201
|
Lemere CA. Immunotherapy for Alzheimer's disease: hoops and hurdles. Mol Neurodegener 2013; 8:36. [PMID: 24148220 PMCID: PMC4015631 DOI: 10.1186/1750-1326-8-36] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 09/23/2013] [Indexed: 12/02/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, afflicting more than 30 million people worldwide. Currently, there is no cure or way to prevent this devastating disease. Extracellular plaques, containing various forms of amyloid-β protein (Aβ), and intracellular neurofibrillary tangles (NFTs), composed of hyper-phosphorylated tau protein, are two major pathological hallmarks of the AD brain. Aggregation, deposition, and N-terminal modification of Aβ protein and tau phosphorylation and aggregation are thought to precede the onset of cognitive decline, which is better correlated with tangle formation and neuron loss. Active and passive vaccines against various forms of Aβ have shown promise in pre-clinical animal models. However, translating these results safely and effectively into humans has been challenging. Recent clinical trials showed little or no cognitive efficacy, possibly due to the fact that the aforementioned neurodegenerative processes most likely pre-existed in the patients well before the start of immunotherapy. Efforts are now underway to treat individuals at risk for AD prior to or in the earliest stages of cognitive decline with the hope of preventing or delaying the onset of the disease. In addition, efforts to immunize against tau and other AD-related targets are underway.
Collapse
Affiliation(s)
- Cynthia A Lemere
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, NRB 636F, 77 Avenue Louis Pasteur, Boston 02115, MA, USA.
| |
Collapse
|
202
|
Glutaminyl cyclase-mediated toxicity of pyroglutamate-beta amyloid induces striatal neurodegeneration. BMC Neurosci 2013; 14:108. [PMID: 24083638 PMCID: PMC3850634 DOI: 10.1186/1471-2202-14-108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2012] [Accepted: 09/18/2013] [Indexed: 11/20/2022] Open
Abstract
Background Posttranslational modifications of beta amyloid (Aβ) have been shown to affect its biophysical and neurophysiological properties. One of these modifications is N-terminal pyroglutamate (pE) formation. Enzymatic glutaminyl cyclase (QC) activity catalyzes cyclization of truncated Aβ(3-x), generating pE3-Aβ. Compared to unmodified Aβ, pE3-Aβ is more hydrophobic and neurotoxic. In addition, it accelerates aggregation of other Aβ species. To directly investigate pE3-Aβ formation and toxicity in vivo, transgenic (tg) ETNA (E at the truncated N-terminus of Aβ) mice expressing truncated human Aβ(3–42) were generated and comprehensively characterized. To further investigate the role of QC in pE3-Aβ formation in vivo, ETNA mice were intercrossed with tg mice overexpressing human QC (hQC) to generate double tg ETNA-hQC mice. Results Expression of truncated Aβ(3–42) was detected mainly in the lateral striatum of ETNA mice, leading to progressive accumulation of pE3-Aβ. This ultimately resulted in astrocytosis, loss of DARPP-32 immunoreactivity, and neuronal loss at the sites of pE3-Aβ formation. Neuropathology in ETNA mice was associated with behavioral alterations. In particular, hyperactivity and impaired acoustic sensorimotor gating were detected. Double tg ETNA-hQC mice showed similar Aβ levels and expression sites, while pE3-Aβ were significantly increased, entailing increased astrocytosis and neuronal loss. Conclusions ETNA and ETNA-hQC mice represent novel mouse models for QC-mediated toxicity of truncated and pE-modified Aβ. Due to their significant striatal neurodegeneration these mice can also be used for analysis of striatal regulation of basal locomotor activity and sensorimotor gating, and possibly for DARPP-32-dependent neurophysiology and neuropathology. The spatio-temporal correlation of pE3-Aβ and neuropathology strongly argues for an important role of this Aβ species in neurodegenerative processes in these models.
Collapse
|
203
|
N-truncated Abeta starting with position four: early intraneuronal accumulation and rescue of toxicity using NT4X-167, a novel monoclonal antibody. Acta Neuropathol Commun 2013; 1:56. [PMID: 24252153 PMCID: PMC3893517 DOI: 10.1186/2051-5960-1-56] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 08/10/2013] [Indexed: 12/27/2022] Open
Abstract
Background The amyloid hypothesis in Alzheimer disease (AD) considers amyloid β peptide (Aβ) deposition causative in triggering down-stream events like neurofibrillary tangles, cell loss, vascular damage and memory decline. In the past years N-truncated Aβ peptides especially N-truncated pyroglutamate AβpE3-42 have been extensively studied. Together with full-length Aβ1–42 and Aβ1–40, N-truncated AβpE3-42 and Aβ4–42 are major variants in AD brain. Although Aβ4–42 has been known for a much longer time, there is a lack of studies addressing the question whether AβpE3-42 or Aβ4–42 may precede the other in Alzheimer’s disease pathology. Results Using different Aβ antibodies specific for the different N-termini of N-truncated Aβ, we discovered that Aβ4-x preceded AβpE3-x intraneuronal accumulation in a transgenic mouse model for AD prior to plaque formation. The novel Aβ4-x immunoreactive antibody NT4X-167 detected high molecular weight aggregates derived from N-truncated Aβ species. While NT4X-167 significantly rescued Aβ4–42 toxicity in vitro no beneficial effect was observed against Aβ1–42 or AβpE3-42 toxicity. Phenylalanine at position four of Aβ was imperative for antibody binding, because its replacement with alanine or proline completely prevented binding. Although amyloid plaques were observed using NT4X-167 in 5XFAD transgenic mice, it barely reacted with plaques in the brain of sporadic AD patients and familial cases with the Arctic, Swedish and the presenilin-1 PS1Δ9 mutation. A consistent staining was observed in blood vessels in all AD cases with cerebral amyloid angiopathy. There was no cross-reactivity with other aggregates typical for other common neurodegenerative diseases showing that NT4X-167 staining is specific for AD. Conclusions Aβ4-x precedes AβpE3-x in the well accepted 5XFAD AD mouse model underlining the significance of N-truncated species in AD pathology. NT4X-167 therefore is the first antibody reacting with Aβ4-x and represents a novel tool in Alzheimer research.
Collapse
|
204
|
Iwata N, Sekiguchi M, Hattori Y, Takahashi A, Asai M, Ji B, Higuchi M, Staufenbiel M, Muramatsu SI, Saido TC. Global brain delivery of neprilysin gene by intravascular administration of AAV vector in mice. Sci Rep 2013; 3:1472. [PMID: 23503602 PMCID: PMC3600598 DOI: 10.1038/srep01472] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 03/04/2013] [Indexed: 12/21/2022] Open
Abstract
Accumulation of amyloid-β peptide (Aβ) in the brain is closely associated with cognitive decline in Alzheimer's disease (AD). Stereotaxic infusion of neprilysin-encoding viral vectors into the hippocampus has been shown to decrease Aβ in AD-model mice, but more efficient and global delivery is necessary to treat the broadly distributed burden in AD. Here we developed an adeno-associated virus (AAV) vector capable of providing neuronal gene expression throughout the brains after peripheral administration. A single intracardiac administration of the vector carrying neprilysin gene in AD-model mice elevated neprilysin activity broadly in the brain, and reduced Aβ oligomers, with concurrent alleviation of abnormal learning and memory function and improvement of amyloid burden. The exogenous neprilysin was localized mainly in endosomes, thereby effectively excluding Aβ oligomers from the brain. AAV vector-mediated gene transfer may provide a therapeutic strategy for neurodegenerative diseases, where global transduction of a therapeutic gene into the brain is necessary.
Collapse
Affiliation(s)
- Nobuhisa Iwata
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
205
|
Haußmann U, Jahn O, Linning P, Janßen C, Liepold T, Portelius E, Zetterberg H, Bauer C, Schuchhardt J, Knölker HJ, Klafki H, Wiltfang J. Analysis of Amino-Terminal Variants of Amyloid-β Peptides by Capillary Isoelectric Focusing Immunoassay. Anal Chem 2013; 85:8142-9. [DOI: 10.1021/ac401055y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Ute Haußmann
- LVR-Klinikum Essen, Department
of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Olaf Jahn
- Max-Planck-Institute of Experimental Medicine, Proteomics Group, D-37075
Göttingen, Germany
| | - Philipp Linning
- Department of Chemistry, Technische Universität Dresden, D-01069 Dresden,
Germany
| | - Christin Janßen
- LVR-Klinikum Essen, Department
of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Thomas Liepold
- Max-Planck-Institute of Experimental Medicine, Proteomics Group, D-37075
Göttingen, Germany
| | - Erik Portelius
- Department of Psychiatry
and
Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska
Academy, University of Gothenburg, 431
80 Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry
and
Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska
Academy, University of Gothenburg, 431
80 Mölndal, Sweden
- UCL Institute of Neurology, Queen Square, London, U.K
| | - Chris Bauer
- MicroDiscovery GmbH, D-10405 Berlin, Germany
| | | | - Hans-Joachim Knölker
- Department of Chemistry, Technische Universität Dresden, D-01069 Dresden,
Germany
| | - Hans Klafki
- LVR-Klinikum Essen, Department
of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, D-45147 Essen, Germany
| | - Jens Wiltfang
- LVR-Klinikum Essen, Department
of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, D-45147 Essen, Germany
| |
Collapse
|
206
|
Bouter Y, Dietrich K, Wittnam JL, Rezaei-Ghaleh N, Pillot T, Papot-Couturier S, Lefebvre T, Sprenger F, Wirths O, Zweckstetter M, Bayer TA. N-truncated amyloid β (Aβ) 4-42 forms stable aggregates and induces acute and long-lasting behavioral deficits. Acta Neuropathol 2013; 126:189-205. [PMID: 23685882 PMCID: PMC3722453 DOI: 10.1007/s00401-013-1129-2] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 12/30/2022]
Abstract
N-truncated Aβ4-42 is highly abundant in Alzheimer disease (AD) brain and was the first Aβ peptide discovered in AD plaques. However, a possible role in AD aetiology has largely been neglected. In the present report, we demonstrate that Aβ4-42 rapidly forms aggregates possessing a high aggregation propensity in terms of monomer consumption and oligomer formation. Short-term treatment of primary cortical neurons indicated that Aβ4-42 is as toxic as pyroglutamate Aβ3-42 and Aβ1-42. In line with these findings, treatment of wildtype mice using intraventricular Aβ injection induced significant working memory deficits with Aβ4-42, pyroglutamate Aβ3-42 and Aβ1-42. Transgenic mice expressing Aβ4-42 (Tg4-42 transgenic line) developed a massive CA1 pyramidal neuron loss in the hippocampus. The hippocampus-specific expression of Aβ4-42 correlates well with age-dependent spatial reference memory deficits assessed by the Morris water maze test. Our findings indicate that N-truncated Aβ4-42 triggers acute and long-lasting behavioral deficits comparable to AD typical memory dysfunction.
Collapse
Affiliation(s)
- Yvonne Bouter
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, von-Siebold-Strasse 5, 37075 Goettingen, Germany
| | - Katharina Dietrich
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, von-Siebold-Strasse 5, 37075 Goettingen, Germany
| | - Jessica L. Wittnam
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, von-Siebold-Strasse 5, 37075 Goettingen, Germany
| | - Nasrollah Rezaei-Ghaleh
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | | | | | | | - Frederick Sprenger
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, von-Siebold-Strasse 5, 37075 Goettingen, Germany
| | - Oliver Wirths
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, von-Siebold-Strasse 5, 37075 Goettingen, Germany
| | - Markus Zweckstetter
- German Center for Neurodegenerative Diseases (DZNE), 37077 Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Thomas A. Bayer
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, von-Siebold-Strasse 5, 37075 Goettingen, Germany
| |
Collapse
|
207
|
Abraham JD, Promé S, Salvetat N, Rubrecht L, Cobo S, du Paty E, Galéa P, Mathieu-Dupas E, Ranaldi S, Caillava C, Crémer GA, Rieunier F, Robert P, Molina F, Laune D, Checler F, Fareh J. Cerebrospinal Aβ11-x and 17-x levels as indicators of mild cognitive impairment and patients' stratification in Alzheimer's disease. Transl Psychiatry 2013; 3:e281. [PMID: 23860482 PMCID: PMC3731790 DOI: 10.1038/tp.2013.58] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/25/2013] [Indexed: 01/08/2023] Open
Abstract
In the present work, the concentrations of Aβ11-x and Aβ17-x peptides (x=40 or 42), which result from the combined cleavages of β-amyloid precursor protein (AβPP) by β'/α or α/γ-secretases, respectively, were assessed in cerebrospinal fluid (CSF) samples from patients with Alzheimer's disease (AD) or mild cognitive impairment (MCI). Specific multiplexed assays were set up using new anti-40 and anti-42 monoclonal antibodies (mAbs) for the capture of these N-truncated Aβ peptides and anti-11 or anti-17 mAbs for their detection. The specificity, sensitivity and reproducibility of such assays were assessed using synthetic peptides and human cell models. Aβ11-x and Aβ17-x were then measured in CSF samples from patients with AD (n=23), MCI (n=23) and controls with normal cognition (n=21). Aβ11-x levels were significantly lower in patients with MCI than in controls. Compared with the combined quantification of Aβ1-42, total Tau (T-Tau) and phosphorylated Tau (P-Tau; AlzBio3, Innogenetics), the association of Aβ11-40, Aβ17-40 and T-Tau improved the discrimination between MCI and controls. Furthermore, when patients with MCI were classified into two subgroups (MCI ≤1.5 or ≥2 based on their CDR-SB (Cognitive Dementia Rating-Sum of Boxes) score), the CSF Aβ17-40/Aβ11-40 ratio was significantly higher in patients with CDR-SB ≤1.5 than in controls, whereas neither Aβ1-42, T-Tau nor P-Tau allowed the detection of this subpopulation. These results need to be confirmed in a larger clinical prospective cohort.
Collapse
Affiliation(s)
- J-D Abraham
- SysDiag CNRS/Bio-Rad UMR3145, Montpellier, France.
| | - S Promé
- SysDiag CNRS/Bio-Rad UMR3145, Montpellier, France
| | - N Salvetat
- SysDiag CNRS/Bio-Rad UMR3145, Montpellier, France
| | - L Rubrecht
- SysDiag CNRS/Bio-Rad UMR3145, Montpellier, France
| | - S Cobo
- SysDiag CNRS/Bio-Rad UMR3145, Montpellier, France
| | - E du Paty
- SysDiag CNRS/Bio-Rad UMR3145, Montpellier, France
| | - P Galéa
- SysDiag CNRS/Bio-Rad UMR3145, Montpellier, France
| | | | - S Ranaldi
- SysDiag CNRS/Bio-Rad UMR3145, Montpellier, France
| | - C Caillava
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, team labelized by the ‘Fondation pour la Recherche Médicale' and LABEX (Laboratory of Excellence), Valbonne, France
| | - G-A Crémer
- Bio-Rad Laboratories, Marnes la Coquette, France
| | - F Rieunier
- Bio-Rad Laboratories, Marnes la Coquette, France
| | - P Robert
- CMRR, Memory Center, EA CoBTeK, University of Nice Sophia-Antipolis, Nice, France
| | - F Molina
- SysDiag CNRS/Bio-Rad UMR3145, Montpellier, France
| | - D Laune
- SysDiag CNRS/Bio-Rad UMR3145, Montpellier, France
| | - F Checler
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR7275, team labelized by the ‘Fondation pour la Recherche Médicale' and LABEX (Laboratory of Excellence), Valbonne, France
| | - J Fareh
- SysDiag CNRS/Bio-Rad UMR3145, Montpellier, France
| |
Collapse
|
208
|
Meral D, Urbanc B. Discrete molecular dynamics study of oligomer formation by N-terminally truncated amyloid β-protein. J Mol Biol 2013; 425:2260-75. [PMID: 23500806 PMCID: PMC3665754 DOI: 10.1016/j.jmb.2013.03.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Accepted: 03/05/2013] [Indexed: 01/09/2023]
Abstract
In Alzheimer's disease (AD), amyloid β-protein (Aβ) self-assembles into toxic oligomers. Of the two predominant Aβ alloforms, Aβ1-40 and Aβ1-42, the latter is particularly strongly linked to AD. N-terminally truncated and pyroglutamated Aβ peptides were recently shown to seed Aβ aggregation and contribute significantly to Aβ-mediated toxicity, yet their folding and assembly were not explored computationally. Discrete molecular dynamics approach previously captured in vitro-derived distinct Aβ1-40 and Aβ1-42 oligomer size distributions and predicted that the more toxic Aβ1-42 oligomers had more flexible and solvent-exposed N-termini than Aβ1-40 oligomers. Here, we examined oligomer formation of Aβ3-40, Aβ3-42, Aβ11-40, and Aβ11-42 by the discrete molecular dynamics approach. The four N-terminally truncated peptides showed increased oligomerization propensity relative to the full-length peptides, consistent with in vitro findings. Conformations formed by Aβ3-40/42 had significantly more flexible and solvent-exposed N-termini than Aβ1-40/42 conformations. In contrast, in Aβ11-40/42 conformations, the N-termini formed more contacts and were less accessible to the solvent. The compactness of the Aβ11-40/42 conformations was in part facilitated by Val12. Two single amino acid substitutions that reduced and abolished hydrophobicity at position 12, respectively, resulted in a proportionally increased structural variability. Our results suggest that Aβ11-40 and Aβ11-42 oligomers might be less toxic than Aβ1-40 and Aβ1-42 oligomers and offer a plausible explanation for the experimentally observed increased toxicity of Aβ3-40 and Aβ3-42 and their pyroglutamated forms.
Collapse
Affiliation(s)
- Derya Meral
- Department of Physics, Drexel University, Philadelphia, PA 19104, USA
| | - Brigita Urbanc
- Department of Physics, Drexel University, Philadelphia, PA 19104, USA
| |
Collapse
|
209
|
Nisbet RM, Nigro J, Breheney K, Caine J, Hattarki MK, Nuttall SD. Central amyloid-β-specific single chain variable fragment ameliorates Aβ aggregation and neurotoxicity. Protein Eng Des Sel 2013; 26:571-80. [PMID: 23766374 DOI: 10.1093/protein/gzt025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Anti-amyloid-β immunotherapies are a promising therapeutic approach for the treatment and prevention of Alzheimer's disease (AD). Single chain antibody fragments (scFv) are an attractive alternative to whole antibodies due to their small size, single polypeptide format and inability to stimulate potentially undesirable Fc-mediated immune effector functions. We have generated the scFv derivative of anti-Aβ monoclonal antibody, 1E8, known to target residues 17-22 of Aβ. Here we show that the soluble 1E8 scFv binds to the central region of Aβ with an affinity of ~55 nM and significantly reduces fibril formation of Aβ(1-42). Furthermore, 1E8 scFv ameliorates Aβ(1-42)-mediated toxicity in the PC12 cell line and murine primary neuronal cultures. This ability to both target the central region of Aβ and prevent Aβ(1-42) neurotoxicity in vitro makes it a promising therapeutic antibody building block for further functionalization, toward the treatment of AD.
Collapse
Affiliation(s)
- R M Nisbet
- Division of Materials Science and Engineering, CSIRO Preventative Health Flagship, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
210
|
Frost JL, Le KX, Cynis H, Ekpo E, Kleinschmidt M, Palmour RM, Ervin FR, Snigdha S, Cotman CW, Saido TC, Vassar RJ, St George-Hyslop P, Ikezu T, Schilling S, Demuth HU, Lemere CA. Pyroglutamate-3 amyloid-β deposition in the brains of humans, non-human primates, canines, and Alzheimer disease-like transgenic mouse models. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:369-81. [PMID: 23747948 DOI: 10.1016/j.ajpath.2013.05.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/29/2013] [Accepted: 05/02/2013] [Indexed: 01/27/2023]
Abstract
Amyloid-β (Aβ) peptides, starting with pyroglutamate at the third residue (pyroGlu-3 Aβ), are a major species deposited in the brain of Alzheimer disease (AD) patients. Recent studies suggest that this isoform shows higher toxicity and amyloidogenecity when compared to full-length Aβ peptides. Here, we report the first comprehensive and comparative IHC evaluation of pyroGlu-3 Aβ deposition in humans and animal models. PyroGlu-3 Aβ immunoreactivity (IR) is abundant in plaques and cerebral amyloid angiopathy of AD and Down syndrome patients, colocalizing with general Aβ IR. PyroGlu-3 Aβ is further present in two nontransgenic mammalian models of cerebral amyloidosis, Caribbean vervets, and beagle canines. In addition, pyroGlu-3 Aβ deposition was analyzed in 12 different AD-like transgenic mouse models. In contrast to humans, all transgenic models showed general Aβ deposition preceding pyroGlu-3 Aβ deposition. The findings varied greatly among the mouse models concerning age of onset and cortical brain region. In summary, pyroGlu-3 Aβ is a major species of β-amyloid deposited early in diffuse and focal plaques and cerebral amyloid angiopathy in humans and nonhuman primates, whereas it is deposited later in a subset of focal and vascular amyloid in AD-like transgenic mouse models. Given the proposed decisive role of pyroGlu-3 Aβ peptides for the development of human AD pathology, this study provides insights into the usage of animal models in AD studies.
Collapse
Affiliation(s)
- Jeffrey L Frost
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Richter M, Hoffmann R, Singer D. T-cell epitope-dependent immune response in inbred (C57BL/6J, SJL/J, and C3H/HeN) and transgenic P301S and Tg2576 mice. J Pept Sci 2013; 19:441-51. [PMID: 23728915 DOI: 10.1002/psc.2518] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/18/2013] [Accepted: 04/18/2013] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease is characterized by two pathological hallmarks, the intracellular deposition of hyperphosphorylated Tau protein and the extracellular deposition of Aβ1-40/42 , both being targets for immunotherapy. This study evaluates the immunogenic properties of three AD-specific B-cell epitopes (Tau229-237 [pT231/pS235], pyroGluAβ3-8 , and Aβ37/38-42/43 ) linked to five foreign T-cell epitopes (MVFP, TT, TBC Ag85B, PvT19, and PvT53) by immunizing inbred C57BL/6J (H-2(b) ), SJL/J (H-2(s2) ), and C3H/HeN (H-2(k) ) mice. Two promising candidates with respect to MHC II restriction were selected, and two transgenic mouse models of AD, P301S (H-2(b/) (k) ) and Tg2576 (H-2(b/) (s) ) animals, were immunized with one B-cell epitope in combination with two T-cell epitopes. Responders displayed an enhanced immune response compared with wild-type animals, which supports the vaccine design and the vaccination strategy. The immune response was also characterized by specific IgG subtype titers, which revealed a strong polarization toward the humoral pathway for immunization of phospho-Tau, whereas for both Aβ vaccines, a mixed cellular/humoral pathway response was observed. Despite the diversity and unpredictability of the immunogenicity of the peptide vaccines, all three peptide vaccine formulations appear to be promising constructs for future evaluation of their therapeutic properties.
Collapse
Affiliation(s)
- Monique Richter
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center for Biotechnology and Biomedicine, Leipzig University, Leipzig, Germany
| | | | | |
Collapse
|
212
|
Pfeiffer T, Ruppert T, Schaal H, Bosch V. Detection and initial characterization of protein entities consisting of the HIV glycoprotein cytoplasmic C-terminal domain alone. Virology 2013; 441:85-94. [DOI: 10.1016/j.virol.2013.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/26/2013] [Accepted: 03/13/2013] [Indexed: 11/29/2022]
|
213
|
Amyloid-beta isoform metabolism quantitation by stable isotope-labeled kinetics. Anal Biochem 2013; 440:56-62. [PMID: 23714261 DOI: 10.1016/j.ab.2013.04.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 11/22/2022]
Abstract
Abundant evidence suggests a central role for the amyloid-beta (Aβ) peptide in Alzheimer's disease (AD) pathogenesis. Production and clearance of different Aβ isoforms have been established as targets of proposed disease-modifying therapeutic treatments of AD. However, previous studies used multiple sequential purification steps to isolate the isoforms individually and quantitate them based on a common mid-domain peptide. We created a method to simultaneously purify Aβ isoforms and quantitate them by the specific C-terminal peptides in order to investigate Aβ isoform physiology in the central nervous system. By using standards generated from in vitro metabolic labeling, the relative quantitation of four peptides representing total amount of Aβ (Aβ-Total), Aβ38, Aβ40, and Aβ42 were achieved both in cell culture and in human cerebrospinal fluid (CSF). Standard curves for each isoform demonstrated good sensitivity with very low limits of detection and high accuracy. Because the assay does not require antibody development for each Aβ isoform peptide, significant improvements in the throughput and accuracy of isoform quantitation were achieved.
Collapse
|
214
|
Kumar S, Wirths O, Theil S, Gerth J, Bayer TA, Walter J. Early intraneuronal accumulation and increased aggregation of phosphorylated Abeta in a mouse model of Alzheimer's disease. Acta Neuropathol 2013; 125:699-709. [PMID: 23525537 DOI: 10.1007/s00401-013-1107-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/06/2013] [Accepted: 03/09/2013] [Indexed: 12/13/2022]
Abstract
The progressive accumulation of extracellular amyloid plaques in the brain is a common hallmark of Alzheimer's disease (AD). We recently identified a novel species of Aβ phosphorylated at serine residue 8 with increased propensity to form toxic aggregates as compared to non-phosphorylated species. The age-dependent analysis of Aβ depositions using novel monoclonal phosphorylation-state specific antibodies revealed that phosphorylated Aβ variants accumulate first inside of neurons in a mouse model of AD already at 2 month of age. At higher ages, phosphorylated Aβ is also abundantly detected in extracellular plaques. Besides a large overlap in the spatiotemporal deposition of phosphorylated and non-phosphorylated Aβ species, fractionized extraction of Aβ from brains revealed an increased accumulation of phosphorylated Aβ in oligomeric assemblies as compared to non-phosphorylated Aβ in vivo. Thus, phosphorylated Aβ could represent an important species in the formation and stabilization of neurotoxic aggregates, and might be targeted for AD therapy and diagnosis.
Collapse
Affiliation(s)
- Sathish Kumar
- Department of Neurology, University of Bonn, 53127, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
215
|
Golde TE, Borchelt DR, Giasson BI, Lewis J. Thinking laterally about neurodegenerative proteinopathies. J Clin Invest 2013; 123:1847-55. [PMID: 23635781 DOI: 10.1172/jci66029] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, and frontotemporal dementia, are proteinopathies that are associated with the aggregation and accumulation of misfolded proteins. While remarkable progress has been made in understanding the triggers of these conditions, several challenges have hampered the translation of preclinical therapies targeting pathways downstream of the initiating proteinopathies. Clinical trials in symptomatic patients using therapies directed toward initiating trigger events have met with little success, prompting concerns that such therapeutics may be of limited efficacy when used in advanced stages of the disease rather than as prophylactics. Herein, we discuss gaps in our understanding of the pathological processes downstream of the trigger and potential strategies to identify common features of the downstream degenerative cascade in multiple CNS proteinopathies, which could potentially lead to the development of common therapeutic targets for multiple disorders.
Collapse
Affiliation(s)
- Todd E Golde
- Center for Translational Research in Neurodegenerative Disease, Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, Florida 32610, USA.
| | | | | | | |
Collapse
|
216
|
Yamashima T. Reconsider Alzheimer's disease by the 'calpain-cathepsin hypothesis'--a perspective review. Prog Neurobiol 2013; 105:1-23. [PMID: 23499711 DOI: 10.1016/j.pneurobio.2013.02.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/08/2013] [Accepted: 02/28/2013] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is characterized by slowly progressive neuronal death, but its molecular cascade remains elusive for over 100 years. Since accumulation of autophagic vacuoles (also called granulo-vacuolar degenerations) represents one of the pathologic hallmarks of degenerating neurons in AD, a causative connection between autophagy failure and neuronal death should be present. The aim of this perspective review is at considering such underlying mechanism of AD that age-dependent oxidative stresses may affect the autophagic-lysosomal system via carbonylation and cleavage of heat-shock protein 70.1 (Hsp70.1). AD brains exhibit gradual but continual ischemic insults that cause perturbed Ca(2+) homeostasis, calpain activation, amyloid β deposition, and oxidative stresses. Membrane lipids such as linoleic and arachidonic acids are vulnerable to the cumulative oxidative stresses, generating a toxic peroxidation product 'hydroxynonenal' that can carbonylate Hsp70.1. Recent data advocate for dual roles of Hsp70.1 as a molecular chaperone for damaged proteins and a guardian of lysosomal integrity. Accordingly, impairments of lysosomal autophagy and stabilization may be driven by the calpain-mediated cleavage of carbonylated Hsp70.1, and this causes lysosomal permeabilization and/or rupture with the resultant release of the cell degradation enzyme, cathepsins (calpain-cathepsin hypothesis). Here, the author discusses three topics; (1) how age-related decrease in lysosomal and autophagic activities has a causal connection to programmed neuronal necrosis in sporadic AD, (2) how genetic factors such as apolipoprotein E and presenilin 1 can facilitate lysosomal destabilization in the sequential molecular events, and (3) whether a single cascade can simultaneously account for implications of all players previously reported. In conclusion, Alzheimer neuronal death conceivably occurs by the similar 'calpain-hydroxynonenal-Hsp70.1-cathepsin cascade' with ischemic neuronal death. Blockade of calpain and/or extra-lysosomal cathepsins as well as scavenging of hydroxynonenal would become effective AD therapeutic approaches.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Restorative Neurosurgery, Kanazawa University Graduate School of Medical Science, Takara-machi 13-1, Kanazawa 920-8641, Japan.
| |
Collapse
|
217
|
Affiliation(s)
- Dave C. Anderson
- Center for Advanced Drug Research; SRI International; 140 Research Drive; Harrisonburg; Virginia; 22802; USA
| |
Collapse
|
218
|
Demattos RB, Lu J, Tang Y, Racke MM, Delong CA, Tzaferis JA, Hole JT, Forster BM, McDonnell PC, Liu F, Kinley RD, Jordan WH, Hutton ML. A plaque-specific antibody clears existing β-amyloid plaques in Alzheimer's disease mice. Neuron 2013; 76:908-20. [PMID: 23217740 DOI: 10.1016/j.neuron.2012.10.029] [Citation(s) in RCA: 257] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2012] [Indexed: 01/13/2023]
Abstract
Aβ Immunotherapy is a promising therapeutic approach for Alzheimer's disease. Preclinical studies demonstrate that plaque prevention is possible; however, the more relevant therapeutic removal of existing plaque has proven elusive. Monoclonal antibodies in development target both soluble and insoluble Aβ peptide. We hypothesized that antibody specificity for deposited plaque was critical for plaque removal since soluble Aβ peptide would block recognition of deposited forms. We developed a plaque-specific antibody that targets a modified Aβ peptide (Aβ(p3-42)), which showed robust clearance of pre-existing plaque without causing microhemorrhage. Interestingly, a comparator N-terminal Aβ antibody 3D6, which binds both soluble and insoluble Aβ(1-42), lacked efficacy for lowering existing plaque but manifested a significant microhemorrhage liability. Mechanistic studies suggested that the lack of efficacy for 3D6 was attributed to poor target engagement in plaques. These studies have profound implications for the development of therapeutic Aβ antibodies for Alzheimer's disease.
Collapse
Affiliation(s)
- Ronald B Demattos
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
219
|
N-truncated Aβ peptides in complex fluids unraveled by new specific immunoassays. Neurobiol Aging 2013; 34:523-39. [DOI: 10.1016/j.neurobiolaging.2012.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 05/10/2012] [Accepted: 05/25/2012] [Indexed: 11/18/2022]
|
220
|
Esparza TJ, Zhao H, Cirrito JR, Cairns NJ, Bateman RJ, Holtzman DM, Brody DL. Amyloid-β oligomerization in Alzheimer dementia versus high-pathology controls. Ann Neurol 2013; 73:104-19. [PMID: 23225543 PMCID: PMC3563737 DOI: 10.1002/ana.23748] [Citation(s) in RCA: 232] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 08/08/2012] [Accepted: 08/27/2012] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Although amyloid-beta (Aβ) peptide deposition into insoluble plaques is a pathological hallmark of Alzheimer disease; soluble oligomeric Aβ has been hypothesized to more directly underlie impaired learning and memory in dementia of the Alzheimer type. However, the lack of a sensitive, specific, and quantitative assay for Aβ oligomers has hampered rigorous tests of this hypothesis. METHODS We developed a plate-based single molecule counting fluorescence immunoassay for oligomeric Aβ sensitive to low pg/ml concentrations of synthetic Aβ dimers using the same Aβ-specific monoclonal antibody to both capture and detect Aβ. The Aβ oligomer assay does not recognize monomeric Aβ, amyloid precursor protein, or other non-Aβ peptide oligomers. RESULTS Aβ oligomers were detected in aqueous cortical lysates from patients with dementia of the Alzheimer type and nondemented patients with Aβ plaque pathology. However, Aβ oligomer concentrations in demented patients' lysates were tightly correlated with Aβ plaque coverage (r = 0.88), but this relationship was weaker in those from nondemented patients (r = 0.30) despite equivalent Aβ plaque pathology. The ratio of Aβ oligomer levels to plaque density fully distinguished demented from nondemented patients, with no overlap between groups in this derived variable. Other Aβ and plaque measures did not distinguish demented from nondemented patients. Aβ oligomers were not detected in cerebrospinal fluid with this assay. INTERPRETATION The results raise the intriguing hypothesis that the linkage between plaques and oligomers may be a key pathophysiological event underlying dementia of the Alzheimer type. This Aβ oligomer assay may be useful for many tests of the oligomer hypothesis.
Collapse
Affiliation(s)
| | - Hanzhi Zhao
- Department of Neurology, Washington University School of Medicine
| | - John R. Cirrito
- Department of Neurology, Washington University School of Medicine
- Hope Center for Neurological Disorders, Washington University School of Medicine
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine
| | - Nigel J. Cairns
- Department of Neurology, Washington University School of Medicine
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine
- Department of Pathology and Immunology, Washington University School of Medicine
| | - Randall J. Bateman
- Department of Neurology, Washington University School of Medicine
- Hope Center for Neurological Disorders, Washington University School of Medicine
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine
| | - David M. Holtzman
- Department of Neurology, Washington University School of Medicine
- Hope Center for Neurological Disorders, Washington University School of Medicine
- Department of Developmental Biology, Washington University School of Medicine
- Knight Alzheimer’s Disease Research Center, Washington University School of Medicine
| | - David L. Brody
- Department of Neurology, Washington University School of Medicine
- Hope Center for Neurological Disorders, Washington University School of Medicine
| |
Collapse
|
221
|
Saul A, Lashley T, Revesz T, Holton J, Ghiso JA, Coomaraswamy J, Wirths O. Abundant pyroglutamate-modified ABri and ADan peptides in extracellular and vascular amyloid deposits in familial British and Danish dementias. Neurobiol Aging 2012; 34:1416-25. [PMID: 23261769 DOI: 10.1016/j.neurobiolaging.2012.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/17/2012] [Accepted: 11/22/2012] [Indexed: 11/15/2022]
Abstract
Familial British and familial Danish dementia (FDD) are progressive neurodegenerative disorders characterized by cerebral deposition of the amyloidogenic peptides ABri and ADan, respectively. These amyloid peptides start with an N-terminal glutamate residue, which can be posttranslationally converted into a pyroglutamate (pGlu) modified form, a mechanism which has been extensively described to be relevant for amyloid-beta (Aβ) peptides in Alzheimer's disease. Like pGlu-Aβ peptides, pGlu-ABri peptides have an increased aggregation propensity and show higher toxicity on human neuroblastoma cells as their nonmodified counterparts. We have generated novel N-terminal specific antibodies detecting the pGlu-modified forms of ABri and ADan peptides. With these antibodies we were able to identify abundant extracellular amyloid plaques, vascular, and parenchymal deposits in human familial British dementia and FDD brain tissue, and in a mouse model for FDD. Double-stainings using C-terminal specific antibodies in human samples revealed that highly aggregated pGlu-ABri and pGlu-ADan peptides are mainly present in plaque cores and central vascular deposits, leading to the assumption that these peptides have seeding properties. Furthermore, in an FDD-mouse model ADan peptides were detected in presynaptic terminals of the hippocampus where they might contribute to impaired synaptic transmission. These similarities of ABri and ADan to Aβ in Alzheimer's disease suggest that the posttranslational pGlu-modification of amyloid peptides might represent a general pathological mechanism leading to increased aggregation and toxicity in these forms of degenerative dementias.
Collapse
Affiliation(s)
- Anika Saul
- Division of Molecular Psychiatry, Georg-August-University Goettingen, University Medicine Goettingen, Germany
| | | | | | | | | | | | | |
Collapse
|
222
|
Sun N, Hartmann R, Lecher J, Stoldt M, Funke SA, Gremer L, Ludwig HH, Demuth HU, Kleinschmidt M, Willbold D. Structural analysis of the pyroglutamate-modified isoform of the Alzheimer's disease-related amyloid-β using NMR spectroscopy. J Pept Sci 2012; 18:691-5. [DOI: 10.1002/psc.2456] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 08/01/2012] [Accepted: 08/31/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Na Sun
- ICS-6, Forschungszentrum Jülich; 52425 Jülich Germany
| | | | - Justin Lecher
- ICS-6, Forschungszentrum Jülich; 52425 Jülich Germany
| | - Matthias Stoldt
- ICS-6, Forschungszentrum Jülich; 52425 Jülich Germany
- Institut für Physikalische Biologie; Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| | | | - Lothar Gremer
- ICS-6, Forschungszentrum Jülich; 52425 Jülich Germany
| | | | | | | | - Dieter Willbold
- ICS-6, Forschungszentrum Jülich; 52425 Jülich Germany
- Institut für Physikalische Biologie; Heinrich-Heine-Universität; 40225 Düsseldorf Germany
| |
Collapse
|
223
|
De Kimpe L, Bennis A, Zwart R, van Haastert ES, Hoozemans JJM, Scheper W. Disturbed Ca2+ homeostasis increases glutaminyl cyclase expression; connecting two early pathogenic events in Alzheimer's disease in vitro. PLoS One 2012; 7:e44674. [PMID: 22970285 PMCID: PMC3436868 DOI: 10.1371/journal.pone.0044674] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/10/2012] [Indexed: 01/22/2023] Open
Abstract
A major neuropathological hallmark of Alzheimer’s disease (AD) is the deposition of aggregated β amyloid (Aβ) peptide in the senile plaques. Aβ is a peptide of 38–43 amino acids and its accumulation and aggregation plays a key role early in the disease. A large fraction of β amyloid is N-terminally truncated rendering a glutamine that can subsequently be cyclized into pyroglutamate (pE). This makes the peptide more resistant to proteases, more prone to aggregation and increases its neurotoxicity. The enzyme glutaminyl cyclase (QC) catalyzes this conversion of glutamine to pE. In brains of AD patients, the expression of QC is increased in the earliest stages of pathology, which may be an important event in the pathogenesis. In this study we aimed to investigate the regulatory mechanism underlying the upregulation of QC expression in AD. Using differentiated SK-N-SH as a neuronal cell model, we found that neither the presence of Aβ peptides nor the unfolded protein response, two early events in AD, leads to increased QC levels. In contrast, we demonstrated increased QC mRNA levels and enzyme activity in response to another pathogenic factor in AD, perturbed intracellular Ca2+ homeostasis. The QC promoter contains a putative binding site for the Ca2+ dependent transcription factors c-fos and c-jun. C-fos and c-jun are induced by the same Ca2+-related stimuli as QC and their upregulation precedes QC expression. We show that in the human brain QC is predominantly expressed by neurons. Interestingly, the Ca2+- dependent regulation of both c-fos and QC is not observed in non-neuronal cells. Our results indicate that perturbed Ca2+ homeostasis results in upregulation of QC selectively in neuronal cells via Ca2+- dependent transcription factors. This suggests that disruption of Ca2+ homeostasis may contribute to the formation of the neurotoxic pE Aβ peptides in Alzheimer’s disease.
Collapse
Affiliation(s)
- Line De Kimpe
- Department of Genome Analysis, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Anna Bennis
- Department of Genome Analysis, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Rob Zwart
- Department of Genome Analysis, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - Wiep Scheper
- Department of Genome Analysis, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
- Department of Neurology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
224
|
Abstract
Prion disease research has opened up the "black-box" of neurodegeneration, defining a key role for protein misfolding wherein a predominantly alpha-helical precursor protein, PrP (C), is converted to a disease-associated, β-sheet enriched isoform called PrP (Sc). In Alzheimer disease (AD) the Aβ peptide derived from the β-amyloid precuror protein APP folds in β-sheet amyloid. Early thoughts along the lines of overlap may have been on target, (1) but were eclipsed by a simultaneous (but now anachronistic) controversy over the role of PrP (Sc) in prion diseases. (2) (,) (3) Nonetheless, as prion diseases such as Creutzfeldt-Jakob Disease (CJD) are themselves rare and can include an overt infectious mode of transmission, and as familial prion diseases and familial AD involve different genes, an observer might reasonably have concluded that prion research could occasionally catalyze ideas in AD, but could never provide concrete overlaps at the mechanistic level. Surprisingly, albeit a decade or three down the road, several prion/AD commonalities can be found within the contemporary literature. One important prion/AD overlap concerns seeded spread of Aβ aggregates by intracerebral inoculation much like prions, (4) and, with a neuron-to-neuron 'spreading' also reported for pathologic forms of other misfolded proteins, Tau (5) (,) (6) and α-synuclein in the case of Parkinson Disease. (7) (,) (8) The concept of seeded spread has been discussed extensively elsewhere, sometimes under the rubric of "prionoids" (9), and lies outside the scope of this particular review where we will focus upon PrP (C). From this point the story can now be subdivided into four strands of investigation: (1) pathologic effects of Aβ can be mediated by binding to PrP (C), (10) (2) the positioning of endoproteolytic processing events of APP by pathologic (β-cleavage + γ-cleavage) and non-pathologic (α-cleavage + γ-cleavage) secretase pathways is paralleled by seemingly analogous α- and β-like cleavage of PrP (C) (Fig. 1) (3) similar lipid raft environments for PrP (C) and APP processing machinery, (11) (-) (13) and perhaps in consequence, overlaps in repertoire of the PrP (C) and APP protein interactors ("interactomes"), (14) (,) (15) and (4) rare kindreds with mixed AD and prion pathologies. (16) Here we discuss confounds, consensus and conflict associated with parameters that apply to these experimental settings.
Collapse
Affiliation(s)
- David Westaway
- Department of Medicine (Neurology); University of Alberta; Edmonton, AB Canada
- Centre for Prions and Protein Folding Diseases; University of Alberta; Edmonton, AB Canada
- Department of Biochemistry; University of Alberta; Edmonton, AB Canada
| | - Jack H. Jhamandas
- Department of Medicine (Neurology); University of Alberta; Edmonton, AB Canada
| |
Collapse
|
225
|
Galante D, Corsaro A, Florio T, Vella S, Pagano A, Sbrana F, Vassalli M, Perico A, D'Arrigo C. Differential toxicity, conformation and morphology of typical initial aggregation states of Aβ1-42 and Aβpy3-42 beta-amyloids. Int J Biochem Cell Biol 2012; 44:2085-93. [PMID: 22903022 DOI: 10.1016/j.biocel.2012.08.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/13/2012] [Accepted: 08/03/2012] [Indexed: 10/28/2022]
Abstract
Among the different species of water-soluble β-peptides (Aβ1-42, Aβ1-40 and N-terminal truncated Aβ-peptides), Aβpy3-42 is thought to play a relevant role in Alzheimer's pathogenesis due to its abundance, resistance to proteolysis, fast aggregation kinetics, dynamic structure and high neurotoxicity. To evaluate the specific structural characteristics and neurotoxicity of Aβpy3-42, we separated different aggregation states of Aβ1-42 and Aβpy3-42 using fast protein liquid chromatography, isolating in both cases three peaks that corresponded to sa (small), ma (medium) and la (large) aggregates. Conformational analysis, by circular dichroism showed a prevailing random coil conformation for sa and ma, and typical β-sheet conformation for la. AFM and TEM show differential structural features between the three aggregates of a given β-peptide and among the aggregate of the two β-peptides. The potential toxic effects of the different aggregates were evaluated using human neuroblastoma SH-SY5Y cells in the MTT reduction, in the xCELLigence System, and in the Annexin V binding experiments. In the case of Aβ1-42 the most toxic aggregate is la, while in the case of Aβpy3-42 both sa and la are equally toxic. Aβ aggregates were found to be internalized in the cells, as estimated by confocal immunofluorescence microscopy, with a higher effect observed for Aβpy3-42, showing a good correlation with the toxic effects. Together these experiments allowed the discrimination of the intermediate states more responsible of oligomer toxicity, providing new insights on the correlation between the aggregation process and the toxicity and confirming the peculiar role in the pathogenesis of Alzheimer disease of Aβpy3-42 peptide.
Collapse
Affiliation(s)
- Denise Galante
- Institute for Macromolecular Studies, National Research Council, 16149 Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
226
|
Abstracts of the Ninth International Symposium on Functional Neuroreceptor Mapping of the Living Brain. August 9-11, 2012. J Cereb Blood Flow Metab 2012; 32 Suppl 1:S13-196. [PMID: 22872875 PMCID: PMC3421080 DOI: 10.1038/jcbfm.2012.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
227
|
Kakiya N, Saito T, Nilsson P, Matsuba Y, Tsubuki S, Takei N, Nawa H, Saido TC. Cell surface expression of the major amyloid-β peptide (Aβ)-degrading enzyme, neprilysin, depends on phosphorylation by mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK) and dephosphorylation by protein phosphatase 1a. J Biol Chem 2012; 287:29362-72. [PMID: 22767595 PMCID: PMC3436156 DOI: 10.1074/jbc.m112.340372] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Neprilysin is one of the major amyloid-β peptide (Aβ)-degrading enzymes, the expression of which declines in the brain during aging. The decrease in neprilysin leads to a metabolic Aβ imbalance, which can induce the amyloidosis underlying Alzheimer disease. Pharmacological activation of neprilysin during aging therefore represents a potential strategy to prevent the development of Alzheimer disease. However, the regulatory mechanisms mediating neprilysin activity in the brain remain unclear. To address this issue, we screened for pharmacological regulators of neprilysin activity and found that the neurotrophic factors brain-derived neurotrophic factor, nerve growth factor, and neurotrophins 3 and 4 reduce cell surface neprilysin activity. This decrease was mediated by MEK/ERK signaling, which enhanced phosphorylation at serine 6 in the neprilysin intracellular domain (S6-NEP-ICD). Increased phosphorylation of S6-NEP-ICD in primary neurons reduced the levels of cell surface neprilysin and led to a subsequent increase in extracellular Aβ levels. Furthermore, a specific inhibitor of protein phosphatase-1a, tautomycetin, induced extensive phosphorylation of the S6-NEP-ICD, resulting in reduced cell surface neprilysin activity. In contrast, activation of protein phosphatase-1a increased cell surface neprilysin activity and lowered Aβ levels. Taken together, these results indicate that the phosphorylation status of S6-NEP-ICD influences the localization of neprilysin and affects extracellular Aβ levels. Therefore, maintaining S6-NEP-ICD in a dephosphorylated state, either by inhibition of protein kinases involved in its phosphorylation or by activation of phosphatases catalyzing its dephosphorylation, may represent a new approach to prevent reduction of cell surface neprilysin activity during aging and to maintain physiological levels of Aβ in the brain.
Collapse
Affiliation(s)
- Naomasa Kakiya
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
228
|
Abstract
Diagnosis and treatment strategies for dementia are based on the sensitive and specific detection of the incipient neuropathological characteristics, combined with emerging treatments that counteract molecular processes in its pathogenesis. Positron emission tomography (PET) is used for diverse clinical and basic studies on dementia with a wide range of radiotracers. Approaches to visualize amyloid deposition in human brains non-invasively with PET depend on imaging agents reacting with amyloid fibrils. The most widely used tracer is [(11) C]-6-OH-BTA-1, also known as Pittsburgh Compound-B, which has a high affinity to amyloid β peptide (Aβ) aggregates. Some (18) F-labeled amyloid ligands with a longer radioactive half-life have also been developed for broader clinical applications. In addition, there have been demonstrated advantages of tracers with high specific radioactivity in the sensitive detection of amyloid, which have indicated the significance of Aβ-N3-pyroglutamate as a new diagnostic and therapeutic target. Furthermore, beneficial outcomes of Aβ and tau immunization in humans and mouse models have highlighted crucial roles of immunocompetent glia in the protection of neurons against amyloid toxicities. The utility of PET with a radioligand for translocator protein as a biomarker for tau-triggered toxicity, and as a complement to amyloid and tau imaging for diagnostic assessment of tauopathies with and without Aβ pathologies, has also been demonstrated. Meanwhile, brain cholinergic function can be estimated by measuring acetylcholinesterase activity in the brain with PET and radiolabeled acetylcholine analogues. It has been reported that patients with early Parkinson's disease exhibit a reduction in acetylcholinesterase activity in the cerebral cortex, and this decline is more profound in patients with Parkinson's disease with dementia and dementia with Lewy bodies than in patients with Parkinson's disease without dementia. The Alzheimer's Disease Neuroimaging Initiative was a multicentre research project conducted over 6 years that studied changes in cognition, brain structure, and biomarkers in healthy elderly controls and subjects with mild cognitive impairment and Alzheimer's disease. An international workgroup of the National Institute on Aging-Alzheimer's Association has suggested that Alzheimer's disease would be optimally treated before significant cognitive impairment, defined as a 'presymptomatic' or 'preclinical' stage. Therefore, PET will be of technical importance for both clinical and basic research aimed at prodromal pathologies of Alzheimer's disease.
Collapse
Affiliation(s)
- Takaaki Mori
- Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
229
|
Masters CL, Selkoe DJ. Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer disease. Cold Spring Harb Perspect Med 2012; 2:a006262. [PMID: 22675658 PMCID: PMC3367542 DOI: 10.1101/cshperspect.a006262] [Citation(s) in RCA: 419] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Progressive cerebral deposition of the amyloid β-protein (Aβ) in brain regions serving memory and cognition is an invariant and defining feature of Alzheimer disease. A highly similar but less robust process accompanies brain aging in many nondemented humans, lower primates, and some other mammals. The discovery of Aβ as the subunit of the amyloid fibrils in meningocerebral blood vessels and parenchymal plaques has led to innumerable studies of its biochemistry and potential cytotoxic properties. Here we will review the discovery of Aβ, numerous aspects of its complex biochemistry, and current attempts to understand how a range of Aβ assemblies, including soluble oligomers and insoluble fibrils, may precipitate and promote neuronal and glial alterations that underlie the development of dementia. Although the role of Aβ as a key molecular factor in the etiology of Alzheimer disease remains controversial, clinical trials of amyloid-lowering agents, reviewed elsewhere in this book, are poised to resolve the question of its pathogenic primacy.
Collapse
Affiliation(s)
- Colin L Masters
- The Mental Health Research Institute, The University of Melbourne, Parkville 3010, Australia.
| | | |
Collapse
|
230
|
Morales-Corraliza J, Schmidt SD, Mazzella MJ, Berger JD, Wilson DA, Wesson DW, Jucker M, Levy E, Nixon RA, Mathews PM. Immunization targeting a minor plaque constituent clears β-amyloid and rescues behavioral deficits in an Alzheimer's disease mouse model. Neurobiol Aging 2012; 34:137-45. [PMID: 22608241 DOI: 10.1016/j.neurobiolaging.2012.04.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 03/30/2012] [Accepted: 04/15/2012] [Indexed: 01/01/2023]
Abstract
Although anti-human β-amyloid (Aβ) immunotherapy clears brain β-amyloid plaques in Alzheimer's disease (AD), targeting additional brain plaque constituents to promote clearance has not been attempted. Endogenous murine Aβ is a minor Aβ plaque component in amyloid precursor protein (APP) transgenic AD models, which we show is ∼3%-8% of the total accumulated Aβ in various human APP transgenic mice. Murine Aβ codeposits and colocalizes with human Aβ in amyloid plaques, and the two Aβ species coimmunoprecipitate together from brain extracts. In the human APP transgenic mouse model Tg2576, passive immunization for 8 weeks with a murine-Aβ-specific antibody reduced β-amyloid plaque pathology, robustly decreasing both murine and human Aβ levels. The immunized mice additionally showed improvements in two behavioral assays, odor habituation and nesting behavior. We conclude that passive anti-murine Aβ immunization clears Aβ plaque pathology--including the major human Aβ component--and decreases behavioral deficits, arguing that targeting minor endogenous brain plaque constituents can be beneficial, broadening the range of plaque-associated targets for AD therapeutics.
Collapse
Affiliation(s)
- Jose Morales-Corraliza
- Center for Dementia Research, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
231
|
Abnormal intracellular accumulation and extracellular Aβ deposition in idiopathic and Dup15q11.2-q13 autism spectrum disorders. PLoS One 2012; 7:e35414. [PMID: 22567102 PMCID: PMC3342283 DOI: 10.1371/journal.pone.0035414] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 03/15/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND It has been shown that amyloid ß (Aβ), a product of proteolytic cleavage of the amyloid β precursor protein (APP), accumulates in neuronal cytoplasm in non-affected individuals in a cell type-specific amount. METHODOLOGY/PRINCIPAL FINDINGS In the present study, we found that the percentage of amyloid-positive neurons increases in subjects diagnosed with idiopathic autism and subjects diagnosed with duplication 15q11.2-q13 (dup15) and autism spectrum disorder (ASD). In spite of interindividual differences within each examined group, levels of intraneuronal Aβ load were significantly greater in the dup(15) autism group than in either the control or the idiopathic autism group in 11 of 12 examined regions (p<0.0001 for all comparisons; Kruskall-Wallis test). In eight regions, intraneuronal Aβ load differed significantly between idiopathic autism and control groups (p<0.0001). The intraneuronal Aβ was mainly N-terminally truncated. Increased intraneuronal accumulation of Aβ(17-40/42) in children and adults suggests a life-long enhancement of APP processing with α-secretase in autistic subjects. Aβ accumulation in neuronal endosomes, autophagic vacuoles, Lamp1-positive lysosomes and lipofuscin, as revealed by confocal microscopy, indicates that products of enhanced α-secretase processing accumulate in organelles involved in proteolysis and storage of metabolic remnants. Diffuse plaques containing Aβ(1-40/42) detected in three subjects with ASD, 39 to 52 years of age, suggest that there is an age-associated risk of alterations of APP processing with an intraneuronal accumulation of a short form of Aβ and an extracellular deposition of full-length Aβ in nonfibrillar plaques. CONCLUSIONS/SIGNIFICANCE The higher prevalence of excessive Aβ accumulation in neurons in individuals with early onset of intractable seizures, and with a high risk of sudden unexpected death in epilepsy in autistic subjects with dup(15) compared to subjects with idiopathic ASD, supports the concept of mechanistic and functional links between autism, epilepsy and alterations of APP processing leading to neuronal and astrocytic Aβ accumulation and diffuse plaque formation.
Collapse
|
232
|
Nussbaum JM, Schilling S, Cynis H, Silva A, Swanson E, Wangsanut T, Tayler K, Wiltgen B, Hatami A, Rönicke R, Reymann K, Hutter-Paier B, Alexandru A, Jagla W, Graubner S, Glabe CG, Demuth HU, Bloom GS. Prion-like behaviour and tau-dependent cytotoxicity of pyroglutamylated amyloid-β. Nature 2012; 485:651-5. [PMID: 22660329 PMCID: PMC3367389 DOI: 10.1038/nature11060] [Citation(s) in RCA: 332] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 03/16/2012] [Indexed: 11/09/2022]
Abstract
Extracellular plaques of β-amyloid (Aβ) and intraneuronal neurofibrillary tangles made from tau are the histopathological signatures of Alzheimer’s disease (AD). Plaques comprise Aβ fibrils that assemble from monomeric and oligomeric intermediates, and are prognostic indicators of AD. Despite the significance of plaques to AD, oligomers are considered to be the principal toxic forms of Aβ1,2. Interestingly, many adverse responses to Aβ, such as cytotoxicity3, microtubule loss4, impaired memory and learning5, and neuritic degeneration6, are greatly amplified by tau expression. N-terminally truncated, pyroglutamylated (pE) forms of Aβ7,8 are strongly associated with AD, are more toxic than Aβ1–42 and Aβ1–40, and have been proposed as initiators of AD pathogenesis9,10. We now report a mechanism by which pE-Aβ may trigger AD. Aβ3(pE)-42 co-oligomerizes with excess Aβ1–42 to form metastable low-n oligomers (LNOs) that are structurally distinct and far more cytotoxic to cultured neurons than comparable LNOs made from Aβ1–42 alone. Tau is required for cytotoxicity, and LNOs comprising 5% Aβ3(pE)-42 plus 95% Aβ1–42 (5% pE-Aβ) seed new cytotoxic LNOs through multiple serial dilutions into Aβ1–42 monomers in the absence of additional Aβ3(pE)-42. LNOs isolated from human AD brain contained Aβ3(pE)-42, and enhanced Aβ3(pE)-42 formation in mice triggered neuron loss and gliosis at 3 months, but not in a tau null background. We conclude that Aβ3(pE)-42 confers tau-dependent neuronal death and causes template-induced misfolding of Aβ1–42 into structurally distinct LNOs that propagate by a prion-like mechanism. Our results raise the possibility that Aβ3(pE)-42 acts similarly at a primary step in AD pathogenesis.
Collapse
Affiliation(s)
- Justin M Nussbaum
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
233
|
The Arctic amyloid-β precursor protein (AβPP) mutation results in distinct plaques and accumulation of N- and C-truncated Aβ. Neurobiol Aging 2012; 33:1010.e1-13. [DOI: 10.1016/j.neurobiolaging.2011.10.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Revised: 10/18/2011] [Accepted: 10/21/2011] [Indexed: 11/19/2022]
|
234
|
Transgenic expression of intraneuronal Aβ42 but not Aβ40 leads to cellular Aβ lesions, degeneration, and functional impairment without typical Alzheimer's disease pathology. J Neurosci 2012; 32:1273-83. [PMID: 22279212 DOI: 10.1523/jneurosci.4586-11.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
An early role of amyloid-β peptide (Aβ) aggregation in Alzheimer's disease pathogenesis is well established. However, the contribution of intracellular or extracellular forms of Aβ to the neurodegenerative process is a subject of considerable debate. We here describe transgenic mice expressing Aβ1-40 (APP47) and Aβ1-42 (APP48) with a cleaved signal sequence to insert both peptides during synthesis into the endoplasmic reticulum. Although lower in transgene mRNA, APP48 mice reach a higher brain Aβ concentration. The reduced solubility and increased aggregation of Aβ1-42 may impair its degradation. APP48 mice develop intracellular Aβ lesions in dendrites and lysosomes. The hippocampal neuron number is reduced already at young age. The brain weight decreases during aging in conjunction with severe white matter atrophy. The mice show a motor impairment. Only very few Aβ1-40 lesions are found in APP47 mice. Neither APP47 nor APP48 nor the bigenic mice develop extracellular amyloid plaques. While intracellular membrane expression of Aβ1-42 in APP48 mice does not lead to the AD-typical lesions, Aβ aggregates develop within cells accompanied by considerable neurodegeneration.
Collapse
|
235
|
Ikonomovic MD, Abrahamson EE, Price JC, Hamilton RL, Mathis CA, Paljug WR, Debnath ML, Cohen AD, Mizukami K, DeKosky ST, Lopez OL, Klunk WE. Early AD pathology in a [C-11]PiB-negative case: a PiB-amyloid imaging, biochemical, and immunohistochemical study. Acta Neuropathol 2012; 123:433-47. [PMID: 22271153 PMCID: PMC3383058 DOI: 10.1007/s00401-012-0943-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 12/15/2011] [Accepted: 01/09/2012] [Indexed: 11/25/2022]
Abstract
Amyloid-β (Aβ) deposits are detectable in the brain in vivo using positron emission tomography (PET) and [C-11]-labeled Pittsburgh Compound B ([C-11]PiB); however, the sensitivity of this technique is not well understood. In this study, we examined Aβ pathology in an individual who had clinical diagnoses of probable dementia with Lewy bodies and possible Alzheimer's disease (AD) but with no detectable [C-11]PiB PET retention ([C-11]PiB(-)) when imaged 17 months prior to death. Brain samples were processed in parallel with region-matched samples from an individual with a clinical diagnosis of probable AD and a positive [C-11]PiB PET scan ([C-11]PiB(+)) when imaged 10 months prior to death. In the [C-11]PiB(-) case, Aβ plaques were sparse, occupying less than 2% cortical area, and were weakly labeled with 6-CN-PiB, a highly fluorescent derivative of PiB. In contrast, Aβ plaques occupied up to 12% cortical area in the [C-11]PiB(+) case, and were intensely labeled with 6-CN-PIB. The [C-11]PiB(-) case had low levels of [H-3]PiB binding (< 100 pmol/g) and Aβ1-42 (< 500 pmol/g) concentration except in the frontal cortex where Aβ1-42 values (788 pmol/g) approached cortical values in the [C-11]PiB(+) case (800-1, 700 pmol/g). In several cortical regions of the [C-11]PiB(-) case, Aβ1-40 levels were within the range of cortical Aβ1-40 values in the [C-11]PiB(+) case. Antemortem [C-11]PiB DVR values correlated well with region-matched postmortem measures of Aβ1-42 and Aβ1-40 in the [C-11]PiB(+), and with Aβ1-42 only in the [C-11]PiB(-) case. The low ratios of [H-3]PiB binding levels to Aβ concentrations and 6-CN-PiB to Aβ plaque loads in the [C-11]PiB(-) case indicate that Aβ pathology in the brain may be associated with low or undetectable levels of [C-11]PiB retention. Studies in greater numbers of [C-11]PiB PET autopsy cases are needed to define the Aβ concentration and [H-3]PiB binding levels required to produce a positive [C-11]PiB PET signal.
Collapse
Affiliation(s)
- Milos D Ikonomovic
- Department of Neurology, University of Pittsburgh School of Medicine, 200 Lothrop Street BST S521, Pittsburgh, PA 15213. USA,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Frost JL, Liu B, Kleinschmidt M, Schilling S, Demuth HU, Lemere CA. Passive immunization against pyroglutamate-3 amyloid-β reduces plaque burden in Alzheimer-like transgenic mice: a pilot study. NEURODEGENER DIS 2012; 10:265-70. [PMID: 22343072 PMCID: PMC3702016 DOI: 10.1159/000335913] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 12/18/2011] [Indexed: 11/22/2022] Open
Abstract
Background N-terminally truncated and modified pyroglutamate-3 amyloid-β protein (pE3-Aβ) is present in most, if not all, cerebral plaque and vascular amyloid deposits in human Alzheimer's disease (AD). pE3-Aβ deposition is also found in AD-like transgenic (tg) mouse brain, albeit in lesser quantities than general Aβ. pE3-Aβ resists degradation, is neurotoxic, and may act as a seed for Aβ aggregation. Objective: We sought to determine if pE3-Aβ removal by passive immunization with a highly specific monoclonal antibody (mAb) impacts pathogenesis in a mouse model of Alzheimer's amyloidosis. Methods APPswe/PS1ΔE9 tg mice were given weekly intraperitoneal injections of a new anti-pE3-Aβ mAb (mAb07/1) or PBS from 5.8 to 13.8 months of age (prevention) or from 23 to 24.7 months of age (therapeutic). Multiple forms of cerebral Aβ were quantified pathologically and biochemically. Gliosis and microhemorrhage were examined. Results Chronic passive immunization with an anti-pE3-Aβ mAb significantly reduced total plaque deposition and appeared to lower gliosis in the hippocampus and cerebellum in both the prevention and therapeutic studies. Insoluble Aβ levels in hemibrain homogenates were not significantly different between immunized and control mice. Microhemorrhage was not observed with anti-pE3-Aβ immunotherapy. Conclusions Selective removal of pE3-Aβ lowered general Aβ plaque deposition suggesting a pro-aggregation or seeding role for pE3-Aβ.
Collapse
Affiliation(s)
- Jeffrey L Frost
- Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass, USA
| | | | | | | | | | | |
Collapse
|
237
|
Inhibition of glutaminyl cyclase attenuates cell migration modulated by monocyte chemoattractant proteins. Biochem J 2012; 442:403-12. [DOI: 10.1042/bj20110535] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
QC (glutaminyl cyclase) catalyses the formation of N-terminal pGlu (pyroglutamate) in peptides and proteins. pGlu formation in chemoattractants may participate in the regulation of macrophage activation and migration. However, a clear molecular mechanism for the regulation is lacking. The present study examines the role of QC-mediated pGlu formation on MCPs (monocyte chemoattractant proteins) in inflammation. We demonstrated in vitro the pGlu formation on MCPs by QC using MS. A potent QC inhibitor, PBD150, significantly reduced the N-terminal uncyclized-MCP-stimulated monocyte migration, whereas pGlu-containing MCP-induced cell migration was unaffected. QC small interfering RNA revealed a similar inhibitory effect. Lastly, we demonstrated that inhibiting QC can attenuate cell migration by lipopolysaccharide. These results strongly suggest that QC-catalysed N-terminal pGlu formation of MCPs is required for monocyte migration and provide new insights into the role of QC in the inflammation process. Our results also suggest that QC could be a drug target for some inflammatory disorders.
Collapse
|
238
|
Wittnam JL, Portelius E, Zetterberg H, Gustavsson MK, Schilling S, Koch B, Demuth HU, Blennow K, Wirths O, Bayer TA. Pyroglutamate amyloid β (Aβ) aggravates behavioral deficits in transgenic amyloid mouse model for Alzheimer disease. J Biol Chem 2012; 287:8154-62. [PMID: 22267726 DOI: 10.1074/jbc.m111.308601] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pyroglutamate-modified Aβ peptides at amino acid position three (Aβ(pE3-42)) are gaining considerable attention as potential key players in the pathogenesis of Alzheimer disease (AD). Aβ(pE3-42) is abundant in AD brain and has a high aggregation propensity, stability and cellular toxicity. The aim of the present work was to study the direct effect of elevated Aβ(pE3-42) levels on ongoing AD pathology using transgenic mouse models. To this end, we generated a novel mouse model (TBA42) that produces Aβ(pE3-42). TBA42 mice showed age-dependent behavioral deficits and Aβ(pE3-42) accumulation. The Aβ profile of an established AD mouse model, 5XFAD, was characterized using immunoprecipitation followed by mass spectrometry. Brains from 5XFAD mice demonstrated a heterogeneous mixture of full-length, N-terminal truncated, and modified Aβ peptides: Aβ(1-42), Aβ(1-40), Aβ(pE3-40), Aβ(pE3-42), Aβ(3-42), Aβ(4-42), and Aβ(5-42). 5XFAD and TBA42 mice were then crossed to generate transgenic FAD42 mice. At 6 months of age, FAD42 mice showed an aggravated behavioral phenotype compared with single transgenic 5XFAD or TBA42 mice. ELISA and plaque load measurements revealed that Aβ(pE3) levels were elevated in FAD42 mice. No change in Aβ(x)(-42) or other Aβ isoforms was discovered by ELISA and mass spectrometry. These observations argue for a seeding effect of Aβ(pE-42) in FAD42 mice.
Collapse
Affiliation(s)
- Jessica L Wittnam
- Division of Molecular Psychiatry, Georg August University Göttingen, University Medicine Göttingen, 37075 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Gunn AP, Roberts BR, Bush AI. Rapid generation of dityrosine cross-linked Aβ oligomers via Cu-redox cycling. Methods Mol Biol 2012; 849:3-10. [PMID: 22528079 DOI: 10.1007/978-1-61779-551-0_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
There is a great interest in the role of free radicals and oxidative stress in Alzheimer's disease and for the role of transition metals in the generation of oligomers of Aβ peptides. In the literature, there are a multitude of varying methods that can be used to create soluble oligomers of Aβ, however, the processes that create these oligomers are often stochastic by nature and thus reproducibility is an issue. Here we report a simple and reproducible method for the production of radically derived dityrosine cross-linked oligomers of Aβ, through reaction with copper and ascorbic acid.
Collapse
Affiliation(s)
- Adam P Gunn
- Mental Health Research Institute, University of Melbourne, Parkville, VIC, Australia
| | | | | |
Collapse
|
240
|
Higuchi M, Maeda J, Ji B, Tokunaga M, Zhang MR, Maruyama M, Ono M, Fukumura T, Suhara T. PET applications in animal models of neurodegenerative and neuroinflammatory disorders. Curr Top Behav Neurosci 2012; 11:45-64. [PMID: 22016108 DOI: 10.1007/7854_2011_167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Studies on hereditary neurological disorders such as familial Alzheimer's disease (AD) have revealed abnormalities of pathogenic proteins causative of neurodegeneration, while molecular initiators of sporadic neuropsychiatric conditions remain unidentified. Such disorders are characterized by collections of molecular abnormalities that may be critically involved in synaptic dysfunctions and other deteriorations in neurons. Diverse classes of radiochemicals designed for positron emission tomographic (PET) imaging facilitate delineation of mechanistic links among key molecules in these processes by tracking their spatiotemporal correlations. This assay technique is of particular utility when applied to rodent and nonhuman primate models given their suitability for invasive genetic and pharmacological interventions. In addition, the detection of neurochemical and neuropathological changes by PET can be examined in laboratory animals when combined with invasive antemortem and postmortem investigations such as in vivo microdialysis, electrophysiological and histopathological techniques. This review primarily covers the use of small animal models of brain disorders using PET to elucidate etiological molecular cascades to facilitate in turn the search for diagnostic and therapeutic agents applicable to AD and related disorders in humans.
Collapse
Affiliation(s)
- Makoto Higuchi
- Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan,
| | | | | | | | | | | | | | | | | |
Collapse
|
241
|
Higuchi M, Iwata N, Matsuba Y, Takano J, Suemoto T, Maeda J, Ji B, Ono M, Staufenbiel M, Suhara T, Saido TC. Mechanistic involvement of the calpain-calpastatin system in Alzheimer neuropathology. FASEB J 2011; 26:1204-17. [PMID: 22173972 DOI: 10.1096/fj.11-187740] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mechanism by which amyloid-β peptide (Aβ) accumulation causes neurodegeneration in Alzheimer's disease (AD) remains unresolved. Given that Aβ perturbs calcium homeostasis in neurons, we investigated the possible involvement of calpain, a calcium-activated neutral protease. We first demonstrated close postsynaptic association of calpain activation with Aβ plaque formation in brains from both patients with AD and transgenic (Tg) mice overexpressing amyloid precursor protein (APP). Using a viral vector-based tracer, we then showed that axonal termini were dynamically misdirected to calpain activation-positive Aβ plaques. Consistently, cerebrospinal fluid from patients with AD contained a higher level of calpain-cleaved spectrin than that of controls. Genetic deficiency of calpastatin (CS), a calpain-specific inhibitor protein, augmented Aβ amyloidosis, tau phosphorylation, microgliosis, and somatodendritic dystrophy, and increased mortality in APP-Tg mice. In contrast, brain-specific CS overexpression had the opposite effect. These findings implicate that calpain activation plays a pivotal role in the Aβ-triggered pathological cascade, highlighting a target for pharmacological intervention in the treatment of AD.
Collapse
Affiliation(s)
- Makoto Higuchi
- Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
242
|
Recent rodent models for Alzheimer's disease: clinical implications and basic research. J Neural Transm (Vienna) 2011; 119:173-95. [PMID: 22086139 DOI: 10.1007/s00702-011-0731-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 10/24/2011] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is the most common origin of dementia in the elderly. Although the cause of AD remains unknown, several factors have been identified that appear to play a critical role in the development of this debilitating disorder. In particular, amyloid precursor protein (APP), tau hyperphosphorylation, and the secretase enzymes, have become the focal point of recent research. Over the last two decades, several transgenic and non-transgenic animal models have been developed to elucidate the mechanistic aspects of AD and to validate potential therapeutic targets. Transgenic rodent models over-expressing human β-amyloid precursor protein (β-APP) and mutant forms of tau have become precious tools to study and understand the pathogenesis of AD at the molecular, cellular and behavioural levels, and to test new therapeutic agents. Nevertheless, none of the transgenic models of AD recapitulate fully all of the pathological features of the disease. Octodon degu, a South American rodent has been recently found to spontaneously develop neuropathological signs of AD in old age. This review aims to address the limitations and clinical relevance of transgenic rodent models in AD, and to highlight the potential for O. degu as a natural model for the study of AD neuropathology.
Collapse
|
243
|
Intraneuronal Aβ as a trigger for neuron loss: can this be translated into human pathology? Biochem Soc Trans 2011; 39:857-61. [PMID: 21787313 DOI: 10.1042/bst0390857] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the present review, we summarize the current achievements of modelling early intraneuronal Aβ (amyloid β-peptide) accumulation in transgenic mice with the resulting pathological consequences. Of special importance will be to discuss recent developments and the translation of the results to AD (Alzheimer's disease). N-terminally truncated AβpE3 (Aβ starting with pyroglutamate at position 3) represents a major fraction of all Aβ peptides in the brain of AD patients. Recently, we generated a novel mAb (monoclonal antibody), 9D5, that selectively recognizes oligomeric assemblies of AβpE3 and demonstrated the potential involvement of oligomeric AβpE3 in vivo using transgenic mouse models as well as human brains from sporadic and familial AD cases. 9D5 showed an unusual staining pattern with almost non-detectable plaques in sporadic AD patients and non-demented controls. Interestingly, in sporadic and familial AD cases prominent intraneuronal staining was observed. Moreover, passive immunization of 5XFAD mice with 9D5 significantly reduced overall Aβ levels and stabilized behavioural deficits. In summary, we have demonstrated that intraneuronal Aβ is a valid risk factor in model systems and AD patients. This feature of AD pathology was successful in identifying novel low-molecular-mass oligomeric Aβ-specific antibodies for diagnosis and therapy.
Collapse
|
244
|
Pyroglutamate-Aβ 3 and 11 colocalize in amyloid plaques in Alzheimer's disease cerebral cortex with pyroglutamate-Aβ 11 forming the central core. Neurosci Lett 2011; 505:109-12. [PMID: 22001577 DOI: 10.1016/j.neulet.2011.09.071] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 09/21/2011] [Accepted: 09/30/2011] [Indexed: 10/16/2022]
Abstract
N-terminal truncated amyloid beta (Aβ) derivatives, especially the forms having pyroglutamate at the 3 position (AβpE3) or at the 11 position (AβpE11) have become the topic of considerable study. AβpE3 is known to make up a substantial portion of the Aβ species in senile plaques while AβpE11 has received less attention. We have generated very specific polyclonal antibodies against both species. Each antibody recognizes only the antigen against which it was generated on Western blots and neither recognizes full length Aβ. Both anti-AβpE3 and anti-AβpE11 stain senile plaques specifically in Alzheimer's disease cerebral cortex and colocalize with Aβ, as shown by confocal microscopy. In a majority of plaques examined, AβpE11 was observed to be the dominant form in the innermost core. These data suggest that AβpE11 may serve as a generating site for senile plaque formation.
Collapse
|
245
|
Jawhar S, Wirths O, Bayer TA. Pyroglutamate amyloid-β (Aβ): a hatchet man in Alzheimer disease. J Biol Chem 2011; 286:38825-32. [PMID: 21965666 DOI: 10.1074/jbc.r111.288308] [Citation(s) in RCA: 171] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pyroglutamate-modified amyloid-β (Aβ(pE3)) peptides are gaining considerable attention as potential key participants in the pathology of Alzheimer disease (AD) due to their abundance in AD brain, high aggregation propensity, stability, and cellular toxicity. Transgenic mice that produce high levels of Aβ(pE3-42) show severe neuron loss. Recent in vitro and in vivo experiments have proven that the enzyme glutaminyl cyclase catalyzes the formation of Aβ(pE3). In this minireview, we summarize the current knowledge on Aβ(pE3), discussing its discovery, biochemical properties, molecular events determining formation, prevalence in the brains of AD patients, Alzheimer mouse models, and potential as a target for therapy and as a diagnostic marker.
Collapse
Affiliation(s)
- Sadim Jawhar
- Department of Molecular Psychiatry, Georg-August-University Göttingen, University Medicine Göttingen, 37075 Göttingen, Germany
| | | | | |
Collapse
|
246
|
Alexandru A, Jagla W, Graubner S, Becker A, Bäuscher C, Kohlmann S, Sedlmeier R, Raber KA, Cynis H, Rönicke R, Reymann KG, Petrasch-Parwez E, Hartlage-Rübsamen M, Waniek A, Rossner S, Schilling S, Osmand AP, Demuth HU, von Hörsten S. Selective hippocampal neurodegeneration in transgenic mice expressing small amounts of truncated Aβ is induced by pyroglutamate-Aβ formation. J Neurosci 2011; 31:12790-801. [PMID: 21900558 PMCID: PMC6623394 DOI: 10.1523/jneurosci.1794-11.2011] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/09/2011] [Accepted: 07/12/2011] [Indexed: 12/24/2022] Open
Abstract
Posttranslational amyloid-β (Aβ) modification is considered to play an important role in Alzheimer's disease (AD) etiology. An N-terminally modified Aβ species, pyroglutamate-amyloid-β (pE3-Aβ), has been described as a major constituent of Aβ deposits specific to human AD but absent in normal aging. Formed via cyclization of truncated Aβ species by glutaminyl cyclase (QC; QPCT) and/or its isoenzyme (isoQC; QPCTL), pE3-Aβ aggregates rapidly and is known to seed additional Aβ aggregation. To directly investigate pE3-Aβ toxicity in vivo, we generated and characterized transgenic TBA2.1 and TBA2.2 mice, which express truncated mutant human Aβ. Along with a rapidly developing behavioral phenotype, these mice showed progressively accumulating Aβ and pE3-Aβ deposits in brain regions of neuronal loss, impaired long-term potentiation, microglial activation, and astrocytosis. Illustrating a threshold for pE3-Aβ neurotoxicity, this phenotype was not found in heterozygous animals but in homozygous TBA2.1 or double-heterozygous TBA2.1/2.2 animals only. A significant amount of pE3-Aβ formation was shown to be QC-dependent, because crossbreeding of TBA2.1 with QC knock-out, but not isoQC knock-out, mice significantly reduced pE3-Aβ levels. Hence, lowering the rate of QC-dependent posttranslational pE3-Aβ formation can, in turn, lower the amount of neurotoxic Aβ species in AD.
Collapse
MESH Headings
- Aging/pathology
- Aging/psychology
- Alzheimer Disease/pathology
- Amyloid beta-Protein Precursor/biosynthesis
- Animals
- Behavior, Animal
- Brain/pathology
- Enzyme-Linked Immunosorbent Assay
- Gliosis/pathology
- Heredodegenerative Disorders, Nervous System/genetics
- Heredodegenerative Disorders, Nervous System/pathology
- Heredodegenerative Disorders, Nervous System/psychology
- Hippocampus/pathology
- Humans
- Immunohistochemistry
- Kinetics
- Long-Term Potentiation/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Mice, Transgenic
- Microscopy, Electron
- Neuronal Plasticity/genetics
- Neuronal Plasticity/physiology
- Phenotype
- Postural Balance/physiology
- Protein Processing, Post-Translational
- Pyrrolidonecarboxylic Acid/metabolism
- Reflex, Startle/physiology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kerstin A. Raber
- Experimental Therapy, Friedrich Alexander University Erlangen Nürnberg, 91054 Erlangen, Germany
| | | | - Raik Rönicke
- German Center of Neurodegenerative Diseases, 39120 Magdeburg, Germany
| | - Klaus G. Reymann
- German Center of Neurodegenerative Diseases, 39120 Magdeburg, Germany
- Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | | | - Maike Hartlage-Rübsamen
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04109 Leipzig, Germany, and
| | - Alexander Waniek
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04109 Leipzig, Germany, and
| | - Steffen Rossner
- Paul Flechsig Institute for Brain Research, University of Leipzig, 04109 Leipzig, Germany, and
| | | | - Alexander P. Osmand
- Department of Medicine, University of Tennessee Graduate School of Medicine, Knoxville, Tennessee 37920
| | - Hans-Ulrich Demuth
- Ingenium Pharmaceuticals, 82152 Martinsried, Germany
- Probiodrug, 06120 Halle/Saale, Germany
| | - Stephan von Hörsten
- Experimental Therapy, Friedrich Alexander University Erlangen Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
247
|
A window into the heterogeneity of human cerebrospinal fluid Aβ peptides. J Biomed Biotechnol 2011; 2011:697036. [PMID: 21876644 PMCID: PMC3163146 DOI: 10.1155/2011/697036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/27/2011] [Accepted: 06/30/2011] [Indexed: 12/20/2022] Open
Abstract
The initiating event in Alzheimer's disease (AD) is an imbalance in the production and clearance of amyloid beta (Aβ) peptides leading to the formation of neurotoxic brain Aβ assemblies. Cerebrospinal Fluid (CSF), which is a continuum of the brain, is an obvious source of markers reflecting central neuropathologic features of brain diseases. In this review, we provide an overview and update on our current understanding of the pathobiology of human CSF Aβ peptides. Specifically, we focused our attention on the heterogeneity of the CSF Aβ world discussing (1) basic research studies and what has been translated to clinical practice, (2) monomers and other soluble circulating Aβ assemblies, and (3) communication modes for Aβ peptides and their microenvironment targets. Finally, we suggest that Aβ peptides as well as other key signals in the central nervous system (CNS), mainly involved in learning and hence plasticity, may have a double-edged sword action on neuron survival and function.
Collapse
|
248
|
The amyloid cascade hypothesis for Alzheimer's disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 2011; 10:698-712. [DOI: 10.1038/nrd3505] [Citation(s) in RCA: 1624] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
249
|
Comparison of molecular dynamics simulation methods for amyloid β(1-42) monomers containing D-aspartic acid residues for predicting retention times in chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:3337-43. [PMID: 21871847 DOI: 10.1016/j.jchromb.2011.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 08/01/2011] [Accepted: 08/09/2011] [Indexed: 11/21/2022]
Abstract
Molecular dynamics simulations of amyloid β(1-42) containing D-aspartic acid residues were performed using several continuous solvent models to investigate the usefulness of simulation methods for D-amino acid-containing proteins and peptides. Normal molecular dynamics simulations and replica exchange molecular dynamics simulations, which are one of the generalized-ensemble algorithms, were performed. Because the β-structure contents of amyloid β(1-42) peptides obtained by replica exchange molecular dynamics simulations with Onufriev-Bashford-Case generalized Born implicit solvent were qualitatively consistent with experimental data, replica exchange molecular dynamics rather than other methods appeared to be more reasonable for calculations of amyloid β(1-42) containing D-aspartic acid residues. Computational results revealed that peptides with stereoinversion of Asp23 tend to form β-sheet structures by themselves, in contrast to the wild-type peptides that form β-sheet structures only after aggregation. These results are expected to be useful for computational investigations of proteins and peptides such as prediction of retention time of peptides and proteins containing D-aspartic acid residues.
Collapse
|
250
|
Schieb H, Kratzin H, Jahn O, Möbius W, Rabe S, Staufenbiel M, Wiltfang J, Klafki HW. Beta-amyloid peptide variants in brains and cerebrospinal fluid from amyloid precursor protein (APP) transgenic mice: comparison with human Alzheimer amyloid. J Biol Chem 2011; 286:33747-58. [PMID: 21795681 DOI: 10.1074/jbc.m111.246561] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we report a detailed analysis of the different variants of amyloid-β (Aβ) peptides in the brains and the cerebrospinal fluid from APP23 transgenic mice, expressing amyloid precursor protein with the Swedish familial Alzheimer disease mutation, at different ages. Using one- and two-dimensional gel electrophoresis, immunoblotting, and mass spectrometry, we identified the Aβ peptides Aβ(1-40), -(1-42), -(1-39), -(1-38), -(1-37), -(2-40), and -(3-40) as well as minor amounts of pyroglutamate-modified Aβ (Aβ(N3pE)) and endogenous murine Aβ in brains from 24-month-old mice. Chemical modifications of the N-terminal amino group of Aβ were identified that had clearly been introduced during standard experimental procedures. To address this issue, we additionally applied amyloid extraction in ultrapure water. Clear differences between APP23 mice and Alzheimer disease (AD) brain samples were observed in terms of the relative abundance of specific variants of Aβ peptides, such as Aβ(N3pE), Aβ(1-42), and N-terminally truncated Aβ(2/3-42). These differences to human AD amyloid were also noticed in a related mouse line transgenic for human wild type amyloid precursor protein. Taken together, our findings suggest different underlying molecular mechanisms driving the amyloid deposition in transgenic mice and AD patients.
Collapse
Affiliation(s)
- Heinke Schieb
- Department of Psychiatry and Psychotherapy, LVR-Klinikum, Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|