201
|
Ingemann L, Kirkegaard T. Lysosomal storage diseases and the heat shock response: convergences and therapeutic opportunities. J Lipid Res 2014; 55:2198-210. [PMID: 24837749 DOI: 10.1194/jlr.r048090] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Lysosomes play a vital role in the maintenance of cellular homeostasis through the recycling of cell constituents, a key metabolic function which is highly dependent on the correct function of the lysosomal hydrolases and membrane proteins, as well as correct membrane lipid stoichiometry and composition. The critical role of lysosomal functionality is evident from the severity of the diseases in which the primary lesion is a genetically defined loss-of-function of lysosomal hydrolases or membrane proteins. This group of diseases, known as lysosomal storage diseases (LSDs), number more than 50 and are associated with severe neurodegeneration, systemic disease, and early death, with only a handful of the diseases having a therapeutic option. Another key homeostatic system is the metabolic stress response or heat shock response (HSR), which is induced in response to a number of physiological and pathological stresses, such as protein misfolding and aggregation, endoplasmic reticulum stress, oxidative stress, nutrient deprivation, elevated temperature, viral infections, and various acute traumas. Importantly, the HSR and its cardinal members of the heat shock protein 70 family has been shown to protect against a number of degenerative diseases, including severe diseases of the nervous system. The cytoprotective actions of the HSR also include processes involving the lysosomal system, such as cell death, autophagy, and protection against lysosomal membrane permeabilization, and have shown promise in a number of LSDs. This review seeks to describe the emerging understanding of the interplay between these two essential metabolic systems, the lysosomes and the HSR, with a particular focus on their potential as a therapeutic target for LSDs.
Collapse
|
202
|
Methuosis: nonapoptotic cell death associated with vacuolization of macropinosome and endosome compartments. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:1630-42. [PMID: 24726643 DOI: 10.1016/j.ajpath.2014.02.028] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/30/2014] [Accepted: 02/04/2014] [Indexed: 12/19/2022]
Abstract
Apoptosis is the most widely recognized form of physiological programmed cell death. During the past three decades, various nonapoptotic forms of cell death have gained increasing attention, largely because of their potential importance in pathological processes, toxicology, and cancer therapy. A recent addition to the panoply of cell death phenotypes is methuosis. The neologism is derived from the Greek methuo (to drink to intoxication) because the hallmark of this form of cell death is displacement of the cytoplasm by large fluid-filled vacuoles derived from macropinosomes. The demise of the cell resembles many forms of necrosis, insofar as there is a loss of metabolic capacity and plasma membrane integrity, without the cell shrinkage and nuclear fragmentation associated with apoptosis. Methuosis was initially defined in glioblastoma cells after ectopic expression of activated Ras, but recent reports have described small molecules that can induce the features of methuosis in a broad spectrum of cancer cells, including those that are resistant to conventional apoptosis-inducing drugs. This review summarizes the available information about the distinguishing morphological characteristics and underlying mechanisms of methuosis. We compare and contrast methuosis with other cytopathological conditions in which accumulation of clear cytoplasmic vacuoles is a prominent feature. Finally, we highlight key questions that need to be answered to determine whether methuosis truly represents a unique form of regulated cell death.
Collapse
|
203
|
Yoshidomi K, Murakami A, Yakabe K, Sueoka K, Nawata S, Sugino N. Heat shock protein 70 is involved in malignant behaviors and chemosensitivities to cisplatin in cervical squamous cell carcinoma cells. J Obstet Gynaecol Res 2014; 40:1188-96. [DOI: 10.1111/jog.12325] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 10/16/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Keiko Yoshidomi
- Department of Obstetrics and Gynecology; Yamaguchi University Graduate School of Medicine; Ube Japan
| | - Akihiro Murakami
- Department of Obstetrics and Gynecology; Yamaguchi University Graduate School of Medicine; Ube Japan
| | - Kazuyuki Yakabe
- Department of Obstetrics and Gynecology; Yamaguchi University Graduate School of Medicine; Ube Japan
| | - Kotaro Sueoka
- Department of Obstetrics and Gynecology; Yamaguchi University Graduate School of Medicine; Ube Japan
| | - Shugo Nawata
- Department of Obstetrics and Gynecology; Yamaguchi University Graduate School of Medicine; Ube Japan
| | - Norihiro Sugino
- Department of Obstetrics and Gynecology; Yamaguchi University Graduate School of Medicine; Ube Japan
| |
Collapse
|
204
|
Samie MA, Xu H. Lysosomal exocytosis and lipid storage disorders. J Lipid Res 2014; 55:995-1009. [PMID: 24668941 DOI: 10.1194/jlr.r046896] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Indexed: 12/11/2022] Open
Abstract
Lysosomes are acidic compartments in mammalian cells that are primarily responsible for the breakdown of endocytic and autophagic substrates such as membranes, proteins, and lipids into their basic building blocks. Lysosomal storage diseases (LSDs) are a group of metabolic disorders caused by genetic mutations in lysosomal hydrolases required for catabolic degradation, mutations in lysosomal membrane proteins important for catabolite export or membrane trafficking, or mutations in nonlysosomal proteins indirectly affecting these lysosomal functions. A hallmark feature of LSDs is the primary and secondary excessive accumulation of undigested lipids in the lysosome, which causes lysosomal dysfunction and cell death, and subsequently pathological symptoms in various tissues and organs. There are more than 60 types of LSDs, but an effective therapeutic strategy is still lacking for most of them. Several recent in vitro and in vivo studies suggest that induction of lysosomal exocytosis could effectively reduce the accumulation of the storage materials. Meanwhile, the molecular machinery and regulatory mechanisms for lysosomal exocytosis are beginning to be revealed. In this paper, we first discuss these recent developments with the focus on the functional interactions between lipid storage and lysosomal exocytosis. We then discuss whether lysosomal exocytosis can be manipulated to correct lysosomal and cellular dysfunction caused by excessive lipid storage, providing a potentially general therapeutic approach for LSDs.
Collapse
Affiliation(s)
- Mohammad Ali Samie
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
205
|
Tushar MD, Ramanathan A. Tyrosine 1045 codon mutations in exon 27 of EGFR are infrequent in oral squamous cell carcinomas. Asian Pac J Cancer Prev 2014; 14:4279-82. [PMID: 23991943 DOI: 10.7314/apjcp.2013.14.7.4279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The activation and inactivation of receptor tyrosine kinases are tightly regulated to ensure faithful replication of cells. After having transduced extracellular growth activating signals, activated EGFR is subjected to downregulation either by clathrin mediated endocytosis or c-Cbl mediated proteasome degradation depending on the ligand concentration. c-Cbl is an ubiquitin ligase which requires a phosphorylated tyrosine residue at position 1045 in the cytoplasmic domain of EGFR to interact and add ubiquitin molecules. While activating mutations in exons 19 and 21 have been associated with the development of several cancers, the status of mutations at tyrosine 1045 coding exon 27 of EGFR remain to be investigated. Consistently, defective phosphorylation at 1045 has been associated with sustained phosphorylation of EGFR in non-small lung carcinomas. Hence in the present study we investigated the genetic status of the tyrosine 1045 coding site within exon 27 of EGFR gene to explore for possible occurrence of mutations in this region, especially since no studies have addressed this issue so far. MATERIALS AND METHODS Tumor chromosomal DNA isolated from thirty five surgically excised oral squamous cell carcinoma tissues was subjected to PCR amplification with intronic primers flanking the tyrosine 1045 coding exon 27 of EGFR gene. The PCR amplicons were subsequently subjected to direct sequencing to elucidate the mutation status. RESULTS Sequence analysis identified no mutations in the tyrosine 1045 codon of EGFR in any of the thirty five samples that were analyzed. CONCLUSIONS The lack of identification of mutation in the tyrosine 1045 codon of EGFR suggests that mutations in this region may be relatively rare in oral squamous cell carcinomas. To the best of our knowledge, this study is the first to have explored the genetic status of exon 27 of EGFR in oral squamous cell carcinoma tissue samples.
Collapse
Affiliation(s)
- Mehta Dhaval Tushar
- Human Genetics Laboratory, Sree Balaji Medical and Dental College and Hospital, Bharath University, Chennai, India.
| | | |
Collapse
|
206
|
Appelqvist H, Wäster P, Kågedal K, Öllinger K. The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol 2014; 5:214-26. [PMID: 23918283 DOI: 10.1093/jmcb/mjt022] [Citation(s) in RCA: 533] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are ubiquitous membrane-bound intracellular organelles with an acidic interior. They are central for degradation and recycling of macromolecules delivered by endocytosis, phagocytosis, and autophagy. In contrast to the rather simplified view of lysosomes as waste bags, nowadays lysosomes are recognized as advanced organelles involved in many cellular processes and are considered crucial regulators of cell homeostasis. The function of lysosomes is critically dependent on soluble lysosomal hydrolases (e.g. cathepsins) as well as lysosomal membrane proteins (e.g. lysosome-associated membrane proteins). This review focuses on lysosomal involvement in digestion of intra- and extracellular material, plasma membrane repair, cholesterol homeostasis, and cell death. Regulation of lysosomal biogenesis and function via the transcription factor EB (TFEB) will also be discussed. In addition, lysosomal contribution to diseases, including lysosomal storage disorders, neurodegenerative disorders, cancer, and cardiovascular diseases, is presented.
Collapse
Affiliation(s)
- Hanna Appelqvist
- Experimental Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|
207
|
Biswas S, Torchilin VP. Nanopreparations for organelle-specific delivery in cancer. Adv Drug Deliv Rev 2014; 66:26-41. [PMID: 24270008 DOI: 10.1016/j.addr.2013.11.004] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 10/30/2013] [Accepted: 11/13/2013] [Indexed: 01/07/2023]
Abstract
To efficiently deliver therapeutics into cancer cells, a number of strategies have been recently investigated. The toxicity associated with the administration of chemotherapeutic drugs due to their random interactions throughout the body necessitates the development of drug-encapsulating nanopreparations that significantly mask, or reduce, the toxic side effects of the drugs. In addition to reduced side effects associated with drug encapsulation, nanocarriers preferentially accumulate in tumors as a result of its abnormally leaky vasculature via the Enhanced Permeability and Retention (EPR) effect. However, simple passive nanocarrier delivery to the tumor site is unlikely to be enough to elicit a maximum therapeutic response as the drug-loaded carriers must reach the intracellular target sites. Therefore, efficient translocation of the nanocarrier through the cell membrane is necessary for cytosolic delivery of the cargo. However, crossing the cell membrane barrier and reaching cytosol might still not be enough for achieving maximum therapeutic benefit, which necessitates the delivery of drugs directly to intracellular targets, such as bringing pro-apoptotic drugs to mitochondria, nucleic acid therapeutics to nuclei, and lysosomal enzymes to defective lysosomes. In this review, we discuss the strategies developed for tumor targeting, cytosolic delivery via cell membrane translocation, and finally organelle-specific targeting, which may be applied for developing highly efficacious, truly multifunctional, cancer-targeted nanopreparations.
Collapse
Affiliation(s)
- Swati Biswas
- Center for Pharmaceutical Biotechnology and Nanomedicine, 360 Huntington Avenue, 140 The Fenway, Northeastern University, Boston, 02115, USA; Department of Pharmacy, Birla Institute of Technology and Sciences Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, Andhra Pradesh 500078, India
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, 360 Huntington Avenue, 140 The Fenway, Northeastern University, Boston, 02115, USA.
| |
Collapse
|
208
|
Resemann HK, Watson CJ, Lloyd-Lewis B. The Stat3 paradox: a killer and an oncogene. Mol Cell Endocrinol 2014; 382:603-611. [PMID: 23827176 DOI: 10.1016/j.mce.2013.06.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 06/21/2013] [Indexed: 01/05/2023]
Abstract
Stat proteins regulate many aspects of mammary gland development, including the profound changes that occur during pregnancy, lactation and involution. Stat3 induces transcriptional activation of genes involved in the inflammatory response, and in seemingly contradictory cellular events such as apoptosis, differentiation and stem cell maintenance. While Stat3 signalling during mammary gland involution induces epithelial cell death, aberrant Stat3 activation is widely implicated in breast tumourigenesis. Specific cytokines may initiate either a Stat3-driven proliferative or death response depending on the cell-type and cell-context specific availability of particular combinations of signals and receptors. The paradoxical functions of Stat3 may also be due to the degree and extent of activation in different circumstances, in addition to paracrine signalling between mammary epithelial cells and the surrounding microenvironment. Deciphering the enigmatic nature of Stat3 in the mammary gland may benefit future therapeutic strategies for inducing cell death in breast tumours.
Collapse
Affiliation(s)
- Henrike K Resemann
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom
| | - Bethan Lloyd-Lewis
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, United Kingdom.
| |
Collapse
|
209
|
Gao W, Cao W, Zhang H, Li P, Xu K, Tang B. Targeting lysosomal membrane permeabilization to induce and image apoptosis in cancer cells by multifunctional Au–ZnO hybrid nanoparticles. Chem Commun (Camb) 2014; 50:8117-20. [DOI: 10.1039/c4cc03793f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
210
|
Crucianelli E, Bruni P, Frontini A, Massaccesi L, Pisani M, Smorlesi A, Mobbili G. Liposomes containing mannose-6-phosphate-cholesteryl conjugates for lysosome-specific delivery. RSC Adv 2014. [DOI: 10.1039/c4ra08681c] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We present a novel liposomal nanocarrier containing mannose 6-phosphate-cholesteryl conjugates and show its ability to reach the lysosomes by means of confocal and fluorescence microscopy measurements.
Collapse
Affiliation(s)
- E. Crucianelli
- Di.S.V.A. Department
- Università Politecnica delle Marche
- 60131 Ancona, Italy
| | - P. Bruni
- SIMAU Department
- Università Politecnica delle Marche
- 60131 Ancona, Italy
| | - A. Frontini
- Department of Experimental and Clinical Medicine
- Università Politecnica delle Marche
- 60126 Ancona, Italy
| | - L. Massaccesi
- Di.S.V.A. Department
- Università Politecnica delle Marche
- 60131 Ancona, Italy
| | - M. Pisani
- SIMAU Department
- Università Politecnica delle Marche
- 60131 Ancona, Italy
| | - A. Smorlesi
- Department of Experimental and Clinical Medicine
- Università Politecnica delle Marche
- 60126 Ancona, Italy
| | - G. Mobbili
- Di.S.V.A. Department
- Università Politecnica delle Marche
- 60131 Ancona, Italy
| |
Collapse
|
211
|
Activation of cathepsins B and L in mouse lymphosarcoma tissue under the effect of cyclophosphamide is associated with apoptosis induction and infiltration by mononuclear phagocytes. Bull Exp Biol Med 2013; 156:86-90. [PMID: 24319737 DOI: 10.1007/s10517-013-2284-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
We analyzed activities of lysosomal cystein cathepsins B and L in mouse LS lymphosarcoma and its drug-resistant RLS 40 strain and their correlations with the dynamics of the percentage of cells with fragmented DNA and CD14 (+) phagocytes over 3 days after cyclophosphamide injection. LS regression and inhibition of RLS 40 growth after cyclophosphamide injection were paralleled by an increase in cathepsins B and L activities in tumor tissues. The antitumor effect of cyclophosphamide associated with apoptosis intensity and protease activities were significantly higher in LS. Positive correlations between activities of cathepsins B and L and the LS tissue content of cells with fragmented DNA and CD14 (+) phagocytes and negative correlations thereof with tumor weight were detected. It seems that the increase in cathepsins B and L activities in LS tissues was caused by cyclophosphamide induction of apoptosis and depended on the level of tumor cell infiltration with mononuclear phagocytes.
Collapse
|
212
|
Eno CO, Zhao G, Venkatanarayan A, Wang B, Flores ER, Li C. Noxa couples lysosomal membrane permeabilization and apoptosis during oxidative stress. Free Radic Biol Med 2013; 65:26-37. [PMID: 23770082 PMCID: PMC3816129 DOI: 10.1016/j.freeradbiomed.2013.05.051] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 05/25/2013] [Accepted: 05/31/2013] [Indexed: 11/22/2022]
Abstract
The exact roles of lysosomal membrane permeabilization (LMP) in oxidative stress-triggered apoptosis are not completely understood. Here, we first studied the temporal relation between LMP and mitochondrial outer membrane permeabilization (MOMP) during the initial stage of apoptosis caused by the oxidative stress inducer H2O2. Despite its essential role in mediating apoptosis, the expression of the BH3-only Bcl-2 protein Noxa was dispensable for LMP. In contrast, MOMP was dependent on Noxa expression and occurred downstream of LMP. When lysosomal membranes were stabilized by the iron-chelating agent desferrioxamine, H2O2-induced increase in DNA damage, Noxa expression, and subsequent apoptosis were abolished by the inhibition of LMP. Importantly, LMP-induced Noxa expression increase was mediated by p53 and seems to be a unique feature of apoptosis caused by oxidative stress. Finally, exogenous iron loading recapitulated the effects of H2O2 on the expression of BH3-only Bcl-2 proteins. Overall, these data reveal a Noxa-mediated signaling pathway that couples LMP with MOMP and ultimate apoptosis during oxidative stress.
Collapse
Affiliation(s)
- Colins O Eno
- Molecular Targets Program, James Graham Brown Cancer Center, Departments of Medicine, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Guoping Zhao
- Molecular Targets Program, James Graham Brown Cancer Center, Departments of Medicine, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Avinashnarayan Venkatanarayan
- Genes and Development Program, Metastasis Research Center, Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bing Wang
- School of Electronics and Information Engineering, Tongji University, Shanghai
| | - Elsa R Flores
- Genes and Development Program, Metastasis Research Center, Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Chi Li
- Molecular Targets Program, James Graham Brown Cancer Center, Departments of Medicine, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
213
|
Tuli A, Thiery J, James AM, Michelet X, Sharma M, Garg S, Sanborn KB, Orange JS, Lieberman J, Brenner MB. Arf-like GTPase Arl8b regulates lytic granule polarization and natural killer cell-mediated cytotoxicity. Mol Biol Cell 2013; 24:3721-35. [PMID: 24088571 PMCID: PMC3842998 DOI: 10.1091/mbc.e13-05-0259] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/11/2013] [Accepted: 09/25/2013] [Indexed: 11/30/2022] Open
Abstract
Natural killer (NK) lymphocytes contain lysosome-related organelles (LROs), known as lytic granules, which upon formation of immune synapse with the target cell, polarize toward the immune synapse to deliver their contents to the target cell membrane. Here, we identify a small GTP-binding protein, ADP-ribosylation factor-like 8b (Arl8b), as a critical factor required for NK cell-mediated cytotoxicity. Our findings indicate that Arl8b drives the polarization of lytic granules and microtubule-organizing centers (MTOCs) toward the immune synapse between effector NK lymphocytes and target cells. Using a glutathione S-transferase pull-down approach, we identify kinesin family member 5B (KIF5B; the heavy chain of kinesin-1) as an interaction partner of Arl8b from NK cell lysates. Previous studies showed that interaction between kinesin-1 and Arl8b is mediated by SifA and kinesin-interacting protein (SKIP) and the tripartite complex drives the anterograde movement of lysosomes. Silencing of both KIF5B and SKIP in NK cells, similar to Arl8b, led to failure of MTOC-lytic granule polarization to the immune synapse, suggesting that Arl8b and kinesin-1 together control this critical step in NK cell cytotoxicity.
Collapse
Affiliation(s)
- Amit Tuli
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Division of Cell Biology and Immunology, Institute of Microbial Technology, Chandigarh 160036, India
| | - Jerome Thiery
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Institut National de la Santé et de la Recherche Médicale, Unité 753, Institut Gustave Roussy, Villejuif 75654, France
| | - Ashley M. James
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Xavier Michelet
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Mahak Sharma
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali 140306, India
| | - Salil Garg
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| | - Keri B. Sanborn
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Jordan S. Orange
- Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
- Immunology, Allergy and Rheumatology, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Michael B. Brenner
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
214
|
Abstract
Because of its unique function and anatomical location, the liver is exposed to a multitude of toxins and xenobiotics, including medications and alcohol, as well as to infection by hepatotropic viruses, and therefore, is highly susceptible to tissue injury. Cell death in the liver occurs mainly by apoptosis or necrosis, with apoptosis also being the physiologic route to eliminate damaged or infected cells and to maintain tissue homeostasis. Liver cells, especially hepatocytes and cholangiocytes, are particularly susceptible to death receptor-mediated apoptosis, given the ubiquitous expression of the death receptors in the organ. In a quite unique way, death receptor-induced apoptosis in these cells is mediated by both mitochondrial and lysosomal permeabilization. Signaling between the endoplasmic reticulum and the mitochondria promotes hepatocyte apoptosis in response to excessive free fatty acid generation during the metabolic syndrome. These cell death pathways are partially regulated by microRNAs. Necrosis in the liver is generally associated with acute injury (i.e., ischemia/reperfusion injury) and has been long considered an unregulated process. Recently, a new form of "programmed" necrosis (named necroptosis) has been described: the role of necroptosis in the liver has yet to be explored. However, the minimal expression of a key player in this process in the liver suggests this form of cell death may be uncommon in liver diseases. Because apoptosis is a key feature of so many diseases of the liver, therapeutic modulation of liver cell death holds promise. An updated overview of these concepts is given in this article.
Collapse
Affiliation(s)
- Maria Eugenia Guicciardi
- 1Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | |
Collapse
|
215
|
Gallagher PJ, Blue EK. Post-translational regulation of the cellular levels of DAPK. Apoptosis 2013; 19:306-15. [DOI: 10.1007/s10495-013-0936-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
216
|
Ellegaard AM, Groth-Pedersen L, Oorschot V, Klumperman J, Kirkegaard T, Nylandsted J, Jäättelä M. Sunitinib and SU11652 inhibit acid sphingomyelinase, destabilize lysosomes, and inhibit multidrug resistance. Mol Cancer Ther 2013; 12:2018-30. [PMID: 23920274 DOI: 10.1158/1535-7163.mct-13-0084] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Defective apoptosis signaling and multidrug resistance are major barriers for successful cancer treatment. To identify drugs capable of targeting treatment-resistant cancer cells, we screened small-molecule kinase inhibitor libraries for compounds that decrease the viability of apoptosis-resistant human MCF7-Bcl-2 breast cancer cells. SU11652, a multitargeting receptor tyrosine kinase inhibitor, emerged as the most potent compound in the screen. In addition to MCF7-Bcl-2 cells, it effectively killed HeLa cervix carcinoma, U-2-OS osteosarcoma, Du145 prostate carcinoma, and WEHI-S fibrosarcoma cells at low micromolar concentration. SU11652 accumulated rapidly in lysosomes and disturbed their pH regulation and ultrastructure, eventually leading to the leakage of lysosomal proteases into the cytosol. Lysosomal destabilization was preceded by an early inhibition of acid sphingomyelinase, a lysosomal lipase that promotes lysosomal membrane stability. Accordingly, Hsp70, which supports cancer cell survival by increasing lysosomal acid sphingomyelinase activity, conferred partial protection against SU11652-induced cytotoxicity. Remarkably, SU11652 killed multidrug-resistant Du145 prostate cancer cells as effectively as the drug-sensitive parental cells, and subtoxic concentrations of SU11652 effectively inhibited multidrug-resistant phenotype in Du145 prostate cancer cells. Notably, sunitinib, a structurally almost identical and widely used antiangiogenic cancer drug, exhibited similar lysosome-dependent cytotoxic activity, albeit with significantly lower efficacy. The significantly stronger lysosome-targeting activity of SU11652 suggests that it may display better efficacy in cancer treatment than sunitinib, encouraging further evaluation of its anticancer activity in vivo. Furthermore, our data provide a rationale for novel approaches to target drug-resistant cancers by combining classic chemotherapy with sunitinib or SU11652.
Collapse
Affiliation(s)
- Anne-Marie Ellegaard
- Corresponding Author: Marja Jäättelä, Cell Death and Metabolism, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen, DK-2100, Denmark.
| | | | | | | | | | | | | |
Collapse
|
217
|
Jerič B, Dolenc I, Mihelič M, Klarić M, Zavašnik-Bergant T, Gunčar G, Turk B, Turk V, Stoka V. N-terminally truncated forms of human cathepsin F accumulate in aggresome-like inclusions. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:2254-66. [PMID: 23684953 DOI: 10.1016/j.bbamcr.2013.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 01/13/2023]
Abstract
The contribution of individual cysteine cathepsins as positive mediators of programmed cell death is dependent on several factors, such as the type of stimuli, intensity and duration of the stimulus, and cell type involved. Of the eleven human cysteine cathepsins, cathepsin F is the only cathepsin that exhibits an extended N-terminal proregion, which contains a cystatin-like domain. We predicted that the wild-type human cathepsin F contains three natively disordered regions within the enzyme's propeptide and various amino acid stretches with high fibrillation propensity. Wild-type human cathepsin F and its N-terminally truncated forms, Ala(20)-Asp(484) (Δ(19)CatF), Pro(126)-Asp(484) (Δ(125)CatF), and Met(147)-Asp(484) (Δ(146)CatF) were cloned into the pcDNA3 vector and overexpressed in HEK 293T cells. Wild-type human cathepsin F displayed a clear vesicular labeling and colocalized with the LAMP2 protein, a lysosomal marker. However, all three N-terminally truncated forms of human cathepsin F were recovered as insoluble proteins, suggesting that the deletion of at least the signal peptides (Δ(19)CatF), results in protein aggregation. Noteworthy, they concentrated large perinuclear-juxtanuclear aggregates that accumulated within aggresome-like inclusions. These inclusions showed p62-positive immunoreactivity and were colocalized with the autophagy marker LC3B, but not with the LAMP2 protein. In addition, an approximately 2-3 fold increase in DEVDase activity was not sufficient to induce apoptotic cell death. These results suggested the clearance of the N-terminally truncated forms of human cathepsin F via the autophagy pathway, underlying its protective and prosurvival mechanisms.
Collapse
Affiliation(s)
- Barbara Jerič
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
| | | | | | | | | | | | | | | | | |
Collapse
|
218
|
Deshpande PP, Biswas S, Torchilin VP. Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond) 2013; 8:1509-28. [PMID: 23914966 PMCID: PMC3842602 DOI: 10.2217/nnm.13.118] [Citation(s) in RCA: 418] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The use of liposomes for drug delivery began early in the history of pharmaceutical nanocarriers. These nanosized, lipid bilayered vesicles have become popular as drug delivery systems owing to their efficiency, biocompatibility, nonimmunogenicity, enhanced solubility of chemotherapeutic agents and their ability to encapsulate a wide array of drugs. Passive and ligand-mediated active targeting promote tumor specificity with diminished adverse off-target effects. The current field of liposomes focuses on both clinical and diagnostic applications. Recent efforts have concentrated on the development of multifunctional liposomes that target cells and cellular organelles with a single delivery system. This review discusses the recent advances in liposome research in tumor targeting.
Collapse
Affiliation(s)
- Pranali P Deshpande
- Center for Pharmaceutical Biotechnology & Nanomedicine, 360 Huntington Avenue, 140 The Fenway, Northeastern University, Boston, MA 02115, USA
| | - Swati Biswas
- Center for Pharmaceutical Biotechnology & Nanomedicine, 360 Huntington Avenue, 140 The Fenway, Northeastern University, Boston, MA 02115, USA
- Department of Pharmacy, Birla Institute of Technology & Sciences – PiIani, Hyderabad Campus, Jawahar Nagar, Hyderabad, Andhra Pradesh 500078, India
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology & Nanomedicine, 360 Huntington Avenue, 140 The Fenway, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
219
|
Pazopanib and sunitinib trigger autophagic and non-autophagic death of bladder tumour cells. Br J Cancer 2013; 109:1040-50. [PMID: 23887605 PMCID: PMC3749583 DOI: 10.1038/bjc.2013.420] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/18/2013] [Accepted: 07/03/2013] [Indexed: 12/21/2022] Open
Abstract
Background: Tyrosine kinase inhibitors (TKI) such as sunitinib and pazopanib display their efficacy in a variety of solid tumours. However, their use in therapy is limited by the lack of evidence about the ability to induce cell death in cancer cells. Our aim was to evaluate cytotoxic effects induced by sunitinib and pazopanib in 5637 and J82 bladder cancer cell lines. Methods: Cell viability was tested by MTT assay. Autophagy was evaluated by western blot using anti-LC3 and anti-p62 antibodies, acridine orange staining and FACS analysis. Oxygen radical generation and necrosis were determined by FACS analysis using DCFDA and PI staining. Cathepsin B activation was evaluated by western blot and fluorogenic Z-Arg-Arg-AMC peptide. Finally, gene expression was performed using RT–PCR Profiler array. Results: We found that sunitinib treatment for 24 h triggers incomplete autophagy, impairs cathepsin B activation and stimulates a lysosomal-dependent necrosis. By contrast, treatment for 48 h with pazopanib induces cathepsin B activation and autophagic cell death, markedly reversed by CA074-Me and 3-MA, cathepsin B and autophagic inhibitors, respectively. Finally, pazopanib upregulates the α-glucosidase and downregulates the TP73 mRNA expression. Conclusion: Our results showing distinct cell death mechanisms activated by different TKIs, provide the biological basis for novel molecularly targeted approaches.
Collapse
|
220
|
Domenech M, Marrero-Berrios I, Torres-Lugo M, Rinaldi C. Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. ACS NANO 2013; 7:5091-101. [PMID: 23705969 DOI: 10.1021/nn4007048] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Lysosomal death pathways are being explored as alternatives of overcoming cancer tumor resistance to traditional forms of treatment. Nanotechnologies that can selectively target and induce permeabilization of lysosomal compartments in cells could become powerful medical tools. Here we demonstrate that iron oxide magnetic nanoparticles (MNPs) targeted to the epidermal growth factor receptor (EGFR) can selectively induce lysosomal membrane permeabilization (LMP) in cancer cells overexpressing the EGFR under the action of an alternating magnetic field (AMF). LMP was observed to correlate with the production of reactive oxygen species (ROS) and a decrease in tumor cell viability. Confocal microscopy images showed an increase in the cytosolic activity of the lysosomal protease cathepsin B. These observations suggest the possibility of remotely triggering lysosomal death pathways in cancer cells through the administration of MNPs which target lysosomal internalization pathways and the application of AMFs.
Collapse
Affiliation(s)
- Maribella Domenech
- Department of Chemical Engineering, University of Puerto Rico, Mayaguez, Puerto Rico 00681
| | | | | | | |
Collapse
|
221
|
Bottone MG, Santin G, Aredia F, Bernocchi G, Pellicciari C, Scovassi AI. Morphological Features of Organelles during Apoptosis: An Overview. Cells 2013; 2:294-305. [PMID: 24709702 PMCID: PMC3972681 DOI: 10.3390/cells2020294] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/24/2013] [Accepted: 04/19/2013] [Indexed: 12/13/2022] Open
Abstract
An apoptotic program leading to controlled cell dismantling implies perturbations of nuclear dynamics, as well as changes affecting the organelle structure and distribution. In human cancer cells driven to apoptosis by different stimuli, we have recently investigated the morphological properties of several organelles, including mitochondria, lysosomes, endoplasmic reticulum and Golgi apparatus. In this review, we will discuss the body of evidence in the literature suggesting that organelles are generally relocated and/or degraded during apoptosis, irrespectively of the apoptogenic stimulus and cell type.
Collapse
Affiliation(s)
- Maria Grazia Bottone
- Laboratorio di Biologia Cellulare e Neurobiologia, Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, 27100 Pavia, Italy.
| | - Giada Santin
- Laboratorio di Biologia Cellulare e Neurobiologia, Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, 27100 Pavia, Italy.
| | | | - Graziella Bernocchi
- Laboratorio di Biologia Cellulare e Neurobiologia, Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, 27100 Pavia, Italy.
| | - Carlo Pellicciari
- Laboratorio di Biologia Cellulare e Neurobiologia, Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università di Pavia, 27100 Pavia, Italy.
| | | |
Collapse
|
222
|
Abstract
Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form of cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream mechanisms that lead to lysosomal membrane permeabilization.
Collapse
Affiliation(s)
- Sonja Aits
- Danish Cancer Society Research Center, Cell Death and Metabolism, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
223
|
Kallunki T, Olsen OD, Jäättelä M. Cancer-associated lysosomal changes: friends or foes? Oncogene 2013; 32:1995-2004. [PMID: 22777359 DOI: 10.1038/onc.2012.292] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/01/2012] [Indexed: 12/28/2022]
Abstract
Rapidly dividing and invasive cancer cells are strongly dependent on effective lysosomal function. Accordingly, transformation and cancer progression are characterized by dramatic changes in lysosomal volume, composition and cellular distribution. Depending on one's point of view, the cancer-associated changes in the lysosomal compartment can be regarded as friends or foes. Most of them are clearly transforming as they promote invasive growth, angiogenesis and drug resistance. The same changes can, however, strongly sensitize cells to lysosomal membrane permeabilization and thereby to lysosome-targeting anti-cancer drugs. In this review we compile our current knowledge on cancer-associated changes in lysosomal composition and discuss the consequences of these alterations to cancer progression and the possibilities they can bring to cancer therapy.
Collapse
Affiliation(s)
- T Kallunki
- Cell Death and Metabolism and Centre for Genotoxic Stress Research, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | | |
Collapse
|
224
|
Yacobi-Sharon K, Namdar Y, Arama E. Alternative germ cell death pathway in Drosophila involves HtrA2/Omi, lysosomes, and a caspase-9 counterpart. Dev Cell 2013; 25:29-42. [PMID: 23523076 DOI: 10.1016/j.devcel.2013.02.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 01/03/2013] [Accepted: 02/04/2013] [Indexed: 12/15/2022]
Abstract
In both flies and mammals, almost one-third of the newly emerging male germ cells are spontaneously eliminated before entering meiosis. Here, we show that in Drosophila, germ cell death (GCD) involves the initiator caspase Dronc independently of the apoptosome and the main executioner caspases. Electron microscopy of dying germ cells revealed mixed morphologies of apoptosis and necrosis. We further show that the lysosomes and their catabolic enzymes, but not macroautophagy, are involved in the execution of GCD. We then identified, in a screen, the Parkinson's disease-associated mitochondrial protease, HtrA2/Omi, as an important mediator of GCD, acting mainly through its catalytic activity rather than by antagonizing inhibitor of apoptosis proteins. Concomitantly, other mitochondrial-associated factors were also implicated in GCD, including Pink1 (but not Parkin), the Bcl-2-related proteins, and endonuclease G, which establish the mitochondria as central mediators of GCD. These findings uncover an alternative developmental cell death pathway in metazoans.
Collapse
Affiliation(s)
- Keren Yacobi-Sharon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
225
|
|
226
|
Yamashima T. Reconsider Alzheimer's disease by the 'calpain-cathepsin hypothesis'--a perspective review. Prog Neurobiol 2013; 105:1-23. [PMID: 23499711 DOI: 10.1016/j.pneurobio.2013.02.004] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 02/08/2013] [Accepted: 02/28/2013] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is characterized by slowly progressive neuronal death, but its molecular cascade remains elusive for over 100 years. Since accumulation of autophagic vacuoles (also called granulo-vacuolar degenerations) represents one of the pathologic hallmarks of degenerating neurons in AD, a causative connection between autophagy failure and neuronal death should be present. The aim of this perspective review is at considering such underlying mechanism of AD that age-dependent oxidative stresses may affect the autophagic-lysosomal system via carbonylation and cleavage of heat-shock protein 70.1 (Hsp70.1). AD brains exhibit gradual but continual ischemic insults that cause perturbed Ca(2+) homeostasis, calpain activation, amyloid β deposition, and oxidative stresses. Membrane lipids such as linoleic and arachidonic acids are vulnerable to the cumulative oxidative stresses, generating a toxic peroxidation product 'hydroxynonenal' that can carbonylate Hsp70.1. Recent data advocate for dual roles of Hsp70.1 as a molecular chaperone for damaged proteins and a guardian of lysosomal integrity. Accordingly, impairments of lysosomal autophagy and stabilization may be driven by the calpain-mediated cleavage of carbonylated Hsp70.1, and this causes lysosomal permeabilization and/or rupture with the resultant release of the cell degradation enzyme, cathepsins (calpain-cathepsin hypothesis). Here, the author discusses three topics; (1) how age-related decrease in lysosomal and autophagic activities has a causal connection to programmed neuronal necrosis in sporadic AD, (2) how genetic factors such as apolipoprotein E and presenilin 1 can facilitate lysosomal destabilization in the sequential molecular events, and (3) whether a single cascade can simultaneously account for implications of all players previously reported. In conclusion, Alzheimer neuronal death conceivably occurs by the similar 'calpain-hydroxynonenal-Hsp70.1-cathepsin cascade' with ischemic neuronal death. Blockade of calpain and/or extra-lysosomal cathepsins as well as scavenging of hydroxynonenal would become effective AD therapeutic approaches.
Collapse
Affiliation(s)
- Tetsumori Yamashima
- Department of Restorative Neurosurgery, Kanazawa University Graduate School of Medical Science, Takara-machi 13-1, Kanazawa 920-8641, Japan.
| |
Collapse
|
227
|
Apoptosis Effect of Girinimbine Isolated from Murraya koenigii on Lung Cancer Cells In Vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:689865. [PMID: 23573145 PMCID: PMC3610346 DOI: 10.1155/2013/689865] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/20/2013] [Accepted: 02/06/2013] [Indexed: 11/17/2022]
Abstract
Murraya koenigii Spreng has been traditionally claimed as a remedy for cancer. The current study investigated the anticancer effects of girinimbine, a carbazole alkaloid isolated from Murraya koenigii Spreng, on A549 lung cancer cells in relation to apoptotic mechanistic pathway. Girinimbine was isolated from Murraya koenigii Spreng. The antiproliferative activity was assayed using MTT and the apoptosis detection was done by annexin V and lysosomal stability assays. Multiparameter cytotoxicity assays were performed to investigate the change in mitochondrial membrane potential and cytochrome c translocation. ROS, caspase, and human apoptosis proteome profiler assays were done to investigate the apoptotic mechanism of cell death. The MTT assay revealed that the girinimbine induces cell death with an IC50 of 19.01 μM. A significant induction of early phase of apoptosis was shown by annexin V and lysosomal stability assays. After 24 h treatment with 19.01 μM of girinimbine, decrease in the nuclear area and increase in mitochondrial membrane potential and plasma membrane permeability were readily visible. Moreover the translocation of cytochrome c also was observed. Girinimbine mediates its antiproliferative and apoptotic effects through up- and downregulation of apoptotic and antiapoptotic proteins. There was a significant involvement of both intrinsic and extrinsic pathways. Moreover, the upregulation of p53 as well as the cell proliferation repressor proteins, p27 and p21, and the significant role of insulin/IGF-1 signaling were also identified. Moreover the caspases 3 and 8 were found to be significantly activated. Our results taken together indicated that girinimbine may be a potential agent for anticancer drug development.
Collapse
|
228
|
Abstract
SIGNIFICANCE Lysosomes are acidic organelles containing more than fifty hydrolases that provide for the degradation of intracellular and endocytosed materials by autophagy and heterophagy, respectively. They digest a variety of macromolecules, as well as all organelles, and their integrity is crucial. As a result of the degradation of iron-containing macromolecules (e.g., ferritin and mitochondrial components) or endocytosed erythrocytes (by macrophages), lysosomes can accumulate large amounts of iron. This iron occurs often as Fe(II) due to the acidic and reducing lysosomal environment. Fe(II) is known to catalyze Fenton reactions, yielding extremely reactive hydroxyl radicals that may jeopardize lysosomal membrane integrity during oxidative stress. This results in the release of hydrolases and redox-active iron into the cytosol with ensuing damage or cell death. Lysosomes play key roles not only in apoptosis and necrosis but also in neurodegeneration, aging, and atherosclerosis. RECENT ADVANCES The damaging effect of intralysosomal iron can be hampered by endogenous or exogenous iron chelators that enter the lysosomal compartment by membrane permeation, endocytosis, or autophagy. CRITICAL ISSUES Cellular sensitivity to oxidative stress is enhanced by lysosomal redox-active iron or by lysosomal-targeted copper chelators binding copper (from degradation of copper-containing macromolecules) in redox-active complexes. Probably due to higher copper levels, lysosomes of malignant cells may be specifically sensitized by such chelators. FUTURE DIRECTIONS By increasing lysosomal redox-active iron or exposing cells to lysosomal-targeted copper chelators, it should be possible to enhance the sensitivity of cancer cells to radiation-induced oxidative stress or treatment with cytostatics that induce such stress.
Collapse
Affiliation(s)
- Alexei Terman
- Department of Clinical Pathology and Cytology, Karolinska University Hospital in Huddinge, Stockholm, Sweden
| | | |
Collapse
|
229
|
Nowak R, Tarasiuk J. Retaining cytotoxic activity of anthrapyridone CO1 against multidrug resistant cells is related to the ability to induce concomitantly apoptosis and lysosomal death of leukaemia HL60/VINC and HL60/DOX cells. J Pharm Pharmacol 2013; 65:855-67. [DOI: 10.1111/jphp.12042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/15/2013] [Indexed: 01/08/2023]
Abstract
Abstract
Objectives
The effect of anthrapyridone compound CO1 retaining cytotoxic activity against multidrug resistant (MDR) tumour cells on inducing cell death of the sensitive leukaemia HL60 cell line and its MDR sublines (HL60/VINC and HL60/DOX) was examined.
Methods
The effects of CO1 and the reference compound doxorubicin (DOX) on examined cells were analysed by studying their cytotoxicity, drug intracellular accumulation, cell cycle distribution, caspase-3 and caspase-8 activity, Fas expression and lysosomal integrity.
Key findings
CO1 was much less effective at influencing the cell cycle of examined cells than DOX a well-known antitumour drug targeting cellular DNA and causing G2/M checkpoint arrest. CO1 caused much less pronounced appearance of the sub-G1 population and oligonucleosomal DNA fragmentation, characteristic of apoptosis, compared with DOX. Significantly lower caspase-3 and caspase-8 activity was also observed in the response of these cells to CO1 compared with DOX treatment. CO1 did not change the expression of the Fas death receptor, characteristic of apoptotic pathways, on the surface of studied cells. Interestingly, the results showed that CO1 caused lysosomal membrane permeability (LMP) of the cells, whereas DOX did not perturb the lysosomal integrity of the studied cells.
Conclusions
The results suggest that CO1 could induce LMP-mediated cell death as a main lethal effect in a caspase-independent fashion.
Collapse
Affiliation(s)
- Robert Nowak
- Department of Biochemistry, University of Szczecin, Szczecin, Poland
| | - Jolanta Tarasiuk
- Department of Biochemistry, University of Szczecin, Szczecin, Poland
| |
Collapse
|
230
|
Marques C, Oliveira CSF, Alves S, Chaves SR, Coutinho OP, Côrte-Real M, Preto A. Acetate-induced apoptosis in colorectal carcinoma cells involves lysosomal membrane permeabilization and cathepsin D release. Cell Death Dis 2013; 4:e507. [PMID: 23429293 PMCID: PMC3734821 DOI: 10.1038/cddis.2013.29] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Colorectal carcinoma (CRC) is one of the most common causes of cancer-related mortality. Short-chain fatty acids secreted by dietary propionibacteria from the intestine, such as acetate, induce apoptosis in CRC cells and may therefore be relevant in CRC prevention and therapy. We previously reported that acetic acid-induced apoptosis in Saccharomyces cerevisiae cells involves partial vacuole permeabilization and release of Pep4p, the yeast cathepsin D (CatD), which has a protective role in this process. In cancer cells, lysosomes have emerged as key players in apoptosis through selective lysosomal membrane permeabilization (LMP) and release of cathepsins. However, the role of CatD in CRC survival is controversial and has not been assessed in response to acetate. We aimed to ascertain whether LMP and CatD are involved in acetate-induced apoptosis in CRC cells. We showed that acetate per se inhibits proliferation and induces apoptosis. More importantly, we uncovered that acetate triggers LMP and CatD release to the cytosol. Pepstatin A (a CatD inhibitor) but not E64d (a cathepsin B and L inhibitor) increased acetate-induced apoptosis of CRC cells, suggesting that CatD has a protective role in this process. Our data indicate that acetate induces LMP and subsequent release of CatD in CRC cells undergoing apoptosis, and suggest exploiting novel strategies using acetate as a prevention/therapeutic agent in CRC, through simultaneous treatment with CatD inhibitors.
Collapse
Affiliation(s)
- C Marques
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, Braga, Portugal
| | | | | | | | | | | | | |
Collapse
|
231
|
A novel derivative of riccardin D induces cell death through lysosomal rupture in vitro and inhibits tumor growth in vivo. Cancer Lett 2013. [DOI: 10.1016/j.canlet.2012.10.042] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
232
|
Wang Y, Peng RQ, Li DD, Ding Y, Wu XQ, Zeng YX, Zhu XF, Zhang XS. Chloroquine enhances the cytotoxicity of topotecan by inhibiting autophagy in lung cancer cells. CHINESE JOURNAL OF CANCER 2013; 30:690-700. [PMID: 21959046 PMCID: PMC4012269 DOI: 10.5732/cjc.011.10056] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although the anti-malaria drug chloroquine (CQ) has been shown to enhance chemotherapy and radiation sensitivity in clinical trials, the potential mechanisms underlying this enhancement are still unclear. Here, we examined the relevant mechanisms by which the multipotent CQ enhanced the cytotoxicity of topotecan (TPT). The lung cancer cell line A549 was treated with TPT alone or TPT combined with CQ at non-cytotoxic concentrations. Cell viability was assessed using the MTT assay. The percentage of apoptotic cells and the presence of a side population of cells were both determined by flow Cytometry. Autophagy and the expression of Bcl-2 family proteins were examined by Western blotting. The accumulation of YFP-LC3 dots and the formation of acidic vesicular organelles were examined by confocal microscopy. CQ sensitized A549 cells to TPT and enhanced TPT-induced apoptosis in a Bcl-2 family protein-independent fashion. CQ inhibited TPT-induced autophagy, which modified the cytotoxicity of TPT. However, CQ failed to modify the transfer of TPT across the cytoplasmic membrane and did not increase lysosomal permeability. This study showed that CQ at non-cytotoxic concentrations potentiated the cytotoxicity of TPT by interfering with autophagy, implying that CQ has significant potential as a chemotherapeutic enhancer.
Collapse
Affiliation(s)
- Yao Wang
- State Key Laboratory of Oncology in South China, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
233
|
Teng X, Hardwick JM. Quantification of genetically controlled cell death in budding yeast. Methods Mol Biol 2013; 1004:161-70. [PMID: 23733576 DOI: 10.1007/978-1-62703-383-1_12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Yeast are the foremost genetic model system. With relative ease, entire chemical libraries can be screened for effects on essentially every gene in the yeast genome. Until recently, researchers focused only on whether yeast were killed by the conditions applied, irrespective of the mechanisms by which they died. In contrast, considerable effort has been devoted to understanding the mechanisms of mammalian cell death. However, most of the methodologies for detecting programmed apoptotic and necrotic death of mammalian cells have not been applicable to yeast. Therefore, we developed a cell death assay for baker's yeast Saccharomyces cerevisiae to identify genes involved in the mechanisms of yeast cell death. Small volumes of yeast suspensions are subjected to a precisely controlled heat ramp, allowing sufficient time for yeast cell factors to suppress or facilitate death, which can be quantified by high-throughput automated analyses. This assay produces remarkably reliable results that typically reflect results with other death stimuli. Here we describe the protocol and its caveats, which can be easily overcome.
Collapse
Affiliation(s)
- Xinchen Teng
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
234
|
Pereira H, Azevedo F, Rego A, Sousa MJ, Chaves SR, Côrte-Real M. The protective role of yeast Cathepsin D in acetic acid-induced apoptosis depends on ANT (Aac2p) but not on the voltage-dependent channel (Por1p). FEBS Lett 2012; 587:200-5. [DOI: 10.1016/j.febslet.2012.11.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 10/20/2012] [Accepted: 11/25/2012] [Indexed: 11/16/2022]
|
235
|
Zhu Y, Eaton JW, Li C. Titanium dioxide (TiO2) nanoparticles preferentially induce cell death in transformed cells in a Bak/Bax-independent fashion. PLoS One 2012. [PMID: 23185639 PMCID: PMC3503962 DOI: 10.1371/journal.pone.0050607] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
While the cytotoxic effects of titanium dioxide (TiO2) nanoparticles have been under intense investigation, the molecular mechanisms of this cytotoxicity remain unknown. Here we investigated the influence of oncogenic transformation and a major apoptotic signaling pathway on cellular responses to TiO2 nanoparticles. Isogenic wild-type (WT) and apoptosis-resistant (Bak−/−Bax−/−) cell lines with and without tumorigenic transformation were examined. TiO2 nanoparticles preferentially reduced viability of tumorigenic cells in a dose-dependent fashion compared with their untransformed counterparts. Importantly, the elevated cytotoxicity of TiO2 nanoparticles was independent of a major Bak/Bax-dependent apoptosis pathway. Because transformation does not affect cellular fluid-phase endocytosis or nanoparticle uptake, it is likely that the increased cytotoxicity in tumor cells is due to the interaction between TiO2 nanoparticles and the lysosomal compartment. Overall, our data indicate that TiO2 nanoparticles induce cytotoxicity preferentially in transformed cells independent of a major apoptotic signaling pathway.
Collapse
Affiliation(s)
- Yanglong Zhu
- Molecular Targets Program, James Graham Brown Cancer Center, Department of Medicine, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America
| | - John W. Eaton
- Molecular Targets Program, James Graham Brown Cancer Center, Department of Medicine, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America
| | - Chi Li
- Molecular Targets Program, James Graham Brown Cancer Center, Department of Medicine, Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
236
|
Identification of cytoskeleton-associated proteins essential for lysosomal stability and survival of human cancer cells. PLoS One 2012; 7:e45381. [PMID: 23071517 PMCID: PMC3469574 DOI: 10.1371/journal.pone.0045381] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/17/2012] [Indexed: 11/19/2022] Open
Abstract
Microtubule-disturbing drugs inhibit lysosomal trafficking and induce lysosomal membrane permeabilization followed by cathepsin-dependent cell death. To identify specific trafficking-related proteins that control cell survival and lysosomal stability, we screened a molecular motor siRNA library in human MCF7 breast cancer cells. SiRNAs targeting four kinesins (KIF11/Eg5, KIF20A, KIF21A, KIF25), myosin 1G (MYO1G), myosin heavy chain 1 (MYH1) and tropomyosin 2 (TPM2) were identified as effective inducers of non-apoptotic cell death. The cell death induced by KIF11, KIF21A, KIF25, MYH1 or TPM2 siRNAs was preceded by lysosomal membrane permeabilization, and all identified siRNAs induced several changes in the endo-lysosomal compartment, i.e. increased lysosomal volume (KIF11, KIF20A, KIF25, MYO1G, MYH1), increased cysteine cathepsin activity (KIF20A, KIF25), altered lysosomal localization (KIF25, MYH1, TPM2), increased dextran accumulation (KIF20A), or reduced autophagic flux (MYO1G, MYH1). Importantly, all seven siRNAs also killed human cervix cancer (HeLa) and osteosarcoma (U-2-OS) cells and sensitized cancer cells to other lysosome-destabilizing treatments, i.e. photo-oxidation, siramesine, etoposide or cisplatin. Similarly to KIF11 siRNA, the KIF11 inhibitor monastrol induced lysosomal membrane permeabilization and sensitized several cancer cell lines to siramesine. While KIF11 inhibitors are under clinical development as mitotic blockers, our data reveal a new function for KIF11 in controlling lysosomal stability and introduce six other molecular motors as putative cancer drug targets.
Collapse
|
237
|
Koshkaryev A, Piroyan A, Torchilin VP. Increased apoptosis in cancer cells in vitro and in vivo by ceramides in transferrin-modified liposomes. Cancer Biol Ther 2012; 13:50-60. [PMID: 22336588 DOI: 10.4161/cbt.13.1.18871] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Lysosomes are a promising therapeutic target for induction apoptosis in cancer cells due to lysosomal membrane permeabilization (LMP) leading to leakage of hydrolytic enzymes, especially the cathepsins, into the cytoplasm. We hypothesized that with the modification of the ceramide-loaded liposomes with transferrin (Tf), we would achieve both tumor targeting and increased delivery of lysosome-destabilizing agents, such as ceramides to lysosomes, to initiate LMP-induced apoptosis. We prepared Tf-modified (TL) and plain (PL) liposomes and loaded with short (C6)- or long (C16) N-acyl chain ceramides. Uptake, intracellular localization of liposomes, stability of the lysosomal membrane and release of cathepsin D were investigated on Hela cells by fluorescence microscopy and flow cytometry. Apoptosis was evaluated by binding of fluorescently-labeled Annexin V. Antitumor and pro-apoptotic effects of C6Cer-loaded Tf-liposomes were demonstrated in vivo in an A2780-ovarian carcinoma xenograft mouse model. TL were internalized specifically via the TfR-dependent endocytic pathway and localized within the endosome-lysosomal compartment. Ceramide-loaded Tf-liposomes significantly increased apoptosis compared with ceramide-free and ceramide-loaded non-modified liposomes. The treatment of cancer cells with TL led to increased LMP and cytoplasmic relocation of the intralysosomal cathepsin D. A strong antitumor and pro-apoptotic effect of C6Cer-loaded TL was also demonstrated in vivo in an A2780-ovarian carcinoma xenograft mouse model. The lysosomal accumulation of ceramides delivered by Tf-liposomes initiates the permeabilization of the lysosomal membranes required for the release of lysosomal cathepsins into the cytoplasm and initiation of the cancer cell apoptosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Alexander Koshkaryev
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | | | | |
Collapse
|
238
|
Moghimi SM, Parhamifar L, Ahmadvand D, Wibroe PP, Andresen TL, Farhangrazi ZS, Hunter AC. Particulate systems for targeting of macrophages: basic and therapeutic concepts. J Innate Immun 2012; 4:509-28. [PMID: 22722900 DOI: 10.1159/000339153] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 04/30/2012] [Indexed: 12/22/2022] Open
Abstract
Particulate systems in the form of liposomes, polymeric micelles, polymeric nano- and microparticles, and many others offer a rational approach for selective delivery of therapeutic agents to the macrophage from different physiological portals of entry. Particulate targeting of macrophages and intracellular drug release processes can be optimized through modifications of the drug carrier physicochemical properties, which include hydrodynamic size, shape, composition and surface characteristics. Through such modifications together with understanding of macrophage cell biology, targeting may be aimed at a particular subset of macrophages. Advances in basic and therapeutic concepts of particulate targeting of macrophages and related nanotechnology approaches for immune cell modifications are discussed.
Collapse
Affiliation(s)
- S M Moghimi
- Nanomedicine Laboratory, Centre for Pharmaceutical Nanotechnology and Nanotoxicology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
239
|
Rafn B, Nielsen CF, Andersen SH, Szyniarowski P, Corcelle-Termeau E, Valo E, Fehrenbacher N, Olsen CJ, Daugaard M, Egebjerg C, Bøttzauw T, Kohonen P, Nylandsted J, Hautaniemi S, Moreira J, Jäättelä M, Kallunki T. ErbB2-driven breast cancer cell invasion depends on a complex signaling network activating myeloid zinc finger-1-dependent cathepsin B expression. Mol Cell 2012; 45:764-76. [PMID: 22464443 DOI: 10.1016/j.molcel.2012.01.029] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 08/23/2011] [Accepted: 01/28/2012] [Indexed: 12/29/2022]
Abstract
Aberrant ErbB2 receptor tyrosine kinase activation in breast cancer is strongly linked to an invasive disease. The molecular basis of ErbB2-driven invasion is largely unknown. We show that cysteine cathepsins B and L are elevated in ErbB2 positive primary human breast cancer and function as effectors of ErbB2-induced invasion in vitro. We identify Cdc42-binding protein kinase beta, extracellular regulated kinase 2, p21-activated protein kinase 4, and protein kinase C alpha as essential mediators of ErbB2-induced cysteine cathepsin expression and breast cancer cell invasiveness. The identified signaling network activates the transcription of cathepsin B gene (CTSB) via myeloid zinc finger-1 transcription factor that binds to an ErbB2-responsive enhancer element in the first intron of CTSB. This work provides a model system for ErbB2-induced breast cancer cell invasiveness, reveals a signaling network that is crucial for invasion in vitro, and defines a specific role and targets for the identified serine-threonine kinases.
Collapse
Affiliation(s)
- Bo Rafn
- Unit of Cell Death and Metabolism and Centre for Genotoxic Stress Research, Danish Cancer Society Research Center, Strandboulevarden 49, Copenhagen 2100, Denmark
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
240
|
Abstract
Evading programmed cell death is one of the hallmarks of cancer. Conversely, inducing cell death by pharmacological means is the basis of almost every non-invasive cancer therapy. Research over the past decade has greatly increased our understanding of non-apoptotic programmed cell death events, such as lysosomal-mediated cell death, necroptosis and cell death with autophagy. It is becoming clear that an intricate effector network connects many of these classical and non-classical death pathways. In this Review, we discuss converging and diverging features of these pathways, as well as attempts to exploit this newly gained knowledge pharmacologically to provide therapeutics for cancer.
Collapse
Affiliation(s)
- Peter Kreuzaler
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | | |
Collapse
|
241
|
Hornick JR, Vangveravong S, Spitzer D, Abate C, Berardi F, Goedegebuure P, Mach RH, Hawkins WG. Lysosomal membrane permeabilization is an early event in Sigma-2 receptor ligand mediated cell death in pancreatic cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2012; 31:41. [PMID: 22551149 PMCID: PMC3414770 DOI: 10.1186/1756-9966-31-41] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 05/02/2012] [Indexed: 01/13/2023]
Abstract
Background Sigma-2 receptor ligands have been studied for treatment of pancreatic cancer because they are preferentially internalized by proliferating cells and induce apoptosis. This mechanism of apoptosis is poorly understood, with varying reports of caspase-3 dependence. We evaluated multiple sigma-2 receptor ligands in this study, each shown to decrease tumor burden in preclinical models of human pancreatic cancer. Results Fluorescently labeled sigma-2 receptor ligands of two classes (derivatives of SW43 and PB282) localize to cell membrane components in Bxpc3 and Aspc1 pancreatic cancer cells and accumulate in lysosomes. We found that interactions in the lysosome are critical for cell death following sigma-2 ligand treatment because selective inhibition of a protective lysosomal membrane glycoprotein, LAMP1, with shRNA greatly reduced the viability of cells following treatment. Sigma-2 ligands induced lysosomal membrane permeabilization (LMP) and protease translocation triggering downstream effectors of apoptosis. Subsequently, cellular oxidative stress was greatly increased following treatment with SW43, and the hydrophilic antioxidant N-acetylcysteine (NAC) gave greater protection against this than a lipophilic antioxidant, α-tocopherol (α-toco). Conversely, PB282-mediated cytotoxicity relied less on cellular oxidation, even though α-toco did provide protection from this ligand. In addition, we found that caspase-3 induction was not as significantly inhibited by cathepsin inhibitors as by antioxidants. Both NAC and α-toco protected against caspase-3 induction following PB282 treatment, while only NAC offered protection following SW43 treatment. The caspase-3 inhibitor DEVD-FMK offered significant protection from PB282, but not SW43. Conclusions Sigma-2 ligand SW43 commits pancreatic cancer cells to death by a caspase-independent process involving LMP and oxidative stress which is protected from by NAC. PB282 however undergoes a caspase-dependent death following LMP protected by DEVD-FMK and α-toco, which is also known to stabilize the mitochondrial membrane during apoptotic stimuli. These differences in mechanism are likely dependent on the structural class of the compounds versus the inherent sigma-2 binding affinity. As resistance of pancreatic cancers to specific apoptotic stimuli from chemotherapy is better appreciated, and patient-tailored treatments become more available, ligands with high sigma-2 receptor affinity should be chosen based on sensitivities to apoptotic pathways.
Collapse
Affiliation(s)
- John R Hornick
- Department of Surgery, Washington University School of Medicine, S, Euclid Avenue, St, Louis, MO, USA
| | | | | | | | | | | | | | | |
Collapse
|
242
|
Kim H, Kim A, Cunningham KW. Vacuolar H+-ATPase (V-ATPase) promotes vacuolar membrane permeabilization and nonapoptotic death in stressed yeast. J Biol Chem 2012; 287:19029-39. [PMID: 22511765 DOI: 10.1074/jbc.m112.363390] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stress in the endoplasmic reticulum caused by tunicamycin, dithiothreitol, and azole-class antifungal drugs can induce nonapoptotic cell death in yeasts that can be blocked by the action of calcineurin (Cn), a Ca(2+)-dependent serine/threonine protein phosphatase. To identify additional factors that regulate nonapoptotic cell death in yeast, a collection of gene knock-out mutants was screened for mutants exhibiting altered survival rates. The screen revealed an endocytic protein (Ede1) that can function upstream of Ca(2+)/calmodulin-dependent protein kinase 2 (Cmk2) to suppress cell death in parallel to Cn. The screen also revealed the vacuolar H(+)-ATPase (V-ATPase), which acidifies the lysosome-like vacuole. The V-ATPase performed its death-promoting functions very soon after imposition of the stress and was not required for later stages of the cell death program. Cn did not inhibit V-ATPase activities but did block vacuole membrane permeabilization (VMP), which occurred at late stages of the cell death program. All of the other nondying mutants identified in the screens blocked steps before VMP. These findings suggest that VMP is the lethal event in dying yeast cells and that fungi may employ a mechanism of cell death similar to the necrosis-like cell death of degenerating neurons.
Collapse
Affiliation(s)
- Hyemin Kim
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
243
|
Grimm S, Horlacher M, Catalgol B, Hoehn A, Reinheckel T, Grune T. Cathepsins D and L reduce the toxicity of advanced glycation end products. Free Radic Biol Med 2012; 52:1011-23. [PMID: 22245096 DOI: 10.1016/j.freeradbiomed.2011.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 01/03/2023]
Abstract
Advanced glycation end product-modified proteins are known for accumulating during aging and in several pathological conditions such as diabetes, renal failure, and neurodegenerative disorders. There is little information about the intracellular fate of endocytosed advanced glycation end products (AGEs) and their influence on proteolytic systems. However, it is known that the lysosomal system is impaired during aging. Therefore, undegraded material may accumulate and play a considerable role in the development of diverse diseases. To investigate if AGEs can be degraded and to test whether they accumulate because of impaired lysosomal proteases we studied the effects of advanced glycation end products on the endosomal-lysosomal system. Five different types of AGEs were generated by bovine serum albumin incubation with glyoxal, methylglyoxal, glucose, fructose, and ribose. The first experiments revealed the uptake of AGEs by the macrophage cell line RAW 264.7. Further investigations demonstrated an increase in cathepsin D and L activity and an increase in mature cathepsins D and L. Increased activities were accompanied by the presence of more lysosomes, measured by staining with LysoTracker blue. To specify the roles of cathepsins D and L we used knockout cells to test the roles of both cathepsins on the toxicity of advanced glycation end products. In summary we conclude that both cathepsins are required for a reduction in advanced glycation end product-induced cytotoxicity.
Collapse
Affiliation(s)
- Stefanie Grimm
- Institute of Nutrition, Friedrich Schiller University Jena, 07743 Jena, Germany
| | | | | | | | | | | |
Collapse
|
244
|
Česen MH, Pegan K, Spes A, Turk B. Lysosomal pathways to cell death and their therapeutic applications. Exp Cell Res 2012; 318:1245-51. [PMID: 22465226 DOI: 10.1016/j.yexcr.2012.03.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/05/2012] [Accepted: 03/05/2012] [Indexed: 01/07/2023]
Abstract
Lysosomes are the major cell digestive organelles that were discovered over 50 years ago. They contain a number of hydrolases that help them to degrade intracellular and extracellular material delivered. Among the hydrolases, the cathepsins, a group of proteases enclosed in the lysosomes, have a major role. About a decade ago, the cathepsins were found to participate in apoptosis. Following their release into the cytosol, they cleave Bid and degrade antiapoptotic Bcl-2 proteins, thereby triggering the mitochondrial pathway of apoptosis, with the lysosomal membrane permeabilization being the critical step in this pathway. Lysosomal dysfunction is linked with several diseases, including cancer and neurodegenerative disorders, thereby providing a potential for therapeutic applications. In this review lysosomes and lysosomal proteases involvement in apoptosis and their possible pharmaceutical targeting are discussed.
Collapse
Affiliation(s)
- Maruša Hafner Česen
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
| | | | | | | |
Collapse
|
245
|
Vacuole-mitochondrial cross-talk during apoptosis in yeast: a model for understanding lysosome-mitochondria-mediated apoptosis in mammals. Biochem Soc Trans 2012; 39:1533-7. [PMID: 21936847 DOI: 10.1042/bst0391533] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The yeast apoptosis field emerged with the finding that key components of the apoptotic machinery are conserved in these simple eukaryotes. Thus it became possible to exploit these genetically tractable organisms to improve our understanding of the intricate mechanisms of cell death in higher eukaryotes and of severe human diseases associated with apoptosis dysfunctions. Early on, it was recognized that a mitochondria-mediated apoptotic pathway showing similarities to the mammalian intrinsic pathway was conserved in yeast. Recently, lysosomes have also emerged as central players in mammalian apoptosis. Following LMP (lysosomal membrane permeabilization), lysosomal proteases such as cathepsins B, D and L are released into the cytosol and can trigger a mitochondrial apoptotic cascade. CatD (cathepsin D) can also have anti-apoptotic effects in some cellular types and specific contexts. Nonetheless, the mechanisms underlying LMP and the specific role of cathepsins after their release into the cytosol remain poorly understood. We have recently shown that yeast vacuoles, membrane-bound acidic organelles, which share many similarities to plant vacuoles and mammalian lysosomes, are also involved in the regulation of apoptosis and that the vacuolar protease Pep4p, orthologue of the human CatD, is released from the vacuole into the cytosol in response to acetic acid. Here, we discuss how the conservation of cell-death regulation mechanisms in yeast by the lysosome-like organelle and mitochondria may provide new insights into the understanding of the complex interplay between the mitochondria and lysosome-mediated signalling routes during mammalian apoptosis.
Collapse
|
246
|
Zhu H, Yoshimoto T, Imajo-Ohmi S, Dazortsava M, Mathivanan A, Yamashima T. Why are hippocampal CA1 neurons vulnerable but motor cortex neurons resistant to transient ischemia? J Neurochem 2012; 120:574-85. [DOI: 10.1111/j.1471-4159.2011.07550.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
247
|
Silva LC, Ben David O, Pewzner-Jung Y, Laviad EL, Stiban J, Bandyopadhyay S, Merrill AH, Prieto M, Futerman AH. Ablation of ceramide synthase 2 strongly affects biophysical properties of membranes. J Lipid Res 2012; 53:430-436. [PMID: 22231783 DOI: 10.1194/jlr.m022715] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Little is known about the effects of altering sphingolipid (SL) acyl chain structure and composition on the biophysical properties of biological membranes. We explored the biophysical consequences of depleting very long acyl chain (VLC) SLs in membranes prepared from lipid fractions isolated from a ceramide synthase 2 (CerS2)-null mouse, which is unable to synthesize C22-C24 ceramides. We demonstrate that ablation of CerS2 has different effects on liver and brain, causing a significant alteration in the fluidity of the membrane and affecting the type and/or extent of the phases present in the membrane. These changes are a consequence of the depletion of VLC and unsaturated SLs, which occurs to a different extent in liver and brain. In addition, ablation of CerS2 causes changes in intrinsic membrane curvature, leading to strong morphological alterations that promote vesicle adhesion, membrane fusion, and tubule formation. Together, these results show that depletion of VLC-SLs strongly affects membrane biophysical properties, which may compromise cellular processes that critically depend on membrane structure, such as trafficking and sorting.
Collapse
Affiliation(s)
- Liana C Silva
- iMed.UL, Research Institute for Medicines and Pharmaceutical Sciences, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal; Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel; CQFM & IN, Instituto Superior Técnico, 1049-001 Lisboa, Portugal.
| | - Oshrit Ben David
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yael Pewzner-Jung
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elad L Laviad
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Johnny Stiban
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sibali Bandyopadhyay
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Alfred H Merrill
- School of Biology and Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332-0230
| | - Manuel Prieto
- CQFM & IN, Instituto Superior Técnico, 1049-001 Lisboa, Portugal
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
248
|
|
249
|
Indication of intracellular physiological pH changes by l-cysteine-coated CdTe quantum dots with an acute alteration in emission color. Biosens Bioelectron 2011; 30:324-7. [DOI: 10.1016/j.bios.2011.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/25/2011] [Accepted: 09/09/2011] [Indexed: 11/17/2022]
|
250
|
Aksoylar HI, Lampe K, Barnes MJ, Plas DR, Hoebe K. Loss of immunological tolerance in Gimap5-deficient mice is associated with loss of Foxo in CD4+ T cells. THE JOURNAL OF IMMUNOLOGY 2011; 188:146-54. [PMID: 22106000 DOI: 10.4049/jimmunol.1101206] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previously, we reported the abrogation of quiescence and reduced survival in lymphocytes from Gimap5(sph/sph) mice, an ENU germline mutant with a missense mutation in the GTPase of immunity-associated protein 5 (Gimap5). These mice showed a progressive loss of peripheral lymphocyte populations and developed spontaneous colitis, resulting in early mortality. In this study, we identify the molecular pathways that contribute to the onset of colitis in Gimap5(sph/sph) mice. We show that CD4(+) T cells become Th1/Th17 polarized and are critically important for the development of colitis. Concomitantly, regulatory T cells become reduced in frequency in the peripheral tissues, and their immunosuppressive capacity becomes impaired. Most importantly, these progressive changes in CD4(+) T cells are associated with the loss of Forkheadbox group O (Foxo)1, Foxo3, and Foxo4 expression. Our data establish a novel link between Gimap5 and Foxo expression and provide evidence for a regulatory mechanism that controls Foxo protein expression and may help to maintain immunological tolerance.
Collapse
Affiliation(s)
- H Ibrahim Aksoylar
- Department of Molecular Immunology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | | | | | | | | |
Collapse
|