201
|
The Impact of Astrocytes and Endothelial Cells on Glioblastoma Stemness Marker Expression in Multicellular Spheroids. Cell Mol Bioeng 2021; 14:639-651. [PMID: 34900016 DOI: 10.1007/s12195-021-00691-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/12/2021] [Indexed: 10/20/2022] Open
Abstract
Introduction Glioblastoma multiforme (GBM), the most common primary brain tumor in adults, is extremely malignant and lethal. GBM tumors are highly heterogenous, being comprised of cellular and matrix components, which contribute to tumor cell invasion, cancer stem cell maintenance, and drug resistance. Here, we developed a heterotypic 3D spheroid model integrating GBM cells with astrocytes and endothelial cells (ECs) to better simulate the cellular components of the tumor microenvironment and investigate their impact on the stemness marker expression of GBM cells, which has not been previously investigated. Methods We used U87 GBM cells, C8-D1A mouse astrocytes, and human umbilical vein ECs to construct co- and tri-culture spheroid models in low-attachment U-well plates. We characterized the expression of known stemness markers NESTIN, SOX2, CD133, NANOG, and OCT4 in these models and compared it to respective mixed monoculture spheroids (control) using qRT-PCR and immunostaining. Results We incorporated GBM cells and astrocytes/ECs in 1:1, 1:2, 1:4, and 1:9 ratio and observed spontaneous self-assembled spheroids in all coculture conditions. We observed changing spheroid size dynamics over 7 days and an increased expression in stemness markers in GBM-astrocyte and GBM-EC coculture spheroids in 1:4 and 1:9 coculture conditions, respectively. In a triculture model employing GBM cells, astrocytes, and ECs in a 1:4:9 ratio, we found an increased expression of all the stemness markers. Conclusions We elucidated the impact of astrocytes and ECs on GBM stemness marker expression. This multicellular spheroid model may provide an important tool for investigating the crosstalk between cell types in GBM. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00691-y.
Collapse
|
202
|
Can ECIS Biosensor Technology Be Used to Measure the Cellular Responses of Glioblastoma Stem Cells? BIOSENSORS 2021; 11:bios11120498. [PMID: 34940255 PMCID: PMC8699647 DOI: 10.3390/bios11120498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/04/2023]
Abstract
Glioblastoma is considered the most aggressive and lethal form of brain cancer. Glioblastoma tumours are complex, comprising a spectrum of oncogenically transformed cells displaying distinct phenotypes. These can be generated in culture and are called differentiated-glioblastoma cells and glioblastoma stem cells. These cells are phenotypically and functionally distinct, where the stem-like glioblastoma cells give rise to and perpetuate the tumour. Electric cell-substrate impedance sensing (ECIS) is a real-time, label-free, impedance-based method for the analysis of cellular behaviour, based on cellular adhesion. Therefore, we asked the question of whether ECIS was suitable for, and capable of measuring the adhesion of glioblastoma cells. The goal was to identify whether ECIS was capable of measuring glioblastoma cell adhesion, with a particular focus on the glioblastoma stem cells. We reveal that ECIS reliably measures adhesion of the differentiated glioblastoma cells on various array types. We also demonstrate the ability of ECIS to measure the migratory behaviour of differentiated glioblastoma cells onto ECIS electrodes post-ablation. Although the glioblastoma stem cells are adherent, ECIS is substantially less capable at reliably measuring their adhesion, compared with the differentiated counterparts. This means that ECIS has applicability for some glioblastoma cultures but much less utility for weakly adherent stem cell counterparts.
Collapse
|
203
|
Bahmad HF, Daher D, Aljamal AA, Elajami MK, Oh KS, Alvarez Moreno JC, Delgado R, Suarez R, Zaldivar A, Azimi R, Castellano A, Sackstein R, Poppiti RJ. Repurposing of Anticancer Stem Cell Drugs in Brain Tumors. J Histochem Cytochem 2021; 69:749-773. [PMID: 34165342 PMCID: PMC8647630 DOI: 10.1369/00221554211025482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022] Open
Abstract
Brain tumors in adults may be infrequent when compared with other cancer etiologies, but they remain one of the deadliest with bleak survival rates. Current treatment modalities encompass surgical resection, chemotherapy, and radiotherapy. However, increasing resistance rates are being witnessed, and this has been attributed, in part, to cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells that reside within the tumor bulk and have the capacity for self-renewal and can differentiate and proliferate into multiple cell lineages. Studying those CSCs enables an increasing understanding of carcinogenesis, and targeting CSCs may overcome existing treatment resistance. One approach to weaponize new drugs is to target these CSCs through drug repurposing which entails using drugs, which are Food and Drug Administration-approved and safe for one defined disease, for a new indication. This approach serves to save both time and money that would otherwise be spent in designing a totally new therapy. In this review, we will illustrate drug repurposing strategies that have been used in brain tumors and then further elaborate on how these approaches, specifically those that target the resident CSCs, can help take the field of drug repurposing to a new level.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Darine Daher
- Faculty of Medicine, American University of
Beirut, Beirut, Lebanon
| | - Abed A. Aljamal
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Mohamad K. Elajami
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Kei Shing Oh
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Juan Carlos Alvarez Moreno
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Ruben Delgado
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Richard Suarez
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Ana Zaldivar
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Roshanak Azimi
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Amilcar Castellano
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Robert Sackstein
- Department of Translational Medicine,
Translational Glycobiology Institute, Herbert Wertheim College of Medicine,
Florida International University, Miami, Florida
| | - Robert J. Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
204
|
Tachon G, Masliantsev K, Rivet P, Desette A, Milin S, Gueret E, Wager M, Karayan-Tapon L, Guichet PO. MEOX2 Transcription Factor Is Involved in Survival and Adhesion of Glioma Stem-like Cells. Cancers (Basel) 2021; 13:cancers13235943. [PMID: 34885053 PMCID: PMC8672280 DOI: 10.3390/cancers13235943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Glioblastoma is the most common and lethal primary brain tumor for which no curative treatment currently exists. In our previous work, we showed that MEOX2 was associated with a poor patient prognosis but its biological involvement in tumor development remains ill defined. To this purpose, the aim of our study was to investigate the role of MEOX2 in patient-derived glioblastoma cell cultures. We unraveled the MEOX2 contribution to cell viability and growth and its potential involvement in phenotype and adhesion properties of glioblastoma cells. This work paves the way toward a better understanding of the role of MEOX2 in the pathophysiology of primary brain tumors. Abstract The high expression of MEOX2 transcription factor is closely associated with poor overall survival in glioma. MEOX2 has recently been described as an interesting prognostic biomarker, especially for lower grade glioma. MEOX2 has never been studied in glioma stem-like cells (GSC), responsible for glioma recurrence. The aim of our study was to investigate the role of MEOX2 in GSC. Loss of function approach using siRNA was used to assess the impact of MEOX2 on GSC viability and stemness phenotype. MEOX2 was localized in the nucleus and its expression was heterogeneous between GSCs. MEOX2 expression depends on the methylation state of its promoter and is strongly associated with IDH mutations. MEOX2 is involved in cell proliferation and viability regulation through ERK/MAPK and PI3K/AKT pathways. MEOX2 loss of function correlated with GSC differentiation and acquisition of neuronal lineage characteristics. Besides, inhibition of MEOX2 is correlated with increased expression of CDH10 and decreased pFAK. In this study, we unraveled, for the first time, MEOX2 contribution to cell viability and proliferation through AKT/ERK pathway and its potential involvement in phenotype and adhesion properties of GSC.
Collapse
Affiliation(s)
- Gaëlle Tachon
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Konstantin Masliantsev
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Pierre Rivet
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Amandine Desette
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Serge Milin
- Service d’Anatomo-Cytopathologie, CHU Poitiers, 86000 Poitiers, France;
| | - Elise Gueret
- Université Montpellier, CNRS, INSERM, 34094 Montpellier, France;
- Montpellier GenomiX, France Génomique, 34095 Montpellier, France
| | - Michel Wager
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Service de Neurochirurgie, CHU Poitiers, 86000 Poitiers, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
- Correspondence: (L.K.-T.); (P.-O.G.)
| | - Pierre-Olivier Guichet
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
- Correspondence: (L.K.-T.); (P.-O.G.)
| |
Collapse
|
205
|
Poon MTC, Bruce M, Simpson JE, Hannan CJ, Brennan PM. Temozolomide sensitivity of malignant glioma cell lines - a systematic review assessing consistencies between in vitro studies. BMC Cancer 2021; 21:1240. [PMID: 34794398 PMCID: PMC8600737 DOI: 10.1186/s12885-021-08972-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malignant glioma cell line models are integral to pre-clinical testing of novel potential therapies. Accurate prediction of likely efficacy in the clinic requires that these models are reliable and consistent. We assessed this by examining the reporting of experimental conditions and sensitivity to temozolomide in glioma cells lines. METHODS We searched Medline and Embase (Jan 1994-Jan 2021) for studies evaluating the effect of temozolomide monotherapy on cell viability of at least one malignant glioma cell line. Key data items included type of cell lines, temozolomide exposure duration in hours (hr), and cell viability measure (IC50). RESULTS We included 212 studies from 2789 non-duplicate records that reported 248 distinct cell lines. The commonest cell line was U87 (60.4%). Only 10.4% studies used a patient-derived cell line. The proportion of studies not reporting each experimental condition ranged from 8.0-27.4%, including base medium (8.0%), serum supplementation (9.9%) and number of replicates (27.4%). In studies reporting IC50, the median value for U87 at 24 h, 48 h and 72 h was 123.9 μM (IQR 75.3-277.7 μM), 223.1 μM (IQR 92.0-590.1 μM) and 230.0 μM (IQR 34.1-650.0 μM), respectively. The median IC50 at 72 h for patient-derived cell lines was 220 μM (IQR 81.1-800.0 μM). CONCLUSION Temozolomide sensitivity reported in comparable studies was not consistent between or within malignant glioma cell lines. Drug discovery science performed on these models cannot reliably inform clinical translation. A consensus model of reporting can maximise reproducibility and consistency among in vitro studies.
Collapse
Affiliation(s)
- Michael T C Poon
- Cancer Research UK Brain Tumour Centre of Excellence, Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Nine Edinburgh BioQuarter, 9 Little France Road, Edinburgh, UK.
| | - Morgan Bruce
- Biological Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Joanne E Simpson
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Cathal J Hannan
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Manchester, UK
| | - Paul M Brennan
- Cancer Research UK Brain Tumour Centre of Excellence, Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
206
|
Kirchner MA, Holzgreve A, Brendel M, Orth M, Ruf VC, Steiger K, Pötter D, Gold L, Unterrainer M, Mittlmeier LM, Barci E, Kälin RE, Glass R, Lindner S, Kaiser L, Maas J, von Baumgarten L, Ilhan H, Belka C, Notni J, Bartenstein P, Lauber K, Albert NL. PSMA PET Imaging in Glioblastoma: A Preclinical Evaluation and Theranostic Outlook. Front Oncol 2021; 11:774017. [PMID: 34869017 PMCID: PMC8635528 DOI: 10.3389/fonc.2021.774017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Prostate specific membrane antigen (PSMA) PET imaging has recently gained attention in glioblastoma (GBM) patients as a potential theranostic target for PSMA radioligand therapy. However, PSMA PET has not yet been established in a murine GBM model. Our goal was to investigate the potential of PSMA PET imaging in the syngeneic GL261 GBM model and to give an outlook regarding the potential of PMSA radioligand therapy in this model. METHODS We performed an 18F-PSMA-1007 PET study in the orthotopic GL261 model (n=14 GBM, n=7 sham-operated mice) with imaging at day 4, 8, 11, 15, 18 and 22 post implantation. Time-activity-curves (TAC) were extracted from dynamic PET scans (0-120 min p. i.) in a subset of mice (n=4 GBM, n=3 sham-operated mice) to identify the optimal time frame for image analysis, and standardized-uptake-values (SUV) as well as tumor-to-background ratios (TBR) using contralateral normal brain as background were calculated in all mice. Additionally, computed tomography (CT), ex vivo and in vitro 18F-PSMA-1007 autoradiographies (ARG) were performed. RESULTS TAC analysis of GBM mice revealed a plateau of TBR values after 40 min p. i. Therefore, a 30 min time frame between 40-70 min p. i. was chosen for PET quantification. At day 15 and later, GBM mice showed a discernible PSMA PET signal on the inoculation site, with highest TBRmean in GBM mice at day 18 (7.3 ± 1.3 vs. 1.6 ± 0.3 in shams; p=0.024). Ex vivo ARG confirmed high tracer signal in GBM compared to healthy background (TBRmean 26.9 ± 10.5 vs. 1.6 ± 0.7 in shams at day 18/22 post implantation; p=0.002). However, absolute uptake values in the GL261 tumor remained low (e.g., SUVmean 0.21 ± 0.04 g/ml at day 18) resulting in low ratios compared to dose-relevant organs (e.g., mean tumor-to-kidney ratio 1.5E-2 ± 0.5E-2). CONCLUSIONS Although 18F-PSMA-1007 PET imaging of GL261 tumor-bearing mice is feasible and resulted in high TBRs, absolute tumoral uptake values remained low and hint to limited applicability of the GL261 model for PSMA-directed therapy studies. Further investigations are warranted to identify suitable models for preclinical evaluation of PSMA-targeted theranostic approaches in GBM.
Collapse
Affiliation(s)
- Maximilian A. Kirchner
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Viktoria C. Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technische Universität München (TUM) School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis Pötter
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Lukas Gold
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Lena M. Mittlmeier
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Enio Barci
- Neurosurgical Research, Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Roland E. Kälin
- Neurosurgical Research, Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Rainer Glass
- Neurosurgical Research, Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Jessica Maas
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Notni
- Institute of Pathology, Technische Universität München (TUM) School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
207
|
Han J, Jing Y, Han F, Sun P. Comprehensive analysis of expression, prognosis and immune infiltration for TIMPs in glioblastoma. BMC Neurol 2021; 21:447. [PMID: 34781885 PMCID: PMC8591954 DOI: 10.1186/s12883-021-02477-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background Tissue inhibitors of metalloproteinase (TIMP) family proteins are peptidases involved in extracellular matrix (ECM) degradation. Various diseases are related to TIMPs, and the primary reason is that TIMPs can indirectly regulate remodelling of the ECM and cell signalling by regulating matrix metalloproteinase (MMP) activity. However, the link between TIMPs and glioblastoma (GBM) is unclear. Objective This study aimed to explore the role of TIMP expression and immune infiltration in GBM. Methods Oncomine, GEPIA, OSgbm, LinkedOmics, STRING, GeneMANIA, Enrichr, and TIMER were used to conduct differential expression, prognosis, and immune infiltration analyses of TIMPs in GBM. Results All members of the TIMP family had significantly higher expression levels in GBM. High TIMP3 expression correlated with better overall survival (OS) and disease-specific survival (DSS) in GBM patients. TIMP4 was associated with a long OS in GBM patients. We found a positive relationship between TIMP3 and TIMP4, identifying gene sets with similar or opposite expression directions to those in GBM patients. TIMPs and associated genes are mainly associated with extracellular matrix organization and involve proteoglycan pathways in cancer. The expression levels of TIMPs in GBM correlate with the infiltration of various immune cells, including CD4+ T cells, macrophages, neutrophils, B cells, CD8+ T cells, and dendritic cells. Conclusions Our study inspires new ideas for the role of TIMPs in GBM and provides new directions for multiple treatment modalities, including immunotherapy, in GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02477-1.
Collapse
Affiliation(s)
- Jinkun Han
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yajun Jing
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fubing Han
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Sun
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
208
|
Yu M, Yu S, Zhou W, Yi B, Liu Y. HOXC6/8/10/13 predict poor prognosis and associate with immune infiltrations in glioblastoma. Int Immunopharmacol 2021; 101:108293. [PMID: 34763232 DOI: 10.1016/j.intimp.2021.108293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glioblastoma (GBM), characterized by deregulated cell proliferation and immune cells infiltration, is a common and lethal tumor of the central nervous system. Recently, the infiltration of immune cells has attracted attention as a potential novel GBM immunotherapy option. Homeobox C cluster (HOXC) is an evolutionarily conserved family of transcriptional factors that are involved in embryogenesis and tumorigenesis. Nevertheless, the correlations of HOXCs with the prognosis and immune infiltration of GBM remain blurred. METHODS The RNA-seq data with corresponding clinical characteristics were downloaded from TCGA and GTEx databases. The correlations between HOXCs and clinical characteristics were calculated using univariable and multivariate Cox regression. R language with ggplot2, survminer, survival, GSVA, and pROC packages were employed to analyze the data and present the plots. MethSurv, UALCAN and cBioPortal were employed to evaluate the DNA methylation and mutation status of HOXCs in GBM. We also verified the expression and prognosis of HOXCs by qPCR and immunohistochemistry in a cohort of 36 patients. RESULTS We identified that HOXC6/8/10/13 were crucial biomarkers for diagnosis and prognostic judgement in GBM. Gene set variation analysis revealed that levels of expression of HOXCs were associated with the infiltration of various immune cells. The qPCR and immunohistochemistry data validated the prognostic values of HOXC6/8/10/13 in GBM. Finally, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that HOXCs might be involved in DNA-binding transcription activator activity and the apelin signaling pathway. CONCLUSION This research highlights that HOXC6/8/10/13 are involved in the immune infiltrates, also provide potential clinical utility as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Mingjun Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Gamma Knife Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Shijia Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Wen Zhou
- Department of Pain Management, Dalian Municipal Central Hospital, Dalian 116033, People's Republic of China
| | - Bolong Yi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, People's Republic of China.
| |
Collapse
|
209
|
Deshmukh R, Allega MF, Tardito S. A map of the altered glioma metabolism. Trends Mol Med 2021; 27:1045-1059. [PMID: 34489164 DOI: 10.1016/j.molmed.2021.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
The frequent occurrence of neomorphic isocitrate dehydrogenase 1 (IDH1) mutations in low-grade glioma led to an IDH-centric classification of these tumors. However, exploiting metabolic alterations of glioma for diagnostic imaging and treatment has marginally improved patients' prognosis. Here we discuss the nutritional microenvironment of glioma, shaped by the distinctive dependence of the brain on glucose and ketone bodies for energy, and on amino acids for neurotransmission. We highlight the progress in metabolic applications for glioma diagnosis and therapy, and present a map that streamlines the rewired glioma metabolism. The map illustrates the altered reactions in central carbon and nitrogen metabolism that drive glioma biology, and represent metabolic vulnerabilities with translational potential.
Collapse
Affiliation(s)
- Ruhi Deshmukh
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Maria Francesca Allega
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Saverio Tardito
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
210
|
Almengló C, Caamaño P, Fraga M, Devesa J, Costoya JA, Arce VM. From neural stem cells to glioblastoma: A natural history of GBM recapitulated in vitro. J Cell Physiol 2021; 236:7390-7404. [PMID: 33959982 DOI: 10.1002/jcp.30409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
Due to its aggressive and invasive nature glioblastoma (GBM), the most common and aggressive primary brain tumour in adults, remains almost invariably lethal. Significant advances in the last several years have elucidated much of the molecular and genetic complexities of GBM. However, GBM exhibits a vast genetic variation and a wide diversity of phenotypes that have complicated the development of effective therapeutic strategies. This complex pathogenesis makes necessary the development of experimental models that could be used to further understand the disease, and also to provide a more realistic testing ground for potential therapies. In this report, we describe the process of transformation of primary mouse embryo astrocytes into immortalized cultures with neural stem cell characteristics, that are able to generate GBM when injected into the brain of C57BL/6 mice, or heterotopic tumours when injected IV. Overall, our results show that oncogenic transformation is the fate of NSC if cultured for long periods in vitro. In addition, as no additional hit is necessary to induce the oncogenic transformation, our model may be used to investigate the pathogenesis of gliomagenesis and to test the effectiveness of different drugs throughout the natural history of GBM.
Collapse
Affiliation(s)
- Cristina Almengló
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, Spain
| | - Pilar Caamaño
- Fundación Publica Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Máximo Fraga
- Departamento de Anatomía Patolóxica e Ciencias Forenses, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesús Devesa
- Research and Development, Medical Center Foltra, Teo, Spain
| | - José A Costoya
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, Spain
| | - Víctor M Arce
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, Spain
| |
Collapse
|
211
|
Adaptive mechanoproperties mediated by the formin FMN1 characterize glioblastoma fitness for invasion. Dev Cell 2021; 56:2841-2855.e8. [PMID: 34559979 DOI: 10.1016/j.devcel.2021.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/23/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
Glioblastoma are heterogeneous tumors composed of highly invasive and highly proliferative clones. Heterogeneity in invasiveness could emerge from discrete biophysical properties linked to specific molecular expression. We identified clones of patient-derived glioma propagating cells that were either highly proliferative or highly invasive and compared their cellular architecture, migratory, and biophysical properties. We discovered that invasiveness was linked to cellular fitness. The most invasive cells were stiffer, developed higher mechanical forces on the substrate, and moved stochastically. The mechano-chemical-induced expression of the formin FMN1 conferred invasive strength that was confirmed in patient samples. Moreover, FMN1 expression was also linked to motility in other cancer and normal cell lines, and its ectopic expression increased fitness parameters. Mechanistically, FMN1 acts from the microtubule lattice and promotes a robust mechanical cohesion, leading to highly invasive motility.
Collapse
|
212
|
Sundar SJ, Shakya S, Barnett A, Wallace LC, Jeon H, Sloan A, Recinos V, Hubert CG. Three-dimensional organoid culture unveils resistance to clinical therapies in adult and pediatric glioblastoma. Transl Oncol 2021; 15:101251. [PMID: 34700192 PMCID: PMC8551697 DOI: 10.1016/j.tranon.2021.101251] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma organoid cultures preserve diversity of proliferative cell phenotypes. Heterogeneous 3D cultures recapitulate resistance to clinical GBM therapeutics. Patient specimens show different behavior depending on 2D vs 3D growth.
Background Glioblastoma (GBM) is the most common primary brain tumor with a dismal prognosis. The inherent cellular diversity and interactions within tumor microenvironments represent significant challenges to effective treatment. Traditional culture methods such as adherent or sphere cultures may mask such complexities whereas three-dimensional (3D) organoid culture systems derived from patient cancer stem cells (CSCs) can preserve cellular complexity and microenvironments. The objective of this study was to determine if GBM organoids may offer a platform, complimentary to traditional sphere culture methods, to recapitulate patterns of clinical drug resistance arising from 3D growth. Methods Adult and pediatric surgical specimens were collected and established as organoids. We created organoid microarrays and visualized bulk and spatial differences in cell proliferation using immunohistochemistry (IHC) staining, and cell cycle analysis by flow cytometry paired with 3D regional labeling. We tested the response of CSCs grown in each culture method to temozolomide, ibrutinib, lomustine, ruxolitinib, and radiotherapy. Results GBM organoids showed diverse and spatially distinct proliferative cell niches and include heterogeneous populations of CSCs/non-CSCs (marked by SOX2) and cycling/senescent cells. Organoid cultures display a comparatively blunted response to current standard-of-care therapy (combination temozolomide and radiotherapy) that reflects what is seen in practice. Treatment of organoids with clinically relevant drugs showed general therapeutic resistance with drug- and patient-specific antiproliferative, apoptotic, and senescent effects, differing from those of matched sphere cultures. Conclusions Therapeutic resistance in organoids appears to be driven by altered biological mechanisms rather than physical limitations of therapeutic access. GBM organoids may therefore offer a key technological approach to discover and understand resistance mechanisms of human cancer cells.
Collapse
Affiliation(s)
- Swetha J Sundar
- Department of Neurological Surgery, Cleveland Clinic, 9500 Euclid Avenue, ND2-40, Cleveland, OH, USA
| | - Sajina Shakya
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Austin Barnett
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lisa C Wallace
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hyemin Jeon
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Sloan
- Department of Neurological Surgery, University Hospitals Case Medical Center, Seidman Cancer Center and Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Violette Recinos
- Department of Neurological Surgery, Cleveland Clinic, 9500 Euclid Avenue, ND2-40, Cleveland, OH, USA
| | - Christopher G Hubert
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
213
|
Al Shboul S, Curran OE, Alfaro JA, Lickiss F, Nita E, Kowalski J, Naji F, Nenutil R, Ball KL, Krejcir R, Vojtesek B, Hupp TR, Brennan PM. Kinomics platform using GBM tissue identifies BTK as being associated with higher patient survival. Life Sci Alliance 2021; 4:4/12/e202101054. [PMID: 34645618 PMCID: PMC8548209 DOI: 10.26508/lsa.202101054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/18/2023] Open
Abstract
BTK is a dominant bioactive kinase expressed within both cancer and immune cells of GBM tissue. Complex cell co-cultures might better model the impact of kinase inhibitors as therapeutics in GBM. Better understanding of GBM signalling networks in-vivo would help develop more physiologically relevant ex vivo models to support therapeutic discovery. A “functional proteomics” screen was undertaken to measure the specific activity of a set of protein kinases in a two-step cell-free biochemical assay to define dominant kinase activities to identify potentially novel drug targets that may have been overlooked in studies interrogating GBM-derived cell lines. A dominant kinase activity derived from the tumour tissue, but not patient-derived GBM stem-like cell lines, was Bruton tyrosine kinase (BTK). We demonstrate that BTK is expressed in more than one cell type within GBM tissue; SOX2-positive cells, CD163-positive cells, CD68-positive cells, and an unidentified cell population which is SOX2-negative CD163-negative and/or CD68-negative. The data provide a strategy to better mimic GBM tissue ex vivo by reconstituting more physiologically heterogeneous cell co-culture models including BTK-positive/negative cancer and immune cells. These data also have implications for the design and/or interpretation of emerging clinical trials using BTK inhibitors because BTK expression within GBM tissue was linked to longer patient survival.
Collapse
Affiliation(s)
- Sofian Al Shboul
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK .,Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Olimpia E Curran
- Department of Neuropathology, Western General Hospital, Edinburgh, UK.,Cardiff University Hospital, Cellular Pathology, Cardiff, UK
| | - Javier A Alfaro
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Fiona Lickiss
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Erisa Nita
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jacek Kowalski
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Faris Naji
- Pamgene International BV, 's-Hertogenbosch, Netherlands
| | - Rudolf Nenutil
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Kathryn L Ball
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Radovan Krejcir
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ted R Hupp
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Paul M Brennan
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK .,Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
214
|
Three-dimensional culture models to study glioblastoma - current trends and future perspectives. Curr Opin Pharmacol 2021; 61:91-97. [PMID: 34656940 DOI: 10.1016/j.coph.2021.08.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/02/2023]
Abstract
Glioblastoma (GBM) is the most prevalent form of primary malignant brain tumor in adults and remains almost invariably lethal owing to its aggressive and invasive nature. There have only been marginal improvements in its bleak survival rate of 12-15 months over the last four decades. The lack of preclinical models that efficiently recapitulate tumor biology and the tumor microenvironment is also in part responsible for the slow phase of translational GBM research. Emerging three-dimensional (3D) organoids and cell culture systems offer new and innovative possibilities for GBM modelling. These 3D models find their application to engineer the disease, screen drugs, establishing live biobank, and explore personalized therapy. Furthermore, these models can also be genetically modified by using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, which would allow one to study the specific role of key genes associated with gliomagenesis. Establishment of a coculture system with GBM cells to understand its invasive behavior is yet another major application of this model. Despite these merits, the organoid models also have certain limitations, including the absence of immune responses and vascular systems. In recent years, major progress has been made in the development and refinement of 3D models of GBM. In this review, we intend to highlight these recent advances and the potential future implications of this rapidly evolving field, which should facilitate a better understanding of GBM biology.
Collapse
|
215
|
Xu X, Li L, Luo L, Shu L, Si X, Chen Z, Xia W, Huang J, Liu Y, Shao A, Ke Y. Opportunities and challenges of glioma organoids. Cell Commun Signal 2021; 19:102. [PMID: 34635112 PMCID: PMC8504127 DOI: 10.1186/s12964-021-00777-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma is the most common primary brain tumor and its prognosis is poor. Despite surgical removal, glioma is still prone to recurrence because it grows rapidly in the brain, is resistant to chemotherapy, and is highly aggressive. Therefore, there is an urgent need for a platform to study the cell dynamics of gliomas in order to discover the characteristics of the disease and develop more effective treatments. Although 2D cell models and animal models in previous studies have provided great help for our research, they also have many defects. Recently, scientific researchers have constructed a 3D structure called Organoids, which is similar to the structure of human tissues and organs. Organoids can perfectly compensate for the shortcomings of previous glioma models and are currently the most suitable research platform for glioma research. Therefore, we review the three methods currently used to establish glioma organoids. And introduced how they play a role in the diagnosis and treatment of glioma. Finally, we also summarized the current bottlenecks and difficulties encountered by glioma organoids, and the current efforts to solve these difficulties. Video Abstract
Collapse
Affiliation(s)
- Xiangdong Xu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Linting Luo
- Department of Neurology, Liwan Central Hospital of GuangZhou, Guangzhou, People's Republic of China
| | - Lingling Shu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Xiaoli Si
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhenzhen Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wenqing Xia
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jinyu Huang
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yang Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| | - Anwen Shao
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
| | - Yiquan Ke
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
216
|
Wang S, C Ordonez-Rubiano S, Dhiman A, Jiao G, Strohmier BP, Krusemark CJ, Dykhuizen EC. Polycomb group proteins in cancer: multifaceted functions and strategies for modulation. NAR Cancer 2021; 3:zcab039. [PMID: 34617019 PMCID: PMC8489530 DOI: 10.1093/narcan/zcab039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Polycomb repressive complexes (PRCs) are a heterogenous collection of dozens, if not hundreds, of protein complexes composed of various combinations of subunits. PRCs are transcriptional repressors important for cell-type specificity during development, and as such, are commonly mis-regulated in cancer. PRCs are broadly characterized as PRC1 with histone ubiquitin ligase activity, or PRC2 with histone methyltransferase activity; however, the mechanism by which individual PRCs, particularly the highly diverse set of PRC1s, alter gene expression has not always been clear. Here we review the current understanding of how PRCs act, both individually and together, to establish and maintain gene repression, the biochemical contribution of individual PRC subunits, the mis-regulation of PRC function in different cancers, and the current strategies for modulating PRC activity. Increased mechanistic understanding of PRC function, as well as cancer-specific roles for individual PRC subunits, will uncover better targets and strategies for cancer therapies.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Sandra C Ordonez-Rubiano
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Guanming Jiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Brayden P Strohmier
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| |
Collapse
|
217
|
Jiang D, Shi Y, Qiu Y, Liu X, Zhu Y, Liu J, Pan Y, Wan H, Ying K, Wang P. A multidimensional biosensor system to guide LUAD individualized treatment. J Mater Chem B 2021; 9:7991-8002. [PMID: 34611691 DOI: 10.1039/d1tb00731a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lung cancer, mainly non-small cell lung cancer (NSCLC), has been a global health problem, leading to maximum cancer death. Across adenocarcinoma patients, significant genetic and phenotypic heterogeneity was identified as responsible for individual cancer drug resistance, driving an urgent need for individualized treatment. High expectation has been set on individualized treatment for better responses and extended survival. There are pressing needs for and significant advantages of testing dosages and drugs directly on patient-specific cancer cells for preclinical drug testing and personalized drug selection. Monitoring the drug response based on patient-derived cells (PDCs) is a step toward effective drug development and individualized treatment. Despite the dependence on optical labels, optical equipment, and other complex manual operation, we here report a multidimensional biosensor system to guide adenocarcinoma individualized treatment by integrating 2D and 3D PDC models and cellular impedance biosensors. The cellular impedance biosensors were applied to quantitate drug response in 2D and 3D environments. Compared with 2D plate culture, 3D cultured cells were found to show higher resistance to anti-cancer drugs. Cell-cell, cell-ECM, and mechanical interactions in the 3D environment led to stronger drug resistance. The in vivo results demonstrated the reliability of the multidimensional biosensor system. Cellular impedance biosensors allow a fast, non-invasive, and quantitative manner for preselected drug screening in individualized treatment. Considering the potential for good distinguishment of different anti-cancer drugs, our newly developed strategy may contribute to drug response prediction in individualized treatment and new drug development.
Collapse
Affiliation(s)
- Deming Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yangfeng Shi
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.,Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Hangzhou, China
| | - Yong Qiu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xin Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yuxuan Zhu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jingwen Liu
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Yuxiang Pan
- Research center of smart sensing, Zhejiang lab, Hangzhou, 310027, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Kejing Ying
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.,Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Hangzhou, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.,State Key Laboratory for Sensor Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
218
|
Verheul C, Ntafoulis I, Kers TV, Hoogstrate Y, Mastroberardino PG, Barnhoorn S, Payán-Gómez C, Tching Chi Yen R, Struys EA, Koolen SLW, Dirven CMF, Leenstra S, French PJ, Lamfers MLM. Generation, characterization, and drug sensitivities of 12 patient-derived IDH1-mutant glioma cell cultures. Neurooncol Adv 2021; 3:vdab103. [PMID: 34595478 PMCID: PMC8478778 DOI: 10.1093/noajnl/vdab103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Mutations of the isocitrate dehydrogenase (IDH) gene occur in over 80% of low-grade gliomas and secondary glioblastomas. Despite considerable efforts, endogenous in vitro IDH-mutated glioma models remain scarce. Availability of these models is key for the development of new therapeutic interventions. Methods Cell cultures were established from fresh tumor material and expanded in serum-free culture media. D-2-Hydroxyglutarate levels were determined by mass spectrometry. Genomic and transcriptomic profiling were carried out on the Illumina Novaseq platform, methylation profiling was performed with the Infinium MethylationEpic BeadChip array. Mitochondrial respiration was measured with the Seahorse XF24 Analyzer. Drug screens were performed with an NIH FDA-approved anti-cancer drug set and two IDH-mutant specific inhibitors. Results A set of twelve patient-derived IDHmt cell cultures was established. We confirmed high concordance in driver mutations, copy numbers and methylation profiles between the tumors and derived cultures. Homozygous deletion of CDKN2A/B was observed in all cultures. IDH-mutant cultures had lower mitochondrial reserve capacity. IDH-mutant specific inhibitors did not affect cell viability or global gene expression. Screening of 107 FDA-approved anti-cancer drugs identified nine compounds with potent activity against IDHmt gliomas, including three compounds with favorable pharmacokinetic characteristics for CNS penetration: teniposide, omacetaxine mepesuccinate, and marizomib. Conclusions Our twelve IDH-mutant cell cultures show high similarity to the parental tissues and offer a unique tool to study the biology and drug sensitivities of high-grade IDHmt gliomas in vitro. Our drug screening studies reveal lack of sensitivity to IDHmt inhibitors, but sensitivity to a set of nine available anti-cancer agents.
Collapse
Affiliation(s)
- Cassandra Verheul
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Ioannis Ntafoulis
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Trisha V Kers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Youri Hoogstrate
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Sander Barnhoorn
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - César Payán-Gómez
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá,Colombia
| | - Romain Tching Chi Yen
- Information Technologies for Translational Medicine (ITTM), Esch-Sur-Alzette, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-Sur-Alzette,Luxembourg
| | - Eduard A Struys
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Center, Noord-Holland, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands.,Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Pim J French
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| |
Collapse
|
219
|
Phan TL, Kim HJ, Lee SJ, Choi MC, Kim SH. Elevated RGMA Expression Predicts Poor Prognosis in Patients with Glioblastoma. Onco Targets Ther 2021; 14:4867-4878. [PMID: 34588781 PMCID: PMC8473061 DOI: 10.2147/ott.s317285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022] Open
Abstract
Background Glioblastoma (GBM) is the most aggressive type of human brain tumor with a poor prognosis and a low survival rate. Secreted proteins from tumors are recently considered as important modulators to promote tumorigenesis by communicating with microenvironments. Repulsive guidance molecule A (RGMA) was initially characterized as an axon guidance molecule after secretion in the brain during embryogenesis but has not been studied in GBM. In this study, we investigated secreted gene expression patterns and the correlation between RGMA expression and prognosis in GBM using in silico analysis. Methods RGMA mRNA levels in normal human astrocyte (NHA), human glioma cells, and GBM patient-derived glioma stem cells (GSCs) were assessed by qRT‐PCR. Patient survival analysis was performed with the Kaplan–Meier curve and univariate and multivariate analyses using publicly available datasets. The predictive roles of RGMA in progressive malignancy were evaluated using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). Results RGMA mRNA expression was elevated in glioma cells and GSCs compared with NHA and correlated with unfavorable prognosis in glioma patients. Thus, RGMA could serve as an independent predictive factor for GBM. Furthermore, the increased levels of RGMA expression and its putative receptor, neogenin (NEO1), were associated with poor patient survival rates in GBM. Conclusion We identified RGMA as an independent prognostic biomarker for progressive malignancy in glioblastoma and address the possibilities to develop novel therapeutic strategies against glioblastoma.
Collapse
Affiliation(s)
- Thi Le Phan
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun-Jin Kim
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Suk Jun Lee
- Department of Biomedical Laboratory Science, College of Health & Medical Sciences, Cheongju University, Chungbuk, 28503, Republic of Korea
| | - Moon-Chang Choi
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sung-Hak Kim
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
220
|
A vascularized tumoroid model for human glioblastoma angiogenesis. Sci Rep 2021; 11:19550. [PMID: 34599235 PMCID: PMC8486855 DOI: 10.1038/s41598-021-98911-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) angiogenesis is critical for tumor growth and recurrence, making it a compelling therapeutic target. Here, a disease-relevant, vascularized tumoroid in vitro model with stem-like features and stromal surrounds is reported. The model is used to recapitulate how individual components of the GBM’s complex brain microenvironment such as hypoxia, vasculature-related stromal cells and growth factors support GBM angiogenesis. It is scalable, tractable, cost-effective and can be used with biologically-derived or biomimetic matrices. Patient-derived primary GBM cells are found to closely participate in blood vessel formation in contrast to a GBM cell line containing differentiated cells. Exogenous growth factors amplify this effect under normoxia but not at hypoxia suggesting that a significant amount of growth factors is already being produced under hypoxic conditions. Under hypoxia, primary GBM cells strongly co-localize with umbilical vein endothelial cells to form sprouting vascular networks, which has been reported to occur in vivo. These findings demonstrate that our 3D tumoroid in vitro model exhibits biomimetic attributes that may permit its use as a preclinical model in studying microenvironment cues of tumor angiogenesis.
Collapse
|
221
|
Larrouquère L, Berthier S, Chovelon B, Garrel C, Vacchina V, Paucot H, Boutonnat J, Faure P, Hazane-Puch F. Preclinical Evaluation of Sodium Selenite in Mice: Toxicological and Tumor Regression Studies after Striatum Implantation of Human Glioblastoma Stem Cells. Int J Mol Sci 2021; 22:ijms221910646. [PMID: 34638987 PMCID: PMC8508933 DOI: 10.3390/ijms221910646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant glioma, with a very poor prognosis; as such, efforts to explore new treatments and GBM’s etiology are a priority. We previously described human GBM cells (R2J-GS) as exhibiting the properties of cancer stem cells (growing in serum-free medium and proliferating into nude mice when orthotopically grafted). Sodium selenite (SS)—an in vitro attractive agent for cancer therapy against GBM—was evaluated in R2J-GS cells. To go further, we launched a preclinical study: SS was given orally, in an escalation-dose study (2.25 to 10.125 mg/kg/day, 5 days on, 2 days off, and 5 days on), to evaluate (1) the absorption of selenium in plasma and organs (brain, kidney, liver, and lung) and (2) the SS toxicity. A 6.75 mg/kg SS dose was chosen to perform a tumor regression assay, followed by MRI, in R2J-GS cells orthotopically implanted in nude mice, as this dose was nontoxic and increased brain selenium concentration. A group receiving TMZ (5 mg/kg) was led in parallel. Although not reaching statistical significance, the group of mice treated with SS showed a slower tumor growth vs. the control group (p = 0.08). No difference was observed between the TMZ and control groups. We provide new insights of the mechanisms of SS and its possible use in chemotherapy.
Collapse
Affiliation(s)
- Louis Larrouquère
- Medical Oncology Department, Centre Léon Bérard, 69000 Lyon, France;
| | - Sylvie Berthier
- Cytometry Platform, Institute of Biology and Pathology, Grenoble Alpes Hospital, 38000 Grenoble, France; (S.B.); (J.B.)
- Unit of Anatomopathology, Institute of Biology and Pathology, Grenoble Alpes Hospital, 380000 Grenoble, France
| | - Benoit Chovelon
- Unit Nutritional and Hormonal Biochemistry, Institute of Biology and Pathology, Grenoble Alpes Hospital, 38000 Grenoble, France; (B.C.); (C.G.); (P.F.)
- Department of Molecular Pharmacochemistry, University Grenoble Alpes, CNRS, UMR 5063, 38000 Grenoble, France
| | - Catherine Garrel
- Unit Nutritional and Hormonal Biochemistry, Institute of Biology and Pathology, Grenoble Alpes Hospital, 38000 Grenoble, France; (B.C.); (C.G.); (P.F.)
| | | | - Hugues Paucot
- University of Pau & des Pays de l’Adour, FORCO, Bâtiment d’Alembert-Rue Jules Ferry, BP 27540-64075 Pau CEDEX, France;
| | - Jean Boutonnat
- Cytometry Platform, Institute of Biology and Pathology, Grenoble Alpes Hospital, 38000 Grenoble, France; (S.B.); (J.B.)
- Unit of Anatomopathology, Institute of Biology and Pathology, Grenoble Alpes Hospital, 380000 Grenoble, France
| | - Patrice Faure
- Unit Nutritional and Hormonal Biochemistry, Institute of Biology and Pathology, Grenoble Alpes Hospital, 38000 Grenoble, France; (B.C.); (C.G.); (P.F.)
- Department of Molecular Pharmacochemistry, University Grenoble Alpes, CNRS, UMR 5063, 38000 Grenoble, France
| | - Florence Hazane-Puch
- Unit Nutritional and Hormonal Biochemistry, Institute of Biology and Pathology, Grenoble Alpes Hospital, 38000 Grenoble, France; (B.C.); (C.G.); (P.F.)
- Correspondence: ; Tel.: +33-476769316
| |
Collapse
|
222
|
Degorre C, Tofilon P, Camphausen K, Mathen P. Bench to bedside radiosensitizer development strategy for newly diagnosed glioblastoma. Radiat Oncol 2021; 16:191. [PMID: 34583727 PMCID: PMC8480070 DOI: 10.1186/s13014-021-01918-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/15/2021] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma is the most common primary brain malignancy and carries with it a poor prognosis. New agents are urgently needed, however nearly all Phase III trials of GBM patients of the past 25 years have failed to demonstrate improvement in outcomes. In 2019, the National Cancer Institute Clinical Trials and Translational Research Advisory Committee (CTAC) Glioblastoma Working Group (GBM WG) identified 5 broad areas of research thought to be important in the development of new herapeutics for GBM. Among those was optimizing radioresponse for GBM in situ. One such strategy to increase radiation efficacy is the addition of a radiosensitizer to improve the therapeutic ratio by enhancing tumor sensitivity while ideally having minimal to no effect on normal tissue. Historically the majority of trials using radiosensitizers have been unsuccessful, but they provide important guidance in what is required to develop agents more efficiently. Improved target selection is essential for a drug to provide maximal benefit, and once that target is identified it must be validated through pre-clinical studies. Careful selection of appropriate in vitro and in vivo models to demonstrate increased radiosensitivity and suitable bioavailability are then necessary to prove that a drug warrants advancement to clinical investigation. Once investigational agents are validated pre-clinically, patient trials require consistency both in terms of planning study design as well as reporting efficacy and toxicity in order to assess the potential benefit of the drug. Through this paper we hope to outline strategies for developing effective radiosensitizers against GBM using as models the examples of XPO1 inhibitors and HDAC inhibitors developed from our own lab.
Collapse
Affiliation(s)
- Charlotte Degorre
- Radiation Oncology Branch, National Cancer Institute, Bldg. 10, Rm B2-3500, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Philip Tofilon
- Radiation Oncology Branch, National Cancer Institute, Bldg. 10, Rm B2-3500, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bldg. 10, Rm B2-3500, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Peter Mathen
- Radiation Oncology Branch, National Cancer Institute, Bldg. 10, Rm B2-3500, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
223
|
Vessières A, Quissac E, Lemaire N, Alentorn A, Domeracka P, Pigeon P, Sanson M, Idbaih A, Verreault M. Heterogeneity of Response to Iron-Based Metallodrugs in Glioblastoma Is Associated with Differences in Chemical Structures and Driven by FAS Expression Dynamics and Transcriptomic Subtypes. Int J Mol Sci 2021; 22:ijms221910404. [PMID: 34638742 PMCID: PMC8508975 DOI: 10.3390/ijms221910404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and deadliest primary brain cancer in adults, justifying the search for new treatments. Some members of the iron-based ferrocifen family have demonstrated a high cytotoxic effect on various cancer cell lines via innovative mechanisms of action. Here, we evaluated the antiproliferative activity by wst-1 assay of six ferrocifens in 15 molecularly diverse GBM patient-derived cell lines (PDCLs). In five out of six compounds, the half maximal inhibitory concentration (IC50) values varied significantly (10 nM < IC50 < 29.8 µM) while the remaining one (the tamoxifen-like complex) was highly cytotoxic against all PDCLs (mean IC50 = 1.28 µM). The pattern of response was comparable for the four ferrocifens bearing at least one phenol group and differed widely from those of the tamoxifen-like complex and the complex with no phenol group. An RNA sequencing differential analysis showed that response to the diphenol ferrocifen relied on the activation of the Death Receptor signaling pathway and the modulation of FAS expression. Response to this complex was greater in PDCLs from the Mesenchymal or Proneural transcriptomic subtypes compared to the ones from the Classical subtype. These results provide new information on the mechanisms of action of ferrocifens and highlight a broader diversity of behavior than previously suspected among members of this family. They also support the case for a molecular-based personalized approach to future use of ferrocifens in the treatment of GBM.
Collapse
Affiliation(s)
- Anne Vessières
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR CNRS 8232, 4 Place Jussieu, F-75005 Paris, France;
- Correspondence: (A.V.); (M.V.)
| | - Emie Quissac
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
| | - Nolwenn Lemaire
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
| | - Agusti Alentorn
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (A.A.); (M.S.); (A.I.)
| | - Patrycja Domeracka
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
| | - Pascal Pigeon
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR CNRS 8232, 4 Place Jussieu, F-75005 Paris, France;
- Chimie ParisTech-PSL, 11 Rue P. et M. Curie, F-75005 Paris, France
| | - Marc Sanson
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (A.A.); (M.S.); (A.I.)
| | - Ahmed Idbaih
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (A.A.); (M.S.); (A.I.)
| | - Maïté Verreault
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
- Correspondence: (A.V.); (M.V.)
| |
Collapse
|
224
|
EIF3D promotes the progression of preeclampsia by inhibiting of MAPK/ERK1/2 pathway. Reprod Toxicol 2021; 105:166-174. [PMID: 34520790 DOI: 10.1016/j.reprotox.2021.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022]
Abstract
Preeclampsia (PE) has been recognized as one of the main reasons for neonatal and maternal mortality and morbidity. This study intended to identify certain genes that correlated with the pathogenesis of PE, and disclose the underlying mechanisms. The GSE14776 and GSE65271 datasets were obtained from the Gene Expression Omnibus database. Venn diagram analysis was performed to identify the differently expressed genes. The potential pathways were analyzed by Gene set enrichment analysis software. The expression of eukaryotic translation initiation factor 3 subunit D (EIF3D) in tissues and cells was respectively tested by immunohistochemistry and the quantitative real-time PCR. Cell transfection was utilized to alter the expression of EIF3D. Cell proliferation, invasion and migration were respectively tested by MTT, EdU, transwell and wound healing assays. Tube formation assay was utilized to determine the tube formation capacity of HTR-8/SVneo cells. ELISA was employed for determination of the concentration of Angiotensin (ANG)-1. Moreover, the expression of EIF3D, proliferation-, metastasis-, tube formation- and MAPK/ERK1/2 pathway-related proteins were measured utilizing western blot. EIF3D was selected in this study. EIF3D was upregulated in placentas tissues collected from patients with PE. EIF3D upregulation observably repressed the proliferation, invasion, migration, wound healing and tube formation of HTR-8/SVneo cells, and the expression of their associated proteins. Besides, the concentration of ANG-1, and the ratios of phosphorylated-ERK1/2 and phosphorylated-MEK1/MEK1 were also markedly lowered by EIF3D upregulation. Whereas, EIF3D knockdown exerted the opposite effects, and these effects were distinctly counteracted by ERK1/2 inhibitor SC-221593 treatment. In conclusion, these observations manifested that EIF3D upregulation might have repressed the progression of PE through modulation of MAPK/ERK1/2 pathway.
Collapse
|
225
|
Nuez-Martínez M, Pedrosa L, Martinez-Rovira I, Yousef I, Diao D, Teixidor F, Stanzani E, Martínez-Soler F, Tortosa A, Sierra À, Gonzalez JJ, Viñas C. Synchrotron-Based Fourier-Transform Infrared Micro-Spectroscopy (SR-FTIRM) Fingerprint of the Small Anionic Molecule Cobaltabis(dicarbollide) Uptake in Glioma Stem Cells. Int J Mol Sci 2021; 22:9937. [PMID: 34576098 PMCID: PMC8466526 DOI: 10.3390/ijms22189937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
The anionic cobaltabis (dicarbollide) [3,3'-Co(1,2-C2B9H11)2]-, [o-COSAN]-, is the most studied icosahedral metallacarborane. The sodium salts of [o-COSAN]- could be an ideal candidate for the anti-cancer treatment Boron Neutron Capture Therapy (BNCT) as it possesses the ability to readily cross biological membranes thereby producing cell cycle arrest in cancer cells. BNCT is a cancer therapy based on the potential of 10B atoms to produce α particles that cross tissues in which the 10B is accumulated without damaging the surrounding healthy tissues, after being irradiated with low energy thermal neutrons. Since Na[o-COSAN] displays a strong and characteristic ν(B-H) frequency in the infrared range 2.600-2.500 cm-1, we studied the uptake of Na[o-COSAN] followed by its interaction with biomolecules and its cellular biodistribution in two different glioma initiating cells (GICs), mesenchymal and proneural respectively, by using Synchrotron Radiation-Fourier Transform Infrared (FTIR) micro-spectroscopy (SR-FTIRM) facilities at the MIRAS Beamline of ALBA synchrotron light source. The spectroscopic data analysis from the bands in the regions of DNA, proteins, and lipids permitted to suggest that after its cellular uptake, Na[o-COSAN] strongly interacts with DNA strings, modifies proteins secondary structure and also leads to lipid saturation. The mapping suggests the nuclear localization of [o-COSAN]-, which according to reported Monte Carlo simulations may result in a more efficient cell-killing effect compared to that in a uniform distribution within the entire cell. In conclusion, we show pieces of evidence that at low doses, [o-COSAN]- translocates GIC cells' membranes and it alters the physiology of the cells, suggesting that Na[o-COSAN] is a promising agent to BNCT for glioblastoma cells.
Collapse
Affiliation(s)
- Miquel Nuez-Martínez
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.N.-M.); (F.T.)
| | - Leire Pedrosa
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona—FCRB, 08036 Barcelona, Spain; (L.P.); (D.D.); (J.J.G.)
| | - Immaculada Martinez-Rovira
- Ionizing Radiation Research Group (GRRI), Physics Department, Universitat Autònoma de Barcelona (UAB), Avinguda de l’Eix Central, Edifici C. Campus de la UAB, 08193 Cerdanyola del Vallès, Spain;
- ALBA-CELLS Synchrotron, MIRAS Beamline, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain;
| | - Ibraheem Yousef
- ALBA-CELLS Synchrotron, MIRAS Beamline, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain;
| | - Diouldé Diao
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona—FCRB, 08036 Barcelona, Spain; (L.P.); (D.D.); (J.J.G.)
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.N.-M.); (F.T.)
| | - Elisabetta Stanzani
- Laboratory of Pharmacology and Brain Pathology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Fina Martínez-Soler
- Apoptosis and Cancer Unit, Department of Physiological Sciences, IDIBELL, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain; (F.M.-S.); (A.T.)
| | - Avelina Tortosa
- Apoptosis and Cancer Unit, Department of Physiological Sciences, IDIBELL, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain; (F.M.-S.); (A.T.)
| | - Àngels Sierra
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona—FCRB, 08036 Barcelona, Spain; (L.P.); (D.D.); (J.J.G.)
| | - José Juan Gonzalez
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona—FCRB, 08036 Barcelona, Spain; (L.P.); (D.D.); (J.J.G.)
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.N.-M.); (F.T.)
| |
Collapse
|
226
|
Vézina A, Manglani M, Morris D, Foster B, McCord M, Song H, Zhang M, Davis D, Zhang W, Bills J, Nagashima K, Shankarappa P, Kindrick J, Walbridge S, Peer CJ, Figg WD, Gilbert MR, McGavern DB, Muldoon LL, Jackson S. Adenosine A2A Receptor Activation Enhances Blood-Tumor Barrier Permeability in a Rodent Glioma Model. Mol Cancer Res 2021; 19:2081-2095. [PMID: 34521765 DOI: 10.1158/1541-7786.mcr-19-0995] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/16/2020] [Accepted: 09/07/2021] [Indexed: 11/16/2022]
Abstract
The blood-tumor barrier (BTB) limits the entry of effective chemotherapeutic agents into the brain for treatment of malignant tumors like glioblastoma. Poor drug entry across the BTB allows infiltrative glioma stem cells to evade therapy and develop treatment resistance. Regadenoson, an FDA-approved adenosine A2A receptor (A2AR) agonist, has been shown to increase drug delivery across the blood-brain barrier in non-tumor-bearing rodents without a defined mechanism of enhancing BTB permeability. Here, we characterize the time-dependent impact of regadenoson on brain endothelial cell interactions and paracellular transport, using mouse and rat brain endothelial cells and tumor models. In vitro, A2AR activation leads to disorganization of cytoskeletal actin filaments by 30 minutes, downregulation of junctional protein expression by 4 hours, and reestablishment of endothelial cell integrity by 8 hours. In rats bearing intracranial gliomas, regadenoson treatment results in increase of intratumoral temozolomide concentrations, yet no increased survival noted with combined temozolomide therapy. These findings demonstrate regadenoson's ability to induce brain endothelial structural changes among glioma to increase BTB permeability. The use of vasoactive mediators, like regadenoson, which transiently influences paracellular transport, should further be explored to evaluate their potential to enhance central nervous system treatment delivery to aggressive brain tumors. IMPLICATIONS: This study provides insight on the use of a vasoactive agent to increase exposure of the BTB to chemotherapy with intention to improve glioma treatment efficacy.
Collapse
Affiliation(s)
- Amélie Vézina
- Neuro-Oncology Branch, NCI, NIH, Bethesda, Maryland.,Electron Microscope Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Monica Manglani
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | - DreeAnna Morris
- Department of Neurology, Oregon Health & Sciences University, Portland, Oregon
| | - Brandon Foster
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | | | - Hua Song
- Neuro-Oncology Branch, NCI, NIH, Bethesda, Maryland
| | - Meili Zhang
- Neuro-Oncology Branch, NCI, NIH, Bethesda, Maryland
| | - Dionne Davis
- Neuro-Oncology Branch, NCI, NIH, Bethesda, Maryland
| | - Wei Zhang
- Neuro-Oncology Branch, NCI, NIH, Bethesda, Maryland
| | - Jessica Bills
- Department of Neurology, Oregon Health & Sciences University, Portland, Oregon
| | - Kunio Nagashima
- Electron Microscope Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Priya Shankarappa
- Genitourinary Malignancies Branch, Molecular Pharmacology Section, NCI, NIH, Bethesda, Maryland
| | - Jessica Kindrick
- Genitourinary Malignancies Branch, Molecular Pharmacology Section, NCI, NIH, Bethesda, Maryland
| | - Stuart Walbridge
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | - Cody J Peer
- Genitourinary Malignancies Branch, Molecular Pharmacology Section, NCI, NIH, Bethesda, Maryland
| | - William D Figg
- Genitourinary Malignancies Branch, Molecular Pharmacology Section, NCI, NIH, Bethesda, Maryland
| | | | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | - Leslie L Muldoon
- Department of Neurology, Oregon Health & Sciences University, Portland, Oregon
| | - Sadhana Jackson
- Neuro-Oncology Branch, NCI, NIH, Bethesda, Maryland. .,Electron Microscope Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| |
Collapse
|
227
|
Gupta P, Hare DL, Wookey PJ. Strategic Development of an Immunotoxin for the Treatment of Glioblastoma and Other Tumours Expressing the Calcitonin Receptor. Cells 2021; 10:cells10092347. [PMID: 34571996 PMCID: PMC8466289 DOI: 10.3390/cells10092347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
New strategies aimed at treatment of glioblastoma are frequently proposed to overcome poor prognosis. Recently, research has focused on glioma stem cells (GSCs), some quiescent, which drive expansion of glioblastoma and provide the complexity and heterogeneity of the tumour hierarchy. Targeting quiescent GSCs is beyond the capability of conventional drugs such as temozolomide. Here, we discuss the proposal that the calcitonin receptor (CT Receptor), expressed in 76–86% of patient biopsies, is expressed by both malignant glioma cells and GSCs. Forty-two percent (42%) of high-grade glioma (HGG; representative of GSCs) cell lines available from one source express CT Receptor protein in cell culture. The pharmacological calcitonin (CT)-response profiles of four of the HGG cell lines were reported, suggesting mutational/splicing inactivation. Alternative splicing, commonly associated with cancer cells, could result in the predominant expression of the insert-positive isoform and explain the atypical pharmacology exhibited by CT non-responders. A role for the CT Receptor as a putative tumour suppressor and/or oncoprotein is discussed. Both CT responders and non-responders were sensitive to immunotoxins based on an anti-CT Receptor antibody conjugated to ribosomal-inactivating proteins. Sensitivity was increased by several logs with the triterpene glycoside SO1861, an endosomal escape enhancer. Under these conditions, the immunotoxins were 250–300 times more potent than an equivalent antibody conjugated with monomethyl auristatin E. Further refinements for improving the penetration of solid tumours are discussed. With this knowledge, a potential strategy for effective targeting of CSCs expressing this receptor is proposed for the treatment of GBM.
Collapse
|
228
|
Lo Cascio C, McNamara JB, Melendez EL, Lewis EM, Dufault ME, Sanai N, Plaisier CL, Mehta S. Nonredundant, isoform-specific roles of HDAC1 in glioma stem cells. JCI Insight 2021; 6:e149232. [PMID: 34494550 PMCID: PMC8492336 DOI: 10.1172/jci.insight.149232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/22/2021] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma (GBM) is characterized by an aberrant yet druggable epigenetic landscape. One major family of epigenetic regulators, the histone deacetylases (HDACs), are considered promising therapeutic targets for GBM due to their repressive influences on transcription. Although HDACs share redundant functions and common substrates, the unique isoform-specific roles of different HDACs in GBM remain unclear. In neural stem cells, HDAC2 is the indispensable deacetylase to ensure normal brain development and survival in the absence of HDAC1. Surprisingly, we find that HDAC1 is the essential class I deacetylase in glioma stem cells, and its loss is not compensated for by HDAC2. Using cell-based and biochemical assays, transcriptomic analyses, and patient-derived xenograft models, we find that knockdown of HDAC1 alone has profound effects on the glioma stem cell phenotype in a p53-dependent manner. We demonstrate marked suppression in tumor growth upon targeting of HDAC1 and identify compensatory pathways that provide insights into combination therapies for GBM. Our study highlights the importance of HDAC1 in GBM and the need to develop isoform-specific drugs.
Collapse
Affiliation(s)
- Costanza Lo Cascio
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA.,Interdisciplinary Graduate Program in Neuroscience, School of Life Sciences, and
| | - James B McNamara
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Ernesto L Melendez
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Erika M Lewis
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Matthew E Dufault
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Christopher L Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Shwetal Mehta
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
229
|
Gil-Ranedo J, Gallego-García C, Almendral JM. Viral targeting of glioblastoma stem cells with patient-specific genetic and post-translational p53 deregulations. Cell Rep 2021; 36:109673. [PMID: 34496248 DOI: 10.1016/j.celrep.2021.109673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/05/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022] Open
Abstract
Cancer therapy urges targeting of malignant subsets within self-renewing heterogeneous stem cell populations. We dissect the genetic and functional heterogeneity of human glioblastoma stem cells (GSCs) within patients by their innate responses to non-pathogenic mouse parvoviruses that are tightly restrained by cellular physiology. GSC neurospheres accumulate assembled capsids but restrict viral NS1 cytotoxic protein expression by an innate PKR/eIF2α-P response counteractable by electric pulses. NS1 triggers a comprehensive DNA damage response involving cell-cycle arrest, neurosphere disorganization, and bystander disruption of GSC-derived brain tumor architecture in rodent models. GSCs and cancer cell lines permissive to parvovirus genome replication require p53-Ser15 phosphorylation (Pp53S15). NS1 expression is enhanced by exogeneous Pp53S15 induction but repressed by wtp53. Consistently, patient-specific GSC subpopulations harboring p53 gain-of-function mutants and/or Pp53S15 are selective viral targets. This study provides a molecular foundation for personalized biosafe viral therapies against devastating glioblastoma and other cancers with deregulated p53 signaling.
Collapse
Affiliation(s)
- Jon Gil-Ranedo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - Carlos Gallego-García
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - José M Almendral
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain.
| |
Collapse
|
230
|
Gelatin methacrylate hydrogels culture model for glioblastoma cells enriches for mesenchymal-like state and models interactions with immune cells. Sci Rep 2021; 11:17727. [PMID: 34489494 PMCID: PMC8421368 DOI: 10.1038/s41598-021-97059-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is the most lethal primary malignant brain tumor in adults. Simplified two-dimensional (2D) cell culture and neurospheres in vitro models fail to recapitulate the complexity of the tumor microenvironment, limiting its ability to predict therapeutic response. Three-dimensional (3D) scaffold-based models have emerged as a promising alternative for addressing these concerns. One such 3D system is gelatin methacrylate (GelMA) hydrogels, and we aimed to understand the suitability of using this system to mimic treatment-resistant glioblastoma cells that reside in specific niches. We characterized the phenotype of patient-derived glioma cells cultured in GelMA hydrogels (3D-GMH) for their tumorigenic properties using invasion and chemoresponse assays. In addition, we used integrated single-cell and spatial transcriptome analysis to compare cells cultured in 3D-GMH to neoplastic cells in vivo. Finally, we assessed tumor-immune cell interactions with a macrophage infiltration assay and a cytokine array. We show that the 3D-GMH system enriches treatment-resistant mesenchymal cells that are not represented in neurosphere cultures. Cells cultured in 3D-GMH resemble a mesenchymal-like cellular phenotype found in perivascular and hypoxic regions and recruit macrophages by secreting cytokines, a hallmark of the mesenchymal phenotype. Our 3D-GMH model effectively mimics the phenotype of glioma cells that are found in the perivascular and hypoxic niches of the glioblastoma core in situ, in contrast to the neurosphere cultures that enrich cells of the infiltrative edge of the tumor. This contrast highlights the need for due diligence in selecting an appropriate model when designing a study's objectives.
Collapse
|
231
|
Haddad AF, Young JS, Amara D, Berger MS, Raleigh DR, Aghi MK, Butowski NA. Mouse models of glioblastoma for the evaluation of novel therapeutic strategies. Neurooncol Adv 2021; 3:vdab100. [PMID: 34466804 PMCID: PMC8403483 DOI: 10.1093/noajnl/vdab100] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma (GBM) is an incurable brain tumor with a median survival of approximately 15 months despite an aggressive standard of care that includes surgery, chemotherapy, and ionizing radiation. Mouse models have advanced our understanding of GBM biology and the development of novel therapeutic strategies for GBM patients. However, model selection is crucial when testing developmental therapeutics, and each mouse model of GBM has unique advantages and disadvantages that can influence the validity and translatability of experimental results. To shed light on this process, we discuss the strengths and limitations of 3 types of mouse GBM models in this review: syngeneic models, genetically engineered mouse models, and xenograft models, including traditional xenograft cell lines and patient-derived xenograft models.
Collapse
Affiliation(s)
- Alexander F Haddad
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Dominic Amara
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - David R Raleigh
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Nicholas A Butowski
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- Corresponding Author: Nicholas A. Butowski, MD, Department of Neurological Surgery, University of California, San Francisco, 400 Parnassus Ave Eighth Floor, San Francisco, CA, 94143, USA ()
| |
Collapse
|
232
|
Juric V, Hudson L, Fay J, Richards CE, Jahns H, Verreault M, Bielle F, Idbaih A, Lamfers MLM, Hopkins AM, Rehm M, Murphy BM. Transcriptional CDK inhibitors, CYC065 and THZ1 promote Bim-dependent apoptosis in primary and recurrent GBM through cell cycle arrest and Mcl-1 downregulation. Cell Death Dis 2021; 12:763. [PMID: 34344865 PMCID: PMC8333061 DOI: 10.1038/s41419-021-04050-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022]
Abstract
Activation of cyclin-dependent kinases (CDKs) contributes to the uncontrolled proliferation of tumour cells. Genomic alterations that lead to the constitutive activation or overexpression of CDKs can support tumourigenesis including glioblastoma (GBM), the most common and aggressive primary brain tumour in adults. The incurability of GBM highlights the need to discover novel and more effective treatment options. Since CDKs 2, 7 and 9 were found to be overexpressed in GBM, we tested the therapeutic efficacy of two CDK inhibitors (CKIs) (CYC065 and THZ1) in a heterogeneous panel of GBM patient-derived cell lines (PDCLs) cultured as gliomaspheres, as preclinically relevant models. CYC065 and THZ1 treatments suppressed invasion and induced viability loss in the majority of gliomaspheres, irrespective of the mutational background of the GBM cases, but spared primary cortical neurons. Viability loss arose from G2/M cell cycle arrest following treatment and subsequent induction of apoptotic cell death. Treatment efficacies and treatment durations required to induce cell death were associated with proliferation velocities, and apoptosis induction correlated with complete abolishment of Mcl-1 expression, a cell cycle-regulated antiapoptotic Bcl-2 family member. GBM models generally appeared highly dependent on Mcl-1 expression for cell survival, as demonstrated by pharmacological Mcl-1 inhibition or depletion of Mcl-1 expression. Further analyses identified CKI-induced Mcl-1 loss as a prerequisite to establish conditions at which the BH3-only protein Bim can efficiently induce apoptosis, with cellular Bim amounts strongly correlating with treatment efficacy. CKIs reduced proliferation and promoted apoptosis also in chick embryo xenograft models of primary and recurrent GBM. Collectively, these studies highlight the potential of these novel CKIs to suppress growth and induce cell death of patient-derived GBM cultures in vitro and in vivo, warranting further clinical investigation.
Collapse
Affiliation(s)
- Viktorija Juric
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | - Lance Hudson
- Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, RCSI Education and Research Centre, Smurfit Building, Beaumont Hospital, Dublin, Ireland
| | - Joanna Fay
- Department of Pathology, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Cathy E Richards
- Department of Molecular Medicine, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Beaumont Hospital, Dublin, Ireland
| | - Hanne Jahns
- Pathobiology Section, School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Maïté Verreault
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, Paris, France
| | - Franck Bielle
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, Paris, France
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Ahmed Idbaih
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, Paris, France
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière-Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC, Rotterdam, the Netherlands
| | - Ann M Hopkins
- Department of Surgery, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, RCSI Education and Research Centre, Smurfit Building, Beaumont Hospital, Dublin, Ireland
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Brona M Murphy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland.
| |
Collapse
|
233
|
Chemical tools for epichaperome-mediated interactome dysfunctions of the central nervous system. Nat Commun 2021; 12:4669. [PMID: 34344873 PMCID: PMC8333062 DOI: 10.1038/s41467-021-24821-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 07/07/2021] [Indexed: 12/11/2022] Open
Abstract
Diseases are a manifestation of how thousands of proteins interact. In several diseases, such as cancer and Alzheimer’s disease, proteome-wide disturbances in protein-protein interactions are caused by alterations to chaperome scaffolds termed epichaperomes. Epichaperome-directed chemical probes may be useful for detecting and reversing defective chaperomes. Here we provide structural, biochemical, and functional insights into the discovery of epichaperome probes, with a focus on their use in central nervous system diseases. We demonstrate on-target activity and kinetic selectivity of a radiolabeled epichaperome probe in both cells and mice, together with a proof-of-principle in human patients in an exploratory single group assignment diagnostic study (ClinicalTrials.gov Identifier: NCT03371420). The clinical study is designed to determine the pharmacokinetic parameters and the incidence of adverse events in patients receiving a single microdose of the radiolabeled probe administered by intravenous injection. In sum, we introduce a discovery platform for brain-directed chemical probes that specifically modulate epichaperomes and provide proof-of-principle applications in their use in the detection, quantification, and modulation of the target in complex biological systems. Here, the authors show structural, biochemical, and functional insights into the discovery of epichaperome‐ directed chemical probes for use in central nervous system diseases. Probes emerging from this work have translated to human clinical studies in Alzheimer’s disease and cancer.
Collapse
|
234
|
Sun T, Xu YJ, Jiang SY, Xu Z, Cao BY, Sethi G, Zeng YY, Kong Y, Mao XL. Suppression of the USP10/CCND1 axis induces glioblastoma cell apoptosis. Acta Pharmacol Sin 2021; 42:1338-1346. [PMID: 33184448 PMCID: PMC8285505 DOI: 10.1038/s41401-020-00551-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Recent studies show that the expression of CCND1, a key factor in cell cycle control, is increased following the progress and deteriotation of glioma and predicts poor outcomes. On the other hand, dysregulated deubiquitinase USP10 also predicts poor prognosis for patients with glioblastoma (GBM). In the present study, we investigated the interplay between CCND1 protein and USP10 in GBM cells. We showed that the expression of CCND1 was significantly higher in both GBM tissues and GBM-derived stem cells. USP10 interacted with CCND1 and prevented its K48- but not K63-linked polyubiquitination in GBM U251 and HS683 cells, which led to increased CCND1 stability. Consistent with the action of USP10 on CCND1, knockdown of USP10 by single-guided RNA downregulated CCND1 and caused GBM cell cycle arrest at the G1 phase and induced GBM cell apoptosis. To implement this finding in the treatment of GBMs, we screened a natural product library and found that acevaltrate (AVT), an active component derived from the herbal plant Valeriana jatamansi Jones was strikingly potent to induce GBM cell apoptosis, which was confirmed by the Annexin V staining and activation of the apoptotic signals. Furthermore, we revealed that AVT concentration-dependently suppressed USP10-mediated deubiquitination on CCND1 therefore inducing CCND1 protein degradation. Collectively, the present study demonstrates that the USP10/CCND1 axis could be a promising therapeutic target for patients with GBMs.
Collapse
Affiliation(s)
- Tong Sun
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215100, China
| | - Yu-Jia Xu
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
- Guangdong Key Laboratory of Protein Modifications and Degradation, School of Basic Medicine, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shuo-Yi Jiang
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Zhuan Xu
- Department of Pharmacology, Soochow University, Suzhou, 215123, China
| | - Bi-Yin Cao
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215100, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Yuan-Ying Zeng
- Department of Oncology, Suzhou Municipal Hospital, Suzhou, 215100, China.
| | - Yan Kong
- Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, 215100, China.
| | - Xin-Liang Mao
- Department of Pharmacology, Soochow University, Suzhou, 215123, China.
- Guangdong Key Laboratory of Protein Modifications and Degradation, School of Basic Medicine, Guangzhou Medical University, Guangzhou, 511436, China.
- Institute of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
235
|
Choi WS, Xu X, Goruk S, Wang Y, Patel S, Chow M, Field CJ, Godbout R. FABP7 Facilitates Uptake of Docosahexaenoic Acid in Glioblastoma Neural Stem-like Cells. Nutrients 2021; 13:2664. [PMID: 34444824 PMCID: PMC8402214 DOI: 10.3390/nu13082664] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 01/14/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive tumor with a dismal prognosis. Neural stem-like cells contribute to GBM's poor prognosis by driving drug resistance and maintaining cellular heterogeneity. GBM neural stem-like cells express high levels of brain fatty acid-binding protein (FABP7), which binds to polyunsaturated fatty acids (PUFAs) ω-6 arachidonic acid (AA) and ω-3 docosahexaenoic acid (DHA). Similar to brain, GBM tissue is enriched in AA and DHA. However, DHA levels are considerably lower in GBM tissue compared to adult brain. Therefore, it is possible that increasing DHA content in GBM, particularly in neural stem-like cells, might have therapeutic value. Here, we examine the fatty acid composition of patient-derived GBM neural stem-like cells grown as neurosphere cultures. We also investigate the effect of AA and DHA treatment on the fatty acid profiles of GBM neural stem-like cells with or without FABP7 knockdown. We show that DHA treatment increases DHA levels and the DHA:AA ratio in GBM neural stem-like cells, with FABP7 facilitating the DHA uptake. We also found that an increased uptake of DHA inhibits the migration of GBM neural stem-like cells. Our results suggest that increasing DHA content in the GBM microenvironment may reduce the migration/infiltration of FABP7-expressing neural stem-like cancer cells.
Collapse
Affiliation(s)
- Won-Shik Choi
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Xia Xu
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.G.); (C.J.F.)
| | - Yixiong Wang
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Samir Patel
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| | - Michael Chow
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2B7, Canada;
| | - Catherine J. Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2E1, Canada; (S.G.); (C.J.F.)
| | - Roseline Godbout
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada; (W.-S.C.); (X.X.); (Y.W.); (S.P.)
| |
Collapse
|
236
|
Raman S, Buongervino SN, Lane MV, Zhelev DV, Zhu Z, Cui H, Martinez B, Martinez D, Wang Y, Upton K, Patel K, Rathi KS, Navia CT, Harmon DB, Li Y, Pawel B, Dimitrov DS, Maris JM, Julien JP, Bosse KR. A GPC2 antibody-drug conjugate is efficacious against neuroblastoma and small-cell lung cancer via binding a conformational epitope. Cell Rep Med 2021; 2:100344. [PMID: 34337560 PMCID: PMC8324494 DOI: 10.1016/j.xcrm.2021.100344] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/19/2021] [Accepted: 06/15/2021] [Indexed: 01/17/2023]
Abstract
Glypican 2 (GPC2) is a MYCN-regulated, differentially expressed cell-surface oncoprotein and target for immune-based therapies in neuroblastoma. Here, we build on GPC2's immunotherapeutic attributes by finding that it is also a highly expressed, MYCN-driven oncoprotein on small-cell lung cancers (SCLCs), with significantly enriched expression in both the SCLC and neuroblastoma stem cell compartment.By solving the crystal structure of the D3-GPC2-Fab/GPC2 complex at 3.3 Å resolution, we further illustrate that the GPC2-directed antibody-drug conjugate (ADC; D3-GPC2-PBD), that links a human GPC2 antibody (D3) to DNA-damaging pyrrolobenzodiazepine (PBD) dimers, binds a tumor-specific, conformation-dependent epitope of the core GPC2 extracellular domain. We then show that this ADC induces durable neuroblastoma and SCLC tumor regression via induction of DNA damage, apoptosis, and bystander cell killing, notably with no signs of ADC-induced in vivo toxicity. These studies provide preclinical data to support the clinical translation of ADCs targeting GPC2.
Collapse
Affiliation(s)
- Swetha Raman
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Samantha N. Buongervino
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maria V. Lane
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Doncho V. Zhelev
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Zhongyu Zhu
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Hong Cui
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Benjamin Martinez
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
| | - Daniel Martinez
- Department of Pathology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yanping Wang
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Kristen Upton
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Khushbu Patel
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Komal S. Rathi
- Department of Biomedical and Health Informatics and Center for Data-Driven Discovery in Biomedicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | | | - Yimei Li
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bruce Pawel
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Dimiter S. Dimitrov
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean-Philippe Julien
- Program in Molecular Medicine, Hospital for Sick Children Research Institute, Toronto, ON M5G 0A4, Canada
- Departments of Biochemistry and Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
237
|
Gao Y, Zhou R, Huang JF, Hu B, Cheng JW, Huang XW, Wang PX, Peng HX, Guo W, Zhou J, Fan J, Yang XR. Patient-Derived Xenograft Models for Intrahepatic Cholangiocarcinoma and Their Application in Guiding Personalized Medicine. Front Oncol 2021; 11:704042. [PMID: 34327143 PMCID: PMC8315044 DOI: 10.3389/fonc.2021.704042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/25/2021] [Indexed: 11/17/2022] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) remains one of the most intractable malignancies. The development of effective drug treatments for ICC is seriously hampered by the lack of reliable tumor models. At present, patient derived xenograft (PDX) models prove to accurately reflect the genetic and biological diversity required to decipher tumor biology and therapeutic vulnerabilities. This study was designed to investigate the establishment and potential application of PDX models for guiding personalized medicine and identifying potential biomarker for lenvatinib resistance. Methods We generated PDX models from 89 patients with ICC and compared the morphological and molecular similarities of parental tumors and passaged PDXs. The clinicopathologic features affecting PDX engraftment and the prognostic significance of PDX engraftment were analyzed. Drug treatment responses were analyzed in IMF-138, IMF-114 PDX models and corresponding patients. Finally, lenvatinib treatment response was examined in PDX models and potential drug resistance mechanism was revealed. Results Forty-nine PDX models were established (take rate: 55.1%). Successful PDX engraftment was associated with negative HbsAg (P = 0.031), presence of mVI (P = 0.001), poorer tumor differentiation (P = 0.023), multiple tumor number (P = 0.003), presence of lymph node metastasis (P = 0.001), and later TNM stage (P = 0.039). Moreover, patients with tumor engraftment had significantly shorter time to recurrence (TTR) (P < 0.001) and worse overall survival (OS) (P < 0.001). Multivariate analysis indicated that PDX engraftment was an independent risk factor for shortened TTR (HR = 1.84; 95% CI, 1.05–3.23; P = 0.034) and OS (HR = 2.13; 95% CI, 1.11–4.11; P = 0.024). PDXs were histologically and genetically similar to their parental tumors. We also applied IMF-138 and IMF-114 PDX drug testing results to guide clinical treatment for patients with ICC and found similar treatment responses. PDX models also facilitated personalized medicine for patients with ICC based on drug screening results using whole exome sequencing data. Additionally, PDX models reflected the heterogeneous sensitivity to lenvatinib treatment and CDH1 might be vital to lenvatinib-resistance. Conclusion PDX models provide a powerful platform for preclinical drug discovery, and potentially facilitate the implementation of personalized medicine and improvement of survival of ICC cancer patient.
Collapse
Affiliation(s)
- Yang Gao
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Rong Zhou
- Department of Blood Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jun-Feng Huang
- Department of Intensive Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bo Hu
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Jian-Wen Cheng
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Xiao-Wu Huang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Peng-Xiang Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Hai-Xiang Peng
- Shanghai Dunwill Medical Technology Co., Ltd., Shanghai, China.,Shanghai Epione Medlab Co., Ltd., Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xin-Rong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
238
|
Barbet V, Broutier L. Future Match Making: When Pediatric Oncology Meets Organoid Technology. Front Cell Dev Biol 2021; 9:674219. [PMID: 34327198 PMCID: PMC8315550 DOI: 10.3389/fcell.2021.674219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Unlike adult cancers that frequently result from the accumulation in time of mutational “hits” often linked to lifestyle, childhood cancers are emerging as diseases of dysregulated development through massive epigenetic alterations. The ability to reconstruct these differences in cancer models is therefore crucial for better understanding the uniqueness of pediatric cancer biology. Cancer organoids (i.e., tumoroids) represent a promising approach for creating patient-derived in vitro cancer models that closely recapitulate the overall pathophysiological features of natural tumorigenesis, including intra-tumoral heterogeneity and plasticity. Though largely applied to adult cancers, this technology is scarcely used for childhood cancers, with a notable delay in technological transfer. However, tumoroids could provide an unprecedented tool to unravel the biology of pediatric cancers and improve their therapeutic management. We herein present the current state-of-the-art of a long awaited and much needed matchmaking.
Collapse
Affiliation(s)
- Virginie Barbet
- Childhood Cancer & Cell Death (C3), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Laura Broutier
- Childhood Cancer & Cell Death (C3), Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| |
Collapse
|
239
|
Han XX, Cai C, Yu LM, Wang M, Hu DY, Ren J, Zhang MH, Zhu LY, Zhang WH, Huang W, He H, Gao Z. A Fast and Efficient Approach to Obtaining High-Purity Glioma Stem Cell Culture. Front Genet 2021; 12:639858. [PMID: 34295351 PMCID: PMC8291338 DOI: 10.3389/fgene.2021.639858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma is the most common and malignant primary brain tumor. Patients with malignant glioma usually have a poor prognosis due to drug resistance and disease relapse. Cancer stem cells contribute to glioma initiation, progression, resistance, and relapse. Hence, quick identification and efficient understanding of glioma stem cells (GSCs) are of profound importance for therapeutic strategies and outcomes. Ideally, therapeutic approaches will only kill cancer stem cells without harming normal neural stem cells (NSCs) that can inhibit GSCs and are often beneficial. It is key to identify the differences between cancer stem cells and normal NSCs. However, reports detailing an efficient and uniform protocol are scarce, as are comparisons between normal neural and cancer stem cells. Here, we compared different protocols and developed a fast and efficient approach to obtaining high-purity glioma stem cell by tracking observation and optimizing culture conditions. We examined the proliferative and differentiative properties confirming the identities of the GSCs with relevant markers such as Ki67, SRY-box containing gene 2, an intermediate filament protein member nestin, glial fibrillary acidic protein, and s100 calcium-binding protein (s100-beta). Finally, we identified distinct expression differences between GSCs and normal NSCs including cyclin-dependent kinase 4 and tumor protein p53. This study comprehensively describes the features of GSCs, their properties, and regulatory genes with expression differences between them and normal stem cells. Effective approaches to quickly obtaining high-quality GSCs from patients should have the potential to not only help understand the diseases and the resistances but also enable target drug screening and personalized medicine for brain tumor treatment.
Collapse
Affiliation(s)
- Xin-Xin Han
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Chunhui Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Ming Yu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Min Wang
- School of Medicine, Jiaxing University, Jiaxing, China
| | - Dai-Yu Hu
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie Ren
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Meng-Han Zhang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Lu-Ying Zhu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Wei-Hua Zhang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Wei Huang
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Hua He
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China.,Department of Neurosurgery, Third Affiliated Hospital of Second Military Medical University, Shanghai, China
| | - Zhengliang Gao
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
240
|
Enkhbat M, Liu Y, Kim J, Xu Y, Yin Z, Liu T, Deng C, Zou C, Xie X, Li X, Wang P. Expansion of Rare Cancer Cells into Tumoroids for Therapeutic Regimen and Cancer Therapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Myagmartsend Enkhbat
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yung‐Chiang Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Jua Kim
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Yanshan Xu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
| | - Zongyi Yin
- Department of Hepatobiliary Surgery General Hospital of Shenzhen University Guangdong 518055 China
| | - Tzu‐Ming Liu
- Cancer Center, Faculty of Health Sciences University of Macau Macao 999078 China
| | - Chu‐Xia Deng
- Cancer Center, Faculty of Health Sciences University of Macau Macao 999078 China
| | - Chang Zou
- The First Affiliated Hospital of Southern University Shenzhen People's Hospital Shenzhen Guangdong 518020 China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies School of Electronics and Information Technology Sun Yat‐sen University Guangzhou 510275 China
| | - Xiaowu Li
- Department of Hepatobiliary Surgery General Hospital of Shenzhen University Guangdong 518055 China
| | - Peng‐Yuan Wang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong 518055 China
- Department of Chemistry and Biotechnology Swinburne University of Technology Victoria 3122 Australia
| |
Collapse
|
241
|
Xu HH, Gan J, Xu DP, Li L, Yan WH. Comprehensive Transcriptomic Analysis Reveals the Role of the Immune Checkpoint HLA-G Molecule in Cancers. Front Immunol 2021; 12:614773. [PMID: 34276642 PMCID: PMC8281136 DOI: 10.3389/fimmu.2021.614773] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 06/21/2021] [Indexed: 12/21/2022] Open
Abstract
Human leukocyte antigen G (HLA-G) is known as a novel immune checkpoint molecule in cancer; thus, HLA-G and its receptors might be targets for immune checkpoint blockade in cancer immunotherapy. The aim of this study was to systematically identify the roles of checkpoint HLA-G molecules across various types of cancer. ONCOMINE, GEPIA, CCLE, TRRUST, HAP, PrognoScan, Kaplan-Meier Plotter, cBioPortal, LinkedOmics, STRING, GeneMANIA, DAVID, TIMER, and CIBERSORT were utilized. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. In this study, we comprehensively analysed the heterogeneous expression of HLA-G molecules in various types of cancer and focused on genetic alterations, coexpression patterns, gene interaction networks, HLA-G interactors, and the relationships between HLA-G and pathological stage, prognosis, and tumor-infiltrating immune cells. We first identified that the mRNA expression levels of HLA-G were significantly upregulated in both most tumor tissues and tumor cell lines on the basis of in-depth analysis of RNAseq data. The expression levels of HLA-G were positively associated with those of the other immune checkpoints PD-1 and CTLA-4. Abnormal expression of HLA-G was significantly correlated with the pathological stage of some but not all tumor types. There was a significant difference between the high and low HLA-G expression groups in terms of overall survival (OS) or disease-free survival (DFS). The results showed that HLA-G highly expressed have positive associations with tumor-infiltrating immune cells in the microenvironment in most types of tumors (P<0.05). Additionally, we identified the key transcription factor (TF) targets in the regulation of HLA-G expression, including HIVEP2, MYCN, CIITA, MYC, and IRF1. Multiple mutations (missense, truncating, etc.) and the methylation status of the HLA-G gene may explain the differential expression of HLA-G across different tumors. Functional enrichment analysis showed that HLA-G was primarily related to T cell activation, T cell regulation, and lymphocyte-mediated immunity. The data may provide novel insights for blockade of the HLA-G/ILT axis, which holds potential for the development of more effective antitumour treatments.
Collapse
Affiliation(s)
- Hui-Hui Xu
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China
| | - Jun Gan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Dan-Ping Xu
- Reproductive Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Lu Li
- Pediatrics, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China
| | - Wei-Hua Yan
- Medical Research Center, Taizhou Hospital of Zhejiang Province, Wenzhou Medical University, Linhai, China.,Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital of Zhejiang Province, Linhai, China
| |
Collapse
|
242
|
Rugamba A, Kang DY, Sp N, Jo ES, Lee JM, Bae SW, Jang KJ. Silibinin Regulates Tumor Progression and Tumorsphere Formation by Suppressing PD-L1 Expression in Non-Small Cell Lung Cancer (NSCLC) Cells. Cells 2021; 10:cells10071632. [PMID: 34209829 PMCID: PMC8307196 DOI: 10.3390/cells10071632] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/18/2023] Open
Abstract
Recently, natural compounds have been used globally for cancer treatment studies. Silibinin is a natural compound extracted from Silybum marianum (milk thistle), which has been suggested as an anticancer drug through various studies. Studies on its activity in various cancers are undergoing. This study demonstrated the molecular signaling behind the anticancer activity of silibinin in non-small cell lung cancer (NSCLC). Quantitative real-time polymerase chain reaction and Western blotting analysis were performed for molecular signaling analysis. Wound healing assay, invasion assay, and in vitro angiogenesis were performed for the anticancer activity of silibinin. The results indicated that silibinin inhibited A549, H292, and H460 cell proliferation in a concentration-dependent manner, as confirmed by the induction of G0/G1 cell cycle arrest and apoptosis and the inhibition of tumor angiogenesis, migration, and invasion. This study also assessed the role of silibinin in suppressing tumorsphere formation using the tumorsphere formation assay. By binding to the epidermal growth factor receptor (EGFR), silibinin downregulated phosphorylated EGFR expression, which then inhibited its downstream targets, the JAK2/STAT5 and PI3K/AKT pathways, and thereby reduced matrix metalloproteinase, PD-L1, and vascular endothelial growth factor expression. Binding analysis demonstrated that STAT5 binds to the PD-L1 promoter region in the nucleus and silibinin inhibited the STAT5/PD-L1 complex. Altogether, silibinin could be considered as a candidate for tumor immunotherapy and cancer stem cell-targeted therapy.
Collapse
Affiliation(s)
- Alexis Rugamba
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
| | - Dong Young Kang
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
| | - Nipin Sp
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
| | - Eun Seong Jo
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Jin-Moo Lee
- Pharmacological Research Division, National Institute of Food and Drug Safety Evaluation, Osong Health Technology Administration Complex, Cheongju-si 28159, Korea; (E.S.J.); (J.-M.L.)
| | - Se Won Bae
- Department of Chemistry and Cosmetics, Jeju National University, Jeju 63243, Korea;
| | - Kyoung-Jin Jang
- Department of Pathology, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Chungju 27478, Korea; (A.R.); (D.Y.K.); (N.S.)
- Correspondence: ; Tel.: +82-2-2030-7839
| |
Collapse
|
243
|
Marizomib sensitizes primary glioma cells to apoptosis induced by a latest-generation TRAIL receptor agonist. Cell Death Dis 2021; 12:647. [PMID: 34168123 PMCID: PMC8225658 DOI: 10.1038/s41419-021-03927-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/28/2021] [Accepted: 06/07/2021] [Indexed: 12/26/2022]
Abstract
Due to the absence of curative treatments for glioblastoma (GBM), we assessed the efficacy of single and combination treatments with a translationally relevant 2nd generation TRAIL-receptor agonist (IZI1551) and the blood–brain barrier (BBB) permeant proteasome inhibitor marizomib in a panel of patient-derived glioblastoma cell lines. These cells were cultured using protocols that maintain the characteristics of primary tumor cells. IZI1551+marizomib combination treatments synergistically induced apoptotic cell death in the majority of cases, both in 2D, as well as in 3D spheroid cultures. In contrast, single-drug treatments largely failed to induce noticeable amounts of cell death. Kinetic analyses suggested that time-shifted drug exposure might further increase responsiveness, with marizomib pre-treatments indeed strongly enhancing cell death. Cell death responses upon the addition of IZI1551 could also be observed in GBM cells that were kept in a medium collected from the basolateral side of a human hCMEC/D3 BBB model that had been exposed to marizomib. Interestingly, the subset of GBM cell lines resistant to IZI1551+marizomib treatments expressed lower surface amounts of TRAIL death receptors, substantially lower amounts of procaspase-8, and increased amounts of cFLIP, suggesting that apoptosis initiation was likely too weak to initiate downstream apoptosis execution. Indeed, experiments in which the mitochondrial apoptosis threshold was lowered by antagonizing Mcl-1 re-established sensitivity to IZI1551+marizomib in otherwise resistant cells. Overall, our study demonstrates a high efficacy of combination treatments with a latest-generation TRAIL receptor agonist and the BBB permeant proteasome inhibitor marizomib in relevant GBM cell models, as well as strategies to further enhance responsiveness and to sensitize subgroups of otherwise resistant GBM cases.
Collapse
|
244
|
Hansson K, Radke K, Aaltonen K, Saarela J, Mañas A, Sjölund J, Smith EM, Pietras K, Påhlman S, Wennerberg K, Gisselsson D, Bexell D. Therapeutic targeting of KSP in preclinical models of high-risk neuroblastoma. Sci Transl Med 2021; 12:12/562/eaba4434. [PMID: 32967973 DOI: 10.1126/scitranslmed.aba4434] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/11/2020] [Accepted: 07/30/2020] [Indexed: 01/05/2023]
Abstract
Neuroblastoma is a childhood malignancy with often dismal prognosis; relapse is common despite intense treatment. Here, we used human tumor organoids representing multiple MYCN-amplified high-risk neuroblastomas to perform a high-throughput drug screen with approved or emerging oncology drugs. Tumor-selective effects were calculated using drug sensitivity scores. Several drugs with previously unreported anti-neuroblastoma effects were identified by stringent selection criteria. ARRY-520, an inhibitor of kinesin spindle protein (KSP), was among those causing reduced viability. High expression of the KSP-encoding gene KIF11 was associated with poor outcome in neuroblastoma. Genome-scale loss-of-function screens in hundreds of human cancer cell lines across 22 tumor types revealed that KIF11 is particularly important for neuroblastoma cell viability. KSP inhibition in neuroblastoma patient-derived xenograft (PDX) cells resulted in the formation of abnormal monoastral spindles, mitotic arrest, up-regulation of mitosis-associated genes, and apoptosis. In vivo, KSP inhibition caused regression of MYCN-amplified neuroblastoma PDX tumors. Furthermore, treatment of mice harboring orthotopic neuroblastoma PDX tumors resulted in increased survival. Our results suggested that KSP inhibition could be a promising treatment strategy in children with high-risk neuroblastoma.
Collapse
Affiliation(s)
- Karin Hansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Katarzyna Radke
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Kristina Aaltonen
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Jani Saarela
- Institute for Molecular Medicine Finland, University of Helsinki, 00290 Helsinki, Finland
| | - Adriana Mañas
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Jonas Sjölund
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Emma M Smith
- Division of Molecular Medicine and Gene Therapy, Lund Strategic Center for Stem Cell Biology, Lund University, 221 84 Lund, Sweden
| | - Kristian Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Sven Påhlman
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden
| | - Krister Wennerberg
- Institute for Molecular Medicine Finland, University of Helsinki, 00290 Helsinki, Finland.,BRIC - Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David Gisselsson
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 85 Lund, Sweden.,Department of Pathology, Laboratory Medicine, Medical Services, University Hospital, 221 84 Lund, Sweden
| | - Daniel Bexell
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, 223 81 Lund, Sweden.
| |
Collapse
|
245
|
Tang T, Wang H, Han Y, Huang H, Niu W, Fei M, Zhu Y. The Role of N-myc Downstream-Regulated Gene Family in Glioma Based on Bioinformatics Analysis. DNA Cell Biol 2021; 40:949-968. [PMID: 34115542 DOI: 10.1089/dna.2020.6216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glioma is the most common type of primary tumor in the central nervous system, and the molecular mechanisms remain elusive. N-myc downstream-regulated gene (NDRG) family is reported to take part in the pathogenesis of various diseases, including some preliminary exploration in glioma. However, there has been no bioinformatics analysis of NDRG family in glioma yet. Herein, we focused on the expression changes of NDRGs with their value in predicting patients' prognoses, upstream regulatory mechanisms (DNA mutation, DNA methylation, transcription factors, and microRNA regulation) and gene enrichment analysis based on co-expressed genes with data from public databases. Furthermore, the expression pattern of NDRGs was verified by the paired glioma and peritumoral samples in our institute. It was suggested that NDRGs were differentially expressed genes in glioma. In particular, the lower expression of NDRG2 or NDRG4 could serve as a predictor of higher grade tumor and poorer prognosis. Also, NDRGs might play a crucial role in signal transduction, energy metabolism, and cross-talk among cells in glioma, under the control of a complex regulatory network. This study enables us to better understand the role of NDRGs in glioma and with further research, it may contribute to the development of glioma treatment.
Collapse
Affiliation(s)
- Ting Tang
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Handong Wang
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| | - Yanling Han
- Department of Neurosurgery, Jinling Hospital, Nanjing, P.R. China
| | - Hanyu Huang
- Department of Neurosurgery, Affiliated Jinling Hospital, Nanjing Medical University, Nanjing, P.R. China
| | - Wenhao Niu
- Department of Neurosurgery, Jinling Hospital, Nanjing, P.R. China
| | - Maoxing Fei
- Department of Neurosurgery, Jinling Hospital, Nanjing, P.R. China
| | - Yihao Zhu
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, P.R. China
| |
Collapse
|
246
|
Xu S, Yan X, Dai G, Luo C. A Novel Mice Model for Studying the Efficacy and IRAEs of Anti-CTLA4 Targeted Immunotherapy. Front Oncol 2021; 11:692403. [PMID: 34178691 PMCID: PMC8222697 DOI: 10.3389/fonc.2021.692403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 01/11/2023] Open
Abstract
Background Patient-derived orthotopic xenograft (PDOX) is a popular animal model for translational cancer research. Immunotherapy is a promising therapy against glioblastoma (GBM). However, the PDOX model is limited to evaluating immune-related events. Our study aims to establish GBM humanized PDOX (HPDOX) mice models to study the mechanism of anti-CTLA4 immunotherapy and immune-related adverse events (IRAEs). Methods HPDOX models were established by culturing GBM tissues and intracranially implanting them in NSG mice. Meanwhile, peripheral blood mononuclear cells (PBMCs) were separated from peripheral blood and of GBM patients and administrated in corresponding mice. The population of CD45+, CD3+, CD4+, CD8+, and regulatory T (Treg) cells was estimated in the peripheral blood or tumor. Results T cells derived from GBM patients were detected in HPDOX mice models. The application of anti-CTLA4 antibodies (ipilimumab and tremelimumab) significantly inhibited the growth of GBM xenografts in mice. Moreover, residual patient T cells were detected in the tumor microenvironment and peripheral blood of HPDOX mice and were significantly elevated by ipilimumab and tremelimumab. Additionally, Treg cells were decreased in mice with IRAEs. Lastly, the proportion of CD4+/CD8+ T cells dramatically increased after the administration of ipilimumab. And the degree of IRAEs may be related to CD56+ expression in HPDOX. Conclusions Our study established HPDOX mice models for investigating the mechanism and IRAEs of immunotherapies in GBM, which would offer a promising platform for evaluating the efficacy and IRAEs of novel therapies and exploring personalized therapeutic strategies.
Collapse
Affiliation(s)
- Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China
| | - Xi Yan
- Health Management Center, Xiangya Hospital of Central South University, Changsha, China
| | - Gan Dai
- Department of Microbiology, Xiangya School of Medicine, Central South University, Changsha, China
| | - Chengke Luo
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
247
|
Garcia-Fabiani MB, Haase S, Comba A, Carney S, McClellan B, Banerjee K, Alghamri MS, Syed F, Kadiyala P, Nunez FJ, Candolfi M, Asad A, Gonzalez N, Aikins ME, Schwendeman A, Moon JJ, Lowenstein PR, Castro MG. Genetic Alterations in Gliomas Remodel the Tumor Immune Microenvironment and Impact Immune-Mediated Therapies. Front Oncol 2021; 11:631037. [PMID: 34168976 PMCID: PMC8217836 DOI: 10.3389/fonc.2021.631037] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/06/2021] [Indexed: 12/13/2022] Open
Abstract
High grade gliomas are malignant brain tumors that arise in the central nervous system, in patients of all ages. Currently, the standard of care, entailing surgery and chemo radiation, exhibits a survival rate of 14-17 months. Thus, there is an urgent need to develop new therapeutic strategies for these malignant brain tumors. Currently, immunotherapies represent an appealing approach to treat malignant gliomas, as the pre-clinical data has been encouraging. However, the translation of the discoveries from the bench to the bedside has not been as successful as with other types of cancer, and no long-lasting clinical benefits have been observed for glioma patients treated with immune-mediated therapies so far. This review aims to discuss our current knowledge about gliomas, their molecular particularities and the impact on the tumor immune microenvironment. Also, we discuss several murine models used to study these therapies pre-clinically and how the model selection can impact the outcomes of the approaches to be tested. Finally, we present different immunotherapy strategies being employed in clinical trials for glioma and the newest developments intended to harness the immune system against these incurable brain tumors.
Collapse
Affiliation(s)
- Maria B. Garcia-Fabiani
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Santiago Haase
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Stephen Carney
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Brandon McClellan
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Immunology graduate program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Kaushik Banerjee
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Mahmoud S. Alghamri
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Faisal Syed
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Padma Kadiyala
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | | | - Marianela Candolfi
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Antonela Asad
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nazareno Gonzalez
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marisa E. Aikins
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - Anna Schwendeman
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
| | - James J. Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
248
|
Reker D, Rybakova Y, Kirtane AR, Cao R, Yang JW, Navamajiti N, Gardner A, Zhang RM, Esfandiary T, L'Heureux J, von Erlach T, Smekalova EM, Leboeuf D, Hess K, Lopes A, Rogner J, Collins J, Tamang SM, Ishida K, Chamberlain P, Yun D, Lytton-Jean A, Soule CK, Cheah JH, Hayward AM, Langer R, Traverso G. Computationally guided high-throughput design of self-assembling drug nanoparticles. NATURE NANOTECHNOLOGY 2021; 16:725-733. [PMID: 33767382 PMCID: PMC8197729 DOI: 10.1038/s41565-021-00870-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/28/2021] [Indexed: 05/22/2023]
Abstract
Nanoformulations of therapeutic drugs are transforming our ability to effectively deliver and treat a myriad of conditions. Often, however, they are complex to produce and exhibit low drug loading, except for nanoparticles formed via co-assembly of drugs and small molecular dyes, which display drug-loading capacities of up to 95%. There is currently no understanding of which of the millions of small-molecule combinations can result in the formation of these nanoparticles. Here we report the integration of machine learning with high-throughput experimentation to enable the rapid and large-scale identification of such nanoformulations. We identified 100 self-assembling drug nanoparticles from 2.1 million pairings, each including one of 788 candidate drugs and one of 2,686 approved excipients. We further characterized two nanoparticles, sorafenib-glycyrrhizin and terbinafine-taurocholic acid both ex vivo and in vivo. We anticipate that our platform can accelerate the development of safer and more efficacious nanoformulations with high drug-loading capacities for a wide range of therapeutics.
Collapse
Affiliation(s)
- Daniel Reker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yulia Rybakova
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ameya R Kirtane
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruonan Cao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Engineering Science, University of Toronto, Toronto, Ontario, Canada
| | - Jee Won Yang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Natsuda Navamajiti
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Biomedical Engineering Program, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Apolonia Gardner
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rosanna M Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tina Esfandiary
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Johanna L'Heureux
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas von Erlach
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elena M Smekalova
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Kaitlyn Hess
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aaron Lopes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaimie Rogner
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Joy Collins
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Siddartha M Tamang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Keiko Ishida
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Paul Chamberlain
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - DongSoo Yun
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Abigail Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Christian K Soule
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jaime H Cheah
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alison M Hayward
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Division of Gastroenterology, Hepatology and Endoscopy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
249
|
Abstract
In this issue, Pine and colleagues compared single-cell RNA-sequencing data across four distinct types of glioblastoma stem cell-derived tumor models, reinforcing the importance of a three-dimensional microenvironment for accurate recapitulation of cellular states.See related article by Pine et al., p. 964.
Collapse
Affiliation(s)
- Xujun Luo
- Department of Neurology and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California
| | - William A Weiss
- Departments of Neurology, Pediatrics, Neurological Surgery, Brain Tumor Research Center, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
250
|
Xie R, Kessler T, Grosch J, Hai L, Venkataramani V, Huang L, Hoffmann DC, Solecki G, Ratliff M, Schlesner M, Wick W, Winkler F. Tumor cell network integration in glioma represents a stemness feature. Neuro Oncol 2021; 23:757-769. [PMID: 33320195 DOI: 10.1093/neuonc/noaa275] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Malignant gliomas including glioblastomas are characterized by a striking cellular heterogeneity, which includes a subpopulation of glioma cells that becomes highly resistant by integration into tumor microtube (TM)-connected multicellular networks. METHODS A novel functional approach to detect, isolate, and characterize glioma cell subpopulations with respect to in vivo network integration is established, combining a dye staining method with intravital two-photon microscopy, Fluorescence-Activated Cell Sorting (FACS), molecular profiling, and gene reporter studies. RESULTS Glioblastoma cells that are part of the TM-connected tumor network show activated neurodevelopmental and glioma progression gene expression pathways. Importantly, many of them revealed profiles indicative of increased cellular stemness, including high expression of nestin. TM-connected glioblastoma cells also had a higher potential for reinitiation of brain tumor growth. Long-term tracking of tumor cell nestin expression in vivo revealed a stronger TM network integration and higher radioresistance of the nestin-high subpopulation. Glioblastoma cells that were both nestin-high and network-integrated were particularly able to adapt to radiotherapy with increased TM formation. CONCLUSION Multiple stem-like features are strongly enriched in a fraction of network-integrated glioma cells, explaining their particular resilience.
Collapse
Affiliation(s)
- Ruifan Xie
- Neurology Clinic and Neurooncology Program and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Neurosurgery, Sino-German Neuro-Oncology Molecular Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tobias Kessler
- Neurology Clinic and Neurooncology Program and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University; Heidelberg, Germany
| | - Julia Grosch
- Neurology Clinic and Neurooncology Program and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ling Hai
- Faculty of Biosciences, Heidelberg University; Heidelberg, Germany.,Bioinformatics and Omics Data Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Varun Venkataramani
- Neurology Clinic and Neurooncology Program and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Lulu Huang
- Neurology Clinic and Neurooncology Program and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk C Hoffmann
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Gergely Solecki
- Neurology Clinic and Neurooncology Program and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Miriam Ratliff
- Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Neurosurgery Clinic, University Hospital Mannheim, Mannheim, Germany
| | | | - Wolfgang Wick
- Neurology Clinic and Neurooncology Program and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and Neurooncology Program and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|