201
|
Davani F, Alishahi M, Sabzi M, Khorram M, Arastehfar A, Zomorodian K. Dual drug delivery of vancomycin and imipenem/cilastatin by coaxial nanofibers for treatment of diabetic foot ulcer infections. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111975. [PMID: 33812603 DOI: 10.1016/j.msec.2021.111975] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 01/31/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022]
Abstract
Diabetic foot ulcer infections are the main causes of hospitalization in diabetics. The present study aimed to develop vancomycin and imipenem/cilastatin loaded core-shell nanofibers to facilitate the treatment of diabetic foot ulcers. Therefore, novel core-shell nanofibers composed of polyethylene oxide, chitosan, and vancomycin in shell and polyvinylpyrrolidone, gelatin, and imipenem/cilastatin in core compartments were prepared using the electrospinning technique. The nanofibers were characterized using scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, tensile test, and drug release. The antibacterial activity of drug-loaded nanofibers in different drugs concentrations was evaluated against Methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, and Pseudomonas aeruginosa by disk diffusion method. Furthermore, the cytotoxicity of fibers was investigated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. The obtained results showed that the prepared nanofibers were smooth having a core-shell structure with almost no cytotoxicity. The nanofibrous mats exhibited significant antibacterial activity against S. aureus and MRSA with the inhibition zones of 2.9 and 2.5 cm and gram-negative bacteria species of E. coli and P. aeruginosa with the inhibition zones of 1.9 and 2.8 cm, respectively. With respect to the significant antibacterial activities of these nanofibrous mats, they might be used as suitable drug delivery devices not only for diabetic foot ulcer infections but also for other chronic wounds.
Collapse
Affiliation(s)
- Farideh Davani
- Department of Chemical Engineering, Faculty of Engineering, University of Maragheh, Maragheh, Iran; Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Alishahi
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Sabzi
- Department of Chemical Engineering, Faculty of Engineering, University of Maragheh, Maragheh, Iran.
| | - Mohammad Khorram
- School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran
| | - Amir Arastehfar
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ 07110, USA
| | - Kamiar Zomorodian
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
202
|
Nanotechnology Development for Formulating Essential Oils in Wound Dressing Materials to Promote the Wound-Healing Process: A Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041713] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Wound healing refers to the replacement of damaged tissue through strongly coordinated cellular events. The patient’s condition and different types of wounds complicate the already intricate healing process. Conventional wound dressing materials seem to be insufficient to facilitate and support this mechanism. Nanotechnology could provide the physicochemical properties and specific biological responses needed to promote the healing process. For nanoparticulate dressing design, growing interest has focused on natural biopolymers due to their biocompatibility and good adaptability to technological needs. Polysaccharides are the most common natural biopolymers used for wound-healing materials. In particular, alginate and chitosan polymers exhibit intrinsic antibacterial and anti-inflammatory effects, useful for guaranteeing efficient treatment. Recent studies highlight that several natural plant-derived molecules can influence healing stages. In particular, essential oils show excellent antibacterial, antifungal, antioxidant, and anti-inflammatory properties that can be amplified by combining them with nanotechnological strategies. This review summarizes recent studies concerning essential oils as active secondary compounds in polysaccharide-based wound dressings.
Collapse
|
203
|
Agarwal Y, Rajinikanth PS, Ranjan S, Tiwari U, Balasubramnaiam J, Pandey P, Arya DK, Anand S, Deepak P. Curcumin loaded polycaprolactone-/polyvinyl alcohol-silk fibroin based electrospun nanofibrous mat for rapid healing of diabetic wound: An in-vitro and in-vivo studies. Int J Biol Macromol 2021; 176:376-386. [PMID: 33561460 DOI: 10.1016/j.ijbiomac.2021.02.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 10/25/2022]
Abstract
Electrospinning is emerging as a versatile technique nanofibers fabrication because due to their unique properties such as large surface area to volume ratio, porosity and maintaining moist wound environment, the nanofibers are able to deliver sustained drug release and oxygen to the wound for rapid healing of diabetic wound. The present work was aimed to prepare and evaluate silk fibroin-curcumin based nanofiber in combination with polycaprolactone (PCL) and polyvinyl alcohol (PVA) which helped to strengthen the wound healing properties of nanofiber. Silk fibroin is a naturally occurring polymer was selected one polymer for making nanofibrous mat due to its unique properties such as biodegradability, permeability, oxygen supply and maintain moisture content in the wound. SEM results showed diameters of fibers varied in the range between 200 and 350 nm and their tensile strength ranged from 12.41 to 16.80 MP. The nanofibers were causing sustained release of curcumin for many hours. The in-vivo wound healing studies in streptozotocin-induced diabetic mice showed rapid wound healing efficacy as compared to conventional formulations. Furthermore, the histopathological studies evidenced its ability to restore the normal skin structure and histological conditions of tissues. The silk fibroin-based nanofiber wound dressing, therefore appears to be an ideal preparation, in combination with curcumin, because it blends the anti-oxidant, anti-inflammatory properties of curcumin. Therefore, it was concluded that the silk fibroin-based nanofiber loaded with curcumin has great healing potential in diabetic wound.
Collapse
Affiliation(s)
- Yashi Agarwal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
| | - Shivendu Ranjan
- Faculty of Engineering and the Built Environment, University of Johannesburg, Johannesburg, South Africa.
| | | | - J Balasubramnaiam
- Research and Development Centre, Epion Labs Pvt Ltd., Hyderabad, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sneha Anand
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Payal Deepak
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
204
|
Eugenol-Containing Essential Oils Loaded onto Chitosan/Polyvinyl Alcohol Blended Films and Their Ability to Eradicate Staphylococcus aureus or Pseudomonas aeruginosa from Infected Microenvironments. Pharmaceutics 2021; 13:pharmaceutics13020195. [PMID: 33540524 PMCID: PMC7912801 DOI: 10.3390/pharmaceutics13020195] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022] Open
Abstract
Chronic wounds (CW) create numerous entryways for pathogen invasion and prosperity, further damaging host tissue and hindering its remodeling and repair. Essential oils (EOs) exert quick and efficient antimicrobial (AM) action, unlikely to induce bacterial resistance. Cinnamon leaf and clove oils (CLO and CO) display strong AM activity, namely against Staphylococcus aureus and Pseudomonas aeruginosa. Chitosan (CS) is a natural and biodegradable cationic polysaccharide, also widely known for its AM features. CS and poly (vinyl alcohol) (PVA) films were prepared (ratio 30/70 w/w; 9 wt%) by the solvent casting and phase inversion method. The film's thermal stability and chemical composition data reinforced polymer blending and EO entrapment. Films were supplemented with 1 and 10 wt% of EO in relation to total polymeric mass. The film thickness and degree of swelling (DS) tended to increase with EO content, particularly with 10 wt % CLO (* p < 0.05). UV-visible absorbance scans in the 250-320 cm-1 region confirmed the successful uptake of CLO and CO into CS/PVA films, particularly with films loaded with 10 wt% EO that contained 5.30/5.32 times more CLO/CO than films supplemented with 1 wt% EO. AM testing revealed that CS films alone were effective against both bacteria and capable of eradicating all P. aeruginosa within the hour (*** p < 0.001). Still, loaded CS/PVA films showed significantly improved AM traits in relation to unloaded films within 2 h of contact. This study is a first proof of concept that CLO and CO can be dispersed into CS/PVA films and show bactericidal effects, particularly against S. aureus, this way paving the way for efficient CW therapeutics.
Collapse
|
205
|
Liu Z, Peng Y, Yang L, Zhang G. Poly(lactic-co-glycolic acid)-Chitosan-Gelatin Composite Nanomaterials for the Treatment of Diabetic Foot Ulcer Wound Infection. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:1070-1078. [PMID: 33183445 DOI: 10.1166/jnn.2021.18675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this experiment, a solid carrier was prepared with PLGA, gelatin, and chitosan as the main raw materials, so that BMSCs could exert their repairing effect directly in the ulcer area under the stimulation of Klotho protein. We chose to use electrospun PLGA as the main technical means to provide suitable adhesion growth environment for BMSCs by preparing PLGA nanofibers. At the same time, PLGA nanofibers are also a controlled release material, so that Klotho protein can remain active, thereby achieving the purpose of stimulating BMSCs for a long time. Through the nano-scale porous structure provided on the surface of the PLGA film, BMSCs can adhere well to the surface of the material and continuously receive stimulation from the inner Klotho protein. We applied this composite to mice with diabetic ulcers, and verified the effects of Klotho protein and BMSCs on DFU healing in five groups of mice. From the results, the Klotho+BMSCs group achieved the best healing effect, followed by the Klotho group alone, while the other three groups had no significant difference in healing effects. It is proved that both Klotho and BMSCs can help the healing of diabetic ulcers, but BMSCs alone cannot survive in harsh environments, and it is difficult to play a normal repair role. The purpose of this study was to investigate the effect of Klotho protein on BMSCs and ECs under high glucose conditions, and to find a suitable carrier for planting BMSCs on it. At the same time, the material also has a certain sustained release function. We have concluded that Klotho protein can promote the proliferation and migration of BMSCs and ECs under high glucose conditions. When combined with electrospinning technology to prepare a protein that can release Klotho, it also provides a microstructure suitable for BMSCs adhesion, thereby ensuring that BMSCs can successfully survive. In the end, we artificial Klotho protein can promote angiogenesis in diabetic ulcer areas by protecting BMSCs and ECs, thereby promoting healing of ulcer areas.
Collapse
Affiliation(s)
- Zhangyi Liu
- Department of General Surgery, Yongchuan Hospital of Chongqing Medical University, Yongchuan Area, Chongqing, 402160, China
| | - Yue Peng
- Sanjiang Street Health Center, Qijiang District, Chongqing, 402160, China
| | - Lumeng Yang
- Department of General Surgery, Yongchuan Hospital of Chongqing Medical University, Yongchuan Area, Chongqing, 402160, China
| | - Guowu Zhang
- Department of General Surgery, Yongchuan Hospital of Chongqing Medical University, Yongchuan Area, Chongqing, 402160, China
| |
Collapse
|
206
|
Forss R, Hugman Z, Ridlington K, Radley M, Henry-Toledo E, O'Neill B. Does the Application of a Semiocclusive Dressing Alter the Microflora of Healthy Intact Skin on the Foot? J Am Podiatr Med Assoc 2021; 111:462608. [PMID: 33690804 DOI: 10.7547/18-141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND The skin on human feet presents unique environments for the proliferation of potentially pathogenic commensals. This study examined microflora changes on healthy intact skin under a semiocclusive dressing on the medial longitudinal arch of the foot to determine changes in growth, distribution, and frequency of microflora under the dressing. METHODS Nine human participants wore a low-adherent, absorbent, semiocclusive dressing on the medial longitudinal arch of the left foot for 2 weeks. An identical location on the right foot was swabbed and used as a control. Each foot was swabbed at baseline, week 1, and week 2. The swabs were cultured for 48 hours. Visual identification, Gram staining, DNase test agar, and a latex slide agglutination test were used to identify genera and species. RESULTS Microflora growth was categorized as scant (0-10 colony-forming units [CFU]), light (11-50 CFU), moderate (51-100 CFU), or heavy (>100 CFU). Scant and light growth decreased and moderate and heavy growth increased under the dressing compared with the control. Seven different genera of bacteria were identified. Coagulase-negative Staphylococcus spp appeared most frequently, followed by Corynebacterium spp. CONCLUSIONS Changes in microflora distribution, frequency, and growth were found under the dressing, supporting historical studies. Microflora changes were identified as an increase in bioburden and reduction in diversity. The application of similar methods, using more sophisticated identification and analysis techniques and a variety of dressings, could lead to a better understanding of bacterial and fungal growth under dressings, informing better dressing selection to assist the healing process of wounds and prevent infection.
Collapse
|
207
|
Barros Almeida I, Garcez Barretto Teixeira L, Oliveira de Carvalho F, Ramos Silva É, Santos Nunes P, Viana Dos Santos MR, Antunes de Souza Araújo A. Smart Dressings for Wound Healing: A Review. Adv Skin Wound Care 2021; 34:1-8. [PMID: 33443918 DOI: 10.1097/01.asw.0000725188.95109.68] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To provide an overview of sensors incorporated into wound dressings that can be used to assess and manage healing parameters. DATA SOURCES Authors conducted an extensive literature search of the Science Direct, Scopus, MEDLINE-PubMed, and Web of Science databases. STUDY SELECTION A total of 587 studies that evaluated dressings used to manage wound healing parameters were identified in the search, but only 16 met all of the review criteria and were included in the final analysis. DATA EXTRACTION Chronic wounds were the most common type of injury among studies. Six articles involved a wireless transmission system. DATA SYNTHESIS All studies evaluated the physical and chemical characteristics of the dressings. CONCLUSIONS This review demonstrates the lack of studies examining wound dressing sensors. New studies are required to assess sensors that allow not only wound monitoring, but also the application of drugs in a single dressing, providing a better and more cost-effective treatment for wounds.
Collapse
Affiliation(s)
- Isabella Barros Almeida
- At the Federal University of Sergipe, Sanatório, Aracaju, Brazil, Isabella Barros Almeida, PhD, is a physician; Luciana Garcez Barretto Teixeira, MS, is a doctoral student; Fernanda Oliveira de Carvalho, PhD, is a physiotherapist; Érika Ramos Silva, PhD, is Professor, Department of Physiotherapy; Paula Santos Nunes, PhD, is Professor, Department of Morphology; Márcio Roberto Viana dos Santos, PhD, is Professor, Department of Morphology; and Adriano Antunes de Souza Araújo, PhD, is Professor, Department of Pharmacy. The authors have disclosed no financial relationships related to this article. Submitted July 19, 2020; accepted in revised form September 25, 2020
| | | | | | | | | | | | | |
Collapse
|
208
|
Dou Y, Huang R, Li Q, Liu Y, Li Y, Chen H, Ai G, Xie J, Zeng H, Chen J, Luo C, Su Z. Oxyberberine, an absorbed metabolite of berberine, possess superior hypoglycemic effect via regulating the PI3K/Akt and Nrf2 signaling pathways. Biomed Pharmacother 2021; 137:111312. [PMID: 33524788 DOI: 10.1016/j.biopha.2021.111312] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Berberine (BBR) is a promising anti-diabetic isoquinoline alkaloid from Rhizoma coptidis, while its bioavailability was extremely low. Here, the existing form and pharmacokinetics of BBR were comparatively characterized in conventional and antibiotic-induced pseudo germ-free (PGF) rats. Furthermore, we comparatively investigated the antidiabetic effect and potential mechanism of BBR and its intestinal oxidative metabolite oxyberberine (OBB) in STZ-induced diabetic rats. Results showed that BBR and OBB existed mainly as protein-bound form in blood, while protein-bound OBB was significantly depleted in PGF rats. Treatment with OBB and BBR effectively decreased clinical symptoms of diabetic rats, reduced blood glucose level, ameliorated the pancreatic damage, and mitigated oxidative stress and inflammatory markers. However, the anti-diabetes effect of BBR was obviously compromised by antibiotics. In addition, OBB exerted superior anti-diabetes effect to BBR of the same dose, significantly up-regulated the mRNA expression of Nrf2 signaling pathway and substantially promoted the pancreatic levels of PI3K/Akt signaling pathway. In conclusion, BBR and its absorbed oxidative metabolite OBB were mainly presented and transported in the protein-bound form in vivo. The gut microbiota may play an important role in the anti-diabetes effect of BBR through transforming itself into the superior hypoglycemic metabolite OBB. OBB possessed favorable hypoglycemic and pancreatic β-cells protective effects, which may stand a huge potential to be further developed into a promising anti-diabetes candidate.
Collapse
Affiliation(s)
- Yaoxing Dou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ronglei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qiaoping Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Hanbin Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, SAR, PR China
| | - Gaoxiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jianhui Xie
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, PR China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Huifang Zeng
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Chaodan Luo
- Subtropical Agricultural Products Processing Engineering Technology Center, Guangxi Institute of Subtropical Agricultural Products Processing, Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi, PR China.
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, PR China.
| |
Collapse
|
209
|
Nunes SB, Hodel KVS, Sacramento GDC, Melo PDS, Pessoa FLP, Barbosa JDV, Badaró R, Machado BAS. Development of Bacterial Cellulose Biocomposites Combined with Starch and Collagen and Evaluation of Their Properties. MATERIALS 2021; 14:ma14020458. [PMID: 33477891 PMCID: PMC7833372 DOI: 10.3390/ma14020458] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
One of the major benefits of biomedicine is the use of biocomposites as wound dressings to help improve the treatment of injuries. Therefore, the main objective of this study was to develop and characterize biocomposites based on bacterial cellulose (BC) with different concentrations of collagen and starch and characterize their thermal, morphological, mechanical, physical, and barrier properties. In total, nine samples were produced with fixed amounts of glycerol and BC and variations in the amount of collagen and starch. The water activity (0.400–0.480), water solubility (12.94–69.7%), moisture (10.75–20.60%), thickness (0.04–0.11 mm), water vapor permeability (5.59–14.06 × 10−8 g·mm/m2·h·Pa), grammage (8.91–39.58 g·cm−2), opacity (8.37–36.67 Abs 600 nm·mm−1), elongation (4.81–169.54%), and tensile strength (0.99–16.32 MPa) were evaluated and defined. In addition, scanning electron microscopy showed that adding biopolymers in the cellulose matrix made the surface compact, which also influenced the visual appearance. Thus, the performance of the biocomposites was directly influenced by their composition. The performance of the different samples obtained resulted in them having different potentials for application considering the injury type. This provides a solution for the ineffectiveness of traditional dressings, which is one of the great problems of the biomedical sector.
Collapse
Affiliation(s)
- Silmar Baptista Nunes
- PPG GETEC, University Center SENAI CIMATEC, National Service of Industrial Learning, SENAI CIMATEC, Salvador 41650-010, Brazil; (S.B.N.); (F.L.P.P.); (J.D.V.B.); (R.B.)
| | - Katharine Valéria Saraiva Hodel
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, SENAI CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.)
| | - Giulia da Costa Sacramento
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, SENAI CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.)
| | - Pollyana da Silva Melo
- Department of Materials, University Center SENAI CIMATEC, National Service of Industrial Learning, Salvador 41650-010, Brazil;
| | - Fernando Luiz Pellegrini Pessoa
- PPG GETEC, University Center SENAI CIMATEC, National Service of Industrial Learning, SENAI CIMATEC, Salvador 41650-010, Brazil; (S.B.N.); (F.L.P.P.); (J.D.V.B.); (R.B.)
| | - Josiane Dantas Viana Barbosa
- PPG GETEC, University Center SENAI CIMATEC, National Service of Industrial Learning, SENAI CIMATEC, Salvador 41650-010, Brazil; (S.B.N.); (F.L.P.P.); (J.D.V.B.); (R.B.)
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, SENAI CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.)
| | - Roberto Badaró
- PPG GETEC, University Center SENAI CIMATEC, National Service of Industrial Learning, SENAI CIMATEC, Salvador 41650-010, Brazil; (S.B.N.); (F.L.P.P.); (J.D.V.B.); (R.B.)
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, SENAI CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.)
| | - Bruna Aparecida Souza Machado
- PPG GETEC, University Center SENAI CIMATEC, National Service of Industrial Learning, SENAI CIMATEC, Salvador 41650-010, Brazil; (S.B.N.); (F.L.P.P.); (J.D.V.B.); (R.B.)
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC, SENAI CIMATEC, Salvador 41650-010, Brazil; (K.V.S.H.); (G.d.C.S.)
- Correspondence: ; Tel.: +55-(71)-3879-5624
| |
Collapse
|
210
|
Influence of Hard Segment Content and Diisocyanate Structure on the Transparency and Mechanical Properties of Poly(dimethylsiloxane)-Based Urea Elastomers for Biomedical Applications. Polymers (Basel) 2021; 13:polym13020212. [PMID: 33435271 PMCID: PMC7827567 DOI: 10.3390/polym13020212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 11/26/2022] Open
Abstract
The effect of hard segment content and diisocyanate structure on the transparency and mechanical properties of soft poly(dimethylsiloxane) (PDMS)-based urea elastomers (PSUs) was investigated. A series of PSU elastomers were synthesized from an aminopropyl-terminated PDMS (M¯n: 16,300 g·mol−1), which was prepared by ring chain equilibration of the monomers octamethylcyclotetrasiloxane (D4) and 1,3-bis(3-aminopropyl)-tetramethyldisiloxane (APTMDS). The hard segments (HSs) comprised diisocyanates of different symmetry, i.e., 4,4′-methylenebis(cyclohexyl isocyanate) (H12MDI), 4,4′-methylenebis(phenyl isocyanate) (MDI), isophorone diisocyanate (IPDI), and trans-1,4-cyclohexane diisocyanate (CHDI). The HS contents of the PSU elastomers based on H12MDI and IPDI were systematically varied between 5% and 20% by increasing the ratio of the diisocyanate and the chain extender APTMDS. PSU copolymers of very low urea HS contents (1.0–1.6%) were prepared without the chain extender. All PSU elastomers and copolymers exhibited good elastomeric properties and displayed elongation at break values between 600% and 1100%. The PSUs with HS contents below 10% were transparent and became increasingly translucent at HS contents of 15% and higher. The Young’s modulus (YM) and ultimate tensile strength values of the elastomers increased linearly with increasing HS content. The YM values differed significantly among the PSU copolymers depending on the symmetry of the diisocyanate. The softest elastomer was that based on the asymmetric IPDI. The elastomers synthesized from H12MDI and MDI both exhibited an intermediate YM, while the stiffest elastomer, i.e., that comprising the symmetric CHDI, had a YM three-times higher than that prepared with IPDI. The PSUs were subjected to load–unload cycles at 100% and 300% strain to study the influence of HS morphology on 10-cycle hysteresis behavior. At 100% strain, the first-cycle hysteresis values of the IPDI- and H12MDI-based elastomers first decreased to a minimum of approximately 9–10% at an HS content of 10% and increased again to 22–28% at an HS content of 20%. A similar, though less pronounced, trend was observed at 300% strain. First-cycle hysteresis among the PSU copolymers at 100% strain was lowest in the case of CHDI and highest in the IPDI-based elastomer. However, this effect was reversed at 300% strain, with CHDI displaying the highest hysteresis in the first cycle. In vitro cytotoxicity tests performed using HaCaT cells did not show any adverse effects, revealing their potential suitability for biomedical applications.
Collapse
|
211
|
Rezvanian M, Ng SF, Alavi T, Ahmad W. In-vivo evaluation of Alginate-Pectin hydrogel film loaded with Simvastatin for diabetic wound healing in Streptozotocin-induced diabetic rats. Int J Biol Macromol 2021; 171:308-319. [PMID: 33421467 DOI: 10.1016/j.ijbiomac.2020.12.221] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 11/26/2022]
Abstract
Previously we developed and characterized a novel hydrogel film wound dressing containing Sodium Alginate and Pectin loaded with Simvastatin with multi-functional properties. This study investigated the in-vivo efficacy of the developed wound dressing on type I diabetic wound model. Experiments were performed on male Wistar rats for the period of 21-days. Animals developed diabetes after intraperitoneal injection (50 mg/kg) of Streptozotocin then randomly divided into different groups. On days 7, 14, and 21 of post-wounding, animals were euthanized and the wounds tissue were harvested for analysis. The wound healing rate, hematology and histological analysis, hydroxyproline assay, and Vascular Endothelial Growth Factor A measurements were noted. The results revealed that the wound dressing healed the wounded area significantly (p < 0.05) higher than the control after 21-day treatment and wound closure was ~99% without any adverse systemic reactions. Histological analysis qualitatively revealed an enhanced re-epithelialization and collagen deposition. Moreover, results also showed an improved rate of collagen synthesis and angiogenesis in the group treated with the hydrogel film loaded with Simvastatin. Thus, the present study demonstrated that developed film holds great potential for the acceleration of diabetic wound healing by its pro-angiogenic effect, faster re-epithelialization and increased collagen deposition.
Collapse
Affiliation(s)
- Masoud Rezvanian
- Centre for Drug Delivery Research, Faculty of Pharmacy, 50300, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Shiow-Fern Ng
- Centre for Drug Delivery Research, Faculty of Pharmacy, 50300, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Taradokht Alavi
- Centre for Drug Delivery Research, Faculty of Pharmacy, 50300, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Waqas Ahmad
- School of Pharmaceutical Sciences, 11800, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
212
|
Xu X, Wang X, Qin C, Khan AUR, Zhang W, Mo X. Silk fibroin/poly-(L-lactide-co-caprolactone) nanofiber scaffolds loaded with Huangbai Liniment to accelerate diabetic wound healing. Colloids Surf B Biointerfaces 2021; 199:111557. [PMID: 33434880 DOI: 10.1016/j.colsurfb.2021.111557] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022]
Abstract
Diabetic infection is a long-term complication difficult to cure. The skin of diabetic patients is prone to damage, the healing is slow after the injury, and the wound occurs repeatedly. Therefore, there is an urgent need to develop an effective method for treating diabetes wounds. In this study, we used the electrospinning technique to load Huangbai Liniment (Compound Phellodendron Liquid, CPL) into Silk fibroin (SF) /poly-(L-lactide-co-caprolactone) (PLCL) to prepare the nanofiber membrane (SP/CPL) to treat the diabetic wound. The morphology and structure of the nanofibers were observed by scanning electron microscope (SEM). The SEM results indicate the smooth and bead free fibers and the diameter of the fiber decreased with increasing drug concentration. The release profile indicates the sustained release of the drug. Moreover, the drug-loaded nanofibers showed inhibitory effects for S.aureus and E.coli. Furthermore, in vitro cell culture studies showed the increased proliferation and adhesion of NIH-3T3 cells on the drug-containing nanofiber membrane. Animal experiments showed that the nanofiber membrane loaded with CPL increases the expression of the TGF-β signaling pathway and collagen during wound healing, inhibits the expression of pro-inflammatory factors, and thus effectively promotes wound healing in diabetic mice. Therefore, the SP/CPL nanofiber scaffold with CPL loading is a potential candidate for diabetic wound dressings and tissue engineering.
Collapse
Affiliation(s)
- Xiaoqing Xu
- State Key Lab. For Modification of Chemical Fiber & Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Xiangsheng Wang
- Department of Plastic Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chengxue Qin
- School of Pharmaceutical Science, Shandong University, Jinan, 250012, China; Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Atta Ur Rehman Khan
- State Key Lab. For Modification of Chemical Fiber & Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China
| | - Wenjie Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai, 200011, China.
| | - Xiumei Mo
- State Key Lab. For Modification of Chemical Fiber & Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
213
|
Shalaby K, Mostafa EM, Musa A, Moustafa AEGA, Ibrahim MF, Alruwaili NK, Zafar A, Elmowafy M. Enhanced full-thickness wound healing via Sophora gibbosa extract delivery based on a chitosan/gelatin dressing incorporating microemulsion. Drug Dev Ind Pharm 2021; 47:215-224. [PMID: 33317339 DOI: 10.1080/03639045.2020.1863420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
There are many synthetic drugs in literature have been utilized in healing of the wounds although the natural product specially antioxidants can offer similar if not better biological activity in that regard. Genus Sophora is well known to contain flavonoids and phenolic compounds which have antioxidant and inflammatory effects. So, the aim of the current study was to develop and evaluate chitosan/gelatin based Sophora gibbosa extract-loaded microemulsion as wound dressing. Sophora gibbosa extract (SGE) contained 16 major compounds which have reasonable antioxidant activity. The developed microemulsion showed that Tween 80 produced significant (p < 0.05) lower particle size than Pluronic F127 at the same SGE concentration whereas high concentration of extract results in large particle size. Thermodynamic stability studies showed that using higher concentration of the extract produced less stable formulations. The selected formulation was impregnated in the dressing base (chitosan/gelatin; 2:1 w/w ratio) which exhibited more water absorption. In vivo evaluation revealed that the dressing displayed superior wound repair compared to the control in terms histological examination and determination of alpha smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA). Thus, SGE-loaded microemulsion-impregnated gelatin/chitosan could be a potential candidate for the wound healing.
Collapse
Affiliation(s)
- Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ehab M Mostafa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | | | - Mohamed F Ibrahim
- Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
214
|
Gao X, Xu Z, Liu G, Wu J. Polyphenols as a versatile component in tissue engineering. Acta Biomater 2021; 119:57-74. [PMID: 33166714 DOI: 10.1016/j.actbio.2020.11.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022]
Abstract
The fabrication of functional tissue or organs substitutes has always been the pursuit of goals in the field of tissue engineering. But even biocompatible tissue-engineered scaffolds still suffer from immune rejection, subsequent long-term oxidative stress and inflammation, which can delay normal tissue repair and regeneration. As a well-known natural antioxidant, polyphenols have been widely used in tissue engineering in recent years. The introduced polyphenols not only reduce the damage of oxidative stress to normal tissues, but show specific affinity to functional molecules, such as receptors, enzyme, transcription and transduction factors, etc. Therefore, polyphenols can promote the recovery process of damaged tissues by both regulating tissue microenvironment and participating in cell events, which embody specifically in antioxidant, anti-inflammatory, antibacterial and growth-promoting properties. In addition, based on its hydrophilic and hydrophobic moieties, polyphenols have been widely used to improve the mechanical properties and anti-degradation properties of tissue engineering scaffolds. In this review, the research advances of tissue engineering scaffolds containing polyphenols is discussed systematically from the aspects of action mechanism, introduction method and regulation effect of polyphenols, in order to provide references for the rational design of polyphenol-related functional scaffolds.
Collapse
|
215
|
Wang H, Xu Z, Zhao M, Liu G, Wu J. Advances of hydrogel dressings in diabetic wounds. Biomater Sci 2021; 9:1530-1546. [DOI: 10.1039/d0bm01747g] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hydrogel dressings with various functions for diabetic wound treatment.
Collapse
Affiliation(s)
- Heni Wang
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Zejun Xu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Meng Zhao
- Shenzhen Lansi Institute of Artificial Intelligence in Medicine
- Shenzhen
- China
| | - Guiting Liu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| | - Jun Wu
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province
- School of Biomedical Engineering
- Sun Yat-sen University
- Guangzhou
- PR China
| |
Collapse
|
216
|
Yuan H, Chen L, Hong FF. Homogeneous and efficient production of a bacterial nanocellulose-lactoferrin-collagen composite under an electric field as a matrix to promote wound healing. Biomater Sci 2021. [DOI: 10.1039/d0bm01553a%0a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A novel BNC/LF/COL membrane fabricated using an electrophoresis-based technology showed superior advantages in water-holding capability and antibacterial activity, with higher cytocompatibility as well as greater therapeutic effect in wound healing.
Collapse
Affiliation(s)
- Haibin Yuan
- Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology (Donghua University)
- China Textile Engineering Society
- Shanghai 201620
- China
- Group of Microbiological Engineering and Industrial Biotechnology
| | - Lin Chen
- Group of Microbiological Engineering and Industrial Biotechnology
- College of Chemistry
- Chemical Engineering and Biotechnology
- Donghua University
- Shanghai 201620
| | - Feng F. Hong
- Scientific Research Base of Bacterial Nanofiber Manufacturing and Composite Technology (Donghua University)
- China Textile Engineering Society
- Shanghai 201620
- China
- Group of Microbiological Engineering and Industrial Biotechnology
| |
Collapse
|
217
|
Augustine R, Ur Rehman SR, K S J, Hasan A. Stromal cell-derived factor loaded co-electrospun hydrophilic/hydrophobic bicomponent membranes for wound protection and healing. RSC Adv 2020; 11:572-583. [PMID: 35423060 PMCID: PMC8691117 DOI: 10.1039/d0ra04997b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic wounds are one of the key concerns for people with diabetes, frequently leading to infections and non-healing ulcers, and finally resulting in the amputation of limbs/organs. Stromal cell-derived factor 1 (SDF1) is a major chemokine that plays a significant role in tissue repair, vascularization, and wound healing. However, the long-term sustained delivery of SDF1 in a chronic wound environment is a great challenge. In order to facilitate the sustained release of SDF1 in diabetic wounds, it could be incorporated into wound-healing patches. Herein, we report the fabrication of a hydrophilic/hydrophobic bicomponent fiber-based membrane, where SDF1 was encapsulated inside hydrophilic fibers, and its applicability in wound healing. A co-electrospinning technique was employed for the fabrication of polymeric membranes where PVA and PCL form the hydrophilic and hydrophobic components, respectively. Morphological analysis of the developed membranes was conducted via scanning electron microscopy (SEM). The mechanical strength of the membranes was investigated via uniaxial tensile testing. The water uptake capacity of the membranes was also determined to understand the hydrophilicity and exudate uptake capacity of the membranes. To understand the proliferation, viability, and migration of skin-specific cells in the presence of SDF1-loaded membranes, in vitro cell culture experiments were carried out using fibroblasts, keratinocytes, and endothelial cells. The results showed the excellent porous morphology of the developed membranes with distinguishable differences in fiber diameters for the PVA and PCL fibers. The developed membranes possessed enough mechanical strength for use as wound-healing membranes. The co-electrospun membranes showed good exudate uptake capacity. The controlled and extended delivery of SDF1 from the developed membranes was observed over a prolonged period. The SDF1-loaded membranes showed enhanced cell proliferation, cell viability, and cell migration. These biocompatible and biodegradable SDF1-loaded bicomponent membranes with excellent exudate uptake capacity, and cell proliferation and cell migration properties can be exploited as a novel wound-dressing membrane aimed at chronic diabetic wounds.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University - 2713 Doha Qatar
- Biomedical Research Center, Qatar University - 2713 Doha Qatar
| | - Syed Raza Ur Rehman
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University - 2713 Doha Qatar
- Biomedical Research Center, Qatar University - 2713 Doha Qatar
| | - Joshy K S
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University - 2713 Doha Qatar
- Biomedical Research Center, Qatar University - 2713 Doha Qatar
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University - 2713 Doha Qatar
- Biomedical Research Center, Qatar University - 2713 Doha Qatar
| |
Collapse
|
218
|
Zhang A, Liu Y, Qin D, Sun M, Wang T, Chen X. Research status of self-healing hydrogel for wound management: A review. Int J Biol Macromol 2020; 164:2108-2123. [DOI: 10.1016/j.ijbiomac.2020.08.109] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/30/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022]
|
219
|
|
220
|
Chan BC, Campbell KE. An economic evaluation examining the cost-effectiveness of continuous diffusion of oxygen therapy for individuals with diabetic foot ulcers. Int Wound J 2020; 17:1791-1808. [PMID: 33189100 PMCID: PMC7754389 DOI: 10.1111/iwj.13468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 01/02/2023] Open
Abstract
Continuous delivery of oxygen therapy has been observed to improve healing for individuals with an advanced diabetic foot ulcer (DFU). However, this intervention requires the purchasing of an oxygen delivery device and moist dressings. It is unknown whether this upfront financial investment represents good value for money. Thus the aim of this project is to evaluate the cost-effectiveness of treating advanced DFU using continuous delivery of oxygen compared with negative pressure wound therapy from the perspective of the public health care payer in Ontario, Canada. A microsimulation model was constructed with inputs from peer-reviewed journal publications and publicly available reports. The 5-year costs and quality-adjusted life-years were compared between treatment and comparator. Sensitivity analyses were conducted to evaluate the robustness of results. The model predicted that continuous delivery of oxygen would cost $4800 less compared with negative pressure wound therapy and increased quality-adjusted life years by 0.025. Lower cost and improved outcomes were observed in most scenario analyses. The results of this economic evaluation suggest that CDO therapy may reduce health care economic burden with a modest increase in quality of life outcomes. Health care decision-makers should consider the inclusion of CDO for the treatment of DFU.
Collapse
Affiliation(s)
- Brian C.‐F. Chan
- KITE – Toronto Rehabilitation InstituteUniversity Health NetworkTorontoCanada
- Institute of Health Policy, Management and EvaluationUniversity of TorontoTorontoCanada
| | - Karen E. Campbell
- School of Physical Therapy, Faculty of Health ScienceWestern UniversityLondonCanada
| |
Collapse
|
221
|
He Y, Zhao W, Dong Z, Ji Y, Li M, Hao Y, Zhang D, Yuan C, Deng J, Zhao P, Zhou Q. A biodegradable antibacterial alginate/carboxymethyl chitosan/Kangfuxin sponges for promoting blood coagulation and full-thickness wound healing. Int J Biol Macromol 2020; 167:182-192. [PMID: 33259842 DOI: 10.1016/j.ijbiomac.2020.11.168] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/03/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022]
Abstract
Conventional wound-dressing materials with structural and functional deficiencies are not effective in promoting wound healing. The development of multifunctional wound dressings is emerging as a promising strategy to accelerate blood coagulation, inhibit bacterial infection, and trigger full-thickness wound into a regenerative process. Herein, multifunctional composite sponges were developed by incorporation of traditional Chinese medicine Kangfuxin (KFX) into alginate (AG)/carboxymethyl chitosan (CMC) via green crosslinking, electrostatic interaction, and freeze-drying methods. It is demonstrated that the AG/CMC/KFX (ACK) sponges exhibit a highly interconnected and porous structure, suitable water vapor transmittance, excellent elastic properties, antibacterial behavior, cytocompatibility, and rapid hemostasis. Further, in a rat full-thickness wounds model, the ACK sponge containing 10% KFX (ACK-10) significantly facilitates wound closure compared to the AC group and ACK sponge containing 5% and 15% KFX. Thus, the multifunctional ACK-10 composite sponge has great promise for the application of full-thickness wound healing.
Collapse
Affiliation(s)
- Yun He
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Wenwen Zhao
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Zuoxiang Dong
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Yanjing Ji
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Min Li
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Yuanping Hao
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Demeng Zhang
- State Key Laboratory of Bioactive Seaweed Substances, Qingdao Bright Moon Seaweed Group Co. Ltd., Qingdao 266400, China
| | - Changqing Yuan
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Jing Deng
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Peng Zhao
- School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Qihui Zhou
- Institute for Translational Medicine, Department of Stomatology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China; School of Stomatology, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
222
|
Simoska O, Duay J, Stevenson KJ. Electrochemical Detection of Multianalyte Biomarkers in Wound Healing Efficacy. ACS Sens 2020; 5:3547-3557. [PMID: 33175510 DOI: 10.1021/acssensors.0c01697] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The targeted diagnosis and effective treatments of chronic skin wounds remain a healthcare burden, requiring the development of sensors for real-time monitoring of wound healing activity. Herein, we describe an adaptable method for the fabrication of carbon ultramicroelectrode arrays (CUAs) on flexible substrates with the goal to utilize this sensor as a wearable device to monitor chronic wounds. As a proof-of-concept study, we demonstrate the electrochemical detection of three electroactive analytes as biomarkers for wound healing state in simulated wound media on flexible CUAs. Notably, to follow pathogenic responses, we characterize analytical figures of merit for identification and monitoring of bacterial warfare toxin pyocyanin (PYO) secreted by the opportunistic human pathogen Pseudomonas aeruginosa. We also demonstrate the detection of uric acid (UA) and nitric oxide (NO•), which are signaling molecules indicative of wound healing and immune responses, respectively. The electrochemically determined limit of detection (LOD) and linear dynamic range (LDR) for PYO, UA, and NO• fall within the clinically relevant concentrations. Additionally, we demonstrate the successful use of flexible CUAs for quantitative, electrochemical detection of PYO from P. aeruginosa strains and cellular NO• from immune cells in the wound matrix. Moreover, we present an electrochemical examination of the interaction between PYO and NO•, providing insight into pathogen-host responses. Finally, the effects of the antimicrobial agent, silver (Ag+), on P. aeruginosa PYO production rates are investigated on flexible CUAs. Our electrochemical results show that the addition of Ag+ to P. aeruginosa in wound simulant decreases PYO secretion rates.
Collapse
Affiliation(s)
- Olja Simoska
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, Texas 78712, United States
| | - Jonathon Duay
- Department of Chemistry, University of Texas at Austin, 1 University Station, Stop A5300, Austin, Texas 78712, United States
| | - Keith J. Stevenson
- Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Bolshoi Boulevard 30 Bld. 1, Moscow 121205, Russia
| |
Collapse
|
223
|
Pasaribu KM, Gea S, Ilyas S, Tamrin T, Radecka I. Characterization of Bacterial Cellulose-Based Wound Dressing in Different Order Impregnation of Chitosan and Collagen. Biomolecules 2020; 10:E1511. [PMID: 33153209 PMCID: PMC7693210 DOI: 10.3390/biom10111511] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/14/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Bacterial cellulose (BC), chitosan (Chi), and collagen (Col) are known as biopolymers which have met some properties that are required as wound dressing. This study focused on investigating the fabrication of BC-based wound dressing with chitosan and collagen, since chitosan has red blood cells binding and anti-bacterial properties, while collagen can support cell and tissue growth for skin wounds. The BC-based wound dressing was prepared by impregnating BC fibers in the chitosan and/or collagen solution for 24 h. FTIR was used to confirm the intermolecular interaction of amine and hydroxyl group of chitosan and/or collagen in BC-based wound dressing. Furthermore, the XRD diffractogram of the wound dressing show broader peaks at 14.2°, 16.6°, and 22.4° due to the presence of chitosan and collagen molecules in BC fibers. These results were then supported by SEM images which confirmed that chitosan and collagen were well penetrated into BC fibers. TGA curves revealed that BC/Chi/Col has better thermal properties based on the Tmax compare to BC/Col/Chi. Feasibility of the mats to be applied as wound dressing was also supported by other tests, i.e., water content, porosity, and hemocompatibility, which indicates that the wound dressing is classified as nonhemolytic materials. However, BC/Col/Chi was considered a more potential wound dressing to be applied compared to BC/Chi/Col since it has larger pores and showed better antibacterial properties (larger zones of inhibition) against S. aureus and E. coli via disk diffusion tests.
Collapse
Affiliation(s)
- Khatarina Meldawati Pasaribu
- Postgraduate School, Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia;
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia;
| | - Saharman Gea
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia;
- Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia;
| | - Syafruddin Ilyas
- Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia;
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia
| | - Tamrin Tamrin
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Jl. Bioteknologi No. 1, Medan 20155, Indonesia;
- Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia;
| | - Izabela Radecka
- Wolverhampton School of Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK;
| |
Collapse
|
224
|
Zhang T, Huang F, Li B, Huang C, Xu C, Lin K, Lin D. NMR-based metabolomic analysis for the effects of Huiyang Shengji extract on rat diabetic skin ulcers. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:112978. [PMID: 32442586 DOI: 10.1016/j.jep.2020.112978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huiyang Shengji formula (HSF) is a compound Chinese herbal medicine prescription, and has long been used for treating chronic non-healing wounds. AIM OF THE STUDY The purpose of this study was to provide new insight into molecular mechanisms of healing effects of the HSF treatments. MATERIALS AND METHODS We established a rat diabetic skin ulcer (DSU) model, and assessed healing effects of four HSF treatments on DSUs by calculating wound healing rates and immunohistochemical detection of the expressions of angiogenesis-related factors in the model rats (Mod) relative to normal rats (Nor), including Huiyang extract (HE), Shengji extract (SE), Huiyang Shengji extract (HSE) and HSE associated with acupuncture (Ac-HSE). We then performed NMR-based metabolomic analyses on skin tissues of the Nor, Mod, HSE-treated, Ac-HSE-treated rats to address metabolic mechanisms underlying these effects. RESULTS These treatments up-regulated expressions of two angiogenesis-related factors VEGF and CD31, and improved efficacy of healing DSUs, in which HSE and Ac-HSE exhibited the most significant effects. Compared with Mod, HSE and Ac-HSE groups shared four characteristic metabolites (lactate, histidine, succinate and acetate) and four significantly altered metabolic pathways with Nor. Both HSE and Ac-HSE treatments could partly reverse the metabolically disordered pathological state of DSUs to the normal state. They might improve wound healing through promoting glucose metabolism, BCAAs metabolism, and enhancing antioxidant capacity and angiogenesis in DSU tissues. Ac-HSE significantly enhanced wound healing rates compared to HSE, potentially owing to significant capacities of enhancing anti-oxidation and angiogenesis and interfering three more metabolic pathways. CONCLUSIONS This work provides a mechanistic understanding of the healing effects of the HSE and Ac-HSE treatments on DSUs, is of benefit to improvements of the HSF treatments for clinically healing chronic non-healing wounds.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China; College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, 361005, China
| | - Feng Huang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Acupuncture and Moxibustion, China Academy of Chinese Medical Science, Beijing, 100700, China.
| | - Bin Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Caihua Huang
- Research and Communication Center of Exercise and Health, Xiamen University of Technology, Xiamen, 361024, China
| | - Chang Xu
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Kejiang Lin
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| | - Donghai Lin
- College of Chemistry and Chemical Engineering, Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
225
|
Coindre VF, Hu Y, Sefton MV. Poly-Methacrylic Acid Cross-Linked with Collagen Accelerates Diabetic Wound Closure. ACS Biomater Sci Eng 2020; 6:6368-6377. [DOI: 10.1021/acsbiomaterials.0c01222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Virginie F. Coindre
- Institute of Biomedical Engineering, University of Toronto, 164 College St Room 407, Toronto, Ontario M5S 3G9, Canada
| | - Yangshuo Hu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 164 College St Room 407, Toronto, Ontario M5S 3G9, Canada
| | - Michael V. Sefton
- Institute of Biomedical Engineering, University of Toronto, 164 College St Room 407, Toronto, Ontario M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 164 College St Room 407, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
226
|
Incorporation of FGF-2 into Pharmaceutical Grade Fucoidan/Chitosan Polyelectrolyte Multilayers. Mar Drugs 2020; 18:md18110531. [PMID: 33114688 PMCID: PMC7692699 DOI: 10.3390/md18110531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022] Open
Abstract
Biopolymer polyelectrolyte multilayers are a commonly studied soft matter system for wound healing applications due to the biocompatibility and beneficial properties of naturally occurring polyelectrolytes. In this work, a popular biopolymer, chitosan, was combined with the lesser known polysaccharide, fucoidan, to create a multilayer film capable of sequestering growth factor for later release. Fucoidan has been shown to act as a heparin-mimic due to similarities in the structure of the two molecules, however, the binding of fibroblast growth factor-2 to fucoidan has not been demonstrated in a multilayer system. This study assesses the ability of fucoidan to bind fibroblast growth factor-2 within a fucoidan/chitosan polyelectrolyte multilayer structure using attenuated total internal reflectance infrared spectroscopy and quartz crystal microbalance with dissipation monitoring. The fibroblast growth factor-2 was sequestered into the polyelectrolyte multilayer as a cationic layer in the uppermost layers of the film structure. In addition, the diffusion of fibroblast growth factor-2 into the multilayer has been assessed.
Collapse
|
227
|
Zhao Y, Li Z, Li Q, Yang L, Liu H, Yan R, Xiao L, Liu H, Wang J, Yang B, Lin Q. Transparent Conductive Supramolecular Hydrogels with Stimuli-Responsive Properties for On-Demand Dissolvable Diabetic Foot Wound Dressings. Macromol Rapid Commun 2020; 41:e2000441. [PMID: 33089609 DOI: 10.1002/marc.202000441] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/03/2020] [Indexed: 12/26/2022]
Abstract
Diabetic foot ulcers (DFU) remain a very considerable health care burden, and their treatment is difficult. Hydrogel-based wound dressings are appealing to provide an optimal environment for wound repair. However, the currently available hydrogel dressings still need surgical or mechanical debridement from the wound, causing reinjury of the newly formed tissues, wound infection, delayed healing time, and personal suffering. Additionally, to meet people's increasing demand, hydrogel wound dressings with improved performance and multifunctionality are urgently required. Here, a new multifunctional supramolecular hydrogel for on-demand dissolvable diabetic foot wound dressings is designed and constructed. Based on multihydrogen bonds between hydrophilic polymers, the resultant supramolecular hydrogels present controlled and excellent properties, such as good transparency, antibacterial ability, conductive, and self-healing properties. Thus, the supramolecular hydrogels improve the new tissue formation and provide a significant therapeutic effect on DFU by inducing angiogenesis, enhancing collagen deposition, preventing bacterial infection, and controlling wound infection. Remarkably, the resultant hydrogels also exhibit stimuli-responsive ability, which renders its capability to be dissolved on-demand, allowing for a facile DFU dressing removal. This multifunctional supramolecular hydrogel may provide a novel concept in the design of on-demand dissolvable wound dressings.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Qiuju Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Longfei Yang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Hou Liu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Ruyue Yan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - Lizhi Xiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, P. R. China
| | - He Liu
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Jingcheng Wang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Bai Yang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Quan Lin
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
228
|
Prasad YS, Miryala S, Lalitha K, Saritha B, Maheswari CU, Sridharan V, Srinandan CS, Nagarajan S. An injectable self-healing anesthetic glycolipid-based oleogel with antibiofilm and diabetic wound skin repair properties. Sci Rep 2020; 10:18017. [PMID: 33093507 PMCID: PMC7582191 DOI: 10.1038/s41598-020-73708-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/22/2020] [Indexed: 12/26/2022] Open
Abstract
Globally, wound infections are considered as one of the major healthcare problems owing to the delayed healing process in diabetic patients and microbial contamination. Thus, the development of advanced materials for wound skin repair is of great research interest. Even though several biomaterials were identified as wound healing agents, gel-based scaffolds derived from either polymer or small molecules have displayed promising wound closure mechanism. Herein, for the first time, we report an injectable and self-healing self-assembled anesthetic oleogel derived from glycolipid, which exhibits antibiofilm and wound closure performance in diabetic rat. Glycolipid derived by the reaction of hydrophobic vinyl ester with α-chloralose in the presence of novozyme 435 undergoes spontaneous self-assembly in paraffin oil furnished an oleogel displaying self-healing behavior. In addition, we have prepared composite gel by encapsulating curcumin in the 3D fibrous network of oleogel. More interestingly, glycolipid in its native form demoed potential in disassembling methicillin-resistant Staphylococcus aureus, methicillin-susceptible Staphylococcus aureus, and Pseudomonas aeruginosa biofilms. Both oleogel and composite gel enhanced the wound skin repair in diabetic induced Wistar rats by promoting collagen synthesis, controlling free radical generation and further regulating tissue remodeling phases. Altogether, the reported supramolecular self-assembled anesthetic glycolipid could be potentially used for diabetic skin wound repair and to treat bacterial biofilm related infections.
Collapse
Affiliation(s)
- Yadavali Siva Prasad
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Sandeep Miryala
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Krishnamoorthy Lalitha
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Balasubramani Saritha
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - C Uma Maheswari
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India
| | - Vellaisamy Sridharan
- Department of Chemistry and Chemical Sciences, Central University of Jammu, Rahya-Suchani (Bagla), District-Samba, Jammu, J&K, 181143, India
| | - C S Srinandan
- Biofilm Biology Lab, Centre for Research in Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India.
| | - Subbiah Nagarajan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India.
- Department of Chemistry, National Institute of Technology Warangal, Warangal, Telangana, 506004, India.
| |
Collapse
|
229
|
Al-Musawi S, Albukhaty S, Al-Karagoly H, Sulaiman GM, Alwahibi MS, Dewir YH, Soliman DA, Rizwana H. Antibacterial Activity of Honey/Chitosan Nanofibers Loaded with Capsaicin and Gold Nanoparticles for Wound Dressing. Molecules 2020; 25:E4770. [PMID: 33080798 PMCID: PMC7587596 DOI: 10.3390/molecules25204770] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/16/2020] [Accepted: 10/14/2020] [Indexed: 12/27/2022] Open
Abstract
This paper describes the preparation, characterization, and evaluation of honey/tripolyphosphate (TPP)/chitosan (HTCs) nanofibers loaded with capsaicin derived from the natural extract of hot pepper (Capsicum annuumL.) and loaded with gold nanoparticles (AuNPs) as biocompatible antimicrobial nanofibrous wound bandages in topical skin treatments. The capsaicin and AuNPs were packed within HTCs in HTCs-capsaicin, HTCs-AuNP, and HTCs-AuNPs/capsaicin nanofibrous mats. In vitro antibacterial testing against Pasteurella multocida, Klebsiella rhinoscleromatis,Staphylococcus pyogenes, and Vibrio vulnificus was conducted in comparison with difloxacin and chloramphenicol antibiotics. Cell viability and proliferation of the developed nanofibers were evaluated using an MTT assay. Finally, in vivo study of the wound-closure process was performed on New Zealand white rabbits. The results indicate that HTCs-capsaicin and HTCs-AuNPs are suitable in inhibiting bacterial growth compared with HTCs and HTCs-capsaicin/AuNP nanofibers and antibiotics (P < 0.01). The MTT assay demonstrates that the nanofibrous mats increased cell proliferation compared with the untreated control (P < 0.01). In vivo results show that the developed mats enhanced the wound-closure rate more effectively than the control samples. The novel nanofibrous wound dressings provide a relatively rapid and efficacious wound-healing ability, making the obtained nanofibers promising candidates for the development of improved bandage materials.
Collapse
Affiliation(s)
| | - Salim Albukhaty
- Department of Basic Sciences, College of Nursing, University of Misan, Maysan 62001, Iraq;
| | - Hassan Al-Karagoly
- Department of Internal and Preventive Medicine, Veterinary Medicine College, University of Al-Qadisiyah, Al-Diwaniyah 58002, Iraq;
| | - Ghassan M. Sulaiman
- Department of Applied Sciences, University of Technology, Baghdad 10066, Iraq
| | - Mona S. Alwahibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.S.A.); (D.A.S.); (H.R.)
| | - Yaser Hassan Dewir
- College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia;
- Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Dina A. Soliman
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.S.A.); (D.A.S.); (H.R.)
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.S.A.); (D.A.S.); (H.R.)
| |
Collapse
|
230
|
Nour S, Imani R, Chaudhry GR, Sharifi AM. Skin wound healing assisted by angiogenic targeted tissue engineering: A comprehensive review of bioengineered approaches. J Biomed Mater Res A 2020; 109:453-478. [PMID: 32985051 DOI: 10.1002/jbm.a.37105] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022]
Abstract
Skin injuries and in particular, chronic wounds, are one of the major prevalent medical problems, worldwide. Due to the pivotal role of angiogenesis in tissue regeneration, impaired angiogenesis can cause several complications during the wound healing process and skin regeneration. Therefore, induction or promotion of angiogenesis can be considered as a promising approach to accelerate wound healing. This article presents a comprehensive overview of current and emerging angiogenesis induction methods applied in several studies for skin regeneration, which are classified into the cell, growth factor, scaffold, and biological/chemical compound-based strategies. In addition, the advantages and disadvantages of these angiogenic strategies along with related research examples are discussed in order to demonstrate their potential in the treatment of wounds.
Collapse
Affiliation(s)
- Shirin Nour
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - G Rasul Chaudhry
- OU-WB Institute for Stem Cell and Regenerative Medicine, Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Ali Mohammad Sharifi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran.,Tissue Engineering Group (NOCERAL), Department of Orthopedics Surgery, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Department of Tissue Engineering and Regenerative Medicine, School of Advanced Technologies in Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
231
|
Magden GK, Vural C, Bayrak BY, Ozdogan CY, Kenar H. Composite sponges from sheep decellularized small intestinal submucosa for treatment of diabetic wounds. J Biomater Appl 2020; 36:113-127. [PMID: 33023379 DOI: 10.1177/0885328220963897] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite the fast development of technology in the world, diabetic foot wounds cause deaths and massive economical losses. Diabetes comes first among the reasons of non traumatic foot amputations. To reduce the healing time of these fast progressing wounds, effective wound dressings are in high demand. In our study, sheep small intestinal submucosa (SIS) based biocompatible sponges were prepared after SIS decellularization and their wound healing potential was investigated on full thickness skin defects in a diabetic rat model. The decellularized SIS membranes had no cytotoxic effects on human fibroblasts and supported capillary formation by HUVECs in a fibroblast-HUVEC co-culture. Glutaraldehyde crosslinked sponges of three different compositions were prepared to test in a diabetic rat model: gelatin (GS), gelatin: hyaluronic acid (GS:HA) and gelatin: hyaluronic acid: SIS (GS:HA:SIS). The GS:HA:SIS sponges underwent a 24.8 ± 5.4% weight loss in a 7-day in vitro erosion test. All sponges had a similar Young's modulus under compression but GS:HA:SIS had the highest (5.00 ± 0.04 kPa). Statistical analyses of histopathological results of a 12-day in vivo experiment revealed no significant difference among the control, GS, GS:HA, and GS:HA:SIS transplanted groups in terms of granulation tissue thickness, collagen deposition, capillary vessel formation, and foreign body reaction (P > 0.05). On the other hand, in the GS:HA:SIS transplanted group 80% of the animals had a complete epidermal regeneration and this was significantly different than the control group (30%, P < 0.05). Preclinical studies revealed that the ECM of sheep small intestinal submucosa can be used as an effective biomaterial in diabetic wound healing.
Collapse
Affiliation(s)
- Gamze Kara Magden
- Polymer Science and Technology Dept., Graduate School of Natural and Applied Sciences, Kocaeli University, Turkey
| | - Cigdem Vural
- Polymer Science and Technology Dept., Graduate School of Natural and Applied Sciences, Kocaeli University, Turkey
| | - Busra Yaprak Bayrak
- Polymer Science and Technology Dept., Graduate School of Natural and Applied Sciences, Kocaeli University, Turkey
| | - Candan Yilmaz Ozdogan
- Polymer Science and Technology Dept., Graduate School of Natural and Applied Sciences, Kocaeli University, Turkey
| | - Halime Kenar
- Experimental and Clinical Research Center, Diabetes and Obesity Research Laboratory, Kocaeli University, Turkey
| |
Collapse
|
232
|
Ilhan E, Cesur S, Guler E, Topal F, Albayrak D, Guncu MM, Cam ME, Taskin T, Sasmazel HT, Aksu B, Oktar FN, Gunduz O. Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material. Int J Biol Macromol 2020; 161:1040-1054. [DOI: 10.1016/j.ijbiomac.2020.06.086] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
|
233
|
N. Amirrah I, Mohd Razip Wee MF, Tabata Y, Bt Hj Idrus R, Nordin A, Fauzi MB. Antibacterial-Integrated Collagen Wound Dressing for Diabetes-Related Foot Ulcers: An Evidence-Based Review of Clinical Studies. Polymers (Basel) 2020; 12:polym12092168. [PMID: 32972012 PMCID: PMC7570079 DOI: 10.3390/polym12092168] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022] Open
Abstract
Diabetic foot ulcer (DFU) is a chronic wound frequently delayed from severe infection. Wound dressing provides an essential barrier between the ulcer and the external environment. This review aimed to analyse the effectiveness of antibacterial collagen-based dressing for DFU treatment in a clinical setting. An electronic search in four databases, namely, Scopus, PubMed, Ovid MEDLINE(R), and ISI Web of Science, was performed to obtain relevant articles published within the last ten years. The published studies were included if they reported evidence of (1) collagen-based antibacterial dressing or (2) wound healing for diabetic ulcers, and (3) were written in English. Both randomised and non-randomised clinical trials were included. The search for relevant clinical studies (n) identified eight related references discussing the effectiveness of collagen-based antibacterial wound dressings for DFU comprising collagen impregnated with polyhexamethylene biguanide (n = 2), gentamicin (n = 3), combined-cellulose and silver (n = 1), gentian violet/methylene blue mixed (n = 1), and silver (n = 1). The clinical data were limited by small sample sizes and multiple aetiologies of chronic wounds. The evidence was not robust enough for a conclusive statement, although most of the studies reported positive outcomes for the use of collagen dressings loaded with antibacterial properties for DFU wound healing. This study emphasises the importance of having standardised clinical trials, larger sample sizes, and accurate reporting for reliable statistical evidence confirming DFU treatment efficiency.
Collapse
Affiliation(s)
- Ibrahim N. Amirrah
- Centre for Tissue Engineering and Regenerative Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (I.N.A.); (R.B.H.I.)
| | | | - Yasuhiko Tabata
- Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8397, Japan;
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (I.N.A.); (R.B.H.I.)
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Abid Nordin
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia; (I.N.A.); (R.B.H.I.)
- Correspondence:
| |
Collapse
|
234
|
Abdullah FI, Chua LS, Mohd Bohari SP, Sari E. Rationale of Orthosiphon aristatus for Healing Diabetic Foot Ulcer. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20953308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Orthosiphon aristatus (Blume) Miq. is traditionally used for wound healing in South East Asia and scientifically proven for its antidiabetic potential. Wounds due to diabetes, especially diabetic foot ulcer (DFU), always involve a complicated healing process. The present work aims to review the information on the rationale of the phytochemicals from O. aristatus in promoting DFU healing. The findings showed that the DFU healing potential of O. aristatus was characterized by a reduction in the blood glucose level, mainly attributed to the significant concentration of constituents such as caffeic acid, rosmarinic acid, and sinensetin in the plant extract. These phytochemicals possibly induce insulin secretion and sensitivity, improve the lipid profile, and stimulate glucose uptake. Furthermore, the healing effect may also be contributed to the antioxidant, anti-inflammatory, and antihyperglycemic properties of the plant. The roles of phytochemicals have been systematically postulated in the 4 phases of the healing process. Moreover, no adverse toxic sign or abnormality has been reported upon oral administration of the plant extract. This suggests that O. aristatus extract could be a potential diabetic wound healing phytomedicine for further preclinical and clinical studies.
Collapse
Affiliation(s)
- Farah Izana Abdullah
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Johor Bahru, Johor, Malaysia
| | - Lee Suan Chua
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Johor Bahru, Johor, Malaysia
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Faculty of Engineering, Johor Bahru, Johor, Malaysia
| | | | - Eka Sari
- Bioengineering and Biomedical Engineering Laboratory, Research Centre of Sultan Ageng Tirtayasa University, Serang, Banten, Indonesia
| |
Collapse
|
235
|
Montaser A, Rehan M, El-Senousy W, Zaghloul S. Designing strategy for coating cotton gauze fabrics and its application in wound healing. Carbohydr Polym 2020; 244:116479. [DOI: 10.1016/j.carbpol.2020.116479] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
|
236
|
Chalitangkoon J, Wongkittisin M, Monvisade P. Silver loaded hydroxyethylacryl chitosan/sodium alginate hydrogel films for controlled drug release wound dressings. Int J Biol Macromol 2020; 159:194-203. [DOI: 10.1016/j.ijbiomac.2020.05.061] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/28/2020] [Accepted: 05/10/2020] [Indexed: 11/28/2022]
|
237
|
Lou D, Luo Y, Pang Q, Tan WQ, Ma L. Gene-activated dermal equivalents to accelerate healing of diabetic chronic wounds by regulating inflammation and promoting angiogenesis. Bioact Mater 2020; 5:667-679. [PMID: 32420517 PMCID: PMC7217806 DOI: 10.1016/j.bioactmat.2020.04.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic chronic wound, characterized by prolonged inflammation and impaired angiogenesis, has become one of the most serious challenges in clinic and pose a significant healthcare burden worldwide. Although a great variety of wound dressings have been developed, few of encouraged achievements were obtained so far. In this study, the gene-activated strategy was applied to enhance sustained expression of vascular endothelial growth factor (VEGF) and achieve better healing outcomes by regulating inflammation and promoting angiogenesis. The gene-activated bilayer dermal equivalents (Ga-BDEs), which has good biocompatibility, were fabricated by loading the nano-sized complexes of Lipofectamine 2000/plasmid DNA-encoding VEGF into a collagen-chitosan scaffold/silicone membrane bilayer dermal equivalent. The DNA complexes were released in a sustained manner and showed the effective transfection capacities to up-regulate the expression of VEGF in vitro. To overcome cutaneous contraction of rodents and mimic the wound healing mechanisms of the human, a reformative rat model of full-thickness diabetic chronic wound was adopted. Under the treatment of Ga-BDEs, speeding wound healing was observed, which is accompanied by the accelerated infiltration and phenotype shift of macrophages and enhanced angiogenesis in early and late healing phases, respectively. These proved that Ga-BDEs possess the functions of immunomodulation and pro-angiogenesis simultaneously. Subsequently, the better regeneration outcomes, including deposition of oriented collagen and fast reepithelialization, were achieved. All these results indicated that, being different from traditional pro-angiogenic concept, the up-regulated expression of VEGF by Ga-BDEs in a sustained manner shows versatile potentials for promoting the healing of diabetic chronic wounds.
Collapse
Affiliation(s)
- Dong Lou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, PR China
| | - Yu Luo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Qian Pang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Wei-Qiang Tan
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, PR China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, PR China
| |
Collapse
|
238
|
Process Optimization for Green Synthesis of Silver Nanoparticles Using Indonesian Medicinal Plant Extracts. Processes (Basel) 2020. [DOI: 10.3390/pr8080998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Silver nanoparticles (AgNPs) are an interesting metal nanoparticle that can be incorporated into pharmaceutical products, including for diabetic foot ulcers as an antimicrobial agent. Green synthesis of AgNPs using plant extracts has been drawing much attention as it is simple, eco-friendly, stable, and cost-effective. This present study was performed to evaluate the potential of three Indonesian medicinal plant extracts, namely Phyllanthus niruri (PN), Orthosiphon stamineus (OS), and Curcuma longa (CL), as reducing and capping agents in the green synthesis of AgNPs, and to optimize their concentrations. Based on the yields and characteristics of the formed nanoparticles, which were analyzed using a UV-Vis spectrophotometer, particle size analyzer, scanning electron microscope, and X-ray diffractometer, Phyllanthus niruri extract at a concentration of 0.5% was concluded as the best extract in the green synthesis of AgNPs. It is thereby a prospective reducing and capping agent for further scale-up studies.
Collapse
|
239
|
Nazarnezhad S, Baino F, Kim HW, Webster TJ, Kargozar S. Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1609. [PMID: 32824491 PMCID: PMC7466668 DOI: 10.3390/nano10081609] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 12/27/2022]
Abstract
Angiogenesis (or the development of new blood vessels) is a key event in tissue engineering and regenerative medicine; thus, a number of biomaterials have been developed and combined with stem cells and/or bioactive molecules to produce three-dimensional (3D) pro-angiogenic constructs. Among the various biomaterials, electrospun nanofibrous scaffolds offer great opportunities for pro-angiogenic approaches in tissue repair and regeneration. Nanofibers made of natural and synthetic polymers are often used to incorporate bioactive components (e.g., bioactive glasses (BGs)) and load biomolecules (e.g., vascular endothelial growth factor (VEGF)) that exert pro-angiogenic activity. Furthermore, seeding of specific types of stem cells (e.g., endothelial progenitor cells) onto nanofibrous scaffolds is considered as a valuable alternative for inducing angiogenesis. The effectiveness of these strategies has been extensively examined both in vitro and in vivo and the outcomes have shown promise in the reconstruction of hard and soft tissues (mainly bone and skin, respectively). However, the translational of electrospun scaffolds with pro-angiogenic molecules or cells is only at its beginning, requiring more research to prove their usefulness in the repair and regeneration of other highly-vascularized vital tissues and organs. This review will cover the latest progress in designing and developing pro-angiogenic electrospun nanofibers and evaluate their usefulness in a tissue engineering and regenerative medicine setting.
Collapse
Affiliation(s)
- Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| | - Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Hae-Won Kim
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan 31116, Korea;
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine Research Center, Dankook University, Cheonan 31116, Korea
| | - Thomas J. Webster
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA;
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran;
| |
Collapse
|
240
|
Gauzit Amiel A, Palomino-Durand C, Maton M, Lopez M, Cazaux F, Chai F, Neut C, Foligné B, Martel B, Blanchemain N. Designed sponges based on chitosan and cyclodextrin polymer for a local release of ciprofloxacin in diabetic foot infections. Int J Pharm 2020; 587:119677. [PMID: 32717280 DOI: 10.1016/j.ijpharm.2020.119677] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/21/2022]
Abstract
Diabetic foot infections are the most common complications requiring hospitalisation of patients with diabetes. They often result in amputation to extremities and are associated with high morbi-mortality rates, especially when bone is infected. Treatment of these complications is based on surgical procedures, nursing care and systemic antibiotic therapy for several weeks, with a significant risk of relapse. Due to low blood flow and damage caused by diabetic foot infection, blood supply is decreased, causing low antibiotic diffusion in the infected site and an increase of possible bacterial resistance, making this type of infection particularly difficult to treat. In this context, the aim of this work was to develop a medical device for local antibiotic release. The device is a lyophilized physical hydrogel, i.e a sponge based on two oppositely charged polyelectrolytes (chitosan and poly(cyclodextrin citrate)). Cyclodextrins, via inclusion complexes, increase drug bioavailability and allow an extended release. Using local release administration increases concentrations in the wound without risk of toxicity to the body and prevents the emergence of resistant bacteria. The hydrogel was characterised by rheology. After freeze-drying, a curing process was implemented. The swelling rate and cell viability were evaluated, and finally, the sponge was impregnated with a ciprofloxacin solution to evaluate its drug release profile and its antibacterial activity.
Collapse
Affiliation(s)
- A Gauzit Amiel
- Univ. Lille, INSERM, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - C Palomino-Durand
- Univ. Lille, INSERM, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - M Maton
- Univ. Lille, INSERM, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - M Lopez
- Univ. Lille, INSERM, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - F Cazaux
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - F Chai
- Univ. Lille, INSERM, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France
| | - C Neut
- Univ. Lille, INSERM, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - B Foligné
- Univ. Lille, INSERM, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - B Martel
- Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France
| | - N Blanchemain
- Univ. Lille, INSERM, CHU Lille, U1008 - Controlled Drug Delivery Systems and Biomaterials, F-59000 Lille, France.
| |
Collapse
|
241
|
Effect of photobiomodulation on CCC-ESF reactive oxygen species steady-state in high glucose mediums. Lasers Med Sci 2020; 36:555-562. [PMID: 32643032 DOI: 10.1007/s10103-020-03057-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/02/2020] [Indexed: 12/15/2022]
Abstract
Delayed wound healing is one of the most challenging complications of diabetes mellitus (DM) in clinical medicine, and it is related to the excessive generation of reactive oxygen species (ROS). Photobiomodulation (PBM) can promote wound healing in many ways, so it can be used as a method for the treatment of delayed healing of DM wounds. In this study, we investigated the effect of PBM on ROS homeostasis in human embryonic skin fibroblast cells (CCC-ESFs) cultured in high glucose concentrations. The CCC-ESFs were cultured in vitro and divided into two groups, including the control group and the 635 nm laser irradiation group. After 2 days of high glucose treatment, the experimental group was irradiated with different doses of laser for 3 days. First, we measured the cellular proliferation, and the results showed that laser irradiation could promote cellular proliferation. Then, we measured the generation of ROS, the activities of total superoxide dismutase (SOD), and total antioxidant capacity (TAC) of the cells; the results showed that high glucose destroyed cells by inducing high concentration of ROS, the balance of oxidation, and antioxidation cause oxidative stress damage to cells. PBM can increase the antioxidant capacity of cells, reducing the high concentration of ROS induced by high glucose. Finally, we measured the levels of mitochondrial membrane potential (∆ψm) and the secretion of nuclear factor kappa-B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β); the results showed that PBM can reduce apoptosis and regulate the inflammatory state. We conclude that PBM can maintain the ROS homeostasis, increase the TAC of cells, and trigger the cellular proliferation, and the response of CCC-ESFs to PBM was dose-dependent.
Collapse
|
242
|
Homaeigohar S, Tsai TY, Zarie ES, Elbahri M, Young TH, Boccaccini AR. Bovine Serum Albumin (BSA)/polyacrylonitrile (PAN) biohybrid nanofibers coated with a biomineralized calcium deficient hydroxyapatite (HA) shell for wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111248. [PMID: 32806254 DOI: 10.1016/j.msec.2020.111248] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 01/14/2023]
Abstract
Here, for the first time, a nanofibrous (NF) wound dressing comprising biomineralized polyacrylonitrile (PAN) nanofibers is developed. In contrast to the majority of the currently available nanofibrous wound dressings that are based on natural polymers, PAN is a synthetic, industrial polymer, which has been rarely considered for this purpose. PAN NFs are first hydrolyzed to allow for tethering of biofunctional agents (here Bovine Serum Albumin (BSA)). Later, the biofunctionlized PAN NFs are biomineralized by immersion in simulated body fluid (SBF). As a result, core-shell, calcium deficient hydroxyapatite (HA)/BSA/PAN nanofibers form, that are mechanically stronger (elastic modulus; 8.5 vs. 6 MPa) compared to the untreated PAN NFs. The biomineralized PAN NFs showed promising bioactivity as reflected in the cell biology tests with fibroblast and keratinocyte cells. Hs68 fibroblasts and HaCat keratinocytes were found to be more viable in the presence of the biomineralized NFs than when they were co-cultured with the neat PAN NFs. Such mechanical and biological characteristics of the biomineralized PAN NFs are favorable for wound dressing applications.
Collapse
Affiliation(s)
- Shahin Homaeigohar
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany; Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 00076 Aalto, Finland.
| | - Ting-Yu Tsai
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei 100, Taiwan
| | - Eman S Zarie
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 00076 Aalto, Finland; Department of Therapeutical Chemistry, Pharmaceutical and Drug Industries Research Division National Research Centre, Dokki 12311, Giza, Egypt
| | - Mady Elbahri
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 00076 Aalto, Finland
| | - Tai-Horng Young
- Nanochemistry and Nanoengineering, Department of Chemistry and Materials Science, School of Chemical Engineering, Aalto University, Kemistintie 1, 00076 Aalto, Finland
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058, Erlangen, Germany
| |
Collapse
|
243
|
Marine Algae Polysaccharides as Basis for Wound Dressings, Drug Delivery, and Tissue Engineering: A Review. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8070481] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The present review considers the physicochemical and biological properties of polysaccharides (PS) from brown, red, and green algae (alginates, fucoidans, carrageenans, and ulvans) used in the latest technologies of regenerative medicine (tissue engineering, modulation of the drug delivery system, and the design of wound dressing materials). Information on various types of modern biodegradable and biocompatible PS-based wound dressings (membranes, foams, hydrogels, nanofibers, and sponges) is provided; the results of experimental and clinical trials of some dressing materials in the treatment of wounds of various origins are analyzed. Special attention is paid to the ability of PS to form hydrogels, as hydrogel dressings meet the basic requirements set out for a perfect wound dressing. The current trends in the development of new-generation PS-based materials for designing drug delivery systems and various tissue-engineering scaffolds, which makes it possible to create human-specific tissues and develop target-oriented and personalized regenerative medicine products, are also discussed.
Collapse
|
244
|
Sattari S, Beyranvand S, Soleimani K, Rossoli K, Salahi P, Donskyi IS, Shams A, Unger WES, Yari A, Farjanikish G, Nayebzadeh H, Adeli M. Boronic Acid-Functionalized Two-Dimensional MoS 2 at Biointerfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6706-6715. [PMID: 32441938 DOI: 10.1021/acs.langmuir.0c00776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
While noncovalent interactions at two-dimensional nanobiointerfaces are extensively investigated, less knowledge about covalent interactions at this interface is available. In this work, boronic acid-functionalized 2D MoS2 was synthesized and its covalent multivalent interactions with bacteria and nematodes were investigated. Polymerization of glycidol by freshly exfoliated MoS2 and condensation of 2,5-thiophenediylbisboronic acid on the produced platform resulted in boronic acid-functionalized 2D MoS2. The destructive interactions between 2D MoS2 and bacteria as well as nematodes were significantly amplified by boronic acid functional groups. Because of the high antibacterial and antinematodal activities of boronic acid-functionalized 2D MoS2, its therapeutic efficacy for diabetic wound healing was investigated. The infected diabetic wounds were completely healed 10 days after treatment with boronic acid-functionalized 2D MoS2, and a normal structure for recovered tissues including different layers of skin, collagen, and blood vessels was detected.
Collapse
Affiliation(s)
- Shabnam Sattari
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad 0663332145, Iran
| | - Siamak Beyranvand
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad 0663332145, Iran
| | - Khadijeh Soleimani
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad 0663332145, Iran
| | - Kiarash Rossoli
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad 0663332145, Iran
| | - Pouya Salahi
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad 0663332145, Iran
| | - Ievgen S Donskyi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, Berlin 14195, Germany
- BAM-Federal Institute for Material Science and Testing, Division 6.1, Surface Analysis and Interfacial Chemistry, Unter den Eichen 44-46, Berlin 12205, Germany
| | - Azim Shams
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad 0663332145, Iran
| | - Wolfgang E S Unger
- BAM-Federal Institute for Material Science and Testing, Division 6.1, Surface Analysis and Interfacial Chemistry, Unter den Eichen 44-46, Berlin 12205, Germany
| | - Abdolah Yari
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad 0663332145, Iran
| | - Ghasem Farjanikish
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad 0663332145, Iran
| | - Hassan Nayebzadeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad 0663332145, Iran
| | - Mohsen Adeli
- Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad 0663332145, Iran
| |
Collapse
|
245
|
Pascoal DRC, Velozo ES, Braga MEM, Sousa HC, Cabral-Albuquerque ECM, Vieira de Melo SAB. Bioactive compounds of Copaifera sp. impregnated into three-dimensional gelatin dressings. Drug Deliv Transl Res 2020; 10:1537-1551. [PMID: 32557352 DOI: 10.1007/s13346-020-00797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
This study investigates the immersion impregnation process of the copaiba oleoresin and leaf extract into SpongostanTM gelatin dressings to be used in wound healing treatment. Copaiba oleoresin and leaf extract were characterized by spectroscopic analyses in order to confirm the identity of bioactive compounds and their compatibility with dressing material. Their antibacterial properties were evaluated and oleoresin activity against Escherichia coli and Staphylococcus aureus bacteria was confirmed while the leaf extract showed activity against S. aureus. Solubility assays in organic solvents revealed that copaiba oleoresin is miscible into dichloromethane, while leaf extract showed a 20 g/ml solubility coefficient at 35 °C in the same solvent. These miscibility and solubility conditions were selected for the impregnation process. Using the organic solvent immersion method, 11 mg of copaiba oleoresin and 19 mg of leaf extract were impregnated into 1 cm3 of 3D matrix. The main bioactives from copaiba products, such as β-caryophyllene and lupeol, were tracked in the gelatin dressing. DSC and TGA assays showed no thermal changes in the samples after impregnation. Furthermore, the spatial organization of foam structure of the dressings was preserved after superficial distribution of oleoresin, as well as amorphous-like particulate deposition of leaf extract. The main compound of copaiba oleoresin, β-caryophyllene, which exhibits well-known anti-inflammatory activities, and the main compound of copaiba leaf extract, lupeol, also an anti-inflammatory agent, were successfully impregnated using organic solvent in wound dressings and are promising for further application on tissue wound healing. Graphical Abstract.
Collapse
Affiliation(s)
- Diego R C Pascoal
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Aristides Novis, 2, 6° andar, Federação, Salvador, Bahia, 40210-630, Brazil
| | - Eudes S Velozo
- Departamento de Farmácia, Universidade Federal da Bahia, Rua Barão de Jeremoabo, s/n, Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Mara E M Braga
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, Rua Sílvio Lima, Pólo II-Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - Herminio C Sousa
- CIEPQPF, Department of Chemical Engineering, Universidade de Coimbra, Rua Sílvio Lima, Pólo II-Pinhal de Marrocos, 3030-790, Coimbra, Portugal
| | - Elaine C M Cabral-Albuquerque
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Aristides Novis, 2, 6° andar, Federação, Salvador, Bahia, 40210-630, Brazil
| | - Silvio A B Vieira de Melo
- Programa de Engenharia Industrial, Escola Politécnica, Universidade Federal da Bahia, Rua Aristides Novis, 2, 6° andar, Federação, Salvador, Bahia, 40210-630, Brazil. .,Centro Interdisciplinar em Energia e Ambiente, Campus Universitário da Federação/Ondina, Universidade Federal da Bahia, Salvador, Bahia, 40170-115, Brazil.
| |
Collapse
|
246
|
Electrospun Composite Nanofibrous Materials Based on (Poly)-Phenol-Polysaccharide Formulations for Potential Wound Treatment. MATERIALS 2020; 13:ma13112631. [PMID: 32526962 PMCID: PMC7321623 DOI: 10.3390/ma13112631] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/01/2020] [Accepted: 06/05/2020] [Indexed: 12/05/2022]
Abstract
In this paper, we focus on the preparation of electrospun composite nanofibrous materials based on (poly)-phenol-polysaccharide formulation. The prepared composite nanofibres are ideally suited as a controlled drug delivery system, especially for local treatment of different wounds, owing to their high surface and volume porosity and small fibre diameter. To evaluate the formulations, catechin and resveratrol were used as antioxidants. Both substances were embedded into chitosan particles, and further subjected to electrospinning. Formulations were characterized by determination of the particle size, encapsulation efficiency, as well as antioxidant and antimicrobial properties. The electrospinning process was optimised through fine-tuning of the electrospinning solution and the electrospinning parameters. Scanning electron microscopy was used to evaluate the (nano)fibrous structure, while the successful incorporation of bio substances was assessed by X-ray Photoelectron Spectroscopy and Fourier transform infrared spectroscopy. The bioactive properties of the formed nanofibre -mats were evaluated by measuring the antioxidative efficiency and antimicrobial properties, followed by in vitro substance release tests. The prepared materials are bioactive, have antimicrobial and antioxidative properties and at the same time allow the release of the incorporated substances, which assures a promising use in medical applications, especially in wound care.
Collapse
|
247
|
Peng J, Zhao H, Tu C, Xu Z, Ye L, Zhao L, Gu Z, Zhao D, Zhang J, Feng Z. In situ hydrogel dressing loaded with heparin and basic fibroblast growth factor for accelerating wound healing in rat. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111169. [PMID: 32806292 DOI: 10.1016/j.msec.2020.111169] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/15/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022]
Abstract
In order to accelerate the healing of chronic wound, a hydrogel dressing encapsulating with heparin and basic fibroblast growth factor is prepared by the Michael addition of 4-arm acrylated polyethylene glycol and dithiothreitol. As-prepared hydrogel dressing can combine the advantages of wet healing theory and exogenous growth factor supplement. Furthermore, the encapsulated heparin can play a role in diminishing inflammation and accelerating wound healing in addition to its well-known function of stabilizing basic fibroblast growth factor. In vitro release test shows the hydrogel network is able to sustainably release basic fibroblast growth factor within 10 days by the regulation of heparin, while released growth factor can significantly promote fibroblast's proliferation in vitro. Moreover, the wound healing in rat shows that as-prepared hydrogel dressing could accelerate wound healing in vivo much more effectively compared with blank hydrogel dressing and negative control. Hematoxylin-eosin and Masson's Trichrome staining exhibit the formation of complete and uniform epidermis. Immunohistochemical staining exhibits heparin can help hydrogel dressing to possess low inflammation in early stage, which is beneficial for accelerating wound healing as well as preventing the production of scar tissue. The enzyme-linked immunosorbent assay results demonstrate the exogenous bFGF in hydrogel can significantly upgrade the expressing of vascular endothelial growth factor and transforming growth factor-β in wound site, which indicate better angiogenesis, and better on-site cell proliferation in wound site, respectively. Those results are further demonstrated by immunohistochemical and immunofluorescence staining. Consequently, as-prepared hydrogel dressing shows promising potential to perform better therapy efficacy in clinic for accelerating wound healing.
Collapse
Affiliation(s)
- Jia Peng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Zhao
- Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Chengzhao Tu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zeqin Xu
- Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Lin Ye
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing 100081, China.
| | - Liang Zhao
- Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.
| | - Zongheng Gu
- Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Dong Zhao
- Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Jie Zhang
- Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Zengguo Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing 100081, China
| |
Collapse
|
248
|
Lozeau LD, Grosha J, Smith IM, Stewart EJ, Camesano TA, Rolle MW. Alginate Affects Bioactivity of Chimeric Collagen-Binding LL37 Antimicrobial Peptides Adsorbed to Collagen-Alginate Wound Dressings. ACS Biomater Sci Eng 2020; 6:3398-3410. [PMID: 33463166 DOI: 10.1021/acsbiomaterials.0c00227] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic infected wounds cause more than 23,000 deaths annually. Antibiotics and antiseptics are conventionally used to treat infected wounds; however, they can be toxic to mammalian cells, and their use can contribute to antimicrobial resistance. Antimicrobial peptides (AMPs) have been utilized to address the limitations of antiseptics and antibiotics. In previous work, we modified the human AMP LL37 with collagen-binding domains from collagenase (cCBD) or fibronectin (fCBD) to facilitate peptide tethering and delivery from collagen-based wound dressings. We found that cCBD-LL37 and fCBD-LL37 were retained and active when bound to 100% collagen scaffolds. Collagen wound dressings are commonly made as composites with other materials, such as alginate. The goal of this study was to investigate how the presence of alginate affects the tethering, release, and antimicrobial activity of LL37 and CBD-LL37 peptides adsorbed to commercially available collagen-alginate wound dressings (FIBRACOL Plus-a 90% collagen and 10% alginate wound dressing). We found that over 85% of the LL37, cCBD-LL37, and fCBD-LL37 was retained on FIBRACOL Plus over a 14-day release study (90.3, 85.8, and 98.6%, respectively). Additionally, FIBRACOL Plus samples loaded with peptides were bactericidal toward Pseudomonas aeruginosa, even after 14 days in release buffer but demonstrated no antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Staphylococcus epidermidis. The presence of alginate in solution induced conformational changes in the cCBD-LL37 and LL37 peptides, resulting in increased peptide helicity, and reduced antimicrobial activity against P. aeruginosa. Peptide-loaded FIBRACOL Plus scaffolds were not cytotoxic to human dermal fibroblasts. This study demonstrates that CBD-mediated LL37 tethering is a viable strategy to reduce LL37 toxicity, and how substrate composition plays a crucial role in modulating the antimicrobial activity of tethered AMPs.
Collapse
Affiliation(s)
- Lindsay D Lozeau
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Jonian Grosha
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Ian M Smith
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Elizabeth J Stewart
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Terri A Camesano
- Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States.,Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| | - Marsha W Rolle
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, Massachusetts 01609, United States
| |
Collapse
|
249
|
Samadian H, Zamiri S, Ehterami A, Farzamfar S, Vaez A, Khastar H, Alam M, Ai A, Derakhshankhah H, Allahyari Z, Goodarzi A, Salehi M. Electrospun cellulose acetate/gelatin nanofibrous wound dressing containing berberine for diabetic foot ulcer healing: in vitro and in vivo studies. Sci Rep 2020; 10:8312. [PMID: 32433566 PMCID: PMC7239895 DOI: 10.1038/s41598-020-65268-7] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/27/2020] [Indexed: 01/18/2023] Open
Abstract
Functional wound dressing with tailored physicochemical and biological properties is vital for diabetic foot ulcer (DFU) treatment. Our main objective in the current study was to fabricate Cellulose Acetate/Gelatin (CA/Gel) electrospun mat loaded with berberine (Beri) as the DFU-specific wound dressing. The wound healing efficacy of the fabricated dressings was evaluated in streptozotocin-induced diabetic rats. The results demonstrated an average nanofiber diameter of 502 ± 150 nm, and the tensile strength, contact angle, porosity, water vapor permeability and water uptake ratio of CA/Gel nanofibers were around 2.83 ± 0.08 MPa, 58.07 ± 2.35°, 78.17 ± 1.04%, 11.23 ± 1.05 mg/cm2/hr, and 12.78 ± 0.32%, respectively, while these values for CA/Gel/Beri nanofibers were 2.69 ± 0.05 MPa, 56.93 ± 1°, 76.17 ± 0.76%, 10.17 ± 0.21 mg/cm2/hr, and 14.37 ± 0.42%, respectively. The antibacterial evaluations demonstrated that the dressings exhibited potent antibacterial activity. The collagen density of 88.8 ± 6.7% and the angiogenesis score of 19.8 ± 3.8 obtained in the animal studies indicate a proper wound healing. These findings implied that the incorporation of berberine did not compromise the physical properties of dressing, while improving the biological activities. In conclusion, our results indicated that the prepared mat is a proper wound dressing for DFU management and treatment.
Collapse
Affiliation(s)
- Hadi Samadian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sina Zamiri
- Department of Kinesiology and Health Science, York University, Ontario, Canada
| | - Arian Ehterami
- Department of Mechanical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeed Farzamfar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Vaez
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Khastar
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mostafa Alam
- Department of Oral and Maxillofacial Surgery, Dental School, Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Armin Ai
- Dental student of scientific research center, faculty of dentistry, Tehran university of medical sciences, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Allahyari
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, USA
- Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY, USA
| | - Arash Goodarzi
- Department of Tissue Engineering, School of Advanced Technologies, Fasa University of Medical Sciences, Fasa, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Tissue Engineering and stem cells research center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
250
|
Delir S, Sirousazar M, Kheiri F. Clindamycin releasing bionanocomposite hydrogels as potential wound dressings for the treatment of infected wounds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:1489-1514. [DOI: 10.1080/09205063.2020.1764161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Saba Delir
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | - Mohammad Sirousazar
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| | - Farshad Kheiri
- Faculty of Chemical Engineering, Urmia University of Technology, Urmia, Iran
| |
Collapse
|