201
|
Vapor-based coatings for antibacterial and osteogenic functionalization and the immunological compatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:283-91. [PMID: 27612715 DOI: 10.1016/j.msec.2016.06.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/24/2016] [Accepted: 06/26/2016] [Indexed: 11/24/2022]
Abstract
The immobilization of biofunctional molecules to biomaterial surfaces has enabled and expanded the versatility of currently available biomaterials to a wider range of applications. In addition, immobilized biomolecules offer modified surfaces that allow the use of smaller amounts of potentially harmful substances or prevent overdose, while the exhibited biological functions remain persistently effective. Surface concentrations of chlorhexidine (CHX) (1.40±0.08×10(-9)mol·cm(-2)) and bone morphogenetic protein 2 (BMP-2) (1.51±0.08×10(-11)mol·cm(-2)) immobilized molecules were determined in this study, and their specific biological functions in terms of antibacterial activity and osteogenesis potency, respectively, were demonstrated to be unambiguously effective. Immobilization exploits the use of vapor-based poly-p-xylylenes, which exhibit excellent biocompatibility and wide applicability for various substrate materials. This technique represents a practical and economical approach for the manufacture of certain industrial products. Furthermore, a minimal degree of macrophage activation was indicated on the modified surfaces via insignificant morphological changes and low levels of adverse inflammatory signals, including suppressed production of the pro-inflammatory cytokines IL-1β and TNF-α as well as nitric oxide (NO). The results and the modification strategy illustrate a concept for designing prospective biomaterial surfaces such that the manipulation employed to elicit targeted biological responses does not compromise immunological compatibility.
Collapse
|
202
|
Han WM, Jang YC, García AJ. Engineered matrices for skeletal muscle satellite cell engraftment and function. Matrix Biol 2016; 60-61:96-109. [PMID: 27269735 DOI: 10.1016/j.matbio.2016.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/22/2016] [Accepted: 06/02/2016] [Indexed: 12/12/2022]
Abstract
Regeneration of traumatically injured skeletal muscles is severely limited. Moreover, the regenerative capacity of skeletal muscle declines with aging, further exacerbating the problem. Recent evidence supports that delivery of muscle satellite cells to the injured muscles enhances muscle regeneration and reverses features of aging, including reduction in muscle mass and regenerative capacity. However, direct delivery of satellite cells presents a challenge at a translational level due to inflammation and donor cell death, motivating the need to develop engineered matrices for muscle satellite cell delivery. This review will highlight important aspects of satellite cell and their niche biology in the context of muscle regeneration, and examine recent progresses in the development of engineered cell delivery matrices designed for skeletal muscle regeneration. Understanding the interactions of muscle satellite cells and their niche in both native and engineered systems is crucial to developing muscle pathology-specific cell- and biomaterial-based therapies.
Collapse
Affiliation(s)
- Woojin M Han
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States
| | - Young C Jang
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States; School of Applied Physiology, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States; Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, United States.
| |
Collapse
|
203
|
Minardi S, Taraballi F, Pandolfi L, Tasciotti E. Patterning Biomaterials for the Spatiotemporal Delivery of Bioactive Molecules. Front Bioeng Biotechnol 2016; 4:45. [PMID: 27313997 PMCID: PMC4889608 DOI: 10.3389/fbioe.2016.00045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/20/2016] [Indexed: 11/13/2022] Open
Abstract
The aim of tissue engineering is to promote the repair of functional tissues. For decades, the combined use of biomaterials, growth factors (GFs), and stem cells has been the base of several regeneration strategies. Among these, biomimicry emerged as a robust strategy to efficiently address this clinical challenge. Biomimetic materials, able to recapitulate the composition and architecture of the extracellular matrix, are the materials of choice, for their biocompatibility and higher rate of efficacy. In addition, it has become increasingly clear that restoring the complex biochemical environment of the target tissue is crucial for its regeneration. Toward this aim, the combination of scaffolds and GFs is required. The advent of nanotechnology significantly impacted the field of tissue engineering by providing new ways to reproduce the complex spatial and temporal biochemical patterns of tissues. This review will present the most recent approaches to finely control the spatiotemporal release of bioactive molecules for various tissue engineering applications.
Collapse
Affiliation(s)
- Silvia Minardi
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Francesca Taraballi
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Laura Pandolfi
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
- College of Materials Science and Engineering, University of Chinese Academy of Science, Beijing, China
| | - Ennio Tasciotti
- Department of Regenerative Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Orthopedics, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
204
|
Abstract
The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the versatility of extrusion-based 3D printing technologies to interweave nanomaterials and fabricate novel bionic devices.
Collapse
Affiliation(s)
- Yong Lin Kong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Maneesh K. Gupta
- Air Force Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Blake N. Johnson
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Michael C. McAlpine
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
205
|
Correia CR, Gil S, Reis RL, Mano JF. A Closed Chondromimetic Environment within Magnetic-Responsive Liquified Capsules Encapsulating Stem Cells and Collagen II/TGF-β3 Microparticles. Adv Healthc Mater 2016; 5:1346-55. [PMID: 26990273 DOI: 10.1002/adhm.201600034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 02/05/2016] [Indexed: 12/19/2022]
Abstract
TGF-β3 is enzymatically immobilized by transglutaminase-2 action to poly(l-lactic acid) microparticles coated with collagen II. Microparticles are then encapsulated with stem cells inside liquified spherical compartments enfolded with a permselective shell through layer-by-layer adsorption. Magnetic nanoparticles are electrostatically bound to the multilayered shell, conferring magnetic-response ability. The goal of this study is to engineer a closed environment inside which encapsulated stem cells would undergo a self-regulated chondrogenesis. To test this hypothesis, capsules are cultured in chondrogenic differentiation medium without TGF-β3. Their biological outcome is compared with capsules encapsulating microparticles without TGF-β3 immobilization and cultured in normal chondrogenic differentiation medium containing soluble TGF-β3. Glycosaminoglycans quantification demosntrates that similar chondrogenesis levels are achieved. Moreover, collagen fibrils resembling the native extracellular matrix of cartilage can be observed. Importantly, the genetic evaluation of characteristic cartilage markers confirms the successful chondrogenesis, while hypertrophic markers are downregulated. In summary, the engineered capsules are able to provide a suitable and stable chondrogenesis environment for stem cells without the need of TGF-β3 supplementation. This kind of self-regulated capsules with softness, robustness, and magnetic responsive characteristics is expected to provide injectability and in situ fixation, which is of great advantage for minimal invasive strategies to regenerate cartilage.
Collapse
Affiliation(s)
- Clara R. Correia
- 3B's Research Group - Biomaterials Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
| | - Sara Gil
- 3B's Research Group - Biomaterials Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
| | - João F. Mano
- 3B's Research Group - Biomaterials Biodegradables and Biomimetics; University of Minho; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine; AvePark 4805-017 Barco Guimarães Portugal
- ICVS/3B's-PT Government Associated Laboratory; Braga/Guimaraes Portugal
| |
Collapse
|
206
|
Han BW, Layman H, Rode NA, Conway A, Schaffer DV, Boudreau NJ, Jackson WM, Healy KE. Multivalent Conjugates of Sonic Hedgehog Accelerate Diabetic Wound Healing. Tissue Eng Part A 2016; 21:2366-78. [PMID: 26154888 DOI: 10.1089/ten.tea.2014.0281] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Despite their preclinical promise, few recombinant growth factors have been fully developed into effective therapies, in part, due to the short interval of therapeutic activity after administration. To address this problem, we developed nanoscale polymer conjugates for multivalent presentation of therapeutic proteins that enhance the activation of targeted cellular responses. As an example of this technology, we conjugated multiple Sonic hedgehog (Shh) proteins onto individual hyaluronic acid biopolymers to generate multivalent protein clusters at defined ratios (i.e., valencies) that yield enhanced Shh pathway activation at equivalent concentrations relative to unconjugated Shh. In this study, we investigated whether these multivalent conjugates (mvShh) could be used to improve the therapeutic function of Shh. We found that a single treatment with mvShh significantly accelerated the closure of full-thickness wounds in diabetic (db/db) mice compared to either an equivalent dose of unconjugated Shh or the vehicle control. Furthermore, we identified specific indicators of wound healing in fibroblasts and endothelial cells (i.e., transcriptional activation and cell migration) that were activated by mvShh in vitro and at concentrations approximately an order of magnitude lower than the unconjugated Shh. Taken together, our findings suggest that mvShh conjugates exhibit greater potency to activate the Shh pathway, and this multivalency advantage improves its therapeutic effect to accelerate wound closure in a diabetic animal model. Our strategy of multivalent protein presentation using nanoscale polymer conjugates has the potential to make a significant impact on the development of protein-based therapies by improving their in vivo performance.
Collapse
Affiliation(s)
- Bruce W Han
- 1 Department of Bioengineering, University of California at Berkeley , Berkeley, California
| | - Hans Layman
- 2 Department of Surgery, University of California at San Francisco , San Francisco, California
| | - Nikhil A Rode
- 3 Department of Materials Science and Engineering, University of California at Berkeley , Berkeley, California
| | - Anthony Conway
- 4 Department of Chemical and Biomolecular Engineering, University of California at Berkeley , Berkeley, California
| | - David V Schaffer
- 1 Department of Bioengineering, University of California at Berkeley , Berkeley, California.,4 Department of Chemical and Biomolecular Engineering, University of California at Berkeley , Berkeley, California
| | - Nancy J Boudreau
- 2 Department of Surgery, University of California at San Francisco , San Francisco, California
| | - Wesley M Jackson
- 1 Department of Bioengineering, University of California at Berkeley , Berkeley, California
| | - Kevin E Healy
- 1 Department of Bioengineering, University of California at Berkeley , Berkeley, California.,3 Department of Materials Science and Engineering, University of California at Berkeley , Berkeley, California
| |
Collapse
|
207
|
Mohammadian F, Eatemadi A. Drug loading and delivery using nanofibers scaffolds. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:881-888. [PMID: 27188394 DOI: 10.1080/21691401.2016.1185726] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In recent times, notable advancement has been made in the field of electrospinning for the fabrication of numerous types of nanofiber scaffolds. Due to the ultrathin fiber diameter, electrospun nanofiber scaffolds are considered to be an operational delivery system for biomolecules, genes, as well as drugs due to the high specific surface area and stereological porous structure. Here, we introduce some of methods for the integration of drugs and biomolecules within electrospun nanofiber scaffolds, such as blending, surface modification, coaxial process, and emulsion methods. Then, we describe some important biomedical applications of nanofibers in drug delivery systems along with their suitable examples in transdermal systems and wound dressings, cancer therapy, growth factor delivery, nucleic acid delivery, and stem cell delivery.
Collapse
Affiliation(s)
- Farideh Mohammadian
- a Department of Medical Biotechnology, Faculty of Advance Medical Sciences , Tabriz University of Medical Sciences , Tabriz , Iran
| | - Ali Eatemadi
- b Department of Medical Biotechnology, School of Advance Science in Medicine , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
208
|
Seras-Franzoso J, Tatkiewicz WI, Vazquez E, García-Fruitós E, Ratera I, Veciana J, Villaverde A. Integrating mechanical and biological control of cell proliferation through bioinspired multieffector materials. Nanomedicine (Lond) 2016; 10:873-91. [PMID: 25816885 DOI: 10.2217/nnm.15.5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In nature, cells respond to complex mechanical and biological stimuli whose understanding is required for tissue construction in regenerative medicine. However, the full replication of such bimodal effector networks is far to be reached. Engineering substrate roughness and architecture allows regulating cell adhesion, positioning, proliferation, differentiation and survival, and the external supply of soluble protein factors (mainly growth factors and hormones) has been long applied to promote growth and differentiation. Further, bioinspired scaffolds are progressively engineered as reservoirs for the in situ sustained release of soluble protein factors from functional topographies. We review here how research progresses toward the design of integrative, holistic scaffold platforms based on the exploration of individual mechanical and biological effectors and their further combination.
Collapse
Affiliation(s)
- Joaquin Seras-Franzoso
- Departament de Genètica & de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
209
|
Awada HK, Hwang MP, Wang Y. Towards comprehensive cardiac repair and regeneration after myocardial infarction: Aspects to consider and proteins to deliver. Biomaterials 2016; 82:94-112. [PMID: 26757257 PMCID: PMC4872516 DOI: 10.1016/j.biomaterials.2015.12.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/15/2015] [Accepted: 12/19/2015] [Indexed: 12/13/2022]
Abstract
Ischemic heart disease is a leading cause of death worldwide. After the onset of myocardial infarction, many pathological changes take place and progress the disease towards heart failure. Pathologies such as ischemia, inflammation, cardiomyocyte death, ventricular remodeling and dilation, and interstitial fibrosis, develop and involve the signaling of many proteins. Proteins can play important roles in limiting or countering pathological changes after infarction. However, they typically have short half-lives in vivo in their free form and can benefit from the advantages offered by controlled release systems to overcome their challenges. The controlled delivery of an optimal combination of proteins per their physiologic spatiotemporal cues to the infarcted myocardium holds great potential to repair and regenerate the heart. The effectiveness of therapeutic interventions depends on the elucidation of the molecular mechanisms of the cargo proteins and the spatiotemporal control of their release. It is likely that multiple proteins will provide a more comprehensive and functional recovery of the heart in a controlled release strategy.
Collapse
Affiliation(s)
- Hassan K Awada
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Mintai P Hwang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yadong Wang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
210
|
Mele L, Vitiello PP, Tirino V, Paino F, De Rosa A, Liccardo D, Papaccio G, Desiderio V. Changing Paradigms in Cranio-Facial Regeneration: Current and New Strategies for the Activation of Endogenous Stem Cells. Front Physiol 2016; 7:62. [PMID: 26941656 PMCID: PMC4764712 DOI: 10.3389/fphys.2016.00062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
Craniofacial area represent a unique district of human body characterized by a very high complexity of tissues, innervation and vascularization, and being deputed to many fundamental function such as eating, speech, expression of emotions, delivery of sensations such as taste, sight, and earing. For this reasons, tissue loss in this area following trauma or for example oncologic resection, have a tremendous impact on patients' quality of life. In the last 20 years regenerative medicine has emerged as one of the most promising approach to solve problem related to trauma, tissue loss, organ failure etc. One of the most powerful tools to be used for tissue regeneration is represented by stem cells, which have been successfully implanted in different tissue/organs with exciting results. Nevertheless, both autologous and allogeneic stem cell transplantation raise many practical and ethical concerns that make this approach very difficult to apply in clinical practice. For this reason different cell free approaches have been developed aiming to the mobilization, recruitment, and activation of endogenous stem cells into the injury site avoiding exogenous cells implant but instead stimulating patients' own stem cells to repair the lesion. To this aim many strategies have been used including functionalized bioscaffold, controlled release of stem cell chemoattractants, growth factors, BMPs, Platelet-Rich-Plasma, and other new strategies such as ultrasound wave and laser are just being proposed. Here we review all the current and new strategies used for activation and mobilization of endogenous stem cells in the regeneration of craniofacial tissue.
Collapse
Affiliation(s)
- Luigi Mele
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Pietro Paolo Vitiello
- Medical Oncology, Dipartimento Medico-Chirurgico di Internistica Clinica e Sperimentale "F. Magrassi e A. Lanzara," Second University of Naples Naples, Italy
| | - Virginia Tirino
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Francesca Paino
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Alfredo De Rosa
- Department of Odontology and Surgery, Second University of Naples Naples, Italy
| | - Davide Liccardo
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Gianpaolo Papaccio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Section of Biotechnology and Medical Histology and Embryology, Second University of Naples Naples, Italy
| |
Collapse
|
211
|
Johnson NR, Wang Y. Drug delivery systems for wound healing. Curr Pharm Biotechnol 2016; 16:621-9. [PMID: 25658378 DOI: 10.2174/1389201016666150206113720] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/19/2014] [Accepted: 12/21/2014] [Indexed: 12/19/2022]
Abstract
Protein, gene, and small molecule therapies hold great potential for facilitating comprehensive tissue repair and regeneration. However, their clinical value will rely on effective delivery systems which maximize their therapeutic benefit. Significant advances have been made in recent years towards biomaterial delivery systems to satisfy this clinical need. Here we summarize the most outstanding advances in drug delivery technology for cutaneous wound healing.
Collapse
Affiliation(s)
| | - Yadong Wang
- 320 Benedum Hall, 3700 O'Hara St, Pittsburgh, PA 15261 USA.
| |
Collapse
|
212
|
Liang Y, Kiick KL. Liposome-Cross-Linked Hybrid Hydrogels for Glutathione-Triggered Delivery of Multiple Cargo Molecules. Biomacromolecules 2016; 17:601-14. [PMID: 26751084 PMCID: PMC4992983 DOI: 10.1021/acs.biomac.5b01541] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Novel, liposome-cross-linked hybrid hydrogels cross-linked by the Michael-type addition of thiols with maleimides were prepared via the use of maleimide-functionalized liposome cross-linkers and thiolated polyethylene glycol (PEG) polymers. Gelation of the materials was confirmed by oscillatory rheology experiments. These hybrid hydrogels are rendered degradable upon exposure to thiol-containing molecules such as glutathione (GSH), via the incorporation of selected thioether succinimide cross-links between the PEG polymers and liposome nanoparticles. Dynamic light scattering (DLS) characterization confirmed that intact liposomes were released upon network degradation. Owing to the hierarchical structure of the network, multiple cargo molecules relevant for chemotherapies, namely doxorubicin (DOX) and cytochrome c, were encapsulated and simultaneously released from the hybrid hydrogels, with differential release profiles that were driven by degradation-mediated release and Fickian diffusion, respectively. This work introduces a facile approach for the development of advanced, hybrid drug delivery vehicles that exhibit novel chemical degradation.
Collapse
Affiliation(s)
- Yingkai Liang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
- Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19716, United States
| |
Collapse
|
213
|
Martínez CE, González SA, Palma V, Smith PC. Platelet-Poor and Platelet-Rich Plasma Stimulate Bone Lineage Differentiation in Periodontal Ligament Stem Cells. J Periodontol 2016; 87:e18-26. [DOI: 10.1902/jop.2015.150360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
214
|
Abstract
Biomaterials have played an increasingly prominent role in the success of biomedical devices and in the development of tissue engineering, which seeks to unlock the regenerative potential innate to human tissues/organs in a state of deterioration and to restore or reestablish normal bodily function. Advances in our understanding of regenerative biomaterials and their roles in new tissue formation can potentially open a new frontier in the fast-growing field of regenerative medicine. Taking inspiration from the role and multi-component construction of native extracellular matrices (ECMs) for cell accommodation, the synthetic biomaterials produced today routinely incorporate biologically active components to define an artificial in vivo milieu with complex and dynamic interactions that foster and regulate stem cells, similar to the events occurring in a natural cellular microenvironment. The range and degree of biomaterial sophistication have also dramatically increased as more knowledge has accumulated through materials science, matrix biology and tissue engineering. However, achieving clinical translation and commercial success requires regenerative biomaterials to be not only efficacious and safe but also cost-effective and convenient for use and production. Utilizing biomaterials of human origin as building blocks for therapeutic purposes has provided a facilitated approach that closely mimics the critical aspects of natural tissue with regard to its physical and chemical properties for the orchestration of wound healing and tissue regeneration. In addition to directly using tissue transfers and transplants for repair, new applications of human-derived biomaterials are now focusing on the use of naturally occurring biomacromolecules, decellularized ECM scaffolds and autologous preparations rich in growth factors/non-expanded stem cells to either target acceleration/magnification of the body's own repair capacity or use nature's paradigms to create new tissues for restoration. In particular, there is increasing interest in separating ECMs into simplified functional domains and/or biopolymeric assemblies so that these components/constituents can be discretely exploited and manipulated for the production of bioscaffolds and new biomimetic biomaterials. Here, following an overview of tissue auto-/allo-transplantation, we discuss the recent trends and advances as well as the challenges and future directions in the evolution and application of human-derived biomaterials for reconstructive surgery and tissue engineering. In particular, we focus on an exploration of the structural, mechanical, biochemical and biological information present in native human tissue for bioengineering applications and to provide inspiration for the design of future biomaterials.
Collapse
|
215
|
Moghaddam A, Breier L, Haubruck P, Bender D, Biglari B, Wentzensen A, Zimmermann G. Non-unions treated with bone morphogenic protein 7: introducing the quantitative measurement of human serum cytokine levels as promising tool in evaluation of adjunct non-union therapy. JOURNAL OF INFLAMMATION-LONDON 2016; 13:3. [PMID: 26807043 PMCID: PMC4724145 DOI: 10.1186/s12950-016-0111-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 01/19/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND In this study we sought to determine if application of bone morphogenic protein 7 (BMP-7) promotes physiological bone healing of non-unions and to investigate if serum cytokine analysis may serve as a promising tool in the analysis of adjunct non-union therapy. Therefore we analyzed the influence of BMP-7 application on the serum cytokine expression patterns on patients with impaired bone healing compared to patients that showed proper bone healing. METHODS Our study involved analyzing blood samples from 208 patients with long bone fractures together with patients that subsequently developed non-unions. From this large pool, 15 patients with atrophic non-union were matched to 15 patients with atrophic non-union treated with local application of BMP-7 as well as normal bone healing. Changes in the cytokine expression patterns were monitored during the 1st, 2nd, 4th, 8th, 12th and 52nd week. The patients were followed both clinically and radiologically for the entire duration of the study. Serum cytokine expression levels of transforming growth factor beta (TGF-β), platelet-derived growth factor (PDGF) and basic fibroblast growth factor (bFGF) were analyzed and compared. RESULTS Serum expression of TGF-β were nearly parallel in all three groups, however serum concentrations were significantly higher in patients with proper bone healing and those treated with BMP-7 than in patients with non-unions (p < 0.05). bFGF serum concentrations increased initially in patients with proper bone healing and in those treated with BMP-7. Afterwards, values decreased; bFGF serum concentrations in the BMP-7 group were significantly higher than in the other groups (p < 0.05). PDGF serum concentration levels were nearly parallel in all groups, serum concentrations were significantly higher in patients with proper bone healing and those treated with BMP-7 than in patients with non-unions (p < 0.05). CONCLUSION Treatment with BMP-7 in patients with former non-unions led to similar cytokine expression patterns after treatment as those found in patients with proper bone healing. Our results suggest that treatment with BMP-7 promote healing of non-unions. Furthermore, quantitative measurement of serum cytokine expression is a promising tool for evaluating the effectiveness of additional non-union therapies such as adjunct application of growth factors.
Collapse
Affiliation(s)
- Arash Moghaddam
- HTRG - Heidelberg Trauma Research Group, Trauma and Reconstructive Surgery, Center of Orthopaedics, Traumatology and Paraplegiology, Heidelberg University Hospital, Schlierbacher Landstraße 200a, D-69118 Heidelberg, Germany
| | - Lisa Breier
- Department of Orthopaedics and Traumatology, St. Marienkrankenhaus, Salzburger Str. 15, 67067 Ludwigshafen, Germany
| | - Patrick Haubruck
- HTRG - Heidelberg Trauma Research Group, Trauma and Reconstructive Surgery, Center of Orthopaedics, Traumatology and Paraplegiology, Heidelberg University Hospital, Schlierbacher Landstraße 200a, D-69118 Heidelberg, Germany
| | - Daniel Bender
- Department for anesthesiology, Stadtklinik Frankenthal, Elsa-Brändenström Str. 1, D-67227 Frankenthal, Germany
| | - Bahram Biglari
- Berufsgenossenschaftliche Unfallklinik Ludwigshafen, Department of Paraplegiology, Ludwig-Guttmann-Straße-13, D-67071 Ludwigshafen, Germany
| | - Andreas Wentzensen
- Berufsgenossenschaftliche Unfallklinik Ludwigshafen, Trauma Center, Ludwig-Guttmann-Straße-13, D-67071 Ludwigshafen, Germany
| | - Gerald Zimmermann
- Department for Trauma Surgery, Theresienkrankenhaus und St. Hedwigs-Klinik GmbH, Bassermannstr. 1, D-68165 Mannheim, Germany
| |
Collapse
|
216
|
Farokhi M, Mottaghitalab F, Shokrgozar MA, Ou KL, Mao C, Hosseinkhani H. Importance of dual delivery systems for bone tissue engineering. J Control Release 2016; 225:152-69. [PMID: 26805518 DOI: 10.1016/j.jconrel.2016.01.033] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 02/07/2023]
Abstract
Bone formation is a complex process that requires concerted function of multiple growth factors. For this, it is essential to design a delivery system with the ability to load multiple growth factors in order to mimic the natural microenvironment for bone tissue formation. However, the short half-lives of growth factors, their relatively large size, slow tissue penetration, and high toxicity suggest that conventional routes of administration are unlikely to be effective. Therefore, it seems that using multiple bioactive factors in different delivery systems can develop new strategies for improving bone tissue regeneration. Combination of these factors along with biomaterials that permit tunable release profiles would help to achieve truly spatiotemporal regulation during delivery. This review summarizes the various dual-control release systems that are used for bone tissue engineering.
Collapse
Affiliation(s)
- Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Keng-Liang Ou
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan; Department of Dentistry, Taipei Medical University - Shuang Ho Hospital, New Taipei city, Taiwan
| | - Chuanbin Mao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, OK 73019, USA
| | - Hossein Hosseinkhani
- Graduate Institute of Biomedical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| |
Collapse
|
217
|
Yu Y, Wu RX, Yin Y, Chen FM. Directing immunomodulation using biomaterials for endogenous regeneration. J Mater Chem B 2016; 4:569-584. [PMID: 32262939 DOI: 10.1039/c5tb02199e] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Stem cell therapy and tissue engineering hold considerable potential for innovative and transformative strategies to repair damaged tissue form and function. Although many approaches are adopting ex vivo expanded cells for transplantation, an alternative is to manipulate the biomaterial-host interactions that recruit the patients' own stem cells endogenously for regeneration. There are several considerations in targeting the biomaterial-host interactions therapeutically, not the least of which is the biomimetic design of extracellular matrix (ECM)-mimicking materials and the administration of navigation cues and small molecules that target specific aspects of the native healing cascades to stimulate homing of endogenous stem cells and, thereafter, their expansion and differentiation. A sequence of coordinated interactions between the local niche cells and implanted biomaterials offers signals and sign posts that may instruct the cells traveling toward the injured tissues. Furthermore, stem cell function is critically influenced by extrinsic signals provided by the niche as well as by the implanted biomaterials. Novel strategies harnessing growth factors and immunological cues to design materials not only can modulate the behavior of stem cells but also can alter innate and adaptive immunity in a controlled manner. We envisage that successful and safe endogenous regeneration will involve at least three aspects, i.e., homing of sufficient stem cells, controlling cell fate determination, and blunting host immune responses to outside biomaterial devices. Improving our understanding of the biological and physicochemical signals of biomimetic biomaterials that govern immunomodulation for in situ tissue regeneration, particularly context-dependent macrophage (Mφ) polarization, will lead to a concurrent improvement in clinical outcomes.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Shaanxi, Xi'an 710032, P. R. China.
| | | | | | | |
Collapse
|
218
|
Chu C, Deng J, Liu L, Cao Y, Wei X, Li J, Man Y. Nanoparticles combined with growth factors: recent progress and applications. RSC Adv 2016. [DOI: 10.1039/c6ra13636b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Increasing attention has been focused on the applications of nanoparticles combined with growth factors (NPs/GFs) due to the substantial functions of GFs in regenerative medicine and disease treatments.
Collapse
Affiliation(s)
- Chenyu Chu
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Jia Deng
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Li Liu
- State Key Laboratory of Biotherapy and Laboratory for Aging Research
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
- China
| | - Yubin Cao
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| | - Xiawei Wei
- State Key Laboratory of Biotherapy and Laboratory for Aging Research
- West China Hospital
- Sichuan University and Collaborative Innovation Center for Biotherapy
- Chengdu
- China
| | - Jidong Li
- Research Center for Nano Biomaterials
- Analytical & Testing Center
- Sichuan University
- Chengdu 610041
- P. R. China
| | - Yi Man
- State Key Laboratory of Oral Diseases
- West China Hospital of Stomatology
- Sichuan University
- Chengdu 610041
- China
| |
Collapse
|
219
|
Feito MJ, Serrano MC, Oñaderra M, Matesanz MC, Sánchez-Salcedo S, Arcos D, Vallet-Regí M, Portolés MT. Effects of immobilized VEGF on endothelial progenitor cells cultured on silicon substituted and nanocrystalline hydroxyapatites. RSC Adv 2016. [DOI: 10.1039/c6ra19154a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Immobilized VEGF effects on angiogenic cells cultured on silicon substituted and nanocrystalline hydroxyapatites.
Collapse
Affiliation(s)
- M. J. Feito
- Department of Biochemistry and Molecular Biology I/Faculty of Chemistry
- Universidad Complutense de Madrid
- Spain
- Instituto de Investigación Sanitaria San Carlos IdISSC
- Spain
| | - M. C. Serrano
- Hospital Nacional de Parapléjicos Servicio de Salud de Castilla-La Mancha
- Toledo
- Spain
| | - M. Oñaderra
- Department of Biochemistry and Molecular Biology I/Faculty of Chemistry
- Universidad Complutense de Madrid
- Spain
| | - M. C. Matesanz
- Department of Biochemistry and Molecular Biology I/Faculty of Chemistry
- Universidad Complutense de Madrid
- Spain
| | - S. Sánchez-Salcedo
- Department of Inorganic and Bioinorganic Chemistry/Faculty of Pharmacy
- Universidad Complutense de Madrid
- Instituto de Investigación Hospital 12 de Octubre i+12
- Spain
- Networking Research Center on Bioengineering/Biomaterials and Nanomedicine
| | - D. Arcos
- Department of Inorganic and Bioinorganic Chemistry/Faculty of Pharmacy
- Universidad Complutense de Madrid
- Instituto de Investigación Hospital 12 de Octubre i+12
- Spain
- Networking Research Center on Bioengineering/Biomaterials and Nanomedicine
| | - M. Vallet-Regí
- Department of Inorganic and Bioinorganic Chemistry/Faculty of Pharmacy
- Universidad Complutense de Madrid
- Instituto de Investigación Hospital 12 de Octubre i+12
- Spain
- Networking Research Center on Bioengineering/Biomaterials and Nanomedicine
| | - M. T. Portolés
- Department of Biochemistry and Molecular Biology I/Faculty of Chemistry
- Universidad Complutense de Madrid
- Spain
- Instituto de Investigación Sanitaria San Carlos IdISSC
- Spain
| |
Collapse
|
220
|
Qin J, He H, Zhang W, Chen F, Liu C. Effective incorporation of rhBMP-2 on implantable titanium disks with microstructures by using electrostatic spraying deposition. RSC Adv 2016. [DOI: 10.1039/c6ra09421j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Electrostatic spraying deposition was applied to construct a biodegradable coating loaded with rhBMP-2 on hydrophilic SLA-treated titanium disks.
Collapse
Affiliation(s)
- Jiankang Qin
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Hongyan He
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| | - Wenjing Zhang
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Fangping Chen
- Engineering Research Center for Biomedical Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- East China University of Science and Technology
- Shanghai 200237
- PR China
- Engineering Research Center for Biomedical Materials of Ministry of Education
| |
Collapse
|
221
|
Demirtaş TT, Göz E, Karakeçili A, Gümüşderelioğlu M. Combined delivery of PDGF-BB and BMP-6 for enhanced osteoblastic differentiation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:12. [PMID: 26676858 DOI: 10.1007/s10856-015-5626-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
Natural microenvironment during bone tissue regeneration involves integration of multiple biological growth factors which regulate mitogenic activities and differentiation to induce bone repair. Among them platelet derived growth factor (PDGF-BB) and bone morphogenic protein-6 (BMP-6) are known to play a prominent role. The aim of this study was to investigate the benefits of combined delivery of PDGF-BB and BMP-6 on proliferation and osteoblastic differentiation of MC3T3-E1 preosteoblastic cells. PDGF-BB and BMP-6 were loaded in gelatin and poly (3-hydroxybutyric acid-co-3-hydroxyvaleric acid) particles, respectively. The carrier particles were then loaded into 3D chitosan matrix fabricated by freeze drying. The fast release of PDGF-BB during 7 days was accompanied by slower and prolonged release of BMP-6. The premising release of mitogenic factor PDGF-BB resulted in an increased MC3T3-E1 cell population seeded on chitosan scaffolds. Osteogenic markers of RunX2, Col 1, OPN were higher on chitosan scaffolds loaded with growth factors either individually or in combination. However, OCN expression and bone mineral formation were prominent on chitosan scaffolds incorporating PDGF-BB and BMP-6 as a combination.
Collapse
Affiliation(s)
- T Tolga Demirtaş
- Bioengineering Department, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| | - Eda Göz
- Chemical Engineering Department, Faculty of Engineering, Ankara University, 06100, Ankara, Turkey
| | - Ayşe Karakeçili
- Chemical Engineering Department, Faculty of Engineering, Ankara University, 06100, Ankara, Turkey.
| | - Menemşe Gümüşderelioğlu
- Bioengineering Department, Hacettepe University, Beytepe, 06800, Ankara, Turkey
- Chemical Engineering Department, Hacettepe University, Beytepe, 06800, Ankara, Turkey
| |
Collapse
|
222
|
Pandolfi L, Minardi S, Taraballi F, Liu X, Ferrari M, Tasciotti E. Composite microsphere-functionalized scaffold for the controlled release of small molecules in tissue engineering. J Tissue Eng 2016; 7:2041731415624668. [PMID: 26977286 PMCID: PMC4765809 DOI: 10.1177/2041731415624668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/20/2015] [Indexed: 12/17/2022] Open
Abstract
Current tissue engineering strategies focus on restoring damaged tissue architectures using biologically active scaffolds. The ideal scaffold would mimic the extracellular matrix of any tissue of interest, promoting cell proliferation and de novo extracellular matrix deposition. A plethora of techniques have been evaluated to engineer scaffolds for the controlled and targeted release of bioactive molecules to provide a functional structure for tissue growth and remodeling, as well as enhance recruitment and proliferation of autologous cells within the implant. Recently, novel approaches using small molecules, instead of growth factors, have been exploited to regulate tissue regeneration. The use of small synthetic molecules could be very advantageous because of their stability, tunability, and low cost. Herein, we propose a chitosan-gelatin scaffold functionalized with composite microspheres consisting of mesoporous silicon microparticles and poly(dl-lactic-co-glycolic acid) for the controlled release of sphingosine-1-phospate, a small molecule of interest. We characterized the platform with scanning electron microscopy, Fourier transform infrared spectroscopy, and confocal microscopy. Finally, the biocompatibility of this multiscale system was analyzed by culturing human mesenchymal stem cells onto the scaffold. The presented strategy establishes the basis of a versatile scaffold for the controlled release of small molecules and for culturing mesenchymal stem cells for regenerative medicine applications.
Collapse
Affiliation(s)
- Laura Pandolfi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- College of Materials Science and Engineering, University of Chinese Academy of Science, Beijing, China
| | - Silvia Minardi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Francesca Taraballi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Xeuwu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| |
Collapse
|
223
|
Mittermayr R, Slezak P, Haffner N, Smolen D, Hartinger J, Hofmann A, Schense J, Spazierer D, Gampfer J, Goppelt A, Redl H. Controlled release of fibrin matrix-conjugated platelet derived growth factor improves ischemic tissue regeneration by functional angiogenesis. Acta Biomater 2016; 29:11-20. [PMID: 26497625 DOI: 10.1016/j.actbio.2015.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 10/12/2015] [Accepted: 10/16/2015] [Indexed: 12/09/2022]
Abstract
Sustained, local, low dose growth factor stimulus of target tissues/cells is believed to be of imminent importance in tissue regeneration and engineering. Recently, a technology was developed to bind growth factors to a fibrin matrix using the transglutaminase (TG) activity of factor XIIIa, thus allowing prolonged release through enzymatic cleavage. In this study we aimed to determine whether TG-PDGF.AB in fibrin could improve tissue regeneration in a standard ischemic flap model. In vitro determination of binding and release kinetics of TG-PDGF.AB allowed proof of concept of the developed binding technology. A single spray application of TG-PDGF.AB in fibrin matrix at a concentration of 10 and 100ng/ml significantly reduced ischemia-induced flap tissue necrosis in vivo on day 7 after ischemic impact compared to controls. TG-PDGF.AB at a concentration of 100ng/ml fibrin induced distinct angiogenesis as reflected by significantly improved tissue perfusion assessed by laser Doppler imaging as well as enhanced von Willebrand factor (vWF) protein expression determined by immunohistochemical means. In addition, significantly more mature microvessels were observed with 100ng/ml TG-PDGF.AB in fibrin compared to control and vehicle groups as evidenced by an improved smooth muscle actin (sma)/vWF protein ratio. In conclusion, PDGF.AB in a conjugated fibrin matrix effectively reduced ischemia-induced tissue necrosis, increased tissue perfusion and induced the growth of a mature and functional neovasculature. The sealing properties of the fibrin matrix in conjunction with the prolonged growth factor stimulus enabled by the TG-hook binding technology may present an innovative and suitable tool in tissue regeneration. STATEMENT OF SIGNIFICANCE In our experimental study we elucidated recombinant platelet derived growth factor (PDGF) as a potential candidate in inducing angiogenesis. To avoid preterm growth factor degradation in vivo PDGF.AB was covalently linked to a fibrin scaffold using a bi-domain functionalized peptide (FXIII substrate site and plasmin cleavage site). This allowed PDGF binding to fibrin during spray application to the donor site and subsequent prolonged release via endogenous plasmin. This resulted in a mature vascular network thus enhancing tissue perfusion and consequently improved clinical outcome. With our present work we could certainly provide researchers and clinicians with an innovative versatile and reproducible technology not only to induce functional vascularity but also to improve attempts in tissue engineering in general by e.g. using different growth factors. Hence, we believe that this approach studied in the present work may provide a valuable input in an effort to drive the aim forward bringing experimental work in tissue engineering to clinic by using a clinically well characterized and used fibrin scaffold in combination with a human recombinant growth factor (fibrin scaffold linked with the specific binding technology).
Collapse
|
224
|
Lequoy P, Murschel F, Liberelle B, Lerouge S, De Crescenzo G. Controlled co-immobilization of EGF and VEGF to optimize vascular cell survival. Acta Biomater 2016; 29:239-247. [PMID: 26485166 DOI: 10.1016/j.actbio.2015.10.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 09/09/2015] [Accepted: 10/16/2015] [Indexed: 01/02/2023]
Abstract
Growth factors (GFs) are potent signaling molecules that act in a coordinated manner in physiological processes such as tissue healing or angiogenesis. Co-immobilizing GFs on materials while preserving their bioactivity still represents a major challenge in the field of tissue regeneration and bioactive implants. In this study, we explore the potential of an oriented immobilization technique based on two high affinity peptides, namely the Ecoil and Kcoil, to allow for the simultaneous capture of the epidermal growth factor (EGF) and the vascular endothelial growth factor (VEGF) on a chondroitin sulfate coating. This glycosaminoglycan layer was selected as it promotes cell adhesion but reduces non-specific adsorption of plasma proteins. We demonstrate here that both Ecoil-tagged GFs can be successfully immobilized on chondroitin sulfate surfaces that had been pre-decorated with the Kcoil peptide. As shown by direct ELISA, changing the incubation concentration of the various GFs enabled to control their grafted amount. Moreover, cell survival studies with endothelial and smooth muscle cells confirmed that our oriented tethering strategy preserved GF bioactivity. Of salient interest, co-immobilizing EGF and VEGF led to better cell survival compared to each GF captured alone, suggesting a synergistic effect of these GFs. Altogether, these results demonstrate the potential of coiled-coil oriented GF tethering for the co-immobilization of macromolecules; it thus open the way to the generation of biomaterials surfaces with fine-tuned biological properties. STATEMENT OF SIGNIFICANCE Growth factors are potent signaling molecules that act in a coordinated manner in physiological processes such as tissue healing or angiogenesis. Controlled coimmobilization of growth factors on biomaterials while preserving their bioactivity represents a major challenge in the field of tissue regeneration and bioactive implants. This study demonstrates the potential of an oriented immobilization technique based on two high affinity peptides to allow for the simultaneous capture of epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF). Our system allowed an efficient control on growth factor immobilization by adjusting the incubation concentrations of EGF and VEGF. Of salient interest, co-immobilizing of specific ratios of EGF and VEGF demonstrated a synergistic effect on cell survival compared to each GF captured alone.
Collapse
Affiliation(s)
- Pauline Lequoy
- Department of Mechanical Engineering, École de technologie supérieure (ÉTS), 1100 boul. Notre-Dame Ouest, Montréal, QC H3C 1K3, Canada; Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 St Denis, Tour Viger, Montréal, QC H2X 0A9, Canada
| | - Frederic Murschel
- Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
| | - Benoit Liberelle
- Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada
| | - Sophie Lerouge
- Department of Mechanical Engineering, École de technologie supérieure (ÉTS), 1100 boul. Notre-Dame Ouest, Montréal, QC H3C 1K3, Canada; Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM), 900 St Denis, Tour Viger, Montréal, QC H2X 0A9, Canada.
| | - Gregory De Crescenzo
- Department of Chemical Engineering, École Polytechnique de Montréal, P.O. Box 6079, succ. Centre-Ville, Montréal, QC H3C 3A7, Canada.
| |
Collapse
|
225
|
Liu N, Wang Z. Sequential delivery of BMP-7 and IGF-I to enhance the osteoinductive property of deproteinized bovine bone. RSC Adv 2016. [DOI: 10.1039/c6ra04336d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Calcium phosphate coated deproteinized bovine bone with sequential delivery of BMP-7 and IGF-I has osteoinductive property to promote bone regeneration.
Collapse
Affiliation(s)
- Ning Liu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Department of Oral Implant
- School of Stomatology
- Tongji University
- Shanghai
| | - Zuolin Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Department of Oral Implant
- School of Stomatology
- Tongji University
- Shanghai
| |
Collapse
|
226
|
Gao Y, Wong KY, Ahiabu A, Serpe MJ. Sequential and controlled release of small molecules from poly(N-isopropylacrylamide) microgel-based reservoir devices. J Mater Chem B 2016; 4:5144-5150. [DOI: 10.1039/c6tb00864j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Devices capable of releasing two different small molecules independently, at defined release kinetics, were prepared and their behavior characterized.
Collapse
Affiliation(s)
- Yongfeng Gao
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada T6G 2G2
| | - Ka Yee Wong
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada T6G 2G2
| | - Andrews Ahiabu
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada T6G 2G2
| | - Michael J. Serpe
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada T6G 2G2
| |
Collapse
|
227
|
Vandana KL, Desai R, Dalvi PJ. Autologous Stem Cell Application in Periodontal Regeneration Technique (SAI-PRT) Using PDLSCs Directly From an Extracted Tooth···An Insight. Int J Stem Cells 2015; 8:235-7. [PMID: 26634072 PMCID: PMC4651288 DOI: 10.15283/ijsc.2015.8.2.235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Periodontal regeneration represents the ultimate goal of periodontal therapy. The current regenerative techniques have limited success rates especially in advanced periodontal defects. Currently the research is focused on novel cell-based approaches for periodontal regeneration to overcome the limitations of existing treatment. The human clinical trial on stem cells based periodontal regeneration is promising. The plethora of animal studies provide sound evidence to support the belief that periodontal ligament stem cells (PDLSCs) can be used for periodontal regeneration. The direct application of autologous periodontal stem cells in treatment of intrabony defects is attempted for the first time in periodontal literature. Stem cell Application in Periodontal Regeneration Technique (SAI-PRT) using direct PDLSCs has overcome the limitations and concerns of ex- vivo stem cell culture methods like high cost, technique sensitivity, loss of stemness during cell passage, genetic manipulation and tumorigenic potential. Clinical feasibility, success and cost effectiveness over currently available techniques are encouraging. The clinical utility of this novel idea is recommended.
Collapse
Affiliation(s)
- K L Vandana
- Department of Periodontics, College of Dental Sciences, Davangere
| | - Rajendra Desai
- Department of Oral and Maxillofacial Surgery, College of Dental Sciences, Davangere
| | | |
Collapse
|
228
|
Siegman S, Truong NF, Segura T. Encapsulation of PEGylated low-molecular-weight PEI polyplexes in hyaluronic acid hydrogels reduces aggregation. Acta Biomater 2015; 28:45-54. [PMID: 26391497 DOI: 10.1016/j.actbio.2015.09.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/14/2015] [Accepted: 09/16/2015] [Indexed: 12/29/2022]
Abstract
The effective delivery of DNA locally could increase the applicability of gene therapy in tissue regeneration and therapeutic angiogenesis. One promising approach is through use of porous hydrogel scaffolds that incorporate and deliver DNA in the form of nanoparticles to the affected sites. While we have previously reported on caged nanoparticle encapsulation (CnE) to load DNA polyplexes within hydrogels at high concentrations without aggregation, frequent issues with limited polyplex release following CnE have been encountered. In this study, we report two alternative approaches to polyplex presentation for decreasing aggregation in porous hydrogels. The first approach reduces polyplex aggregation by utilizing polyethylene glycol modification of the gene carrier polymer polyethyleneimine (sPEG-PEI) to mitigate charge-charge interactions between polyplexes and the scaffold during gelation. The second approach electrostatically presents polyplexes on the surfaces of scaffold pores as opposed to an encapsulated presentation. The sPEG-PEI polymer formed a smaller, less toxic, and more stable polyplex that exhibited less aggregation within HA gels when compared to the traditionally used linear PEI (LPEI) polymer. Surface-coated polyplexes also resulted in a more homogenous distribution of polyplexes in hydrogels. Furthermore, sPEG-PEI polyplexes retained transfection abilities comparable to LPEI in 3D surface-coated transfections. These results demonstrate a significant improvement in scaffold-mediated gene delivery and show promise in applications to multi-gene delivery systems. STATEMENT OF SIGNIFICANCE A promising gene delivery approach for regenerative medicine is implanting porous hydrogel scaffolds loaded with DNA nanoparticles for delivery to affected sites. However, loading DNA polyplexes at high concentrations within hydrogels results in significant aggregation. Here, we describe two methods for decreasing aggregation of DNA polyplexes in porous gels. First, the gene carrier polymer polyethyleneimine (PEI) was modified with polyethylene glycol (sPEG-PEI) to mitigate the electrostatic interactions between polyplexes and scaffold polymer to in turn decrease aggregation. Second, polyplexes were presented along the surfaces of the pores of the hydrogel instead of being encapsulated within the gel. These methods allow for highly tunable and sustained transgene expression from scaffold-mediated gene delivery while avoiding polyplex aggregation.
Collapse
Affiliation(s)
- Shayne Siegman
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA
| | - Norman F Truong
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA
| | - Tatiana Segura
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|
229
|
Bioprinting a cardiac valve. Biotechnol Adv 2015; 33:1503-21. [DOI: 10.1016/j.biotechadv.2015.07.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 06/30/2015] [Accepted: 07/27/2015] [Indexed: 12/13/2022]
|
230
|
Chen T, Gomez AW, Zuo Y, Li X, Zhang Z, Li Y, Hu J, Li J. Osteogenic potential and synergistic effects of growth factors delivered from a bionic composite system. J Biomed Mater Res A 2015; 104:659-668. [PMID: 26514654 DOI: 10.1002/jbm.a.35605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/15/2015] [Accepted: 10/28/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Tao Chen
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology; Sichuan University; Chengdu 610041 China
| | - Alan W. Gomez
- Department of Surgery, Division of Plastic and Reconstructive Surgery; Stanford School of Medicine, Stanford University; Stanford California 94305
| | - Yi Zuo
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University; Chengdu 610064 China
| | - Xiang Li
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology; Sichuan University; Chengdu 610041 China
| | - Zhen Zhang
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology; Sichuan University; Chengdu 610041 China
| | - Yubao Li
- Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University; Chengdu 610064 China
| | - Jing Hu
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology; Sichuan University; Chengdu 610041 China
| | - Jihua Li
- State Key Laboratory of Oral Diseases and Department of Oral and Maxillofacial Surgery, West China College of Stomatology; Sichuan University; Chengdu 610041 China
| |
Collapse
|
231
|
Costa AM, Mano JF. Extremely strong and tough hydrogels as prospective candidates for tissue repair – A review. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.07.053] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
232
|
Mohan N, Gupta V, Sridharan BP, Mellott AJ, Easley JT, Palmer RH, Galbraith RA, Key VH, Berkland CJ, Detamore MS. Microsphere-based gradient implants for osteochondral regeneration: a long-term study in sheep. Regen Med 2015; 10:709-28. [PMID: 26418471 DOI: 10.2217/rme.15.38] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The microfracture technique for cartilage repair has limited ability to regenerate hyaline cartilage. AIM The current study made a direct comparison between microfracture and an osteochondral approach with microsphere-based gradient plugs. MATERIALS & METHODS The PLGA-based scaffolds had opposing gradients of chondroitin sulfate and β-tricalcium phosphate. A 1-year repair study in sheep was conducted. RESULTS The repair tissues in the microfracture were mostly fibrous and had scattered fissures with degenerative changes. Cartilage regenerated with the gradient plugs had equal or superior mechanical properties; had lacunated cells and stable matrix as in hyaline cartilage. CONCLUSION This first report of gradient scaffolds in a long-term, large animal, osteochondral defect demonstrated potential for equal or better cartilage repair than microfracture.
Collapse
Affiliation(s)
- Neethu Mohan
- Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA.,Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences & Technology, Trivandrum, Kerala 695011, India
| | - Vineet Gupta
- Bioengineering Graduate Program, University of Kansas, Lawrence, KS 66045, USA
| | | | - Adam J Mellott
- Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA
| | - Jeremiah T Easley
- Preclinical Surgical Research Laboratory, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Ross H Palmer
- Preclinical Surgical Research Laboratory, College of Veterinary Medicine & Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | - Vincent H Key
- University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Cory J Berkland
- Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA.,Bioengineering Graduate Program, University of Kansas, Lawrence, KS 66045, USA.,Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Michael S Detamore
- Department of Chemical & Petroleum Engineering, University of Kansas, Lawrence, KS 66045, USA.,Bioengineering Graduate Program, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
233
|
Abreu FAMD, Ferreira CL, Silva GAB, Paulo CDO, Miziara MN, Silveira FF, Alves JB. Effect of PDGF-BB, IGF-I growth factors and their combination carried by liposomes in tooth socket healing. Braz Dent J 2015; 24:299-307. [PMID: 24173245 DOI: 10.1590/0103-6440201302238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/13/2013] [Indexed: 11/22/2022] Open
Abstract
This work evaluated the bone-forming potential of the platelet-derived growth factor isoform BB (PDGF-BB), insulin-like growth factor I (IGF-I), and mixed PDGF-BB/IGF-I delivered in liposomes compared with phosphate buffered saline (PBS), in the healing process of rat tooth sockets. One hundred and twelve Wistar rats were randomized into 7 groups of 16 animals each and were evaluated at 3, 7, 14 and 21 days after extraction of the maxillary second molars. The left sockets were treated with PBS (P), empty liposome (L), IGF-I in PBS (IP), IGF-I in liposome (IL), PDGF-BB in PBS (PDP), PDGF-BB in liposome (PDL) and both growth factors (GFs) together within liposomes (PDIL). The right sockets were filled with blood clot (BC). Histological and histomorphometric analyses were used to evaluate the formation of new bone and blood vessels. Immunohistochemistry was performed to evaluate the expression of osteocalcin and vascular endothelial growth factor (VEGF) during bone repair. Data were tested statistically using a Tukey's test according to a Dunn's analysis and Mann-Whitney U test followed by Kruskal-Wallis one-way analysis. Results were considered significant when p<0.05. A significantly higher percentage of bone trabeculae and a higher number of blood vessels were observed in the IL, PDL and PDIL groups (p<0.05). However, these GF-liposome groups had statistically similar results. Immunohistochemical assays first detected osteocalcin and VEGF expression at 3 days followed by a peak at 7 days. Lower immunoreactivity levels were observed in the BC, L, P, IP and PDP groups compared with the IL, PDL and PDIL groups (p<0.05). The results suggest that GFs carried by liposomes, either in isolated or mixed forms, enhanced the healing process in rat tooth sockets. The differential expression of the osteogenic markers VEGF and osteocalcin in the early phases of bone healing support these findings.
Collapse
Affiliation(s)
- Fernando Antônio Mauad de Abreu
- Laboratory of Oral and Development Biology, Department of Morphology, Biological Sciences Institute, UFMG - Federal University of Minas Gerais, Belo HorizonteMG, Brazil
| | | | | | | | | | | | | |
Collapse
|
234
|
Response of osteoblasts and preosteoblasts to calcium deficient and Si substituted hydroxyapatites treated at different temperatures. Colloids Surf B Biointerfaces 2015; 133:304-13. [DOI: 10.1016/j.colsurfb.2015.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/02/2015] [Accepted: 06/05/2015] [Indexed: 11/20/2022]
|
235
|
Boateng J, Catanzano O. Advanced Therapeutic Dressings for Effective Wound Healing--A Review. J Pharm Sci 2015; 104:3653-3680. [PMID: 26308473 DOI: 10.1002/jps.24610] [Citation(s) in RCA: 496] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 12/15/2022]
Abstract
Advanced therapeutic dressings that take active part in wound healing to achieve rapid and complete healing of chronic wounds is of current research interest. There is a desire for novel strategies to achieve expeditious wound healing because of the enormous financial burden worldwide. This paper reviews the current state of wound healing and wound management products, with emphasis on the demand for more advanced forms of wound therapy and some of the current challenges and driving forces behind this demand. The paper reviews information mainly from peer-reviewed literature and other publicly available sources such as the US FDA. A major focus is the treatment of chronic wounds including amputations, diabetic and leg ulcers, pressure sores, and surgical and traumatic wounds (e.g., accidents and burns) where patient immunity is low and the risk of infections and complications are high. The main dressings include medicated moist dressings, tissue-engineered substitutes, biomaterials-based biological dressings, biological and naturally derived dressings, medicated sutures, and various combinations of the above classes. Finally, the review briefly discusses possible prospects of advanced wound healing including some of the emerging physical approaches such as hyperbaric oxygen, negative pressure wound therapy and laser wound healing, in routine clinical care.
Collapse
Affiliation(s)
- Joshua Boateng
- Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK.
| | - Ovidio Catanzano
- Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| |
Collapse
|
236
|
Wickremasinghe NC, Kumar VA, Shi S, Hartgerink JD. Controlled Angiogenesis in Peptide Nanofiber Composite Hydrogels. ACS Biomater Sci Eng 2015; 1:845-854. [PMID: 26925462 DOI: 10.1021/acsbiomaterials.5b00210] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Multidomain peptide (MDP) nanofibers create scaffolds that can present bioactive cues to promote biological responses. Orthogonal self-assembly of MDPs and growth-factor-loaded liposomes generate supramolecular composite hydrogels. These composites can act as delivery vehicles with time-controlled release. Here we examine the controlled release of placental growth factor-1 (PlGF-1) for its ability to induce angiogenic responses. PlGF-1 was loaded either in MDP matrices or within liposomes bound inside MDP matrices. Scaffolds showed expected rapid infiltration of macrophages. When released through liposomes incorporated in MDP gels (MDP(Lipo)), PlGF-1 modulates HUVEC VEGF receptor activation in vitro and robust vessel formation in vivo. These loaded MDP(Lipo) hydrogels induce a high level of growth-factor-mediated neovascular maturity. MDP(Lipo) hydrogels offer a biocompatible and injectable platform to tailor drug delivery and treat ischemic tissue diseases.
Collapse
Affiliation(s)
- Navindee C Wickremasinghe
- Department of Chemistry, Rice University, Bioscience Research Collaborative, 6500 Main Street, Houston, Texas 77030, United States
| | - Vivek A Kumar
- Department of Chemistry, Rice University, Bioscience Research Collaborative, 6500 Main Street, Houston, Texas 77030, United States
| | - Siyu Shi
- Department of Chemistry, Rice University, Bioscience Research Collaborative, 6500 Main Street, Houston, Texas 77030, United States
| | - Jeffrey D Hartgerink
- Department of Chemistry, Rice University, Bioscience Research Collaborative, 6500 Main Street, Houston, Texas 77030, United States; Department of Bioengineering, Rice University, Bioscience Research Collaborative, 6500 Main Street, Houston, Texas 77030, United States
| |
Collapse
|
237
|
Gupta MK, Meng F, Johnson BN, Kong YL, Tian L, Yeh YW, Masters N, Singamaneni S, McAlpine MC. 3D Printed Programmable Release Capsules. NANO LETTERS 2015; 15:5321-9. [PMID: 26042472 PMCID: PMC4536147 DOI: 10.1021/acs.nanolett.5b01688] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The development of methods for achieving precise spatiotemporal control over chemical and biomolecular gradients could enable significant advances in areas such as synthetic tissue engineering, biotic-abiotic interfaces, and bionanotechnology. Living organisms guide tissue development through highly orchestrated gradients of biomolecules that direct cell growth, migration, and differentiation. While numerous methods have been developed to manipulate and implement biomolecular gradients, integrating gradients into multiplexed, three-dimensional (3D) matrices remains a critical challenge. Here we present a method to 3D print stimuli-responsive core/shell capsules for programmable release of multiplexed gradients within hydrogel matrices. These capsules are composed of an aqueous core, which can be formulated to maintain the activity of payload biomolecules, and a poly(lactic-co-glycolic) acid (PLGA, an FDA approved polymer) shell. Importantly, the shell can be loaded with plasmonic gold nanorods (AuNRs), which permits selective rupturing of the capsule when irradiated with a laser wavelength specifically determined by the lengths of the nanorods. This precise control over space, time, and selectivity allows for the ability to pattern 2D and 3D multiplexed arrays of enzyme-loaded capsules along with tunable laser-triggered rupture and release of active enzymes into a hydrogel ambient. The advantages of this 3D printing-based method include (1) highly monodisperse capsules, (2) efficient encapsulation of biomolecular payloads, (3) precise spatial patterning of capsule arrays, (4) "on the fly" programmable reconfiguration of gradients, and (5) versatility for incorporation in hierarchical architectures. Indeed, 3D printing of programmable release capsules may represent a powerful new tool to enable spatiotemporal control over biomolecular gradients.
Collapse
Affiliation(s)
- Maneesh K. Gupta
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Fanben Meng
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Blake N. Johnson
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Yong Lin Kong
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Limei Tian
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yao-Wen Yeh
- Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Nina Masters
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Michael C. McAlpine
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
238
|
Briquez PS, Hubbell JA, Martino MM. Extracellular Matrix-Inspired Growth Factor Delivery Systems for Skin Wound Healing. Adv Wound Care (New Rochelle) 2015; 4:479-489. [PMID: 26244104 DOI: 10.1089/wound.2014.0603] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 10/31/2014] [Indexed: 12/15/2022] Open
Abstract
Significance: Growth factors are very promising molecules for the treatment of skin wounds. However, their translation to clinical use has been seriously limited, facing issues related to safety and cost-effectiveness. These problems may derive from the fact that growth factors are used at vastly supra-physiological levels without optimized delivery systems. Recent Advances: The extracellular matrix (ECM) plays a fundamental role in coordinating growth factor signaling. Therefore, understanding the mechanisms by which the ECM modulates growth factor activity is key for designing efficient growth factor-based therapies. Recently, several growth factor-binding domains have been discovered within various ECM proteins, and growth factor delivery systems integrating these ECM growth factor-binding domains showed promising results in animal models of skin wound healing. Moreover, a novel strategy consisting of engineering growth factors to target endogenous ECM could substantially enhance their efficacy, even when used at low doses. Critical Issues: Optimal delivery of growth factors often requires complex engineered biomaterial matrices, which can face regulatory issues for clinical translation. To simplify delivery systems and render strategies more applicable, growth factors can be engineered to optimally function with clinically approved biomaterials or with endogenous ECM present at the delivery site. Future Directions: Further development and clinical trials will reveal whether growth factor-based therapies can be used as main therapeutic approaches for skin wound healing. The future impact of these therapies will depend on our capacity to deliver growth factors more precisely, to improve efficacy, safety, and cost-effectiveness.
Collapse
Affiliation(s)
- Priscilla S. Briquez
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jeffrey A. Hubbell
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois
| | - Mikaël M. Martino
- World Premier International Immunology Frontier Research Center, Osaka University, Osaka, Japan
| |
Collapse
|
239
|
Age-related decline in the matrix contents and functional properties of human periodontal ligament stem cell sheets. Acta Biomater 2015; 22:70-82. [PMID: 25922305 DOI: 10.1016/j.actbio.2015.04.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 02/08/2023]
Abstract
In this study, periodontal ligament (PDL) stem cells (PDLSCs) derived from different-aged donors were used to evaluate the effect of aging on cell sheet formation. The activity of PDLSCs was first determined based on their colony-forming ability, surface markers, proliferative/differentiative potentials, senescence-associated β-galactosidase (SA-βG) staining, and expression of pluripotency-associated transcription factors. The ability of these cells to form sheets, based on their extracellular matrix (ECM) contents and their functional properties necessary for osteogenic differentiation, was evaluated to predict the age-related changes in the regenerative capacity of the cell sheets in their further application. It was found that human PDLSCs could be isolated from the PDL tissue of different-aged subjects. However, the ability of the PDLSCs to proliferate and to undergo osteogenic differentiation and their expression of pluripotency-associated transcription factors displayed age-related decreases. In addition, these cells exhibited an age-related increase in SA-βG expression. Aged cells showed an impaired ability to form functional cell sheets, as determined by morphological observations and Ki-67 immunohistochemistry staining. Based on the production of ECM proteins, such as fibronectin, integrin β1, and collagen type I; alkaline phosphatase (ALP) activity; and the expression of osteogenic genes, such as ALP, Runt-related transcription factor 2, and osteocalcin, cell sheets formed by PDLSCs derived from older donors demonstrated a less potent osteogenic capacity compared to those formed by PDLSCs from younger donors. Our data suggest that the age-associated decline in the matrix contents and osteogenic properties of PDLSC sheets should be taken into account in cell sheet engineering research and clinical periodontal regenerative therapy.
Collapse
|
240
|
Bone Augmentation in Rabbit Tibia Using Microfixed Cobalt-Chromium Membranes with Whole Blood and Platelet-Rich Plasma. MATERIALS 2015; 8:4843-4856. [PMID: 28793476 PMCID: PMC5455479 DOI: 10.3390/ma8084843] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/06/2015] [Accepted: 06/29/2015] [Indexed: 01/09/2023]
Abstract
Background: Bone augmentation is a subject of intensive investigation in regenerative bone medicine and constitutes a clinical situation in which autogenous bone grafts or synthetic materials are used to aid new bone formation. Method: Based on a non-critical defect, Co-Cr barrier membranes were placed on six adult Fauve de Bourgogne rabbits, divided into two groups: whole blood and PRP. Three densitometric controls were performed during the experiment. The animals were euthanized at 30, 45, 60, and 110 days. The presence of newly formed bone was observed. Samples for histological studies were taken from the augmentation center. Results: External and internal bone tissue augmentation was observed in almost all cases. Significant differences between PRP- and whole blood–stimulated bone augmentation were not observed. At 60 days, bones with PRP presented higher angiogenesis, which may indicate more proliferation and cellular activity. Conclusion: PRP activates the bone regeneration process under optimized conditions by stimulation of osteoblast proliferation after six weeks, when a significant difference in cellular activity was observed. Membranes could stimulate bone augmentation at the site of placement and in the surrounding areas.
Collapse
|
241
|
Boukari Y, Scurr DJ, Qutachi O, Morris AP, Doughty SW, Rahman CV, Billa N. Physicomechanical properties of sintered scaffolds formed from porous and protein-loaded poly(DL-lactic-co-glycolic acid) microspheres for potential use in bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:796-811. [DOI: 10.1080/09205063.2015.1058696] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
242
|
Perez RA, Kim HW. Core-shell designed scaffolds for drug delivery and tissue engineering. Acta Biomater 2015; 21:2-19. [PMID: 25792279 DOI: 10.1016/j.actbio.2015.03.013] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/03/2015] [Accepted: 03/08/2015] [Indexed: 11/19/2022]
Abstract
Scaffolds that secure and deliver therapeutic ingredients like signaling molecules and stem cells hold great promise for drug delivery and tissue engineering. Employing a core-shell design for scaffolds provides a promising solution. Some unique methods, such as co-concentric nozzle extrusion, microfluidics generation, and chemical confinement reactions, have been successful in producing core-shelled nano/microfibers and nano/microspheres. Signaling molecules and drugs, spatially allocated to the core and/or shell part, can be delivered in a controllable and sequential manner for optimal therapeutic effects. Stem cells can be loaded within the core part on-demand, safely protected from the environments, which ultimately affords ex vivo culture and in vivo tissue engineering. The encapsulated cells experience three-dimensional tissue-mimic microenvironments in which therapeutic molecules are secreted to the surrounding tissues through the semi-permeable shell. Tuning the material properties of the core and shell, changing the geometrical parameters, and shaping them into proper forms significantly influence the release behaviors of biomolecules and the fate of the cells. This topical issue highlights the immense usefulness of core-shell designs for the therapeutic actions of scaffolds in the delivery of signaling molecules and stem cells for tissue regeneration and disease treatment.
Collapse
Affiliation(s)
- Roman A Perez
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea; Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 330-714, Republic of Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 330-714, Republic of Korea.
| |
Collapse
|
243
|
Moon KH, Ko IK, Yoo JJ, Atala A. Kidney diseases and tissue engineering. Methods 2015; 99:112-9. [PMID: 26134528 DOI: 10.1016/j.ymeth.2015.06.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/12/2015] [Accepted: 06/25/2015] [Indexed: 02/08/2023] Open
Abstract
Kidney disease is a worldwide public health problem. Renal failure follows several disease stages including acute and chronic kidney symptoms. Acute kidney injury (AKI) may lead to chronic kidney disease (CKD), which can progress to end-stage renal disease (ESRD) with a mortality rate. Current treatment options are limited to dialysis and kidney transplantation; however, problems such as donor organ shortage, graft failure and numerous complications remain a concern. To address this issue, cell-based approaches using tissue engineering (TE) and regenerative medicine (RM) may provide attractive approaches to replace the damaged kidney cells with functional renal specific cells, leading to restoration of normal kidney functions. While development of renal tissue engineering is in a steady state due to the complex composition and highly regulated functionality of the kidney, cell therapy using stem cells and primary kidney cells has demonstrated promising therapeutic outcomes in terms of restoration of renal functions in AKI and CKD. In this review, basic components needed for successful renal kidney engineering are discussed, and recent TE and RM approaches to treatment of specific kidney diseases will be presented.
Collapse
Affiliation(s)
- Kyung Hyun Moon
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA; Department of Urology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Blvd, Winston-Salem, NC 27157, USA.
| |
Collapse
|
244
|
Mirdailami O, Soleimani M, Dinarvand R, Khoshayand MR, Norouzi M, Hajarizadeh A, Dodel M, Atyabi F. Controlled release of rhEGF and rhbFGF from electrospun scaffolds for skin regeneration. J Biomed Mater Res A 2015; 103:3374-85. [DOI: 10.1002/jbm.a.35479] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/28/2015] [Accepted: 04/07/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Omolbanin Mirdailami
- Department of Pharmaceutics; Faculty of Pharmacy, Tehran University of Medical Sciences; Tehran Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences; Tehran Iran
| | - Masoud Soleimani
- Department of Hematology; Faculty of Medical Sciences, University of Tarbiat Modares; Tehran Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics; Faculty of Pharmacy, Tehran University of Medical Sciences; Tehran Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Reza Khoshayand
- Food and Drug Control Laboratory, Faculty of Pharmacy, Tehran University of Medical Sciences; Tehran Iran
| | - Mohammad Norouzi
- Department of Nanotechnology and Tissue Engineering; Stem Cell Technology Research Center; Tehran Iran
| | - Athena Hajarizadeh
- Department of Molecular Biology and Genetic Engineering; Stem Cell Technology Research Center; Tehran Iran
| | - Masumeh Dodel
- Department of Nanotechnology and Tissue Engineering; Stem Cell Technology Research Center; Tehran Iran
| | - Fatemeh Atyabi
- Department of Pharmaceutics; Faculty of Pharmacy, Tehran University of Medical Sciences; Tehran Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
245
|
Geiger BC, Nelson MT, Munj HR, Tomasko DL, Lannutti JJ. Dual drug release from CO2-infused nanofibers via hydrophobic and hydrophilic interactions. J Appl Polym Sci 2015. [DOI: 10.1002/app.42571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Brett C. Geiger
- Department of Biomedical Engineering; The Ohio State University; Columbus Ohio 43210
| | - Mark Tyler Nelson
- Department of Biomedical Engineering; The Ohio State University; Columbus Ohio 43210
| | - Hrishikesh R. Munj
- William G. Lowrie Department of Chemical and Biomolecular Engineering; The Ohio State University; Columbus Ohio 43210
| | - David L. Tomasko
- William G. Lowrie Department of Chemical and Biomolecular Engineering; The Ohio State University; Columbus Ohio 43210
| | - John J. Lannutti
- Department of Materials Science and Engineering; The Ohio State University; Columbus Ohio 43210
| |
Collapse
|
246
|
Mu Y, Wu F, Lu Y, Wei L, Yuan W. Progress of electrospun fibers as nerve conduits for neural tissue repair. Nanomedicine (Lond) 2015; 9:1869-83. [PMID: 25325242 DOI: 10.2217/nnm.14.70] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nerve tissue regeneration approaches have gained much attention in recent years, and nerve conduits (NCs), which facilitate nerve tissue regeneration, have become an attractive alternative to nerve autologous graft. Several methods are proposed to fabricate NCs, including electrospinning, which is a widely used approach for NCs and other tissue scaffolds, and has advantages such as the ability to control the thickness, diameter and porosity of fibers, as well as its simple experimental set up. This article gives an overview of electrospun fibers for nerve conduits utilized in peripheral and central nerve regeneration. Natural and synthetic materials with different mechanical strength, degradation rates and biocompatibility are proposed. Several bioactive proteins that can help the process of nerve regeneration are introduced. Finally, some approaches to control the morphology of electrospun fibers and to deliver bioactive proteins are discussed in detail.
Collapse
Affiliation(s)
- Ying Mu
- School of Pharmacy, Shanghai JiaoTong University, Shanghai 200240, PR China
| | | | | | | | | |
Collapse
|
247
|
Navarro MR, Asín M, Martínez AM, Molina C, Navarro V, Pino A, Orive G, Anitua E. Plasma rich in growth factors (PRGF) for the treatment of androgenetic alopecia. EUROPEAN JOURNAL OF PLASTIC SURGERY 2015. [DOI: 10.1007/s00238-015-1116-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
248
|
Götz C, Warnke PH, Kolk A. Current and future options of regeneration methods and reconstructive surgery of the facial skeleton. Oral Surg Oral Med Oral Pathol Oral Radiol 2015; 120:315-23. [PMID: 26297391 DOI: 10.1016/j.oooo.2015.05.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 04/27/2015] [Accepted: 05/26/2015] [Indexed: 01/06/2023]
Abstract
Musculoskeletal defects attributable to trauma or infection or as a result of oncologic surgery present a common challenge in reconstructive maxillofacial surgery. The autologous vascularized bone graft still represents the gold standard for salvaging these situations. Preoperative virtual planning offers great potential and provides assistance in reconstructive surgery. Nevertheless, the applicability of autologous bone transfer might be limited within the medically compromised patient or because of the complexity of the defect and the required size of the graft to be harvested. The development of alternative methods are urgently needed in the field of regenerative medicine to enable the regeneration of the original tissue. Since the first demonstration of de novo bone formation by regenerative strategies and the application of bone growth factors some decades ago, further progress has been achieved by tissue engineering, gene transfer, and stem cell application concepts. This review summarizes recent approaches and current developments in regenerative medicine.
Collapse
Affiliation(s)
- Carolin Götz
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Patrick H Warnke
- Department of Oral and Maxillofacial Surgery, University of Kiel, Kiel, Germany; Belegärztliche Gemeinschaftspraxis für Oral-, Mund- und Kieferchirurgie und plastische Gesichtschirurgie Dres. Sprengel und Klebe, Flensburg, Germany
| | - Andreas Kolk
- Department of Oral and Maxillofacial Surgery, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.
| |
Collapse
|
249
|
Awada HK, Johnson NR, Wang Y. Sequential delivery of angiogenic growth factors improves revascularization and heart function after myocardial infarction. J Control Release 2015; 207:7-17. [PMID: 25836592 PMCID: PMC4430430 DOI: 10.1016/j.jconrel.2015.03.034] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/17/2015] [Accepted: 03/30/2015] [Indexed: 12/28/2022]
Abstract
Treatment of ischemia through therapeutic angiogenesis faces significant challenges. Growth factor (GF)-based therapies can be more effective when concerns such as GF spatiotemporal presentation, bioactivity, bioavailability, and localization are addressed. During angiogenesis, vascular endothelial GF (VEGF) is required early to initiate neovessel formation while platelet-derived GF (PDGF-BB) is needed later to stabilize the neovessels. The spatiotemporal delivery of multiple bioactive GFs involved in angiogenesis, in a close mimic to physiological cues, holds great potential to treat ischemic diseases. To achieve sequential release of VEGF and PDGF, we embed VEGF in fibrin gel and PDGF in a heparin-based coacervate that is distributed in the same fibrin gel. In vitro, we show the benefits of this controlled delivery approach on cell proliferation, chemotaxis, and capillary formation. A rat myocardial infarction (MI) model demonstrated the effectiveness of this delivery system in improving cardiac function, ventricular wall thickness, angiogenesis, cardiac muscle survival, and reducing fibrosis and inflammation in the infarct zone compared to saline, empty vehicle, and free GFs. Collectively, our results show that this delivery approach mitigated the injury caused by MI and may serve as a new therapy to treat ischemic hearts pending further examination.
Collapse
Affiliation(s)
- Hassan K Awada
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Noah R Johnson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Yadong Wang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, PA 15261, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
250
|
Herrmann M, Verrier S, Alini M. Strategies to Stimulate Mobilization and Homing of Endogenous Stem and Progenitor Cells for Bone Tissue Repair. Front Bioeng Biotechnol 2015; 3:79. [PMID: 26082926 PMCID: PMC4451737 DOI: 10.3389/fbioe.2015.00079] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/16/2015] [Indexed: 12/17/2022] Open
Abstract
The gold standard for the treatment of critical-size bone defects is autologous or allogenic bone graft. This has several limitations including donor site morbidity and the restricted supply of graft material. Cell-based tissue engineering strategies represent an alternative approach. Mesenchymal stem cells (MSCs) have been considered as a source of osteoprogenitor cells. More recently, focus has been placed on the use of endothelial progenitor cells (EPCs), since vascularization is a critical step in bone healing. Although many of these approaches have demonstrated effectiveness for bone regeneration, cell-based therapies require time consuming and cost-expensive in vitro cell expansion procedures. Accordingly, research is becoming increasingly focused on the homing and stimulation of native cells. The stromal cell-derived factor-1 (SDF-1) - CXCR4 axis has been shown to be critical for the recruitment of MSCs and EPCs. Vascular endothelial growth factor (VEGF) is a key factor in angiogenesis and has been targeted in many studies. Here, we present an overview of the different approaches for delivering homing factors to the defect site by absorption or incorporation to biomaterials, gene therapy, or via genetically manipulated cells. We further review strategies focusing on the stimulation of endogenous cells to support bone repair. Finally, we discuss the major challenges in the treatment of critical-size bone defects and fracture non-unions.
Collapse
Affiliation(s)
| | | | - Mauro Alini
- AO Research Institute Davos , Davos , Switzerland
| |
Collapse
|