its use in PD attractive, but also analyze the difficulties of employing a medicine that acts for the rest of the patient's life.
Collapse
Affiliation(s)
- Massimo Fiandaca
- Department of Neurological Surgery, Movement Disorder Research Program, University of California, Mission Center Building, San Francisco, CA 94103, USA
| | | | | |
Collapse
|
215
|
Allain H, Bentué-Ferrer D, Akwa Y. Disease-modifying drugs and Parkinson's disease. Prog Neurobiol 2007; 84:25-39. [PMID: 18037225 DOI: 10.1016/j.pneurobio.2007.10.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Accepted: 10/11/2007] [Indexed: 12/21/2022]
Abstract
Symptomatic medications, l-Dopa and dopaminergic agents, remain the only clinically pertinent pharmacological treatment proven effective and available for the large population of patients with Parkinson's disease. The challenge for the pharmaceutical industry is to develop disease-modifying drugs which could arrest, delay or at least oppose the progression of the specific pathogenic processes underlying Parkinson's disease. The purpose of this review, based on recent biological and genetic data to be validated with appropriate animal models, was to re-examine the putative neuroprotective agents in Parkinson's disease and discuss the development of new strategies with the ultimate goal of demonstrating neurocytoprotective activity in this neurodegenerative disease. Since guidelines for research on neurocytoprotective drugs remain to be written, innovation will be the key to success of future clinical trials. It is reasonable to expect that future advances in our understanding of the pathogenic processes of Parkinson's disease will open the way to new perspectives for the treatment of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Hervé Allain
- Laboratoire de Pharmacologie Expérimentale et Clinique, Faculté de Médecine, 2 av. du Pr Léon Bernard, F-35043 Rennes, France
| | | | | |
Collapse
|
216
|
Jeon MY, Lee WY, Kang HY, Chung EJ. The effects of L-3,4-dihydroxyphenylalanine and dopamine agonists on dopamine neurons in the progressive hemiparkinsonian rat models. Neurol Res 2007; 29:289-95. [PMID: 17509229 DOI: 10.1179/174313206x153996] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES Dopamine replacement with the precursor L-3,4-dihydroxyphenylalanine (L-DOPA) and dopamine receptor agonists is the standard therapy for the symptomatic treatment of Parkinson's disease (PD). Whether L-DOPA and dopamine agonists may either accelerate or slow the degeneration of dopamine neurons is still controversial with conflicting data from both in vitro and in vivo experiments. We aimed to verify the influence of L-DOPA and receptor-selective dopamine agonists on dopamine neurons in the progressive hemiparkinsonian rat models. METHODS We administered different doses of L-DOPA, D1 selective agonist SKF38393, D2 selective agonist quinpirole and D2/D3 agonist pramipexole intraperitoneally for 9 weeks to the rats with progressive nigrostriatal lesions produced by injecting 6-hydroxydopamine (6-OHDA) into the striatum. After 3, 6 and 9 weeks of administration of dopaminergic agents, we performed the behavioral test using the forepaw adjusting step (FAS) test and anatomical analysis using tyrosine hydroxylase (TH) immunohistochemical staining and TH western blots. RESULTS Only in the high dose (100 mg/kg/d) L-DOPA treated rats, TH immunoreactive (TH-IR) cells were significantly decreased compared with other groups (p<0.01). We could not detect any influence of dopamine agonists on the behavior or the degeneration of dopaminergic neurons, regardless of their receptor selectivity. DISCUSSION In conclusion, we demonstrated the potential toxicity of high dose of L-DOPA, but did not observe any protective effect of dopamine agonists in the progressive hemiparkinsonian rat models.
Collapse
Affiliation(s)
- Mi Young Jeon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
217
|
Blandini F, Levandis G, Bazzini E, Nappi G, Armentero MT. Time-course of nigrostriatal damage, basal ganglia metabolic changes and behavioural alterations following intrastriatal injection of 6-hydroxydopamine in the rat: new clues from an old model. Eur J Neurosci 2007; 25:397-405. [PMID: 17284180 DOI: 10.1111/j.1460-9568.2006.05285.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite the progressive development of innovative animal models for Parkinson's disease, the intracerebral infusion of neurotoxin 6-hydroxydopamine (6-OHDA) remains the most widely used means to induce an experimental lesion of the nigrostriatal pathway in the animal, due to its relatively low complexity and cost, coupled with the high reproducibility of the lesion obtained. To gain new information from such a classic model, we studied the time-course of the nigrostriatal damage, metabolic changes in the basal ganglia nuclei (cytochrome oxidase activity) and behavioural modifications (rotational response to apomorphine) following unilateral injection of 6-OHDA into the corpus striatum of rat, over a 4-week period. Striatal infusion of 6-OHDA caused early damage of dopaminergic terminals, followed by a slowly evolving loss of dopaminergic cell bodies in the substantia nigra pars compacta, which became apparent during the second week post-injection and peaked at the 28th day post-infusion; the rotational response to apomorphine was already present at the first time point considered (Day 1), and remained substantially stable throughout the 4-week period of observation. The evolution of the nigrostriatal lesion was accompanied by complex changes in the metabolic activity of the other basal ganglia nuclei investigated (substantia nigra pars reticulata, entopeduncular nucleus, globus pallidus and subthalamic nucleus), which led, ultimately, to a generalized, metabolic hyperactivity, ipsilaterally to the lesion. However, peculiar patterns of metabolic activation, or inhibition, characterized the post-lesional responses of each nucleus, in the early and intermediate phases, with peculiar response profiles that varied closely related to the functional position occupied within the basal ganglia circuitry.
Collapse
Affiliation(s)
- Fabio Blandini
- Laboratory of Functional Neurochemistry, IRCCS Neurological Institute C. Mondino, Pavia, Italy.
| | | | | | | | | |
Collapse
|
218
|
Hodaie M, Neimat JS, Lozano AM. THE DOPAMINERGIC NIGROSTRIATAL SYSTEMAND PARKINSON'S DISEASE. Neurosurgery 2007; 60:17-28; discussion 28-30. [PMID: 17228250 DOI: 10.1227/01.neu.0000249209.11967.cb] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For several decades, the clinical study of Parkinson's disease has driven an increasingly sophisticated understanding of the dopaminergic system and its complex role in modulating motor behavior. This article reviews salient areas of research in this field, commencing with the molecular biology of the development of the mesencephalic dopaminergic system. We then discuss events thought to be crucial in the cellular and molecular pathology of Parkinson's disease, proposed mechanisms of cell death, and relevant toxin models. These advancements are used as a template to review emerging therapeutic techniques, including neuroprotection strategies, surgical treatment of trophic factors, gene therapy, and neural transplantation.
Collapse
Affiliation(s)
- Mojgan Hodaie
- Division of Neurosurgery, Toronto Western Hospital, University Health Network and University of Toronto, Toronto, Canada.
| | | | | |
Collapse
|
219
|
|
220
|
Betarbet R, Greenamyre JT. Parkinson's disease: animal models. HANDBOOK OF CLINICAL NEUROLOGY 2007; 83:265-87. [DOI: 10.1016/s0072-9752(07)83011-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
221
|
Sánchez-Iglesias S, Rey P, Méndez-Alvarez E, Labandeira-García JL, Soto-Otero R. Time-course of brain oxidative damage caused by intrastriatal administration of 6-hydroxydopamine in a rat model of Parkinson's disease. Neurochem Res 2006; 32:99-105. [PMID: 17160721 DOI: 10.1007/s11064-006-9232-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 11/16/2006] [Indexed: 10/23/2022]
Abstract
The unilateral and intrastriatal injection of 6-hydroxydopamine is commonly used to provide a partial lesion model of Parkinson's disease in the investigation of the molecular mechanisms involved in its pathogenesis and to assess new neuroprotective treatments. Its capacity to induce neurodegeneration has been related to its ability to undergo autoxidation in the presence of oxygen and consequently to generate oxidative stress. The aim of the present study was to investigate the time course of brain oxidative damage induced by 6-hydroxydopamine (6 microg in 5 microl of sterile saline containing 0.2% ascorbic acid) injection in the right striatum of the rat. The results of this study show that the indices of both lipid peroxidation (TBARS) and protein oxidation (carbonyl and free thiol contents) increase simultaneously in the ipsilateral striatum and ventral midbrain, reaching a peak value at 48-h post-injection for both TBARS and protein carbonyl content, and at 24 h for protein free thiol content. A lower but significant increase was also observed in the contralateral side (striatum and ventral midbrain). The indices of oxidative stress returned to values close to those found in controls at 7-day post-injection. These data show that the oxidative stress is a possible triggering factor for the neurodegenerative process and the retrograde neurodegeneration observed after 1-week post-injection is a consequence of the cell damage caused during the first days post-injection. The optimal time to assess brain indices of oxidative stress in this model is 48-h post-injection.
Collapse
Affiliation(s)
- Sofía Sánchez-Iglesias
- Laboratory of Neurochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Santiago de Compostela, San Francisco 1, 15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
222
|
O'Dell SJ, Gross NB, Fricks AN, Casiano BD, Nguyen TB, Marshall JF. Running wheel exercise enhances recovery from nigrostriatal dopamine injury without inducing neuroprotection. Neuroscience 2006; 144:1141-51. [PMID: 17157992 DOI: 10.1016/j.neuroscience.2006.10.042] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2006] [Revised: 10/26/2006] [Accepted: 10/28/2006] [Indexed: 11/17/2022]
Abstract
Forced use of the forelimb contralateral to a unilateral injection of the dopaminergic neurotoxin 6-hydroxydopamine can promote recovery of motor function in that limb and can significantly decrease damage to dopamine terminals. The present study was conducted to determine (1) whether a form of voluntary exercise, wheel running, would improve motor performance in rats with such lesions, and (2) whether any beneficial effects of wheel running are attributable to ameliorating the dopaminergic damage. In experiment 1, rats were allowed to run in exercise wheels or kept in home cages for 2 1/2 weeks, then given stereotaxic infusions of 6-hydroxydopamine into the left striatum. The rats were replaced into their original environments (wheels or home cages) for four additional weeks, and asymmetries in forelimb use were quantified at 3, 10, 17, and 24 days postoperatively. After killing, dopaminergic damage was assessed by both quantifying 3 beta-(4-iodophenyl)tropan-2 beta-carboxylic acid methyl ester ([(125)I]RTI-55) binding to striatal dopamine transporters and counting tyrosine hydroxylase-positive cells in the substantia nigra. Exercised 6-hydroxydopamine-infused rats showed improved motor outcomes relative to sedentary lesioned controls, effects that were most apparent at postoperative days 17 and 24. Despite this behavioral improvement, 6-hydroxydopamine-induced loss of striatal dopamine transporters and tyrosine hydroxylase-positive nigral cells in exercised and sedentary groups did not differ. Since prior studies suggested that forced limb use improves motor performance by sparing nigrostriatal dopaminergic neurons from 6-hydroxydopamine damage, experiment 2 used a combined regimen of forced plus voluntary wheel running. Again, we found that the motor performance of exercised rats improved more rapidly than that of sedentary controls, but that there were no differences between these groups in the damage produced by 6-hydroxydopamine. It appears that voluntary exercise can facilitate recovery from partial nigrostriatal injury, but it does so without evident sparing of dopamine nerve terminals.
Collapse
Affiliation(s)
- S J O'Dell
- Department of Neurobiology and Behavior, 1452 McGaugh Hall, University of California, Irvine, Irvine, CA 92697, USA.
| | | | | | | | | | | |
Collapse
|
223
|
Tian Y, Sun S, Tang C, Wang J, Chen X, Qiao X. Intrastriatal gene transfer of vascular endothelial growth factor rescues dopaminergic neurons in a rat Parkinson’s disease model. ACTA ACUST UNITED AC 2006; 26:670-3. [PMID: 17357485 DOI: 10.1007/s11596-006-0611-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
To examine the ability of intrastriatal gene transfer of vascular endothelial growth factor 165 mediated by adenoviral vector to rescue dopaminergic neurons in a rat model of Parkinson's disease (PD), we constructed recombinant replication-deficient adenoviral vectors carrying the gene of VEGF165 (Ad-VEGF), and injected Ad-VEGF (or Ad-LacZ and PBS as controls) into the striatum of rats 7 days after the lesion by 6-hydroxydopamine. The rat rotational behavior analysis and tyrosine hydroxylase (TH) immunohistochemistry were performed to assess the change of dopaminergic neurons. Our results showed that the rats receiving Ad-VEGF injection displayed a significant improvement in apomorphine-induced rotational behavior and a significant preservation of TH-positive neurons and fibers compared with control animals. It is concluded that intrastriatal gene transfer by Ad-VEGF may rescue the dopaminergic neurons from degeneration in a rat model of PD.
Collapse
Affiliation(s)
- Youyong Tian
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology Wuhan 430022, China
| | | | | | | | | | | |
Collapse
|
224
|
Liu WG, Lu GQ, Li B, Chen SD. Dopaminergic neuroprotection by neurturin-expressing c17.2 neural stem cells in a rat model of Parkinson's disease. Parkinsonism Relat Disord 2006; 13:77-88. [PMID: 16963309 DOI: 10.1016/j.parkreldis.2006.07.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2005] [Revised: 06/26/2006] [Accepted: 07/01/2006] [Indexed: 11/18/2022]
Abstract
Genetically engineered neural stem cell (NSC) lines are promising vectors for the treatment of regenerative diseases, especially Parkinson's disease (PD). Neurturin (NTN), a member of the glial cell line-derived neurotrophic factor-family, has been demonstrated to act specifically on mesencephalic dopaminergic neurons, suggesting its therapeutic potential for PD. Here, we have generated a NTN-secreting c17.2 NSC line and investigated the protective effect of NTN-c17.2 on PD rat models. These NTN-releasing NSCs engrafted and integrated in the host striatum with good success, gave rise to neurons, astrocytes and oligodendrocytes, and maintained stable, high-level NTN expression. In addition, inverse transfer of NTN protein into the substantia nigra (SN) was able to protect dopaminergic neurons from 6-OHDA toxicity. Observation of rotational behavior showed that the NTN group performed significantly better than the Mock group, and the protective effect of NTN lasted for at least 4 months. HPLC tests indicated that the contents of neurotransmitters (e.g. dopamine) in the corpus striatum area of the NTN-c17.2 group and the Mock-c17.2 group were significantly higher than in the PBS group, but there was no significant difference between expression in the NTN-c17.2 and Mock-c17.2 groups. Taken together, our results suggest that transplantation of NTN-secreting NSCs exerted protective on PD rat models.
Collapse
Affiliation(s)
- Wei-Guo Liu
- Department of Neurology, Clinical and Research Center for Parkinson Disease and Movement Disorders, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | | | | | | |
Collapse
|
225
|
Nakamura M, Yamada M, Ohsawa T, Morisawa H, Nishine T, Nishimura O, Toda T. Phosphoproteomic profiling of human SH-SY5Y neuroblastoma cells during response to 6-hydroxydopamine-induced oxidative stress. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2006; 1763:977-89. [PMID: 16949164 DOI: 10.1016/j.bbamcr.2006.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/14/2006] [Accepted: 07/17/2006] [Indexed: 11/19/2022]
Abstract
Dopaminergic neurons are known to be vulnerable to age-related neuronal disorders due to reactive oxygen species (ROS) generated during dopamine metabolism. However, it remains unclear what kinds of proteins are involved in the response to oxidative stress. We examined changes in whole proteins and phosphoproteins in the human dopaminergic neuroblastoma cell line SH-SY5Y under oxidative stress induced by the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA). Proteins of SH-SY5Y cells at various stages of oxidative stress were separated by two-dimensional gel electrophoresis for comparative analysis. Increase in glutathione-S-transferase pi was detected on SYPRO Ruby-stained gels by computer-aided image analysis. Stress-induced alterations in phosphoproteins were detected by Pro-Q Diamond staining. Elongation factor 2, lamin A/C, T-complex protein 1, and heterogeneous nuclear ribonucleoprotein H3 were identified by MALDI-TOF mass spectrometry as stress-responsive elements.
Collapse
Affiliation(s)
- Megumi Nakamura
- Research Team for Molecular Biomarkers, Proteomic Gerontology Research Unit, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan
| | | | | | | | | | | | | |
Collapse
|
226
|
Bové J, Zhou C, Jackson-Lewis V, Taylor J, Chu Y, Rideout HJ, Wu DC, Kordower JH, Petrucelli L, Przedborski S. Proteasome inhibition and Parkinson's disease modeling. Ann Neurol 2006; 60:260-4. [PMID: 16862585 DOI: 10.1002/ana.20937] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Impaired proteasome function is a potential mechanism for dopaminergic neuron degeneration. To model this molecular defect, we administered systemically the reversible lipophilic proteasome inhibitor, carbobenzoxy-L-isoleucyl-gamma-t-butyl-L-glutamyl-L-alanyl-L-leucinal (PSI), to rodents. In contrast to a previous report, this approach failed to cause any detectable behavioral or neuropathological abnormality in either rats or mice. Although theoretically appealing, this specific model of Parkinson's disease appears to exhibit poor reproducibility.
Collapse
Affiliation(s)
- Jordi Bové
- Department of Neurology, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
227
|
Fang X, Sugiyama K, Akamine S, Namba H. The stepping test and its learning process in different degrees of unilateral striatal lesions by 6-hydroxydopamine in rats. Neurosci Res 2006; 55:403-9. [PMID: 16730826 DOI: 10.1016/j.neures.2006.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 03/24/2006] [Accepted: 04/19/2006] [Indexed: 11/30/2022]
Abstract
Four different levels of the nigrostriatal dopamine system lesions were produced by injections of 6-hydroxydopamine at one-, two-, three-, or four-sites in the striatum and drug-induced rotational movement and stepping test were performed to evaluate behavioral impairments in the rat model of Parkinson's disease. A dose-dependent progressive loss of tyrosine hydroxylase-positive cells in the substance nigra pars compacta was observed in rats with striatal lesion from one- to four-sites. Though the differences in the rotational behavior and stepping test between the lesioned and control rats were highly significant, there were no differences in those behaviors among four groups of lesioned rats. During observation of these behavioral tests, the authors found that the times of trials required for acquisition of the stepping test on the first day of training, which reflected learning acuity, increased in a dose-dependent manner in the lesioned rats as compared with the controls. On the contrary, the times of trials on the next day and in the next week, which reflected retention of the acquired memories, were not different among the groups. In conclusion, the rotational movement and stepping test were not sensitive enough to distinguish severity of the striatal lesions, and learning acuity, but not retention of memories, was disturbed by the striatal lesions.
Collapse
Affiliation(s)
- Xin Fang
- Department of Neurosurgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu 431-3192, Japan
| | | | | | | |
Collapse
|
228
|
Sajadi A, Bensadoun JC, Schneider BL, Lo Bianco C, Aebischer P. Transient striatal delivery of GDNF via encapsulated cells leads to sustained behavioral improvement in a bilateral model of Parkinson disease. Neurobiol Dis 2006; 22:119-29. [PMID: 16300956 DOI: 10.1016/j.nbd.2005.10.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Revised: 09/27/2005] [Accepted: 10/19/2005] [Indexed: 11/30/2022] Open
Abstract
Numerous studies have shown the neuroprotective and regenerative benefits of glial cell line-derived neurotrophic factor (GDNF) in animal models of PD. Brain delivery of GDNF can, however, be associated with limiting side-effects in both primates and PD patients, rendering the duration of delivery a critical factor. In the present study, the effects of transient vs. sustained GDNF delivery by encapsulated cells were evaluated in a bilateral animal model, closely mimicking advanced PD. One week following bilateral striatal 6-hydroxydopamine injections in rats, capsules loaded with human fibroblasts genetically engineered to release GDNF were bilaterally implanted in the striatum. GDNF delivery resulted in a significant improvement of movement initiation and swimming performance in the lesioned animals, associated with striatal reinnervation of dopaminergic fibers. To test the sustainability of the behavioral improvement, GDNF-secreting capsules were withdrawn in a subgroup of animals, 7 weeks post-implantation. Strikingly, both the behavioral and morphological improvements were maintained until the sacrifice of the animals 6 weeks post-GDNF withdrawal. The sustained cellular and behavioral benefits after GDNF washout suggest the need for temporary delivery of the trophic factor in PD. Retrievable encapsulated cells represent an attractive delivery tool to achieve this purpose.
Collapse
Affiliation(s)
- Ali Sajadi
- Ecole Polytechnique Fédérale de Lausanne, EPFL, Integrative Bioscience Institute, CH-1015 Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
229
|
Marin C, Rodriguez-Oroz MC, Obeso JA. Motor complications in Parkinson's disease and the clinical significance of rotational behavior in the rat: Have we wasted our time? Exp Neurol 2006; 197:269-74. [PMID: 16375892 DOI: 10.1016/j.expneurol.2005.11.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 10/20/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Affiliation(s)
- C Marin
- Laboratori de Neurologia Experimental, Fundació Clínic-Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer, IDIBAPS, Barcelona, Spain
| | | | | |
Collapse
|
230
|
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease that appears essentially as a sporadic condition. It results mainly from the death of dopaminergic neurons in the substantia nigra. PD etiology remains mysterious, whereas its pathogenesis begins to be understood as a multifactorial cascade of deleterious factors. Most insights into PD pathogenesis come from investigations performed in experimental models of PD, especially those produced by neurotoxins. Although a host of natural and synthetic molecules do exert deleterious effects on dopaminergic neurons, only a handful are used in living laboratory animals to recapitulate some of the hallmarks of PD. In this review, we discuss what we believe are the four most popular parkinsonian neurotoxins, namely 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), rotenone, and paraquat. The main goal is to provide an updated summary of the main characteristics of each of these four neurotoxins. However, we also try to provide the reader with an idea about the various strengths and the weaknesses of these neurotoxic models.
Collapse
Affiliation(s)
- Jordi Bové
- Department of Neurology, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
231
|
Henderson J, Doherty K, Allbutt H, Billing R. Effects of pallidotomy on motor symptoms in an animal model of Parkinson's disease. Behav Brain Res 2006; 169:29-38. [PMID: 16406102 DOI: 10.1016/j.bbr.2005.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2005] [Revised: 11/28/2005] [Accepted: 11/30/2005] [Indexed: 11/30/2022]
Abstract
The present study was designed to evaluate the motor effects of lesioning the internal globus pallidus in an animal model of Parkinson's disease. Fourty rats were divided into four groups (each of 10 rats) which received either unilateral 6-hydroxydopamine (6-OHDA) lesions of the medial forebrain bundle (mfb) plus sham surgery to the pallidum, sham surgery of mfb plus N-methyl-D-aspartate (NMDA) induced pallidal lesions, combined 6-OHDA mfb + NMDA pallidal lesions or sham surgery to both structures. Animals with 6-OHDA lesions developed significant ipsilateral biases in head position, body axis and circling after amphetamine challenge (all P < 0.05). Prominent contralateral deficits were present in sensorimotor response latency and contralateral circling was induced by apomorphine challenge (both P < 0.05). The addition of an NMDA pallidal lesion, improved the head position and body axis biases, as well as dopamine-agonist induced rotation and contralateral reaction time in a sensorimotor task (all P < 0.05). There was, however, a slight worsening of sensorimotor response on the ipsilateral side (P < 0.05). Pallidal lesions in the absence of 6-OHDA lesions produced contralateral head position and body axis biases (both P < 0.05). These data indicate that pallidotomy improves some, but not all aspects of parkinsonian motor dysfunction in an animal model of Parkinson's disease (PD).
Collapse
Affiliation(s)
- Jasmine Henderson
- Department of Pharmacology, Institute for Biomedical Research, University of Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
232
|
Truong L, Allbutt H, Kassiou M, Henderson JM. Developing a preclinical model of Parkinson's disease: a study of behaviour in rats with graded 6-OHDA lesions. Behav Brain Res 2006; 169:1-9. [PMID: 16413939 DOI: 10.1016/j.bbr.2005.11.026] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Revised: 11/23/2005] [Accepted: 11/30/2005] [Indexed: 10/25/2022]
Abstract
Injection of increasing concentrations of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle (MFB) can be used to establish a graded model of different clinical stages of Parkinson's disease (PD). We investigated the relationship between behavioural alterations and loss of dopaminergic neurons in the substantia nigra pars compacta (SNc). Forty female Sprague-Dawley rats were injected with either (i) 4 microg (ii) 8 microg or (iii) 16 microg 6-hydroxydopamine (6-OHDA) to mimic the preclinical, mild and advanced clinical stages of PD, respectively. Vehicle was injected in a separate control group. Behaviours analysed included postural asymmetry, balance, locomotion, sensorimotor deficits and apomorphine rotation. At post-mortem the degree of tyrosine immunoreactive dopaminergic cell (TH-ir) loss was then estimated. There was a graded and consistent trend in each of the behaviours studied with respect to cell loss between the different sized lesion groups when examined using correlation analysis (all comparisons, r > 0.8, p < 0.001). Rats with large lesions demonstrated more significant behavioural changes over 8 weeks of testing than those with intermediate and smaller lesions (group comparisons p < 0.001). PD symptomatology became overt when cell loss reached 70%, however some significant changes can be observed with as little as 40% dopaminergic cell loss. Thus, injection with increasing concentrations 6-OHDA into the MFB can produce increasing extents of cell loss and behavioural changes, which were well correlated. This graded model can be useful for testing potential neuroprotective compounds for PD.
Collapse
Affiliation(s)
- L Truong
- Department of Pharmacology, Institute for Biochemical Research, Bosch Building, School of Medical Sciences, University of Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
233
|
Eslamboli A. Marmoset monkey models of Parkinson's disease: which model, when and why? Brain Res Bull 2005; 68:140-9. [PMID: 16325013 DOI: 10.1016/j.brainresbull.2005.08.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2005] [Revised: 08/10/2005] [Accepted: 08/17/2005] [Indexed: 12/01/2022]
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative disease, with clinical features of tremor, muscular rigidity and akinesia, occurring as a result of midbrain dopamine loss. The search for treatments has relied heavily on animal models of the disorder. The use of monkey models of PD plays a distinct role in the development and assessment of novel treatments. The common marmoset (Callithrix jacchus) is a popular New World monkey used in the search for new treatments. These monkeys are easy to handle and survive well in captivity. This review examines the advantages of using marmoset monkeys in PD research and examines the different models available with reference to their use in pre-clinical assessment for novel therapeutic treatments. The most common models involve the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6-hydroxydopamine (6-OHDA). Recently, selective cerebral transgenic over-expression of alpha-synuclein has also been attempted in marmosets as a potential model for PD. Each model has its advantages. The MPTP-based model in marmosets resembles the disease with regards to the neuroanatomy of neurotransmitter loss; the unilateral application of 6-OHDA allows for the assessment of more complex sensorimotor deficits due to the presence of an intact 'control' side; the over-expression of alpha-synuclein in the midbrain results in the slow onset of behavioural symptoms allowing for a pre-symptomatic time window. The appropriateness of each of these marmoset models for the assessment of treatments depends on several factors including the experimental aim of the study and whether emphasis is placed on the analysis of behavioural deficits.
Collapse
Affiliation(s)
- Andisheh Eslamboli
- Department of Experimental Psychology, Cambridge University, Cambridge CB2 3EB, UK.
| |
Collapse
|
234
|
Ahmad M, Saleem S, Ahmad AS, Ansari MA, Yousuf S, Hoda MN, Islam F. Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 2005; 24:137-47. [PMID: 15901053 DOI: 10.1191/0960327105ht509oa] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
6-Hydroxydopamine (6-OHDA) is one of the most widely used rat models for Parkinson's disease. There is ample evidence in the literature that 6-OHDA elicits its toxic manifestations through oxidant stress. In the present study, we evaluated the anti-parkinsonian effects of Withania somnifera extract, which has been reported to have potent anti-oxidant, anti-peroxidative and free radical quenching properties in various diseased conditions. Rats were pretreated with 100, 200 and 300 mg/kg b.w. of the W. somnifera extract orally for 3 weeks. On day 21, 2 microL of 6-OHDA (10 microg in 0.1% in ascorbic acid-saline) was infused into the right striatum while sham operated group received 2 microL of the vehicle. Three weeks after 6-OHDA injections, rats were tested for neurobehavioral activity and were killed 5 weeks after lesioning for the estimation of lipidperoxidation, reduced glutathione content, activities of glutathione-S-transferase, glutathione reductase, glutathione peroxidase, superoxide dismutase and catalase, catecholamine content, dopaminergic D2 receptor binding and tyrosine hydroxylase expression. W. somnifera extract was found to reverse all the parameters significantly in a dose-dependent manner. Thus, the study demonstrates that the extract of W. somnifera may be helpful in protecting the neuronal injury in Parkinson's disease.
Collapse
Affiliation(s)
- Muzamil Ahmad
- Neurotoxicology Laboratory, Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
235
|
Jackson-Lewis V, Smeyne RJ. MPTP and SNpc DA neuronal vulnerability: role of dopamine, superoxide and nitric oxide in neurotoxicity. Minireview. Neurotox Res 2005; 7:193-202. [PMID: 15897154 DOI: 10.1007/bf03036449] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Parkinson disease (PD) is a common neurodegenerative disease of unknown origin that is characterized, mainly, by a significant reduction in the number of dopamine neurons in the substantia nigra pars compacta (SNpc) of the brain and a dramatic reduction in dopamine levels in the corpus striatum. For reasons that we do not know, the dopamine neuron seems to be more vulnerable to damage than any other neuron in the brain. Although hypotheses of damage to the dopamine neuron include oxidative stress, growth factor decline, excitotoxicity, inflammation in the SNpc and protein aggregation, oxidative stress in the nigrostriatal dopaminergic system garners a significant amount of attention. In the oxidative stress hypothesis of PD, superoxide, nitric oxide and dopamine all conspire to create an environment that can be detrimental to the dopamine neuron. MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), the tool of choice for investigations into the mechanisms involved in the death of dopamine neurons in PD, has been used extensively in attempts to sort out what happens in and around the dopamine neuron. Herein, we review the roles of dopamine, superoxide and nitric oxide in the demise of the dopamine neuron in the MPTP model of PD as it relates to the death of the dopamine neuron noted in PD.
Collapse
Affiliation(s)
- V Jackson-Lewis
- Neuroscience Research Laboratories of Movement Disorders Division, Department of Neurology, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
236
|
Debeir T, Ginestet L, François C, Laurens S, Martel JC, Chopin P, Marien M, Colpaert F, Raisman-Vozari R. Effect of intrastriatal 6-OHDA lesion on dopaminergic innervation of the rat cortex and globus pallidus. Exp Neurol 2005; 193:444-54. [PMID: 15869947 DOI: 10.1016/j.expneurol.2005.01.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2004] [Revised: 10/28/2004] [Accepted: 01/12/2005] [Indexed: 10/25/2022]
Abstract
The present study examined in the rat the effect of a partial lesion of the nigrostriatal dopaminergic pathway induced by intrastriatal injection of 6-hydroxydopamine (6-OHDA), on the dopaminergic innervation of the cortex and the globus pallidus as revealed using tyrosine hydroxylase (TH) immunoreactivity. Twenty-eight days after unilateral injection of 6-OHDA into the dorsal part of the striatum, TH-positive fiber density was reduced by 41% in the dorsal and central part of the structure, and was accompanied by a retrograde loss of 33% of TH-positive neurons in the substantia nigra (SN), while the ventral tegmental area was completely spared. In the SN, TH-positive cell loss was most severe in the ventral part of the structure (-55%). In the same animals, a substantial loss of TH-positive fibers was evident in the dorsal part of the globus pallidus, and involved both thick fibers of passage and thin varicose terminal axonal branches. In the cortex, a loss of TH-positive fibers was prominent in the cingulate area, moderate in the motor area and less affected in the insular area, while the noradrenergic innervation revealed using dopamine-beta-hydroxylase immunoreactivity was preserved in all of these cortical subregions. These results demonstrate that the intrastriatal 6-OHDA lesion model in rats produces a significant loss of dopaminergic axons in extrastriatal structures including the pallidum and cortex, which may contribute to functional sequelae in this animal model of Parkinson's disease.
Collapse
Affiliation(s)
- Thomas Debeir
- INSERM U679, Neurologie et Thérapeutique Expérimentale, Hôpital de la Salpêtrière, 47 Boulevard de l'Hôpital, 75013, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
237
|
Bové J, Serrats J, Mengod G, Cortés R, Tolosa E, Marin C. Neuroprotection induced by the adenosine A2A antagonist CSC in the 6-OHDA rat model of parkinsonism: effect on the activity of striatal output pathways. Exp Brain Res 2005; 165:362-74. [PMID: 15968457 DOI: 10.1007/s00221-005-2302-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 02/02/2005] [Indexed: 12/18/2022]
Abstract
In Parkinson's disease (PD), the striatal dopamine depletion and the following overactivation of the indirect pathway of the basal ganglia leads to very early disinhibition of the subthalamic nucleus (STN) that may contribute to the progression of PD by glutamatergic overstimulation of the dopaminergic neurons in the substantia nigra. Adenosine A2A antagonism has been demonstrated to attenuate the overactivity of the striatopallidal pathway. To investigate whether neuroprotection exerted by the A2A antagonist 8-(3-chlorostyryl)caffeine (CSC) correlates with a diminution of the striatopallidal pathway activity, we have examined the changes in the mRNA encoding for enkephalin, dynorphin, and adenosine A2A receptors by in situ hybridization induced by subacute systemic pretreatment with CSC in rats with striatal 6-hydroxydopamine(6-OHDA) administration. Animals received CSC for 7 days until 30 min before 6-OHDA intrastriatal administration. Vehicle-treated group received a solution of dimethyl sulfoxide. CSC pretreatment partially attenuated the decrease in nigral tyrosine hydroxylase immunoreactivity induced by 6-OHDA, whereas no modification of the increase in preproenkephalin mRNA expression in the dorsolateral striatum was observed. The neuroprotective effect of the adenosine A2A antagonist CSC in striatal 6-OHDA-lesioned rats does not result from a normalization of the increase in striatal PPE mRNA expression in the DL striatum, suggesting that other different mechanisms may be involved.
Collapse
Affiliation(s)
- Jordi Bové
- Laboratori de Neurologia Experimental, Area de Neurociències, Fundació Clinic-Hospital Clínic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Villarroel 170, 08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
238
|
Ahmad M, Saleem S, Ahmad AS, Yousuf S, Ansari MA, Khan MB, Ishrat T, Chaturvedi RK, Agrawal AK, Islam F. Ginkgo biloba affords dose-dependent protection against 6-hydroxydopamine-induced parkinsonism in rats: neurobehavioural, neurochemical and immunohistochemical evidences. J Neurochem 2005; 93:94-104. [PMID: 15773909 DOI: 10.1111/j.1471-4159.2005.03000.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ginkgo biloba extract (EGb), a potent antioxidant and monoamine oxidase B (MAO-B) inhibitor, was evaluated for its anti-parkinsonian effects in a 6-hydroxydopamine (6-OHDA) rat model of the disease. Rats were treated with 50, 100, and 150 mg/kg EGb for 3 weeks. On day 21, 2 microL 6-OHDA (10 microg in 0.1% ascorbic acid saline) was injected into the right striatum, while the sham-operated group received 2 microL of vehicle. Three weeks after 6-OHDA injection, rats were tested for rotational behaviour, locomotor activity, and muscular coordination. After 6 weeks, they were killed to estimate the generation of thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) content, to measure activities of glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx), catalase, and superoxide dismutase (SOD), and to quantify catecholamines, dopamine (DA) D2 receptor binding, and tyrosine hydroxylase-immunoreactive (TH-IR) fibre density. The increase in drug-induced rotations and deficits in locomotor activity and muscular coordination due to 6-OHDA injections were significantly and dose-dependently restored by EGb. The lesion was followed by an increased generation of TBARS and significant depletion of GSH content in substantia nigra, which was gradually restored with EGb treatment. EGb also dose-dependently restored the activities of glutathione-dependent enzymes, catalase, and SOD in striatum, which had reduced significantly by lesioning. A significant decrease in the level of DA and its metabolites and an increase in the number of dopaminergic D2 receptors in striatum were observed after 6-OHDA injection, both of which were significantly recovered following EGb treatment. Finally, all of these results were exhibited by an increase in the density of TH-IR fibers in the ipsilateral substantia nigra of the lesioned group following treatment with EGb; the lesioning had induced almost a complete loss of TH-IR fibers. Considering our behavioural studies, biochemical analysis, and immunohistochemical observation, we conclude that EGb can be used as a therapeutic approach to check the neuronal loss following parkinsonism.
Collapse
Affiliation(s)
- Muzamil Ahmad
- Neurotoxicology Laboratory, Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar; New Delhi, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Muñoz AM, Rey P, Parga J, Guerra MJ, Labandeira-Garcia JL. Glial overexpression of heme oxygenase-1: a histochemical marker for early stages of striatal damage. J Chem Neuroanat 2005; 29:113-26. [PMID: 15652698 DOI: 10.1016/j.jchemneu.2004.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 07/31/2004] [Accepted: 10/02/2004] [Indexed: 11/19/2022]
Abstract
The level of heme oxygenase-1 (HO-1) in the normal striatum is below the limit of immunodetection. However, HO-1 is overexpressed in both neural and non-neural cells in response to a wide range of lesions. We induced different types of lesions affecting the striatal cells or the main striatal afferent systems in rats to investigate if overexpression of HO-1 could be a useful histochemical marker of striatal damage. Thirty-six hours after intrastriatal or intraventricular injection of excitotoxins that affect striatal neurons (ibotenic acid) or of neurotoxins that affect striatal dopaminergic (6-hydroxydopamine) or serotonergic (5,7-dihydroxytriptamine) afferent terminals, or after surgical lesioning of cortico-striatal projections, there was intense induction of striatal HO-1 immunoreactivity (HO-1-ir). Double immunolabeling revealed that the HO-1-ir was located in glial cells. After intrastriatal injection of ibotenic acid, a central zone of neuronal degeneration contained numerous round and pseudopodic HO-1-ir cells, and was surrounded by a ring of HO-1-ir cells, most of which were immunoreactive for astroglial markers. Intraventricular injection of neurotoxins induced astroglial HO-1-ir cells which were more evenly distributed throughout the lesioned or denervated areas. HO-1-ir microglial cells were also observed in areas subjected to mechanical damage. The HO-1-ir was markedly lower or absent 1 week after lesion, and even more so 3 weeks after, although some HO-1-ir cells were still observed after intrastriatal injection of ibotenic acid or surgical corticostriatal deafferentation. The results indicate that determination of glial HO-1-ir is a useful histochemical marker for early stages of striatal damage.
Collapse
Affiliation(s)
- Ana M Muñoz
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Faculty of Medicine, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
240
|
Yuan H, Sarre S, Ebinger G, Michotte Y. Histological, behavioural and neurochemical evaluation of medial forebrain bundle and striatal 6-OHDA lesions as rat models of Parkinson's disease. J Neurosci Methods 2005; 144:35-45. [PMID: 15848237 DOI: 10.1016/j.jneumeth.2004.10.004] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 10/05/2004] [Accepted: 10/12/2004] [Indexed: 10/26/2022]
Abstract
We compared the effect of an injection of 6-hydroxydopamine (6-OHDA) into the medial forebrain bundle (MFB) and into the striatum on different parameters for evaluation of motor dysfunction and dopamine denervation in rats, as a function of time. A combination of behavioural, neurochemical and histological techniques was employed. Amphetamine-induced rotation is shown to provide a first rough estimation of motor impairment. Indeed, the number of rotations observed after amphetamine administration can distinguish between a partial and a near complete (>90%) denervation in the substantia nigra. However, lesion sizes of 50-80% resulted in similar rotational behaviour. Similarly, the elevated body swing test (EBST) can determine severe lesions, but is not sensitive enough in the partial model. In both models, determination of the dopamine tissue content with HPLC is a more precise measure of striatal dopamine innervation than striatal TH-immunostaining. The number of cells estimated by TH- and Nissl-staining correlated well in the striatal model, but there was a discrepancy between both measures in the MFB-lesioned animals. Therefore, additional Nissl-staining is necessary for better estimation of the size of the lesion at the level of the substantia nigra or ventral tegmental area in the severely lesioned animals. The MFB lesion model mimics end-stage Parkinson's disease. The striatal injection of 6-OHDA described here cannot be considered a progressive model, since there was no change in the number of TH-immunoreactive cells in the substantia nigra up to 8 weeks post-lesioning. However, the partial denervation renders its quite suitable for mimicking early stage Parkinson's disease, and is thus suitable for testing possible neuroprotective and neurotrophic drugs.
Collapse
Affiliation(s)
- Hong Yuan
- Department of Pharmaceutical Chemistry and Drug Analysis, Research Group Experimental Pharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | | | | | |
Collapse
|
241
|
Kondoh T, Bannai M, Nishino H, Torii K. 6-Hydroxydopamine-induced lesions in a rat model of hemi-Parkinson's disease monitored by magnetic resonance imaging. Exp Neurol 2005; 192:194-202. [PMID: 15698634 DOI: 10.1016/j.expneurol.2004.12.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2004] [Revised: 12/12/2004] [Accepted: 12/16/2004] [Indexed: 10/25/2022]
Abstract
Injection with 6-hydroxydopamine (6-OHDA) into the nigrostriatal pathway results in loss of nigrostriatal dopaminergic neurons, which has been used widely as an animal model of Parkinson's disease. In the present study, location and extent of lesions 1 day after 6-OHDA injections (2, 4, 8, or 16 microg as a free base) in the substantia nigra (SN) were evaluated in rats by T(2)-weighted magnetic resonance imaging (MRI). The changes in MRI were also compared to immunohistochemical and behavioral changes. Hyperintense area in MRI was found at the region corresponding to 6-OHDA injection in a dose-dependent manner and was accompanied by a loss of tyrosine hydroxylase (TH)-positive cells. The shape of hyperintense area in the SN appeared to be composed of two components (i.e., circular and longitudinal regions). Administration of a larger dose of 6-OHDA (8-16 microg) was accompanied by an increase in hyperintense area and loss of TH-positive cells beyond the SN. The hyperintense area was observed on the first and third days after 6-OHDA injection, but the size and intensity declined to near normal levels on the ninth day. Rotational behavior induced by methamphetamine reached maximal levels at 4 microg 6-OHDA, and the behavior was maintained with doses up to 16 microg of 6-OHDA. Intrastriatal injection with 6-OHDA was less effective. These results suggest that MRI provides highly valuable information for verifying the size and location of intended lesions as well as for determining the optimal dose of neurotoxins in individual animals.
Collapse
Affiliation(s)
- Takashi Kondoh
- Institute of Life Sciences, Ajinomoto Co., Inc., Suzuki-cho 1-1, Kawasaki-ku, Kawasaki 210-8681, Japan
| | | | | | | |
Collapse
|
242
|
Faure A, Haberland U, Condé F, El Massioui N. Lesion to the nigrostriatal dopamine system disrupts stimulus-response habit formation. J Neurosci 2005; 25:2771-80. [PMID: 15772337 PMCID: PMC6725127 DOI: 10.1523/jneurosci.3894-04.2005] [Citation(s) in RCA: 285] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 01/13/2005] [Accepted: 01/18/2005] [Indexed: 11/21/2022] Open
Abstract
Acquisition and performance of instrumental actions are assumed to require both action-outcome and stimulus-response (S-R) habit processes. Over the course of extended training, control over instrumental performance shifts from goal-directed action-outcome associations to S-R associations that progressively gain domination over behavior. Lesions of the lateral part of the dorsal striatum disrupt this process, and rats with lesions to the lateral striatum showed selective sensitivity to devaluation of the instrumental outcome (Yin et al., 2004), indicating that this area is necessary for habit formation. The present experiment further explored the basis of this dysfunction by examining the ability of rats subjected to bilateral 6-hydroxydopamine lesions of the nigrostriatal dopaminergic pathway to develop behavioral autonomy with overtraining. Rats were given extended training on two cued instrumental tasks associating a stimulus (a tone or a light) with an instrumental action (lever press or chain pull) and a food reward (pellets or sucrose). Both tasks were run daily in separate sessions. Overtraining was followed by a test of goal sensitivity by satiety-specific devaluation of the reward. In control animals, one action (lever press) was insensitive to reward devaluation, indicating that it became a habit, whereas the second action (chain pull) was still sensitive to goal devaluation. This result provides evidence that the development of habit learning may depend on the characteristics of the response. In dopamine-depleted rats, lever press and chain pull remained sensitive to reward devaluation, evidencing a role of striatal dopamine transmission in habit formation.
Collapse
Affiliation(s)
- Alexis Faure
- Laboratoire de Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication, Unité Mixte de Recherche 8620, Université Paris Sud, 91405 Orsay Cedex, France.
| | | | | | | |
Collapse
|
243
|
Callio J, Oury TD, Chu CT. Manganese superoxide dismutase protects against 6-hydroxydopamine injury in mouse brains. J Biol Chem 2005; 280:18536-42. [PMID: 15755737 PMCID: PMC1885201 DOI: 10.1074/jbc.m413224200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dopaminergic neurons of the substantia nigra are susceptible to toxin-based insults. Intrastriatal injection of 6-hydroxydopamine results in selective toxicity to these neurons. A mechanistic role for reactive oxygen species is supported by observations that antioxidants confer protection from 6-hydroxydopamine. Although cell culture studies have suggested extracellular or nonmitochondrial mechanisms in 6-hydroxydopamine toxicity, the compartmentalization of oxidative injury mechanisms is incompletely defined in vivo. Transgenic mice overexpressing mitochondrial manganese superoxide dismutase or extracellular superoxide dismutase received unilateral intrastriatal injections of 6-hydroxydopamine. Mice that overexpress manganese superoxide dismutase showed significantly smaller striatal lesions than littermate controls. There were no differences in nonspecific striatal injury associated with contralateral vehicle injection. Manganese superoxide dismutase overexpression also protected against loss of neuronal cell bodies in the substantia nigra. In contrast, mice overexpressing extracellular superoxide dismutase showed no protection from 6-hydroxydopamine toxicity in either brain region. Protection of the nigrostriatal system by overexpression of manganese superoxide dismutase supports a role for mitochondrially derived superoxide in 6-hydroxydopamine toxicity. Mitochondrial oxidative stress appears to be a common mechanism among diverse models of Parkinson disease, whether involving toxins, mutated genes, or cybrid cells containing patient mitochondria. Antioxidant therapies that target this subcellular compartment may prove promising.
Collapse
Affiliation(s)
- Jason Callio
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
244
|
Marin C, Bové J, Serrats J, Cortés R, Mengod G, Tolosa E. The kappa opioid agonist U50,488 potentiates 6-hydroxydopamine-induced neurotoxicity on dopaminergic neurons. Exp Neurol 2005; 191:41-52. [PMID: 15589511 DOI: 10.1016/j.expneurol.2004.08.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Revised: 08/16/2004] [Accepted: 08/19/2004] [Indexed: 11/26/2022]
Abstract
Several observations support the hypothesis that kappa opioid (kappa-opioid) receptor agonism may contribute to neurotoxicity, but other reports have suggested that certain kappa-agonists can attenuate neurological dysfunction. Degeneration of dopaminergic neurons in the substantia nigra is the pathological hallmark of Parkinson's disease. Therefore, it is of particular interest to study whether kappa-opioid receptor agonism has an influence on the progressive degeneration of dopaminergic neurons. We have investigated the effect exerted by the selective kappa-agonist U50,488 on the neurotoxicity induced by intrastriatal 6-hydroxydopamine (6-OHDA) administration on dopaminergic neurons. Male Sprague-Dawley rats received an acute (0.5 mg/kg) or subacute (0.5 mg/kg, twice at day, for 7 days) administration of U50,488, receiving the last dose 30 min before intrastriatal 6-OHDA administration. Acute or subacute U50,488 pretreatment potentiated the 6-OHDA-induced decrease in the number of nigral tyrosine hydroxylase immunoreactive neurons (P < 0.05). Acute U50,488 pretreated animals showed a tendency, although not statistically significant to increase striatal mRNA encoding for enkephalin (PPE mRNA). Subacute U50,488 significantly potentiated the increase in PPE mRNA induced by 6-OHDA (P < 0.05). The present results show a neurotoxic effect of the kappa agonist U50,488 on dopaminergic neurons in rats with a striatal lesion induced by 6-OHDA. This neurotoxic effect is associated to an increase in striatal PPE mRNA levels, suggesting that an increase in the indirect pathway activity and consequently an increase in the activity of the subthalamo-nigral pathway might be involved in this phenomenon.
Collapse
Affiliation(s)
- C Marin
- Laboratori de Neurologia Experimental, Area de Neurociències, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
245
|
Kim MS, Lee JI, Lee WY, Kim SE. Neuroprotective effect of Ginkgo biloba L. extract in a rat model of Parkinson's disease. Phytother Res 2004; 18:663-6. [PMID: 15472919 DOI: 10.1002/ptr.1486] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The neuroprotective effects of a standardized extract of Ginkgo biloba L. (EGb 761) were investigated on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in the nigrostriatal dopaminergic system of the rat brain. Rats were given a week of pretreatment with daily administrations of EGb 761. Unilateral striatal injection of 6-OHDA was followed by treatment with EGb 761 for a week. Serial measurement of contralateral forepaw adjusting steps revealed a progressive deficit in motor activity. At 8 weeks after 6-OHDA lesion the number of contralateral forepaw adjusting steps was significantly higher in rats that were treated with high doses of EGb 761 (100 mg/kg daily) than in those treated with low doses (50 mg/kg) or with the vehicle. Dopamine neuron loss in the substantia nigra and a depletion in striatal dopamine corresponded with behavioural deficit. These data suggest that the neuroprotective effects of EGb 761 reduce the behavioural deficit in 6-OHDA lesions in rat and also indicates a possible role for the extract in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- M-S Kim
- Department of Food and Nutrition, Catholic University, Puchon City, Kyonggi-Do, Korea
| | | | | | | |
Collapse
|
246
|
Bustos G, Abarca J, Campusano J, Bustos V, Noriega V, Aliaga E. Functional interactions between somatodendritic dopamine release, glutamate receptors and brain-derived neurotrophic factor expression in mesencephalic structures of the brain. ACTA ACUST UNITED AC 2004; 47:126-44. [PMID: 15572168 DOI: 10.1016/j.brainresrev.2004.05.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2004] [Indexed: 11/28/2022]
Abstract
Dopaminergic nigrostriatal neurons may be considered as bipolar functional entities since they are endowed with the ability to synthesize, store and release the transmitter dopamine (DA) at the somatodendritic level in the substantia nigra (SN). Such dendritic DA release seems to be distinct from the transmitter release occurring at the axon terminal and seems to rely preferentially on volume transmission to exert its physiological effects. An increased glutamatergic (Gluergic) transmission into the SN facilitates such dendritic DA release via activation of NMDA-receptors (NMDA-Rs) and to a lesser extent through group II metabotropic glutamate receptors (mGluRs). In addition, nigral mGluRs functionally interact with NMDA-Rs in the SN, further modulating the NMDA-R-mediated increase of DA release from dendrites in the SN. In turn, dendritically released DA may exert, via D1 receptors, a tonic inhibitory control upon nigral glutamate (Glu). Furthermore, released DA, via D2/D3 autoreceptors, produces an autoinhibitory effect upon DA cell firing and its own release process. An increased Gluergic transmission into the SN may also induce, via activation of NMDA-Rs, an augmented expression of different brain-derived neurotrophic factor (BDNF) gene transcripts in this brain area. Pharmacological evidence suggests that non-NMDA-Rs could also participate in the regulation of BDNF gene expression in the SN. Glu-mediated changes of nigral BDNF expression could regulate, in turn, the expression of important transmitter-related proteins in the SN, such as different NMDA-R subunits, mGluRs and DA-D3 receptors. In conclusion, Glu-DA-BDNF interactions in the SN may play an important role in modulating the flow of neuronal information in this brain structure under normal conditions, as well as during adaptive and plastic responses associated with various neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Gonzalo Bustos
- Laboratory of Biochemical Pharmacology, Department of Cell and Molecular Biology, Catholic University of Chile, Alameda 340, Santiago 114-D, Chile.
| | | | | | | | | | | |
Collapse
|
247
|
Joghataie MT, Roghani M, Negahdar F, Hashemi L. Protective effect of caffeine against neurodegeneration in a model of Parkinson's disease in rat: behavioral and histochemical evidence. Parkinsonism Relat Disord 2004; 10:465-8. [PMID: 15542005 DOI: 10.1016/j.parkreldis.2004.06.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/22/2004] [Indexed: 10/26/2022]
Abstract
Epidemiological studies have consistently demonstrated an inverse association between coffee consumption and Parkinson's disease (PD). This study was designed to investigate the beneficial effect of caffeine at a dose comparable to that of human exposure in a model of PD. For this purpose, unilateral intrastriatal 6-hydroxydopamine (6-OHDA)-lesioned rats were pretreated with caffeine (20 mg/kg; i.p.) 1 h before surgery and treated twice a day (10 mg/kg) for 1 month. Apomorphine-induced rotations and number of Nissl-stained neurons of substantia nigra pars compacta (SNC) were counted. The results demonstrated that caffeine administration for 1 month could attenuate the rotational behavior in lesioned rats and protect the neurons of SNC against 6-OHDA toxicity.
Collapse
|
248
|
Yuan H, Sarre S, Ebinger G, Michotte Y. Neuroprotective and neurotrophic effect of apomorphine in the striatal 6-OHDA-lesion rat model of Parkinson's disease. Brain Res 2004; 1026:95-107. [PMID: 15476701 DOI: 10.1016/j.brainres.2004.08.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2004] [Indexed: 10/26/2022]
Abstract
We investigated the possible neuroprotective effect of the dopamine (DA) receptor agonist R-apomorphine (R-APO) within the striatal 6-hydroxydopamine (6-OHDA) rat model of Parkinson's disease. In one group of rats, R-APO administration (10 mg/kg/day, s.c.) started 15 min before 6-OHDA-injection. In a second group, R-APO administration started 24 h after lesion induction. Both groups received R-APO chronically for 11 days. Testing was carried out 2 weeks post-lesioning. R-APO treatment, whether started before or after the lesion induction, significantly reduced both the amphetamine-induced ipsiversive rotation and the size of the lesion at the level of the substantia nigra. Moreover, the dopamine cell shape and size resembled that observed in intact animals. R-APO treatment had no effect on the number of cells in the substantia nigra of intact rats, but significantly increased the number of cells in the ventral tegmental area (VTA), suggesting selective neurotrophic properties of R-APO in this region. R-APO treatment significantly attenuated the 6-OHDA-induced striatal DA depletion and DOPAC/DA ratios were normalized. Finally, an acute injection of 10 mg/kg R-APO was unable to scavenge 6-OHDA or MPP(+)-induced hydroxyl radicals as determined with the in vivo salicylate trapping technique. These data provide further evidence of the neurorescuing properties of R-APO. At least at the dose used in this study, this effect possibly occurs via mechanisms other than scavenging of hydroxyl radicals. In intact rats, we also show neurotrophic effects of the R-APO treatment. These seem to be limited to the VTA.
Collapse
Affiliation(s)
- Hong Yuan
- Department of Pharmaceutical Chemistry and Drug Analysis, Research group Experimental Pharmacology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | | | | | | |
Collapse
|
249
|
Ming Z, Zhi-shun L, Jin-fa G, Lan-yin S, Xin-yuan L. Co-treatment with ethanol enhances the toxicity of 6-hydroxydopamine. Neurosci Lett 2004; 367:250-3. [PMID: 15331164 DOI: 10.1016/j.neulet.2004.06.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 06/07/2004] [Indexed: 10/26/2022]
Abstract
6-Hydroxydopamine (6-OHDA) is a widely used neural toxin in the pathogenesis research of Parkinson's disease (PD). In this work, we have studied the effect of ethanol on the toxicity of 6-OHDA on PC12 cell and SK-N-SH cell. Ethanol alone had little toxicity to these cells. However, if using 40 microM 6-OHDA along with 400 mM ethanol on PC12 cell or SK-N-SH cell for 24h, there was much more cell loss than using 40 microM 6-OHDA alone when detected by 3-(4,5-dimethylthiazal-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay or flow cytometric assay. The toxicity of 6-OHDA was enhanced only if using at least 200 mM ethanol, and the cell loss was increased with the increase of ethanol concentration. We had also found that ethanol could enhance the toxicity of 6-OHDA only when using ethanol and 6-OHDA at the same time, ethanol treatment either before or after 6-OHDA treatment did not show such effect. This effect of ethanol suggests that ethanol may contribute to the degeneration of dopaminergic cells.
Collapse
Affiliation(s)
- Zhuo Ming
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghia 20031, PR China
| | | | | | | | | |
Collapse
|
250
|
Moroz IA, Peciña S, Schallert T, Stewart J. Sparing of behavior and basal extracellular dopamine after 6-hydroxydopamine lesions of the nigrostriatal pathway in rats exposed to a prelesion sensitizing regimen of amphetamine. Exp Neurol 2004; 189:78-93. [PMID: 15296838 DOI: 10.1016/j.expneurol.2004.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2003] [Revised: 05/01/2004] [Accepted: 05/07/2004] [Indexed: 11/20/2022]
Abstract
Repeated administration of amphetamine leads to enduring augmentation of its behavioral-activating effects, enhanced dopamine (DA) release in striatal regions, and morphological changes in DA target neurons. Here we show that exposure to a 2-week escalating-dose regimen of amphetamine prevents behavioral asymmetries of forelimb use and spontaneous (drug-independent) turning behavior following unilateral 6-hydroxydopamine (6-OHDA) lesions of the nigrostriatal pathway made 7-14 days after termination of amphetamine treatment (Experiments 1-3). Exposure to three nonescalating injections of amphetamine 7 days before 6-OHDA lesions had no effect (Experiment 2). Prelesion amphetamine treatment led to normalization of basal extracellular levels of striatal DA as measured by microdialysis on days 11-14 and 25-28 after lesioning (Experiment 3). However, there were no significant differences between treatment groups in postmortem tissue levels of DA and its metabolites, indicating a dissociation between the DA depletion and the extracellular levels of DA as measured by microdialysis. Finally, rats exposed to the escalating amphetamine regimen had reduced lesion-induced loss of TH-IR cells in the ipsilateral DA cell body regions (Experiment 3). Thus, prelesion exposure to the escalating doses of amphetamine may render the cells resistant to the consequences of damage after subsequent 6-OHDA lesions, possibly by accelerating the development of compensatory changes in the DA neurons that typically accompany behavioral recovery. The potential role of amphetamine-induced endogenous neurotrophic factors in the behavioral sparing and normalization of basal extracellular DA levels observed after subsequent 6-OHDA lesions is discussed.
Collapse
Affiliation(s)
- Isabella Anna Moroz
- Center for Studies in Behavioral Neurobiology, Concordia University, Montreal, PQ, Canada
| | | | | | | |
Collapse
|