201
|
Lu C, Chen X, Yan Y, Ren X, Wang X, Peng B, Cai Y, Liang Q, Xu Z, Peng J. Aberrant Expression of ADARB1 Facilitates Temozolomide Chemoresistance and Immune Infiltration in Glioblastoma. Front Pharmacol 2022; 13:768743. [PMID: 35177985 PMCID: PMC8844449 DOI: 10.3389/fphar.2022.768743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/10/2022] [Indexed: 02/05/2023] Open
Abstract
Chemoresistance, especially temozolomide (TMZ) resistance, is a major clinical challenge in the treatment of glioblastoma (GBM). Exploring the mechanisms of TMZ resistance could help us identify effective therapies. Adenosine deaminases acting on RNA (ADARs) are very important in RNA modification through regulating the A-to-I RNA editing. Recent studies have shown that ADARs regulate multiple neurotransmitter receptors, which have been linked with the occurrence and progress of GBM. Here, data from several bioinformatics databases demonstrated that adenosine deaminase RNA specific B1 (ADARB1), also named ADAR2, was upregulated in both GBM tissues and cells, and had the prognostic value in GBM patients. Moreover, ADARB1 was found to be involved in AKT-mediated TMZ resistance in GBM cells. The KEGG analysis of ADARB1-associated co-expressed genes showed that ADARB1 was potentially involved in the mitochondrial respiratory chain complex. TISIDB and GEPIA databases were further used to analyze the role of ADARB1 in tumor-immune system interactions in GBM. These findings deepened our understanding of the function of ADARB1 in tumorigenesis and therapeutic response in GBM.
Collapse
Affiliation(s)
- Can Lu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Xinxin Ren
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Bi Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Yuan Cai
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, Xiangya Changde Hospital, Changde, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, China.,Department of Pathology, Xiangya Changde Hospital, Changde, China
| |
Collapse
|
202
|
Jia Y, Wei Z, Zhang S, Yang B, Li Y. Instructive Hydrogels for Primary Tumor Cell Culture: Current Status and Outlook. Adv Healthc Mater 2022; 11:e2102479. [PMID: 35182456 DOI: 10.1002/adhm.202102479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 02/07/2022] [Indexed: 02/06/2023]
Abstract
Primary tumor organoids (PTOs) growth in hydrogels have emerged as an important in vitro model that recapitulates many characteristics of the native tumor tissue, and have important applications in fundamental cancer research and for the development of useful therapeutic treatment. This paper begins with reviewing the methods of isolation of primary tumor cells. Then, recent advances on the instructive hydrogels as biomimetic extracellular matrix for primary tumor cell culture and construction of PTO models are summarized. Emerging microtechnology for growth of PTOs in microscale hydrogels and the applications of PTOs are highlighted. This paper concludes with an outlook on the future directions in the investigation of instructive hydrogels for PTO growth.
Collapse
Affiliation(s)
- Yiyang Jia
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
| | - Zhentong Wei
- Department of Oncologic Gynecology The First Hospital of Jilin University Changchun 130021 China
| | - Songling Zhang
- Department of Oncologic Gynecology The First Hospital of Jilin University Changchun 130021 China
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 China
| | - Yunfeng Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 China
- Joint Laboratory of Opto‐Functional Theranostics in Medicine and Chemistry The First Hospital of Jilin University Changchun 130021 China
| |
Collapse
|
203
|
Soroceanu L, Singer E, Dighe P, Sidorov M, Limbad C, Rodriquez-Brotons A, Rix P, Woo RWL, Dickinson L, Desprez PY, McAllister SD. Cannabidiol Inhibits RAD51 and Sensitizes Glioblastoma to Temozolomide in Multiple Orthotopic Tumor Models. Neurooncol Adv 2022; 4:vdac019. [PMID: 35356807 PMCID: PMC8962752 DOI: 10.1093/noajnl/vdac019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Cannabidiol (CBD), a nonpsychoactive cannabinoid with a low toxicity profile, has been shown to produce antitumor activity across cancers in part through selective production of reactive oxygen species (ROS) in tumor cells. The alkylating agent, temozolomide (TMZ), is standard of care for treatment of glioblastoma (GBM). It can trigger increased ROS to induce DNA damage. It has also been reported that downregulating the expression of RAD51, an important DNA damage repair protein, leads to sensitization of GBM to TMZ. Methods We determined the extent to which CBD enhanced the antitumor activity of TMZ in multiple orthotopic models of GBM. In addition, we investigated the potential for CBD to enhance the antitumor activity of TMZ through production of ROS and modulation of DNA repair pathways. Results CBD enhanced the activity of TMZ in U87 MG and U251 GBM cell lines and in patient-derived primary GBM163 cells leading to stimulation of ROS, activation of the ROS sensor AMP-activated protein kinase (AMPK), and upregulation of the autophagy marker LC3A. CBD produced a sensitization of U87 and GBM163-derived intracranial (i.c.) tumors to TMZ and significantly increased survival of tumor-bearing mice. However, these effects were not observed in orthotopic models derived from GBM with intact methylguanine methyltransferase (MGMT) expression. We further demonstrate that CBD inhibited RAD51 expression in MGMT-methylated models of GBM, providing a potential mechanism for tumor sensitization to TMZ by CBD. Conclusion These data support the potential therapeutic benefits of using CBD to enhance the antitumor activity of TMZ in GBM patients.
Collapse
Affiliation(s)
- Liliana Soroceanu
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Eric Singer
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Pratiksha Dighe
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Max Sidorov
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Chandani Limbad
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | | | - Peter Rix
- Launch Bioscience, San Diego, CA, USA
| | - Rinette W L Woo
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | | | - Pierre-Yves Desprez
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - Sean D McAllister
- California Pacific Medical Center Research Institute, San Francisco, CA, USA
| |
Collapse
|
204
|
Uribe D, Niechi I, Rackov G, Erices JI, San Martín R, Quezada C. Adapt to Persist: Glioblastoma Microenvironment and Epigenetic Regulation on Cell Plasticity. BIOLOGY 2022; 11:313. [PMID: 35205179 PMCID: PMC8869716 DOI: 10.3390/biology11020313] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM) is the most frequent and aggressive brain tumor, characterized by great resistance to treatments, as well as inter- and intra-tumoral heterogeneity. GBM exhibits infiltration, vascularization and hypoxia-associated necrosis, characteristics that shape a unique microenvironment in which diverse cell types are integrated. A subpopulation of cells denominated GBM stem-like cells (GSCs) exhibits multipotency and self-renewal capacity. GSCs are considered the conductors of tumor progression due to their high tumorigenic capacity, enhanced proliferation, invasion and therapeutic resistance compared to non-GSCs cells. GSCs have been classified into two molecular subtypes: proneural and mesenchymal, the latter showing a more aggressive phenotype. Tumor microenvironment and therapy can induce a proneural-to-mesenchymal transition, as a mechanism of adaptation and resistance to treatments. In addition, GSCs can transition between quiescent and proliferative substates, allowing them to persist in different niches and adapt to different stages of tumor progression. Three niches have been described for GSCs: hypoxic/necrotic, invasive and perivascular, enhancing metabolic changes and cellular interactions shaping GSCs phenotype through metabolic changes and cellular interactions that favor their stemness. The phenotypic flexibility of GSCs to adapt to each niche is modulated by dynamic epigenetic modifications. Methylases, demethylases and histone deacetylase are deregulated in GSCs, allowing them to unlock transcriptional programs that are necessary for cell survival and plasticity. In this review, we described the effects of GSCs plasticity on GBM progression, discussing the role of GSCs niches on modulating their phenotype. Finally, we described epigenetic alterations in GSCs that are important for stemness, cell fate and therapeutic resistance.
Collapse
Affiliation(s)
- Daniel Uribe
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Ignacio Niechi
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Gorjana Rackov
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas (CNB-CSIC), 28049 Madrid, Spain;
| | - José I. Erices
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Rody San Martín
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
| | - Claudia Quezada
- Institute of Biochemistry and Microbiology, Faculty of Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile; (D.U.); (I.N.); (J.I.E.); (R.S.M.)
- Millennium Institute on Immunology and Immunotherapy, Universidad Austral de Chile, Valdivia 5090000, Chile
| |
Collapse
|
205
|
Barbieri F, Bosio AG, Pattarozzi A, Tonelli M, Bajetto A, Verduci I, Cianci F, Cannavale G, Palloni LMG, Francesconi V, Thellung S, Fiaschi P, Mazzetti S, Schenone S, Balboni B, Girotto S, Malatesta P, Daga A, Zona G, Mazzanti M, Florio T. Chloride intracellular channel 1 activity is not required for glioblastoma development but its inhibition dictates glioma stem cell responsivity to novel biguanide derivatives. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:53. [PMID: 35135603 PMCID: PMC8822754 DOI: 10.1186/s13046-021-02213-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Chloride intracellular channel-1 (CLIC1) activity controls glioblastoma proliferation. Metformin exerts antitumor effects in glioblastoma stem cells (GSCs) inhibiting CLIC1 activity, but its low potency hampers its translation in clinical settings.
Methods
We synthesized a small library of novel biguanide-based compounds that were tested as antiproliferative agents for GSCs derived from human glioblastomas, in vitro using 2D and 3D cultures and in vivo in the zebrafish model. Compounds were compared to metformin for both potency and efficacy in the inhibition of GSC proliferation in vitro (MTT, Trypan blue exclusion assays, and EdU labeling) and in vivo (zebrafish model), migration (Boyden chamber assay), invasiveness (Matrigel invasion assay), self-renewal (spherogenesis assay), and CLIC1 activity (electrophysiology recordings), as well as for the absence of off-target toxicity (effects on normal stem cells and toxicity for zebrafish and chick embryos).
Results
We identified Q48 and Q54 as two novel CLIC1 blockers, characterized by higher antiproliferative potency than metformin in vitro, in both GSC 2D cultures and 3D spheroids. Q48 and Q54 also impaired GSC self-renewal, migration and invasion, and displayed low systemic in vivo toxicity. Q54 reduced in vivo proliferation of GSCs xenotransplanted in zebrafish hindbrain. Target specificity was confirmed by recombinant CLIC1 binding experiments using microscale thermophoresis approach. Finally, we characterized GSCs from GBMs spontaneously expressing low CLIC1 protein, demonstrating their ability to grow in vivo and to retain stem-like phenotype and functional features in vitro. In these GSCs, Q48 and Q54 displayed reduced potency and efficacy as antiproliferative agents as compared to high CLIC1-expressing tumors. However, in 3D cultures, metformin and Q48 (but not Q54) inhibited proliferation, which was dependent on the inhibition dihydrofolate reductase activity.
Conclusions
These data highlight that, while CLIC1 is dispensable for the development of a subset of glioblastomas, it acts as a booster of proliferation in the majority of these tumors and its functional expression is required for biguanide antitumor class-effects. In particular, the biguanide-based derivatives Q48 and Q54, represent the leads to develop novel compounds endowed with better pharmacological profiles than metformin, to act as CLIC1-blockers for the treatment of CLIC1-expressing glioblastomas, in a precision medicine approach.
Collapse
|
206
|
Jiang L, Hao Y, Shao C, Wu Q, Prager BC, Gimple RC, Sulli G, Kim LJ, Zhang G, Qiu Z, Zhu Z, Fu XD, Rich JN. ADAR1-mediated RNA editing links ganglioside catabolism to glioblastoma stem cell maintenance. J Clin Invest 2022; 132:143397. [PMID: 35133980 PMCID: PMC8920333 DOI: 10.1172/jci143397] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary malignant brain tumor, containing GBM stem cells (GSCs) that contribute to therapeutic resistance and relapse. Exposing potential GSC vulnerabilities may provide therapeutic strategies against GBM. Here, we interrogated the role of Adenosine-to-Inosine (A-to-I) RNA editing mediated by ADAR1 (adenosine deaminase acting on RNA 1) in GSCs and found that both ADAR1 and global RNA editomes were elevated in GSCs compared to normal neural stem cells (NSCs). ADAR1 inactivation or blocking the upstream JAK/STAT pathway through TYK2 inhibition impaired GSC self-renewal and stemness. Downstream of ADAR1, RNA editing of the 3'UTR of GM2A, a key ganglioside catabolism activator, proved to be critical, as interfering with ganglioside catabolism showed similar functional impact on GSCs as ADAR1 disruption. These findings reveal RNA editing links ganglioside catabolism to GSC self-renewal and stemness, exposing a potential vulnerability of GBM for therapeutic intervention.
Collapse
Affiliation(s)
- Li Jiang
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Yajing Hao
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States of America
| | - Changwei Shao
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States of America
| | - Qiulian Wu
- Hillman Cancer Center, Cancer Institute, University of Pittsburgh, Pittsburgh, United States of America
| | - Briana C Prager
- Stem Cell Biology, Cleveland Clinic, Cleveland, United States of America
| | - Ryan C Gimple
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Gabriele Sulli
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Leo Jk Kim
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Guoxin Zhang
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Zhixin Qiu
- Hillman Cancer Center, Cancer Institute, University of Pittsburgh, Pittsburgh, United States of America
| | - Zhe Zhu
- Department of Medicine, University of California, San Diego, San Diego, United States of America
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States of America
| | - Jeremy N Rich
- Hillman Cancer Center, Cancer Institute, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
207
|
Heffernan JM, McNamara JB, Vernon BL, Mehta S, Sirianni RW. PNJ scaffolds promote microenvironmental regulation of glioblastoma stem-like cell enrichment and radioresistance. Biomater Sci 2022; 10:819-833. [PMID: 34994746 PMCID: PMC8939461 DOI: 10.1039/d0bm01169j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glioblastoma (GBM) brain tumors contain a subpopulation of self-renewing multipotent Glioblastoma stem-like cells (GSCs) that are believed to drive the near inevitable recurrence of GBM. We previously engineered temperature responsive scaffolds based on the polymer poly(N-isopropylacrylamide-co-Jeffamine M-1000 acrylamide) (PNJ) for the purpose of enriching GSCs in vitro from patient-derived samples. Here, we used PNJ scaffolds to study microenvironmental regulation of self-renewal and radiation response in patient-derived GSCs representing classical and proneural subtypes. GSC self-renewal was regulated by the composition of PNJ scaffolds and varied with cell type. PNJ scaffolds protected against radiation-induced cell death, particularly in conditions that also promoted GSC self-renewal. Additionally, cells cultured in PNJ scaffolds exhibited increased expression of the transcription factor HIF2α, which was not observed in neurosphere culture, providing a potential mechanistic basis for differences in radio-resistance. Differences in PNJ regulation of HIF2α in irradiated and untreated conditions also offered evidence of stem plasticity. These data show PNJ scaffolds provide a unique biomaterial for evaluating dynamic microenvironmental regulation of GSC self-renewal, radioresistance, and stem plasticity.
Collapse
Affiliation(s)
- John M. Heffernan
- Ivy Brain Tumor Center, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA, School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, USA, Sonoran Biosciences, 1048 E Knight Ln, Tempe, AZ, USA
| | - James B. McNamara
- Ivy Brain Tumor Center, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA, Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, USA
| | - Brent L. Vernon
- School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, USA
| | - Shwetal Mehta
- Ivy Brain Tumor Center, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA
| | - Rachael W. Sirianni
- Ivy Brain Tumor Center, Barrow Neurological Institute, 350 W Thomas Rd, Phoenix, AZ 85013, USA, School of Biological and Health Systems Engineering, Arizona State University, PO Box 879709, Tempe, AZ 85287, USA, Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX 77030, USA
| |
Collapse
|
208
|
Dekker LJM, Verheul C, Wensveen N, Leenders W, Lamfers MLM, Leenstra S, Luider TM. Effects of the IDH1 R132H Mutation on the Energy Metabolism: A Comparison between Tissue and Corresponding Primary Glioma Cell Cultures. ACS OMEGA 2022; 7:3568-3578. [PMID: 35128264 PMCID: PMC8811756 DOI: 10.1021/acsomega.1c06121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/24/2021] [Indexed: 05/03/2023]
Abstract
The R132H mutation in the metabolic enzyme isocitrate dehydrogenase 1 (IDH1) is the most important prognostic factor for the survival of glioma patients. Subsequent studies led to the discovery of a panel of enzymes mainly involved in glutamate anaplerosis and aerobic glycolysis that change in abundance as a result of the IDH1 mutation. To further study these changes, appropriate glioma models are required that accurately mimic in vivo metabolism. To investigate how metabolism is affected by in vitro cell culture, we here compared surgically obtained snap-frozen glioma tissues with their corresponding primary glioma cell culture models with a previously developed targeted mass spectrometry proteomic assay. We determined the relative abundance of a panel of metabolic enzymes. Results confirmed increased glutamate use and decreased aerobic glycolysis in resected IDH1 R132H glioma tissue samples. However, these metabolic profiles were not reflected in the paired glioma primary cell cultures. We suggest that culture conditions and tumor microenvironment play a crucial role in maintaining the in vivo metabolic situation in cell culture models. For this reason, new models that more closely resemble the in vivo microenvironment, such as three-dimensional cell co-cultures or organotypic multicellular spheroid models, need to be developed and investigated.
Collapse
Affiliation(s)
- Lennard J M Dekker
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus MC, Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Cassandra Verheul
- Department of Neurosurgery, Erasmus MC, Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Nicky Wensveen
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus MC, Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - William Leenders
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martine L M Lamfers
- Department of Neurosurgery, Erasmus MC, Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Erasmus MC, Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Theo M Luider
- Laboratories of Neuro-Oncology/Clinical and Cancer Proteomics, Department of Neurology, Erasmus MC, Rotterdam, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
209
|
Li J, Fan H, Zhou X, Xiang Y, Liu Y. Prognostic Significance and Gene Co-Expression Network of PLAU and PLAUR in Gliomas. Front Oncol 2022; 11:602321. [PMID: 35087738 PMCID: PMC8787124 DOI: 10.3389/fonc.2021.602321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
The urokinase-type plasminogen activator(PLAU) and its receptor PLAUR participate in a series of cell physiological activities on the extracellular surface. Abnormal expression of PLAU and PLAUR is associated with tumorigenesis. This study aims to evaluate the prognostic value of PLAU/PLAUR transcription expression in glioma and to explore how they affect the generation and progression of glioma. In this study, online databases are applied, such as Oncomine, GEPIA, CGGA, cBioPortal, and LinkedOmics. Overexpression of PLAU/PLAUR was found to be significantly associated with clinical variables including age, tumor type, WHO grade, histology, IDH-1 mutation, and 1p19q status. PLAU and PLAUR had a high correlation in transcriptional expression levels. High expression of PLAU and PLAUR predicted a poor prognosis in primary glioma and recurrent glioma patients, especially in lower grade gliomas. Cox regression analysis indicated that high expression of PLAU and PLAUR were independent prognostic factors for shorter overall survival in glioma patients. In gene co-expression network analysis PLAU and PLAUR and their co-expression genes were found to be involved in inflammatory activities and tumor-related signaling pathways. In conclusion, PLAU and PLAUR could be promising prognostic biomarkers and potential therapeutic targets of glioma patients.
Collapse
Affiliation(s)
- Junhong Li
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Huanhuan Fan
- West China Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xingwang Zhou
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yufan Xiang
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yanhui Liu
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
210
|
Liu F, Peng B, Li M, Ma J, Deng G, Zhang S, Sheu WC, Zou P, Wu H, Liu J, Chen AT, Mohammed FS, Zhou J. Targeted disruption of tumor vasculature via polyphenol nanoparticles to improve brain cancer treatment. CELL REPORTS. PHYSICAL SCIENCE 2022; 3:100691. [PMID: 35199059 PMCID: PMC8863382 DOI: 10.1016/j.xcrp.2021.100691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Despite being effective for many other solid tumors, traditional anti-angiogenic therapy has been shown to be insufficient for the treatment of malignant glioma. Here, we report the development of polyphenol nanoparticles (NPs), which not only inhibit the formation of new vessels but also enable targeted disruption of the existing tumor vasculature. The NPs are synthesized through a combinatory iron-coordination and polymer-stabilization approach, which allows for high drug loading and intrinsic tumor vessel targeting. We study a lead NP consisting of quercetin and find that the NP after intravenous administration preferentially binds to VEGFR2, which is overexpressed in tumor vasculature. We demonstrate that the binding is mediated by quercetin, and the interaction of NPs with VEGFR2 leads to disruption of the existing tumor vasculature and inhibition of new vessel development. As a result, systemic treatment with the NPs effectively inhibits tumor growth and increases drug delivery to tumors.
Collapse
Affiliation(s)
- Fuyao Liu
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Bin Peng
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Miao Li
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Junning Ma
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Gang Deng
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Shenqi Zhang
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Wendy C. Sheu
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Pan Zou
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Haoan Wu
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Jun Liu
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
| | - Ann T. Chen
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Farrah S. Mohammed
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University, New Haven, CT 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT 06510, USA
- Lead contact
- Correspondence:
| |
Collapse
|
211
|
Nishida K, Sekida S, Anada T, Tanaka M. Modulation of Biological Responses of Tumor Cells Adhered to Poly(2-methoxyethyl acrylate) with Increasing Cell Viability under Serum-Free Conditions. ACS Biomater Sci Eng 2022; 8:672-681. [PMID: 35037460 DOI: 10.1021/acsbiomaterials.1c01469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Circulating tumor cells in body fluids are important biomarkers in cancer diagnosis. The culture of tumor cells isolated from body fluids can provide intrinsic information about tumors and can be used to screen for the best anticancer drugs. However, the culture of primary tumor cells has been hindered by their low viability and difficulties in recapitulating the phenotype of primary tumors in in vitro culture. The culture of tumor cells under serum-free conditions is one of the methodologies to maintain the phenotype and genotype of primary tumors. Poly(2-methoxyethyl acrylate) (PMEA)-coated substrates have been investigated to prolong the proliferation of tumor cells under serum-free conditions. In this study, we investigated the detailed behavior and the mechanism of the increase in tumor cell viability after adherence to PMEA substrates. The blebbing formation of tumor cells on PMEA was attributed not to apoptosis but to the low adhesion strength of cells on PMEA. Moreover, blebbing tumor cells showed amoeboid movement and formed clusters with other cells via N-cadherin, leading to an increase in tumor cell viability. Furthermore, the behaviors of tumor cells adhered to PMEA under serum-free conditions were involved in the activation of the PI3K and Rho-associated protein kinase pathways. Thus, we propose that PMEA would be suitable for the development of devices to cultivate primary tumor cells under serum-free conditions for the label-free diagnosis of cancer.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shogo Sekida
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
212
|
Pacini L, Cabal VN, Hermsen MA, Huang PH. EGFR Exon 20 Insertion Mutations in Sinonasal Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:394. [PMID: 35053553 PMCID: PMC8774177 DOI: 10.3390/cancers14020394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/27/2022] Open
Abstract
Recurrent epidermal growth factor receptor (EGFR)-activating mutations have been identified in a rare form of head and neck cancer known as sinonasal squamous cell carcinoma (SNSCC), a malignant disease with a 5-year mortality rate of ~40%. Interestingly, the majority of EGFR mutations identified in patients with primary SNSCC are exon 20 insertions (Ex20ins), which is in contrast to non-small-cell lung cancer (NSCLC), where the EGFR exon 19 deletion and L858R mutations predominate. These studies demonstrate that EGFR Ex20ins mutations are not exclusive to lung cancer as previously believed, but are also involved in driving SNSCC pathogenesis. Here we review the landscape of EGFR mutations in SNSCC, with a particular focus on SNSCC associated with inverted sinonasal papilloma (ISP), a benign epithelial neoplasm. Taking lessons from NSCLC, we also discuss potential new treatment options for ISP-associated SNSCC harbouring EGFR Ex20ins in the context of targeted therapies, drug resistance and precision cancer medicine. Moving forward, further basic and translational work is needed to delineate the biology of EGFR Ex20ins in SNSCC in order to develop more effective treatments for patients with this rare disease.
Collapse
Affiliation(s)
- Laura Pacini
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM2 5NG, UK;
| | - Virginia N. Cabal
- Department Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Centro de Investigación Biomédica en Red (CIBER-ONC), 33011 Oviedo, Spain; (V.N.C.); (M.A.H.)
| | - Mario A. Hermsen
- Department Head and Neck Cancer, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Centro de Investigación Biomédica en Red (CIBER-ONC), 33011 Oviedo, Spain; (V.N.C.); (M.A.H.)
| | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM2 5NG, UK;
| |
Collapse
|
213
|
Malacrida A, Di Domizio A, Bentivegna A, Cislaghi G, Messuti E, Tabano SM, Giussani C, Zuliani V, Rivara M, Nicolini G. MV1035 Overcomes Temozolomide Resistance in Patient-Derived Glioblastoma Stem Cell Lines. BIOLOGY 2022; 11:70. [PMID: 35053068 PMCID: PMC8772739 DOI: 10.3390/biology11010070] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022]
Abstract
Glioblastoma (GBM, grade IV glioma) represents the most aggressive brain tumor and patients with GBM have a poor prognosis. Until now surgical resection followed by radiotherapy and temozolomide (TMZ) treatment represents the standard strategy for GBM. We showed that the imidazobenzoxazin-5-thione MV1035 is able to significantly reduce GBM U87-MG cells migration and invasiveness through inhibition of the RNA demethylase ALKBH5. In this work, we focus on the DNA repair protein ALKBH2, a further MV1035 target resulting from SPILLO-PBSS proteome-wide scale in silico analysis. Our data demonstrate that MV1035 inhibits the activity of ALKBH2, known to be involved in GBM TMZ resistance. MV1035 was used on both U87-MG and two patient-derived (PD) glioma stem cells (GSCs): in combination with TMZ, it has a significant synergistic effect in reducing cell viability and sphere formation. Moreover, MV1035 induces a reduction in MGMT expression in PD-GSCs cell lines most likely through a mechanism that acts on MGMT promoter methylation. Taken together our data show that MV1035 could act as an inhibitor potentially helpful to overcome TMZ resistance and able to reduce GBM migration and invasiveness.
Collapse
Affiliation(s)
- Alessio Malacrida
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (A.M.); (A.B.); (E.M.); (C.G.); (G.N.)
- Milan Center for Neuroscience, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milan, Italy
| | | | - Angela Bentivegna
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (A.M.); (A.B.); (E.M.); (C.G.); (G.N.)
- Milan Center for Neuroscience, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milan, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Giacomo Cislaghi
- SPILLOproject, Via Stradivari 17, 20037 Paderno Dugnano, Italy; (A.D.D.); (G.C.)
| | - Eleonora Messuti
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (A.M.); (A.B.); (E.M.); (C.G.); (G.N.)
| | - Silvia Maria Tabano
- Laboratory of Medical Genetics, IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy;
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Carlo Giussani
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (A.M.); (A.B.); (E.M.); (C.G.); (G.N.)
- Neurosurgery Unit, Department of Neuroscience, S. Gerardo Hospital, 20900 Monza, Italy
| | - Valentina Zuliani
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
| | - Mirko Rivara
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
| | - Gabriella Nicolini
- School of Medicine and Surgery, University of Milano-Bicocca, Via Cadore 48, 20900 Monza, Italy; (A.M.); (A.B.); (E.M.); (C.G.); (G.N.)
- Milan Center for Neuroscience, University of Milano-Bicocca, Piazza dell’Ateneo Nuovo 1, 20126 Milan, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
214
|
Del Valle L, Reiss K, Parker Struckhoff A. Culture and Phenotyping of Glial Cell Cultures, Gliospheres, and Neurospheres. Methods Mol Biol 2022; 2422:217-232. [PMID: 34859409 DOI: 10.1007/978-1-0716-1948-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell cultures constitute an important tool for research as a way to reproduce pathological processes in a controlled system. However, the culture of brain-derived cells in monolayer presents significant challenges that obscure the fidelity of in vitro results. After a few number of passages, glial and neuronal cells begin to lose their morphological characteristics, and most importantly, their specific cellular markers and phenotype. In recent years, the discovery of neural progenitor cells, and the methodology to culture them in suspension maintaining their potentiality while still retaining the ability to differentiate into astrocytes, oligodendrocytes and neurons has been a significant contribution to the fields of neuroscience and neuropathology.In the brain, progenitor cells are located in the Germinal Matrix, the subventricular zone in what later would become the basal ganglia, and play an essential role in the homeostasis of the brain by providing the source to replace differentiated cells that have been lost or damaged by different pathological processes, such as senescence, injury, genetic conditions, or disease. The discovery of these neural stem cells in an organ traditionally thought to have limited or no regenerative capacity has opened the door to the development of novel treatments, which include cell replacement therapy. Here we describe the culture and differentiation of neural progenitor cells into neurospheres, and the phenotyping of the resulting cells using immunocytochemistry . The immunocytological methods outlined are not restricted to the analysis of neurosphere-derived cultures but are also applicable for cell typing of primary glial or cell line-derived samples.
Collapse
Affiliation(s)
- Luis Del Valle
- Department of Pathology and Medicine & Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA.
| | - Krzysztof Reiss
- Departments of Medicine & Neurological Cancer Research, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Amanda Parker Struckhoff
- Neurological Cancer Research, Louisiana Cancer Research Center, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
215
|
Orthotopic brain tumor models derived from glioblastoma stem-like cells. Methods Cell Biol 2022; 170:1-19. [DOI: 10.1016/bs.mcb.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
216
|
Belyashova AS, Galkin MV, Antipina NA, Pavlova GV, Golanov AV. Cell cultures in assessing radioresistance of glioblastomas. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2022; 86:126-132. [PMID: 36252203 DOI: 10.17116/neiro202286051126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
To date, no modern methods of treatment allow overcoming malignant potential of glial neoplasms and significant increase of survival. Analysis of glioblastoma radioresistance using cancer cell cultures is one of the perspective directions, as radiotherapy is standard and available treatment method for these neoplasms. This review summarizes current studies identifying many factors of radioresistance of glial tumors, such as hypoxia, microenvironment and metabolic features of tumor, stem cells, internal heterogeneity of tumor, microRNA, features of cell cycle, DNA damage and reparation. We obtained data on involvement of various molecular pathways in development of radioresistance such as MEK/ERK, c-MYC, PI3K/Akt, PTEN, Wnt, JAK/STAT, Notch, etc. Changes in activity of RAD51 APC, FZD1, LEF1, TCF4, WISP1, p53 and many others are determined in radioresistant cells. Further study of radioresistance pathways will allow development of specific target aptamers and inhibitors.
Collapse
Affiliation(s)
| | - M V Galkin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | | - G V Pavlova
- Burdenko Neurosurgical Center, Moscow, Russia
| | - A V Golanov
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
217
|
Zhou Z, Cong L, Cong X. Patient-Derived Organoids in Precision Medicine: Drug Screening, Organoid-on-a-Chip and Living Organoid Biobank. Front Oncol 2021; 11:762184. [PMID: 35036354 PMCID: PMC8755639 DOI: 10.3389/fonc.2021.762184] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Organoids are in vitro self-assembling, organ-like, three-dimensional cellular structures that stably retain key characteristics of the respective organs. Organoids can be generated from healthy or pathological tissues derived from patients. Cancer organoid culture platforms have several advantages, including conservation of the cellular composition that captures the heterogeneity and pharmacotypic signatures of the parental tumor. This platform has provided new opportunities to fill the gap between cancer research and clinical outcomes. Clinical trials have been performed using patient-derived organoids (PDO) as a tool for personalized medical decisions to predict patients' responses to therapeutic regimens and potentially improve treatment outcomes. Living organoid biobanks encompassing several cancer types have been established, providing a representative collection of well-characterized models that will facilitate drug development. In this review, we highlight recent developments in the generation of organoid cultures and PDO biobanks, in preclinical drug discovery, and methods to design a functional organoid-on-a-chip combined with microfluidic. In addition, we discuss the advantages as well as limitations of human organoids in patient-specific therapy and highlight possible future directions.
Collapse
Affiliation(s)
- Zilong Zhou
- Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lele Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianling Cong
- Department of Dermatology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
218
|
Fauß J, Sprang B, Leukel P, Sommer C, Nikolova T, Ringel F, Kim EL. ALDH1A3 Segregated Expression and Nucleus-Associated Proteasomal Degradation Are Common Traits of Glioblastoma Stem Cells. Biomedicines 2021; 10:biomedicines10010007. [PMID: 35052687 PMCID: PMC8772809 DOI: 10.3390/biomedicines10010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
Aldehyde dehydrogenase 1 isoforms A1 and A3 have been implicated as functional biomarkers associated with distinct molecular subtypes of glioblastoma and glioblastoma stem cells. However, the exact roles of these isoforms in different types of glioma cells remain unclear. The purpose of this study was to dissect the association of A1 or A3 isoforms with stem and non-stem glioblastoma cells. This study has undertaken a systematic characterization of A1 and A3 proteins in glioblastoma tissues and a panel of glioblastoma stem cells using immunocytochemical and immunofluorescence staining, Western blot and the subcellular fractionation methodology. Our main findings are (i) human GSCs express uniformly ALDH1A3 but not the ALDH1A1 isoform whereas non-stem glioma cells comparably express both isoforms; (ii) there is an abundance of ALDH1A3 peptides that prevail over the full-length form in glioblastoma stem cells but not in non-stem glioma cells; (iii) full-length ALDH1A3 and ALDH1A3 peptides are spatially segregated within the cell; and (vi) the abundance of full-length ALDH1A3 and ALDH1A3 peptides is sensitive to MG132-mediated proteasomal inhibition. Our study further supports the association of ALDH1A3 with glioblastoma stem cells and provide evidence for the regulation of ALDH1A3 activities at the level of protein turnover.
Collapse
Affiliation(s)
- Julian Fauß
- Laboratory of Experimental Neurooncology, Department of Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany; (J.F.); (B.S.)
| | - Bettina Sprang
- Laboratory of Experimental Neurooncology, Department of Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany; (J.F.); (B.S.)
| | - Petra Leukel
- Institute of Neuropathology, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany; (P.L.); (C.S.)
| | - Clemens Sommer
- Institute of Neuropathology, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany; (P.L.); (C.S.)
| | - Teodora Nikolova
- Institute of Toxicology, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany;
| | - Florian Ringel
- Department of Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany;
| | - Ella L. Kim
- Laboratory of Experimental Neurooncology, Department of Neurosurgery, Johannes Gutenberg University Medical Centre, 55131 Mainz, Germany; (J.F.); (B.S.)
- Correspondence:
| |
Collapse
|
219
|
Głów D, Maire CL, Schwarze LI, Lamszus K, Fehse B. CRISPR-to-Kill (C2K)-Employing the Bacterial Immune System to Kill Cancer Cells. Cancers (Basel) 2021; 13:cancers13246306. [PMID: 34944926 PMCID: PMC8699370 DOI: 10.3390/cancers13246306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Reasoning that multiple DNA breaks will trigger programmed cell death, we generated lentiviral CRISPR-to-kill (C2K) vectors targeting highly repetitive SINE sequences for cancer gene therapy. In proof-of-concept experiments, C2K-Alu-vectors selectively killed human, but not murine cell lines, and efficiently inhibited the growth of patient-derived glioblastoma cell lines resistant to high-dose irradiation. In combination with tumor-targeting approaches, the C2K system might represent a promising tool for cancer gene therapy. Abstract CRISPR/Cas9 was described as a bacterial immune system that uses targeted introduction of DNA double-strand breaks (DSBs) to destroy invaders. We hypothesized that we can analogously employ CRISPR/Cas9 nucleases to kill cancer cells by inducing maximal numbers of DSBs in their genome and thus triggering programmed cell death. To do so, we generated CRISPR-to-kill (C2K) lentiviral particles targeting highly repetitive Short Interspersed Nuclear Element-Alu sequences. Our Alu-specific sgRNA has more than 15,000 perfectly matched target sites within the human genome. C2K-Alu-vectors selectively killed human, but not murine cell lines. More importantly, they efficiently inhibited the growth of cancer cells including patient-derived glioblastoma cell lines resistant to high-dose irradiation. Our data provide proof-of-concept for the potential of C2K as a novel treatment strategy overcoming common resistance mechanisms. In combination with tumor-targeting approaches, the C2K system might therefore represent a promising tool for cancer gene therapy.
Collapse
Affiliation(s)
- Dawid Głów
- Research Department, Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.G.); (L.I.S.)
| | - Cecile L. Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (C.L.M.); (K.L.)
| | - Lea Isabell Schwarze
- Research Department, Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.G.); (L.I.S.)
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (C.L.M.); (K.L.)
| | - Boris Fehse
- Research Department, Cell and Gene Therapy, Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany; (D.G.); (L.I.S.)
- Correspondence: ; Tel.: +49-40-7410-55518; Fax: +49-40-7410-55468
| |
Collapse
|
220
|
The Impact of Astrocytes and Endothelial Cells on Glioblastoma Stemness Marker Expression in Multicellular Spheroids. Cell Mol Bioeng 2021; 14:639-651. [PMID: 34900016 DOI: 10.1007/s12195-021-00691-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 07/12/2021] [Indexed: 10/20/2022] Open
Abstract
Introduction Glioblastoma multiforme (GBM), the most common primary brain tumor in adults, is extremely malignant and lethal. GBM tumors are highly heterogenous, being comprised of cellular and matrix components, which contribute to tumor cell invasion, cancer stem cell maintenance, and drug resistance. Here, we developed a heterotypic 3D spheroid model integrating GBM cells with astrocytes and endothelial cells (ECs) to better simulate the cellular components of the tumor microenvironment and investigate their impact on the stemness marker expression of GBM cells, which has not been previously investigated. Methods We used U87 GBM cells, C8-D1A mouse astrocytes, and human umbilical vein ECs to construct co- and tri-culture spheroid models in low-attachment U-well plates. We characterized the expression of known stemness markers NESTIN, SOX2, CD133, NANOG, and OCT4 in these models and compared it to respective mixed monoculture spheroids (control) using qRT-PCR and immunostaining. Results We incorporated GBM cells and astrocytes/ECs in 1:1, 1:2, 1:4, and 1:9 ratio and observed spontaneous self-assembled spheroids in all coculture conditions. We observed changing spheroid size dynamics over 7 days and an increased expression in stemness markers in GBM-astrocyte and GBM-EC coculture spheroids in 1:4 and 1:9 coculture conditions, respectively. In a triculture model employing GBM cells, astrocytes, and ECs in a 1:4:9 ratio, we found an increased expression of all the stemness markers. Conclusions We elucidated the impact of astrocytes and ECs on GBM stemness marker expression. This multicellular spheroid model may provide an important tool for investigating the crosstalk between cell types in GBM. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-021-00691-y.
Collapse
|
221
|
Can ECIS Biosensor Technology Be Used to Measure the Cellular Responses of Glioblastoma Stem Cells? BIOSENSORS 2021; 11:bios11120498. [PMID: 34940255 PMCID: PMC8699647 DOI: 10.3390/bios11120498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 01/04/2023]
Abstract
Glioblastoma is considered the most aggressive and lethal form of brain cancer. Glioblastoma tumours are complex, comprising a spectrum of oncogenically transformed cells displaying distinct phenotypes. These can be generated in culture and are called differentiated-glioblastoma cells and glioblastoma stem cells. These cells are phenotypically and functionally distinct, where the stem-like glioblastoma cells give rise to and perpetuate the tumour. Electric cell-substrate impedance sensing (ECIS) is a real-time, label-free, impedance-based method for the analysis of cellular behaviour, based on cellular adhesion. Therefore, we asked the question of whether ECIS was suitable for, and capable of measuring the adhesion of glioblastoma cells. The goal was to identify whether ECIS was capable of measuring glioblastoma cell adhesion, with a particular focus on the glioblastoma stem cells. We reveal that ECIS reliably measures adhesion of the differentiated glioblastoma cells on various array types. We also demonstrate the ability of ECIS to measure the migratory behaviour of differentiated glioblastoma cells onto ECIS electrodes post-ablation. Although the glioblastoma stem cells are adherent, ECIS is substantially less capable at reliably measuring their adhesion, compared with the differentiated counterparts. This means that ECIS has applicability for some glioblastoma cultures but much less utility for weakly adherent stem cell counterparts.
Collapse
|
222
|
Bahmad HF, Daher D, Aljamal AA, Elajami MK, Oh KS, Alvarez Moreno JC, Delgado R, Suarez R, Zaldivar A, Azimi R, Castellano A, Sackstein R, Poppiti RJ. Repurposing of Anticancer Stem Cell Drugs in Brain Tumors. J Histochem Cytochem 2021; 69:749-773. [PMID: 34165342 PMCID: PMC8647630 DOI: 10.1369/00221554211025482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022] Open
Abstract
Brain tumors in adults may be infrequent when compared with other cancer etiologies, but they remain one of the deadliest with bleak survival rates. Current treatment modalities encompass surgical resection, chemotherapy, and radiotherapy. However, increasing resistance rates are being witnessed, and this has been attributed, in part, to cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells that reside within the tumor bulk and have the capacity for self-renewal and can differentiate and proliferate into multiple cell lineages. Studying those CSCs enables an increasing understanding of carcinogenesis, and targeting CSCs may overcome existing treatment resistance. One approach to weaponize new drugs is to target these CSCs through drug repurposing which entails using drugs, which are Food and Drug Administration-approved and safe for one defined disease, for a new indication. This approach serves to save both time and money that would otherwise be spent in designing a totally new therapy. In this review, we will illustrate drug repurposing strategies that have been used in brain tumors and then further elaborate on how these approaches, specifically those that target the resident CSCs, can help take the field of drug repurposing to a new level.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Darine Daher
- Faculty of Medicine, American University of
Beirut, Beirut, Lebanon
| | - Abed A. Aljamal
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Mohamad K. Elajami
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Kei Shing Oh
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Juan Carlos Alvarez Moreno
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Ruben Delgado
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Richard Suarez
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Ana Zaldivar
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Roshanak Azimi
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Amilcar Castellano
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Robert Sackstein
- Department of Translational Medicine,
Translational Glycobiology Institute, Herbert Wertheim College of Medicine,
Florida International University, Miami, Florida
| | - Robert J. Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
223
|
Tachon G, Masliantsev K, Rivet P, Desette A, Milin S, Gueret E, Wager M, Karayan-Tapon L, Guichet PO. MEOX2 Transcription Factor Is Involved in Survival and Adhesion of Glioma Stem-like Cells. Cancers (Basel) 2021; 13:cancers13235943. [PMID: 34885053 PMCID: PMC8672280 DOI: 10.3390/cancers13235943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Glioblastoma is the most common and lethal primary brain tumor for which no curative treatment currently exists. In our previous work, we showed that MEOX2 was associated with a poor patient prognosis but its biological involvement in tumor development remains ill defined. To this purpose, the aim of our study was to investigate the role of MEOX2 in patient-derived glioblastoma cell cultures. We unraveled the MEOX2 contribution to cell viability and growth and its potential involvement in phenotype and adhesion properties of glioblastoma cells. This work paves the way toward a better understanding of the role of MEOX2 in the pathophysiology of primary brain tumors. Abstract The high expression of MEOX2 transcription factor is closely associated with poor overall survival in glioma. MEOX2 has recently been described as an interesting prognostic biomarker, especially for lower grade glioma. MEOX2 has never been studied in glioma stem-like cells (GSC), responsible for glioma recurrence. The aim of our study was to investigate the role of MEOX2 in GSC. Loss of function approach using siRNA was used to assess the impact of MEOX2 on GSC viability and stemness phenotype. MEOX2 was localized in the nucleus and its expression was heterogeneous between GSCs. MEOX2 expression depends on the methylation state of its promoter and is strongly associated with IDH mutations. MEOX2 is involved in cell proliferation and viability regulation through ERK/MAPK and PI3K/AKT pathways. MEOX2 loss of function correlated with GSC differentiation and acquisition of neuronal lineage characteristics. Besides, inhibition of MEOX2 is correlated with increased expression of CDH10 and decreased pFAK. In this study, we unraveled, for the first time, MEOX2 contribution to cell viability and proliferation through AKT/ERK pathway and its potential involvement in phenotype and adhesion properties of GSC.
Collapse
Affiliation(s)
- Gaëlle Tachon
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Konstantin Masliantsev
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Pierre Rivet
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Amandine Desette
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
| | - Serge Milin
- Service d’Anatomo-Cytopathologie, CHU Poitiers, 86000 Poitiers, France;
| | - Elise Gueret
- Université Montpellier, CNRS, INSERM, 34094 Montpellier, France;
- Montpellier GenomiX, France Génomique, 34095 Montpellier, France
| | - Michel Wager
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Service de Neurochirurgie, CHU Poitiers, 86000 Poitiers, France
| | - Lucie Karayan-Tapon
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
- Correspondence: (L.K.-T.); (P.-O.G.)
| | - Pierre-Olivier Guichet
- Université de Poitiers, CHU Poitiers, ProDiCeT, 86000 Poitiers, France; (G.T.); (K.M.); (A.D.); (M.W.)
- Laboratoire de Cancérologie Biologique, CHU Poitiers, 86000 Poitiers, France;
- Correspondence: (L.K.-T.); (P.-O.G.)
| |
Collapse
|
224
|
Poon MTC, Bruce M, Simpson JE, Hannan CJ, Brennan PM. Temozolomide sensitivity of malignant glioma cell lines - a systematic review assessing consistencies between in vitro studies. BMC Cancer 2021; 21:1240. [PMID: 34794398 PMCID: PMC8600737 DOI: 10.1186/s12885-021-08972-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malignant glioma cell line models are integral to pre-clinical testing of novel potential therapies. Accurate prediction of likely efficacy in the clinic requires that these models are reliable and consistent. We assessed this by examining the reporting of experimental conditions and sensitivity to temozolomide in glioma cells lines. METHODS We searched Medline and Embase (Jan 1994-Jan 2021) for studies evaluating the effect of temozolomide monotherapy on cell viability of at least one malignant glioma cell line. Key data items included type of cell lines, temozolomide exposure duration in hours (hr), and cell viability measure (IC50). RESULTS We included 212 studies from 2789 non-duplicate records that reported 248 distinct cell lines. The commonest cell line was U87 (60.4%). Only 10.4% studies used a patient-derived cell line. The proportion of studies not reporting each experimental condition ranged from 8.0-27.4%, including base medium (8.0%), serum supplementation (9.9%) and number of replicates (27.4%). In studies reporting IC50, the median value for U87 at 24 h, 48 h and 72 h was 123.9 μM (IQR 75.3-277.7 μM), 223.1 μM (IQR 92.0-590.1 μM) and 230.0 μM (IQR 34.1-650.0 μM), respectively. The median IC50 at 72 h for patient-derived cell lines was 220 μM (IQR 81.1-800.0 μM). CONCLUSION Temozolomide sensitivity reported in comparable studies was not consistent between or within malignant glioma cell lines. Drug discovery science performed on these models cannot reliably inform clinical translation. A consensus model of reporting can maximise reproducibility and consistency among in vitro studies.
Collapse
Affiliation(s)
- Michael T C Poon
- Cancer Research UK Brain Tumour Centre of Excellence, Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Nine Edinburgh BioQuarter, 9 Little France Road, Edinburgh, UK.
| | - Morgan Bruce
- Biological Sciences, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Joanne E Simpson
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Cathal J Hannan
- Department of Neurosurgery, Manchester Centre for Clinical Neurosciences, Manchester, UK
| | - Paul M Brennan
- Cancer Research UK Brain Tumour Centre of Excellence, Edinburgh Cancer Research Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
225
|
Kirchner MA, Holzgreve A, Brendel M, Orth M, Ruf VC, Steiger K, Pötter D, Gold L, Unterrainer M, Mittlmeier LM, Barci E, Kälin RE, Glass R, Lindner S, Kaiser L, Maas J, von Baumgarten L, Ilhan H, Belka C, Notni J, Bartenstein P, Lauber K, Albert NL. PSMA PET Imaging in Glioblastoma: A Preclinical Evaluation and Theranostic Outlook. Front Oncol 2021; 11:774017. [PMID: 34869017 PMCID: PMC8635528 DOI: 10.3389/fonc.2021.774017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Prostate specific membrane antigen (PSMA) PET imaging has recently gained attention in glioblastoma (GBM) patients as a potential theranostic target for PSMA radioligand therapy. However, PSMA PET has not yet been established in a murine GBM model. Our goal was to investigate the potential of PSMA PET imaging in the syngeneic GL261 GBM model and to give an outlook regarding the potential of PMSA radioligand therapy in this model. METHODS We performed an 18F-PSMA-1007 PET study in the orthotopic GL261 model (n=14 GBM, n=7 sham-operated mice) with imaging at day 4, 8, 11, 15, 18 and 22 post implantation. Time-activity-curves (TAC) were extracted from dynamic PET scans (0-120 min p. i.) in a subset of mice (n=4 GBM, n=3 sham-operated mice) to identify the optimal time frame for image analysis, and standardized-uptake-values (SUV) as well as tumor-to-background ratios (TBR) using contralateral normal brain as background were calculated in all mice. Additionally, computed tomography (CT), ex vivo and in vitro 18F-PSMA-1007 autoradiographies (ARG) were performed. RESULTS TAC analysis of GBM mice revealed a plateau of TBR values after 40 min p. i. Therefore, a 30 min time frame between 40-70 min p. i. was chosen for PET quantification. At day 15 and later, GBM mice showed a discernible PSMA PET signal on the inoculation site, with highest TBRmean in GBM mice at day 18 (7.3 ± 1.3 vs. 1.6 ± 0.3 in shams; p=0.024). Ex vivo ARG confirmed high tracer signal in GBM compared to healthy background (TBRmean 26.9 ± 10.5 vs. 1.6 ± 0.7 in shams at day 18/22 post implantation; p=0.002). However, absolute uptake values in the GL261 tumor remained low (e.g., SUVmean 0.21 ± 0.04 g/ml at day 18) resulting in low ratios compared to dose-relevant organs (e.g., mean tumor-to-kidney ratio 1.5E-2 ± 0.5E-2). CONCLUSIONS Although 18F-PSMA-1007 PET imaging of GL261 tumor-bearing mice is feasible and resulted in high TBRs, absolute tumoral uptake values remained low and hint to limited applicability of the GL261 model for PSMA-directed therapy studies. Further investigations are warranted to identify suitable models for preclinical evaluation of PSMA-targeted theranostic approaches in GBM.
Collapse
Affiliation(s)
- Maximilian A. Kirchner
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Michael Orth
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Viktoria C. Ruf
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, Technische Universität München (TUM) School of Medicine, Technical University of Munich, Munich, Germany
| | - Dennis Pötter
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Lukas Gold
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Marcus Unterrainer
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- Department of Radiology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Lena M. Mittlmeier
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Enio Barci
- Neurosurgical Research, Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Roland E. Kälin
- Neurosurgical Research, Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Rainer Glass
- Neurosurgical Research, Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simon Lindner
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Jessica Maas
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurosurgery, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Notni
- Institute of Pathology, Technische Universität München (TUM) School of Medicine, Technical University of Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nathalie L. Albert
- Department of Nuclear Medicine, University Hospital, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
226
|
Han J, Jing Y, Han F, Sun P. Comprehensive analysis of expression, prognosis and immune infiltration for TIMPs in glioblastoma. BMC Neurol 2021; 21:447. [PMID: 34781885 PMCID: PMC8591954 DOI: 10.1186/s12883-021-02477-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Background Tissue inhibitors of metalloproteinase (TIMP) family proteins are peptidases involved in extracellular matrix (ECM) degradation. Various diseases are related to TIMPs, and the primary reason is that TIMPs can indirectly regulate remodelling of the ECM and cell signalling by regulating matrix metalloproteinase (MMP) activity. However, the link between TIMPs and glioblastoma (GBM) is unclear. Objective This study aimed to explore the role of TIMP expression and immune infiltration in GBM. Methods Oncomine, GEPIA, OSgbm, LinkedOmics, STRING, GeneMANIA, Enrichr, and TIMER were used to conduct differential expression, prognosis, and immune infiltration analyses of TIMPs in GBM. Results All members of the TIMP family had significantly higher expression levels in GBM. High TIMP3 expression correlated with better overall survival (OS) and disease-specific survival (DSS) in GBM patients. TIMP4 was associated with a long OS in GBM patients. We found a positive relationship between TIMP3 and TIMP4, identifying gene sets with similar or opposite expression directions to those in GBM patients. TIMPs and associated genes are mainly associated with extracellular matrix organization and involve proteoglycan pathways in cancer. The expression levels of TIMPs in GBM correlate with the infiltration of various immune cells, including CD4+ T cells, macrophages, neutrophils, B cells, CD8+ T cells, and dendritic cells. Conclusions Our study inspires new ideas for the role of TIMPs in GBM and provides new directions for multiple treatment modalities, including immunotherapy, in GBM. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02477-1.
Collapse
Affiliation(s)
- Jinkun Han
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yajun Jing
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Fubing Han
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Sun
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
227
|
Yu M, Yu S, Zhou W, Yi B, Liu Y. HOXC6/8/10/13 predict poor prognosis and associate with immune infiltrations in glioblastoma. Int Immunopharmacol 2021; 101:108293. [PMID: 34763232 DOI: 10.1016/j.intimp.2021.108293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/10/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Glioblastoma (GBM), characterized by deregulated cell proliferation and immune cells infiltration, is a common and lethal tumor of the central nervous system. Recently, the infiltration of immune cells has attracted attention as a potential novel GBM immunotherapy option. Homeobox C cluster (HOXC) is an evolutionarily conserved family of transcriptional factors that are involved in embryogenesis and tumorigenesis. Nevertheless, the correlations of HOXCs with the prognosis and immune infiltration of GBM remain blurred. METHODS The RNA-seq data with corresponding clinical characteristics were downloaded from TCGA and GTEx databases. The correlations between HOXCs and clinical characteristics were calculated using univariable and multivariate Cox regression. R language with ggplot2, survminer, survival, GSVA, and pROC packages were employed to analyze the data and present the plots. MethSurv, UALCAN and cBioPortal were employed to evaluate the DNA methylation and mutation status of HOXCs in GBM. We also verified the expression and prognosis of HOXCs by qPCR and immunohistochemistry in a cohort of 36 patients. RESULTS We identified that HOXC6/8/10/13 were crucial biomarkers for diagnosis and prognostic judgement in GBM. Gene set variation analysis revealed that levels of expression of HOXCs were associated with the infiltration of various immune cells. The qPCR and immunohistochemistry data validated the prognostic values of HOXC6/8/10/13 in GBM. Finally, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that HOXCs might be involved in DNA-binding transcription activator activity and the apelin signaling pathway. CONCLUSION This research highlights that HOXC6/8/10/13 are involved in the immune infiltrates, also provide potential clinical utility as therapeutic targets in GBM.
Collapse
Affiliation(s)
- Mingjun Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Gamma Knife Center, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Shijia Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Wen Zhou
- Department of Pain Management, Dalian Municipal Central Hospital, Dalian 116033, People's Republic of China
| | - Bolong Yi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, People's Republic of China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China; Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang 110004, People's Republic of China.
| |
Collapse
|
228
|
Almengló C, Caamaño P, Fraga M, Devesa J, Costoya JA, Arce VM. From neural stem cells to glioblastoma: A natural history of GBM recapitulated in vitro. J Cell Physiol 2021; 236:7390-7404. [PMID: 33959982 DOI: 10.1002/jcp.30409] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/03/2023]
Abstract
Due to its aggressive and invasive nature glioblastoma (GBM), the most common and aggressive primary brain tumour in adults, remains almost invariably lethal. Significant advances in the last several years have elucidated much of the molecular and genetic complexities of GBM. However, GBM exhibits a vast genetic variation and a wide diversity of phenotypes that have complicated the development of effective therapeutic strategies. This complex pathogenesis makes necessary the development of experimental models that could be used to further understand the disease, and also to provide a more realistic testing ground for potential therapies. In this report, we describe the process of transformation of primary mouse embryo astrocytes into immortalized cultures with neural stem cell characteristics, that are able to generate GBM when injected into the brain of C57BL/6 mice, or heterotopic tumours when injected IV. Overall, our results show that oncogenic transformation is the fate of NSC if cultured for long periods in vitro. In addition, as no additional hit is necessary to induce the oncogenic transformation, our model may be used to investigate the pathogenesis of gliomagenesis and to test the effectiveness of different drugs throughout the natural history of GBM.
Collapse
Affiliation(s)
- Cristina Almengló
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, Spain
| | - Pilar Caamaño
- Fundación Publica Galega de Medicina Xenómica, Santiago de Compostela, Spain
| | - Máximo Fraga
- Departamento de Anatomía Patolóxica e Ciencias Forenses, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesús Devesa
- Research and Development, Medical Center Foltra, Teo, Spain
| | - José A Costoya
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, Spain
| | - Víctor M Arce
- Molecular Oncology Laboratory MOL, Departamento de Fisioloxía, Centro Singular de Investigación en Medicina Molecular e Enfermidades Crónicas CiMUS, Facultade de Medicina, Universidade de Santiago de Compostela, Instituto de Investigación Sanitaria de Santiago de Compostela IDIS, Santiago de Compostela, Spain
| |
Collapse
|
229
|
Deshmukh R, Allega MF, Tardito S. A map of the altered glioma metabolism. Trends Mol Med 2021; 27:1045-1059. [PMID: 34489164 DOI: 10.1016/j.molmed.2021.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
The frequent occurrence of neomorphic isocitrate dehydrogenase 1 (IDH1) mutations in low-grade glioma led to an IDH-centric classification of these tumors. However, exploiting metabolic alterations of glioma for diagnostic imaging and treatment has marginally improved patients' prognosis. Here we discuss the nutritional microenvironment of glioma, shaped by the distinctive dependence of the brain on glucose and ketone bodies for energy, and on amino acids for neurotransmission. We highlight the progress in metabolic applications for glioma diagnosis and therapy, and present a map that streamlines the rewired glioma metabolism. The map illustrates the altered reactions in central carbon and nitrogen metabolism that drive glioma biology, and represent metabolic vulnerabilities with translational potential.
Collapse
Affiliation(s)
- Ruhi Deshmukh
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Maria Francesca Allega
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
| | - Saverio Tardito
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK.
| |
Collapse
|
230
|
Adaptive mechanoproperties mediated by the formin FMN1 characterize glioblastoma fitness for invasion. Dev Cell 2021; 56:2841-2855.e8. [PMID: 34559979 DOI: 10.1016/j.devcel.2021.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 07/23/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
Glioblastoma are heterogeneous tumors composed of highly invasive and highly proliferative clones. Heterogeneity in invasiveness could emerge from discrete biophysical properties linked to specific molecular expression. We identified clones of patient-derived glioma propagating cells that were either highly proliferative or highly invasive and compared their cellular architecture, migratory, and biophysical properties. We discovered that invasiveness was linked to cellular fitness. The most invasive cells were stiffer, developed higher mechanical forces on the substrate, and moved stochastically. The mechano-chemical-induced expression of the formin FMN1 conferred invasive strength that was confirmed in patient samples. Moreover, FMN1 expression was also linked to motility in other cancer and normal cell lines, and its ectopic expression increased fitness parameters. Mechanistically, FMN1 acts from the microtubule lattice and promotes a robust mechanical cohesion, leading to highly invasive motility.
Collapse
|
231
|
Sundar SJ, Shakya S, Barnett A, Wallace LC, Jeon H, Sloan A, Recinos V, Hubert CG. Three-dimensional organoid culture unveils resistance to clinical therapies in adult and pediatric glioblastoma. Transl Oncol 2021; 15:101251. [PMID: 34700192 PMCID: PMC8551697 DOI: 10.1016/j.tranon.2021.101251] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma organoid cultures preserve diversity of proliferative cell phenotypes. Heterogeneous 3D cultures recapitulate resistance to clinical GBM therapeutics. Patient specimens show different behavior depending on 2D vs 3D growth.
Background Glioblastoma (GBM) is the most common primary brain tumor with a dismal prognosis. The inherent cellular diversity and interactions within tumor microenvironments represent significant challenges to effective treatment. Traditional culture methods such as adherent or sphere cultures may mask such complexities whereas three-dimensional (3D) organoid culture systems derived from patient cancer stem cells (CSCs) can preserve cellular complexity and microenvironments. The objective of this study was to determine if GBM organoids may offer a platform, complimentary to traditional sphere culture methods, to recapitulate patterns of clinical drug resistance arising from 3D growth. Methods Adult and pediatric surgical specimens were collected and established as organoids. We created organoid microarrays and visualized bulk and spatial differences in cell proliferation using immunohistochemistry (IHC) staining, and cell cycle analysis by flow cytometry paired with 3D regional labeling. We tested the response of CSCs grown in each culture method to temozolomide, ibrutinib, lomustine, ruxolitinib, and radiotherapy. Results GBM organoids showed diverse and spatially distinct proliferative cell niches and include heterogeneous populations of CSCs/non-CSCs (marked by SOX2) and cycling/senescent cells. Organoid cultures display a comparatively blunted response to current standard-of-care therapy (combination temozolomide and radiotherapy) that reflects what is seen in practice. Treatment of organoids with clinically relevant drugs showed general therapeutic resistance with drug- and patient-specific antiproliferative, apoptotic, and senescent effects, differing from those of matched sphere cultures. Conclusions Therapeutic resistance in organoids appears to be driven by altered biological mechanisms rather than physical limitations of therapeutic access. GBM organoids may therefore offer a key technological approach to discover and understand resistance mechanisms of human cancer cells.
Collapse
Affiliation(s)
- Swetha J Sundar
- Department of Neurological Surgery, Cleveland Clinic, 9500 Euclid Avenue, ND2-40, Cleveland, OH, USA
| | - Sajina Shakya
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Austin Barnett
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Lisa C Wallace
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hyemin Jeon
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Andrew Sloan
- Department of Neurological Surgery, University Hospitals Case Medical Center, Seidman Cancer Center and Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Violette Recinos
- Department of Neurological Surgery, Cleveland Clinic, 9500 Euclid Avenue, ND2-40, Cleveland, OH, USA
| | - Christopher G Hubert
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
232
|
Al Shboul S, Curran OE, Alfaro JA, Lickiss F, Nita E, Kowalski J, Naji F, Nenutil R, Ball KL, Krejcir R, Vojtesek B, Hupp TR, Brennan PM. Kinomics platform using GBM tissue identifies BTK as being associated with higher patient survival. Life Sci Alliance 2021; 4:4/12/e202101054. [PMID: 34645618 PMCID: PMC8548209 DOI: 10.26508/lsa.202101054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 01/18/2023] Open
Abstract
BTK is a dominant bioactive kinase expressed within both cancer and immune cells of GBM tissue. Complex cell co-cultures might better model the impact of kinase inhibitors as therapeutics in GBM. Better understanding of GBM signalling networks in-vivo would help develop more physiologically relevant ex vivo models to support therapeutic discovery. A “functional proteomics” screen was undertaken to measure the specific activity of a set of protein kinases in a two-step cell-free biochemical assay to define dominant kinase activities to identify potentially novel drug targets that may have been overlooked in studies interrogating GBM-derived cell lines. A dominant kinase activity derived from the tumour tissue, but not patient-derived GBM stem-like cell lines, was Bruton tyrosine kinase (BTK). We demonstrate that BTK is expressed in more than one cell type within GBM tissue; SOX2-positive cells, CD163-positive cells, CD68-positive cells, and an unidentified cell population which is SOX2-negative CD163-negative and/or CD68-negative. The data provide a strategy to better mimic GBM tissue ex vivo by reconstituting more physiologically heterogeneous cell co-culture models including BTK-positive/negative cancer and immune cells. These data also have implications for the design and/or interpretation of emerging clinical trials using BTK inhibitors because BTK expression within GBM tissue was linked to longer patient survival.
Collapse
Affiliation(s)
- Sofian Al Shboul
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK .,Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Olimpia E Curran
- Department of Neuropathology, Western General Hospital, Edinburgh, UK.,Cardiff University Hospital, Cellular Pathology, Cardiff, UK
| | - Javier A Alfaro
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Fiona Lickiss
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Erisa Nita
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jacek Kowalski
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Faris Naji
- Pamgene International BV, 's-Hertogenbosch, Netherlands
| | - Rudolf Nenutil
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Kathryn L Ball
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Radovan Krejcir
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ted R Hupp
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.,International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Paul M Brennan
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK .,Translational Neurosurgery, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
233
|
Three-dimensional culture models to study glioblastoma - current trends and future perspectives. Curr Opin Pharmacol 2021; 61:91-97. [PMID: 34656940 DOI: 10.1016/j.coph.2021.08.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/02/2023]
Abstract
Glioblastoma (GBM) is the most prevalent form of primary malignant brain tumor in adults and remains almost invariably lethal owing to its aggressive and invasive nature. There have only been marginal improvements in its bleak survival rate of 12-15 months over the last four decades. The lack of preclinical models that efficiently recapitulate tumor biology and the tumor microenvironment is also in part responsible for the slow phase of translational GBM research. Emerging three-dimensional (3D) organoids and cell culture systems offer new and innovative possibilities for GBM modelling. These 3D models find their application to engineer the disease, screen drugs, establishing live biobank, and explore personalized therapy. Furthermore, these models can also be genetically modified by using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 technology, which would allow one to study the specific role of key genes associated with gliomagenesis. Establishment of a coculture system with GBM cells to understand its invasive behavior is yet another major application of this model. Despite these merits, the organoid models also have certain limitations, including the absence of immune responses and vascular systems. In recent years, major progress has been made in the development and refinement of 3D models of GBM. In this review, we intend to highlight these recent advances and the potential future implications of this rapidly evolving field, which should facilitate a better understanding of GBM biology.
Collapse
|
234
|
Xu X, Li L, Luo L, Shu L, Si X, Chen Z, Xia W, Huang J, Liu Y, Shao A, Ke Y. Opportunities and challenges of glioma organoids. Cell Commun Signal 2021; 19:102. [PMID: 34635112 PMCID: PMC8504127 DOI: 10.1186/s12964-021-00777-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/15/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma is the most common primary brain tumor and its prognosis is poor. Despite surgical removal, glioma is still prone to recurrence because it grows rapidly in the brain, is resistant to chemotherapy, and is highly aggressive. Therefore, there is an urgent need for a platform to study the cell dynamics of gliomas in order to discover the characteristics of the disease and develop more effective treatments. Although 2D cell models and animal models in previous studies have provided great help for our research, they also have many defects. Recently, scientific researchers have constructed a 3D structure called Organoids, which is similar to the structure of human tissues and organs. Organoids can perfectly compensate for the shortcomings of previous glioma models and are currently the most suitable research platform for glioma research. Therefore, we review the three methods currently used to establish glioma organoids. And introduced how they play a role in the diagnosis and treatment of glioma. Finally, we also summarized the current bottlenecks and difficulties encountered by glioma organoids, and the current efforts to solve these difficulties. Video Abstract
Collapse
Affiliation(s)
- Xiangdong Xu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Linting Luo
- Department of Neurology, Liwan Central Hospital of GuangZhou, Guangzhou, People's Republic of China
| | - Lingling Shu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Hematological Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Xiaoli Si
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhenzhen Chen
- Department of Hematology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Wenqing Xia
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jinyu Huang
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yang Liu
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| | - Anwen Shao
- Department of Neurosurgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, People's Republic of China.
| | - Yiquan Ke
- The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, People's Republic of China.
| |
Collapse
|
235
|
Wang S, C Ordonez-Rubiano S, Dhiman A, Jiao G, Strohmier BP, Krusemark CJ, Dykhuizen EC. Polycomb group proteins in cancer: multifaceted functions and strategies for modulation. NAR Cancer 2021; 3:zcab039. [PMID: 34617019 PMCID: PMC8489530 DOI: 10.1093/narcan/zcab039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/24/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Polycomb repressive complexes (PRCs) are a heterogenous collection of dozens, if not hundreds, of protein complexes composed of various combinations of subunits. PRCs are transcriptional repressors important for cell-type specificity during development, and as such, are commonly mis-regulated in cancer. PRCs are broadly characterized as PRC1 with histone ubiquitin ligase activity, or PRC2 with histone methyltransferase activity; however, the mechanism by which individual PRCs, particularly the highly diverse set of PRC1s, alter gene expression has not always been clear. Here we review the current understanding of how PRCs act, both individually and together, to establish and maintain gene repression, the biochemical contribution of individual PRC subunits, the mis-regulation of PRC function in different cancers, and the current strategies for modulating PRC activity. Increased mechanistic understanding of PRC function, as well as cancer-specific roles for individual PRC subunits, will uncover better targets and strategies for cancer therapies.
Collapse
Affiliation(s)
- Sijie Wang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Sandra C Ordonez-Rubiano
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Guanming Jiao
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Brayden P Strohmier
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Casey J Krusemark
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University and Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907 USA
| |
Collapse
|
236
|
Jiang D, Shi Y, Qiu Y, Liu X, Zhu Y, Liu J, Pan Y, Wan H, Ying K, Wang P. A multidimensional biosensor system to guide LUAD individualized treatment. J Mater Chem B 2021; 9:7991-8002. [PMID: 34611691 DOI: 10.1039/d1tb00731a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lung cancer, mainly non-small cell lung cancer (NSCLC), has been a global health problem, leading to maximum cancer death. Across adenocarcinoma patients, significant genetic and phenotypic heterogeneity was identified as responsible for individual cancer drug resistance, driving an urgent need for individualized treatment. High expectation has been set on individualized treatment for better responses and extended survival. There are pressing needs for and significant advantages of testing dosages and drugs directly on patient-specific cancer cells for preclinical drug testing and personalized drug selection. Monitoring the drug response based on patient-derived cells (PDCs) is a step toward effective drug development and individualized treatment. Despite the dependence on optical labels, optical equipment, and other complex manual operation, we here report a multidimensional biosensor system to guide adenocarcinoma individualized treatment by integrating 2D and 3D PDC models and cellular impedance biosensors. The cellular impedance biosensors were applied to quantitate drug response in 2D and 3D environments. Compared with 2D plate culture, 3D cultured cells were found to show higher resistance to anti-cancer drugs. Cell-cell, cell-ECM, and mechanical interactions in the 3D environment led to stronger drug resistance. The in vivo results demonstrated the reliability of the multidimensional biosensor system. Cellular impedance biosensors allow a fast, non-invasive, and quantitative manner for preselected drug screening in individualized treatment. Considering the potential for good distinguishment of different anti-cancer drugs, our newly developed strategy may contribute to drug response prediction in individualized treatment and new drug development.
Collapse
Affiliation(s)
- Deming Jiang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yangfeng Shi
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.,Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Hangzhou, China
| | - Yong Qiu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Xin Liu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Yuxuan Zhu
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Jingwen Liu
- Department of Gastroenterology, Second Affiliated Hospital, Zhejiang University, School of Medicine, Hangzhou, 310009, China
| | - Yuxiang Pan
- Research center of smart sensing, Zhejiang lab, Hangzhou, 310027, China
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Kejing Ying
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.,Department of Respiratory and Critical Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, No. 3 Qingchun East Road, Hangzhou, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China. .,Cancer Center, Zhejiang University, Hangzhou, 310058, China.,State Key Laboratory for Sensor Technology, Chinese Academy of Sciences, Shanghai 200050, China
| |
Collapse
|
237
|
Verheul C, Ntafoulis I, Kers TV, Hoogstrate Y, Mastroberardino PG, Barnhoorn S, Payán-Gómez C, Tching Chi Yen R, Struys EA, Koolen SLW, Dirven CMF, Leenstra S, French PJ, Lamfers MLM. Generation, characterization, and drug sensitivities of 12 patient-derived IDH1-mutant glioma cell cultures. Neurooncol Adv 2021; 3:vdab103. [PMID: 34595478 PMCID: PMC8478778 DOI: 10.1093/noajnl/vdab103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Mutations of the isocitrate dehydrogenase (IDH) gene occur in over 80% of low-grade gliomas and secondary glioblastomas. Despite considerable efforts, endogenous in vitro IDH-mutated glioma models remain scarce. Availability of these models is key for the development of new therapeutic interventions. Methods Cell cultures were established from fresh tumor material and expanded in serum-free culture media. D-2-Hydroxyglutarate levels were determined by mass spectrometry. Genomic and transcriptomic profiling were carried out on the Illumina Novaseq platform, methylation profiling was performed with the Infinium MethylationEpic BeadChip array. Mitochondrial respiration was measured with the Seahorse XF24 Analyzer. Drug screens were performed with an NIH FDA-approved anti-cancer drug set and two IDH-mutant specific inhibitors. Results A set of twelve patient-derived IDHmt cell cultures was established. We confirmed high concordance in driver mutations, copy numbers and methylation profiles between the tumors and derived cultures. Homozygous deletion of CDKN2A/B was observed in all cultures. IDH-mutant cultures had lower mitochondrial reserve capacity. IDH-mutant specific inhibitors did not affect cell viability or global gene expression. Screening of 107 FDA-approved anti-cancer drugs identified nine compounds with potent activity against IDHmt gliomas, including three compounds with favorable pharmacokinetic characteristics for CNS penetration: teniposide, omacetaxine mepesuccinate, and marizomib. Conclusions Our twelve IDH-mutant cell cultures show high similarity to the parental tissues and offer a unique tool to study the biology and drug sensitivities of high-grade IDHmt gliomas in vitro. Our drug screening studies reveal lack of sensitivity to IDHmt inhibitors, but sensitivity to a set of nine available anti-cancer agents.
Collapse
Affiliation(s)
- Cassandra Verheul
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Ioannis Ntafoulis
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Trisha V Kers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Youri Hoogstrate
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Sander Barnhoorn
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - César Payán-Gómez
- Department of Biology, Faculty of Natural Sciences, Universidad del Rosario, Bogotá,Colombia
| | - Romain Tching Chi Yen
- Information Technologies for Translational Medicine (ITTM), Esch-Sur-Alzette, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-Sur-Alzette,Luxembourg
| | - Eduard A Struys
- Metabolic Unit, Department of Clinical Chemistry, Amsterdam University Medical Center, Noord-Holland, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands.,Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Sieger Leenstra
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Pim J French
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumor Center, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| |
Collapse
|
238
|
Phan TL, Kim HJ, Lee SJ, Choi MC, Kim SH. Elevated RGMA Expression Predicts Poor Prognosis in Patients with Glioblastoma. Onco Targets Ther 2021; 14:4867-4878. [PMID: 34588781 PMCID: PMC8473061 DOI: 10.2147/ott.s317285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/10/2021] [Indexed: 11/23/2022] Open
Abstract
Background Glioblastoma (GBM) is the most aggressive type of human brain tumor with a poor prognosis and a low survival rate. Secreted proteins from tumors are recently considered as important modulators to promote tumorigenesis by communicating with microenvironments. Repulsive guidance molecule A (RGMA) was initially characterized as an axon guidance molecule after secretion in the brain during embryogenesis but has not been studied in GBM. In this study, we investigated secreted gene expression patterns and the correlation between RGMA expression and prognosis in GBM using in silico analysis. Methods RGMA mRNA levels in normal human astrocyte (NHA), human glioma cells, and GBM patient-derived glioma stem cells (GSCs) were assessed by qRT‐PCR. Patient survival analysis was performed with the Kaplan–Meier curve and univariate and multivariate analyses using publicly available datasets. The predictive roles of RGMA in progressive malignancy were evaluated using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA). Results RGMA mRNA expression was elevated in glioma cells and GSCs compared with NHA and correlated with unfavorable prognosis in glioma patients. Thus, RGMA could serve as an independent predictive factor for GBM. Furthermore, the increased levels of RGMA expression and its putative receptor, neogenin (NEO1), were associated with poor patient survival rates in GBM. Conclusion We identified RGMA as an independent prognostic biomarker for progressive malignancy in glioblastoma and address the possibilities to develop novel therapeutic strategies against glioblastoma.
Collapse
Affiliation(s)
- Thi Le Phan
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyun-Jin Kim
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Suk Jun Lee
- Department of Biomedical Laboratory Science, College of Health & Medical Sciences, Cheongju University, Chungbuk, 28503, Republic of Korea
| | - Moon-Chang Choi
- Department of Biomedical Science, Chosun University, Gwangju, 61452, Republic of Korea
| | - Sung-Hak Kim
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
239
|
A vascularized tumoroid model for human glioblastoma angiogenesis. Sci Rep 2021; 11:19550. [PMID: 34599235 PMCID: PMC8486855 DOI: 10.1038/s41598-021-98911-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) angiogenesis is critical for tumor growth and recurrence, making it a compelling therapeutic target. Here, a disease-relevant, vascularized tumoroid in vitro model with stem-like features and stromal surrounds is reported. The model is used to recapitulate how individual components of the GBM’s complex brain microenvironment such as hypoxia, vasculature-related stromal cells and growth factors support GBM angiogenesis. It is scalable, tractable, cost-effective and can be used with biologically-derived or biomimetic matrices. Patient-derived primary GBM cells are found to closely participate in blood vessel formation in contrast to a GBM cell line containing differentiated cells. Exogenous growth factors amplify this effect under normoxia but not at hypoxia suggesting that a significant amount of growth factors is already being produced under hypoxic conditions. Under hypoxia, primary GBM cells strongly co-localize with umbilical vein endothelial cells to form sprouting vascular networks, which has been reported to occur in vivo. These findings demonstrate that our 3D tumoroid in vitro model exhibits biomimetic attributes that may permit its use as a preclinical model in studying microenvironment cues of tumor angiogenesis.
Collapse
|
240
|
Larrouquère L, Berthier S, Chovelon B, Garrel C, Vacchina V, Paucot H, Boutonnat J, Faure P, Hazane-Puch F. Preclinical Evaluation of Sodium Selenite in Mice: Toxicological and Tumor Regression Studies after Striatum Implantation of Human Glioblastoma Stem Cells. Int J Mol Sci 2021; 22:ijms221910646. [PMID: 34638987 PMCID: PMC8508933 DOI: 10.3390/ijms221910646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/16/2021] [Accepted: 09/27/2021] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive malignant glioma, with a very poor prognosis; as such, efforts to explore new treatments and GBM’s etiology are a priority. We previously described human GBM cells (R2J-GS) as exhibiting the properties of cancer stem cells (growing in serum-free medium and proliferating into nude mice when orthotopically grafted). Sodium selenite (SS)—an in vitro attractive agent for cancer therapy against GBM—was evaluated in R2J-GS cells. To go further, we launched a preclinical study: SS was given orally, in an escalation-dose study (2.25 to 10.125 mg/kg/day, 5 days on, 2 days off, and 5 days on), to evaluate (1) the absorption of selenium in plasma and organs (brain, kidney, liver, and lung) and (2) the SS toxicity. A 6.75 mg/kg SS dose was chosen to perform a tumor regression assay, followed by MRI, in R2J-GS cells orthotopically implanted in nude mice, as this dose was nontoxic and increased brain selenium concentration. A group receiving TMZ (5 mg/kg) was led in parallel. Although not reaching statistical significance, the group of mice treated with SS showed a slower tumor growth vs. the control group (p = 0.08). No difference was observed between the TMZ and control groups. We provide new insights of the mechanisms of SS and its possible use in chemotherapy.
Collapse
Affiliation(s)
- Louis Larrouquère
- Medical Oncology Department, Centre Léon Bérard, 69000 Lyon, France;
| | - Sylvie Berthier
- Cytometry Platform, Institute of Biology and Pathology, Grenoble Alpes Hospital, 38000 Grenoble, France; (S.B.); (J.B.)
- Unit of Anatomopathology, Institute of Biology and Pathology, Grenoble Alpes Hospital, 380000 Grenoble, France
| | - Benoit Chovelon
- Unit Nutritional and Hormonal Biochemistry, Institute of Biology and Pathology, Grenoble Alpes Hospital, 38000 Grenoble, France; (B.C.); (C.G.); (P.F.)
- Department of Molecular Pharmacochemistry, University Grenoble Alpes, CNRS, UMR 5063, 38000 Grenoble, France
| | - Catherine Garrel
- Unit Nutritional and Hormonal Biochemistry, Institute of Biology and Pathology, Grenoble Alpes Hospital, 38000 Grenoble, France; (B.C.); (C.G.); (P.F.)
| | | | - Hugues Paucot
- University of Pau & des Pays de l’Adour, FORCO, Bâtiment d’Alembert-Rue Jules Ferry, BP 27540-64075 Pau CEDEX, France;
| | - Jean Boutonnat
- Cytometry Platform, Institute of Biology and Pathology, Grenoble Alpes Hospital, 38000 Grenoble, France; (S.B.); (J.B.)
- Unit of Anatomopathology, Institute of Biology and Pathology, Grenoble Alpes Hospital, 380000 Grenoble, France
| | - Patrice Faure
- Unit Nutritional and Hormonal Biochemistry, Institute of Biology and Pathology, Grenoble Alpes Hospital, 38000 Grenoble, France; (B.C.); (C.G.); (P.F.)
- Department of Molecular Pharmacochemistry, University Grenoble Alpes, CNRS, UMR 5063, 38000 Grenoble, France
| | - Florence Hazane-Puch
- Unit Nutritional and Hormonal Biochemistry, Institute of Biology and Pathology, Grenoble Alpes Hospital, 38000 Grenoble, France; (B.C.); (C.G.); (P.F.)
- Correspondence: ; Tel.: +33-476769316
| |
Collapse
|
241
|
Degorre C, Tofilon P, Camphausen K, Mathen P. Bench to bedside radiosensitizer development strategy for newly diagnosed glioblastoma. Radiat Oncol 2021; 16:191. [PMID: 34583727 PMCID: PMC8480070 DOI: 10.1186/s13014-021-01918-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/15/2021] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma is the most common primary brain malignancy and carries with it a poor prognosis. New agents are urgently needed, however nearly all Phase III trials of GBM patients of the past 25 years have failed to demonstrate improvement in outcomes. In 2019, the National Cancer Institute Clinical Trials and Translational Research Advisory Committee (CTAC) Glioblastoma Working Group (GBM WG) identified 5 broad areas of research thought to be important in the development of new herapeutics for GBM. Among those was optimizing radioresponse for GBM in situ. One such strategy to increase radiation efficacy is the addition of a radiosensitizer to improve the therapeutic ratio by enhancing tumor sensitivity while ideally having minimal to no effect on normal tissue. Historically the majority of trials using radiosensitizers have been unsuccessful, but they provide important guidance in what is required to develop agents more efficiently. Improved target selection is essential for a drug to provide maximal benefit, and once that target is identified it must be validated through pre-clinical studies. Careful selection of appropriate in vitro and in vivo models to demonstrate increased radiosensitivity and suitable bioavailability are then necessary to prove that a drug warrants advancement to clinical investigation. Once investigational agents are validated pre-clinically, patient trials require consistency both in terms of planning study design as well as reporting efficacy and toxicity in order to assess the potential benefit of the drug. Through this paper we hope to outline strategies for developing effective radiosensitizers against GBM using as models the examples of XPO1 inhibitors and HDAC inhibitors developed from our own lab.
Collapse
Affiliation(s)
- Charlotte Degorre
- Radiation Oncology Branch, National Cancer Institute, Bldg. 10, Rm B2-3500, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Philip Tofilon
- Radiation Oncology Branch, National Cancer Institute, Bldg. 10, Rm B2-3500, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bldg. 10, Rm B2-3500, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Peter Mathen
- Radiation Oncology Branch, National Cancer Institute, Bldg. 10, Rm B2-3500, 9000 Rockville Pike, Bethesda, MD, 20892, USA.
| |
Collapse
|
242
|
Vessières A, Quissac E, Lemaire N, Alentorn A, Domeracka P, Pigeon P, Sanson M, Idbaih A, Verreault M. Heterogeneity of Response to Iron-Based Metallodrugs in Glioblastoma Is Associated with Differences in Chemical Structures and Driven by FAS Expression Dynamics and Transcriptomic Subtypes. Int J Mol Sci 2021; 22:ijms221910404. [PMID: 34638742 PMCID: PMC8508975 DOI: 10.3390/ijms221910404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/18/2022] Open
Abstract
Glioblastoma (GBM) is the most frequent and deadliest primary brain cancer in adults, justifying the search for new treatments. Some members of the iron-based ferrocifen family have demonstrated a high cytotoxic effect on various cancer cell lines via innovative mechanisms of action. Here, we evaluated the antiproliferative activity by wst-1 assay of six ferrocifens in 15 molecularly diverse GBM patient-derived cell lines (PDCLs). In five out of six compounds, the half maximal inhibitory concentration (IC50) values varied significantly (10 nM < IC50 < 29.8 µM) while the remaining one (the tamoxifen-like complex) was highly cytotoxic against all PDCLs (mean IC50 = 1.28 µM). The pattern of response was comparable for the four ferrocifens bearing at least one phenol group and differed widely from those of the tamoxifen-like complex and the complex with no phenol group. An RNA sequencing differential analysis showed that response to the diphenol ferrocifen relied on the activation of the Death Receptor signaling pathway and the modulation of FAS expression. Response to this complex was greater in PDCLs from the Mesenchymal or Proneural transcriptomic subtypes compared to the ones from the Classical subtype. These results provide new information on the mechanisms of action of ferrocifens and highlight a broader diversity of behavior than previously suspected among members of this family. They also support the case for a molecular-based personalized approach to future use of ferrocifens in the treatment of GBM.
Collapse
Affiliation(s)
- Anne Vessières
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR CNRS 8232, 4 Place Jussieu, F-75005 Paris, France;
- Correspondence: (A.V.); (M.V.)
| | - Emie Quissac
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
| | - Nolwenn Lemaire
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
| | - Agusti Alentorn
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (A.A.); (M.S.); (A.I.)
| | - Patrycja Domeracka
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
| | - Pascal Pigeon
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR CNRS 8232, 4 Place Jussieu, F-75005 Paris, France;
- Chimie ParisTech-PSL, 11 Rue P. et M. Curie, F-75005 Paris, France
| | - Marc Sanson
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (A.A.); (M.S.); (A.I.)
| | - Ahmed Idbaih
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, DMU Neurosciences, Service de Neurologie 2-Mazarin, F-75013 Paris, France; (A.A.); (M.S.); (A.I.)
| | - Maïté Verreault
- Institut du Cerveau-Paris Brain Institute-ICM, Inserm, Sorbonne Université, CNRS, APHP, Hôpital de la Pitié Salpêtrière, F-75013 Paris, France; (E.Q.); (N.L.); (P.D.)
- Correspondence: (A.V.); (M.V.)
| |
Collapse
|
243
|
EIF3D promotes the progression of preeclampsia by inhibiting of MAPK/ERK1/2 pathway. Reprod Toxicol 2021; 105:166-174. [PMID: 34520790 DOI: 10.1016/j.reprotox.2021.09.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022]
Abstract
Preeclampsia (PE) has been recognized as one of the main reasons for neonatal and maternal mortality and morbidity. This study intended to identify certain genes that correlated with the pathogenesis of PE, and disclose the underlying mechanisms. The GSE14776 and GSE65271 datasets were obtained from the Gene Expression Omnibus database. Venn diagram analysis was performed to identify the differently expressed genes. The potential pathways were analyzed by Gene set enrichment analysis software. The expression of eukaryotic translation initiation factor 3 subunit D (EIF3D) in tissues and cells was respectively tested by immunohistochemistry and the quantitative real-time PCR. Cell transfection was utilized to alter the expression of EIF3D. Cell proliferation, invasion and migration were respectively tested by MTT, EdU, transwell and wound healing assays. Tube formation assay was utilized to determine the tube formation capacity of HTR-8/SVneo cells. ELISA was employed for determination of the concentration of Angiotensin (ANG)-1. Moreover, the expression of EIF3D, proliferation-, metastasis-, tube formation- and MAPK/ERK1/2 pathway-related proteins were measured utilizing western blot. EIF3D was selected in this study. EIF3D was upregulated in placentas tissues collected from patients with PE. EIF3D upregulation observably repressed the proliferation, invasion, migration, wound healing and tube formation of HTR-8/SVneo cells, and the expression of their associated proteins. Besides, the concentration of ANG-1, and the ratios of phosphorylated-ERK1/2 and phosphorylated-MEK1/MEK1 were also markedly lowered by EIF3D upregulation. Whereas, EIF3D knockdown exerted the opposite effects, and these effects were distinctly counteracted by ERK1/2 inhibitor SC-221593 treatment. In conclusion, these observations manifested that EIF3D upregulation might have repressed the progression of PE through modulation of MAPK/ERK1/2 pathway.
Collapse
|
244
|
Nuez-Martínez M, Pedrosa L, Martinez-Rovira I, Yousef I, Diao D, Teixidor F, Stanzani E, Martínez-Soler F, Tortosa A, Sierra À, Gonzalez JJ, Viñas C. Synchrotron-Based Fourier-Transform Infrared Micro-Spectroscopy (SR-FTIRM) Fingerprint of the Small Anionic Molecule Cobaltabis(dicarbollide) Uptake in Glioma Stem Cells. Int J Mol Sci 2021; 22:9937. [PMID: 34576098 PMCID: PMC8466526 DOI: 10.3390/ijms22189937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
The anionic cobaltabis (dicarbollide) [3,3'-Co(1,2-C2B9H11)2]-, [o-COSAN]-, is the most studied icosahedral metallacarborane. The sodium salts of [o-COSAN]- could be an ideal candidate for the anti-cancer treatment Boron Neutron Capture Therapy (BNCT) as it possesses the ability to readily cross biological membranes thereby producing cell cycle arrest in cancer cells. BNCT is a cancer therapy based on the potential of 10B atoms to produce α particles that cross tissues in which the 10B is accumulated without damaging the surrounding healthy tissues, after being irradiated with low energy thermal neutrons. Since Na[o-COSAN] displays a strong and characteristic ν(B-H) frequency in the infrared range 2.600-2.500 cm-1, we studied the uptake of Na[o-COSAN] followed by its interaction with biomolecules and its cellular biodistribution in two different glioma initiating cells (GICs), mesenchymal and proneural respectively, by using Synchrotron Radiation-Fourier Transform Infrared (FTIR) micro-spectroscopy (SR-FTIRM) facilities at the MIRAS Beamline of ALBA synchrotron light source. The spectroscopic data analysis from the bands in the regions of DNA, proteins, and lipids permitted to suggest that after its cellular uptake, Na[o-COSAN] strongly interacts with DNA strings, modifies proteins secondary structure and also leads to lipid saturation. The mapping suggests the nuclear localization of [o-COSAN]-, which according to reported Monte Carlo simulations may result in a more efficient cell-killing effect compared to that in a uniform distribution within the entire cell. In conclusion, we show pieces of evidence that at low doses, [o-COSAN]- translocates GIC cells' membranes and it alters the physiology of the cells, suggesting that Na[o-COSAN] is a promising agent to BNCT for glioblastoma cells.
Collapse
Affiliation(s)
- Miquel Nuez-Martínez
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.N.-M.); (F.T.)
| | - Leire Pedrosa
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona—FCRB, 08036 Barcelona, Spain; (L.P.); (D.D.); (J.J.G.)
| | - Immaculada Martinez-Rovira
- Ionizing Radiation Research Group (GRRI), Physics Department, Universitat Autònoma de Barcelona (UAB), Avinguda de l’Eix Central, Edifici C. Campus de la UAB, 08193 Cerdanyola del Vallès, Spain;
- ALBA-CELLS Synchrotron, MIRAS Beamline, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain;
| | - Ibraheem Yousef
- ALBA-CELLS Synchrotron, MIRAS Beamline, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain;
| | - Diouldé Diao
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona—FCRB, 08036 Barcelona, Spain; (L.P.); (D.D.); (J.J.G.)
| | - Francesc Teixidor
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.N.-M.); (F.T.)
| | - Elisabetta Stanzani
- Laboratory of Pharmacology and Brain Pathology, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy;
| | - Fina Martínez-Soler
- Apoptosis and Cancer Unit, Department of Physiological Sciences, IDIBELL, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain; (F.M.-S.); (A.T.)
| | - Avelina Tortosa
- Apoptosis and Cancer Unit, Department of Physiological Sciences, IDIBELL, Faculty of Medicine and Health Sciences, Universitat de Barcelona, 08907 L’Hospitalet del Llobregat, Spain; (F.M.-S.); (A.T.)
| | - Àngels Sierra
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona—FCRB, 08036 Barcelona, Spain; (L.P.); (D.D.); (J.J.G.)
| | - José Juan Gonzalez
- Laboratory of Experimental Oncological Neurosurgery, Neurosurgery Service, Hospital Clinic de Barcelona—FCRB, 08036 Barcelona, Spain; (L.P.); (D.D.); (J.J.G.)
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (M.N.-M.); (F.T.)
| |
Collapse
|
245
|
Vézina A, Manglani M, Morris D, Foster B, McCord M, Song H, Zhang M, Davis D, Zhang W, Bills J, Nagashima K, Shankarappa P, Kindrick J, Walbridge S, Peer CJ, Figg WD, Gilbert MR, McGavern DB, Muldoon LL, Jackson S. Adenosine A2A Receptor Activation Enhances Blood-Tumor Barrier Permeability in a Rodent Glioma Model. Mol Cancer Res 2021; 19:2081-2095. [PMID: 34521765 DOI: 10.1158/1541-7786.mcr-19-0995] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 11/16/2020] [Accepted: 09/07/2021] [Indexed: 11/16/2022]
Abstract
The blood-tumor barrier (BTB) limits the entry of effective chemotherapeutic agents into the brain for treatment of malignant tumors like glioblastoma. Poor drug entry across the BTB allows infiltrative glioma stem cells to evade therapy and develop treatment resistance. Regadenoson, an FDA-approved adenosine A2A receptor (A2AR) agonist, has been shown to increase drug delivery across the blood-brain barrier in non-tumor-bearing rodents without a defined mechanism of enhancing BTB permeability. Here, we characterize the time-dependent impact of regadenoson on brain endothelial cell interactions and paracellular transport, using mouse and rat brain endothelial cells and tumor models. In vitro, A2AR activation leads to disorganization of cytoskeletal actin filaments by 30 minutes, downregulation of junctional protein expression by 4 hours, and reestablishment of endothelial cell integrity by 8 hours. In rats bearing intracranial gliomas, regadenoson treatment results in increase of intratumoral temozolomide concentrations, yet no increased survival noted with combined temozolomide therapy. These findings demonstrate regadenoson's ability to induce brain endothelial structural changes among glioma to increase BTB permeability. The use of vasoactive mediators, like regadenoson, which transiently influences paracellular transport, should further be explored to evaluate their potential to enhance central nervous system treatment delivery to aggressive brain tumors. IMPLICATIONS: This study provides insight on the use of a vasoactive agent to increase exposure of the BTB to chemotherapy with intention to improve glioma treatment efficacy.
Collapse
Affiliation(s)
- Amélie Vézina
- Neuro-Oncology Branch, NCI, NIH, Bethesda, Maryland.,Electron Microscope Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Monica Manglani
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | - DreeAnna Morris
- Department of Neurology, Oregon Health & Sciences University, Portland, Oregon
| | - Brandon Foster
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | | | - Hua Song
- Neuro-Oncology Branch, NCI, NIH, Bethesda, Maryland
| | - Meili Zhang
- Neuro-Oncology Branch, NCI, NIH, Bethesda, Maryland
| | - Dionne Davis
- Neuro-Oncology Branch, NCI, NIH, Bethesda, Maryland
| | - Wei Zhang
- Neuro-Oncology Branch, NCI, NIH, Bethesda, Maryland
| | - Jessica Bills
- Department of Neurology, Oregon Health & Sciences University, Portland, Oregon
| | - Kunio Nagashima
- Electron Microscope Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Priya Shankarappa
- Genitourinary Malignancies Branch, Molecular Pharmacology Section, NCI, NIH, Bethesda, Maryland
| | - Jessica Kindrick
- Genitourinary Malignancies Branch, Molecular Pharmacology Section, NCI, NIH, Bethesda, Maryland
| | - Stuart Walbridge
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | - Cody J Peer
- Genitourinary Malignancies Branch, Molecular Pharmacology Section, NCI, NIH, Bethesda, Maryland
| | - William D Figg
- Genitourinary Malignancies Branch, Molecular Pharmacology Section, NCI, NIH, Bethesda, Maryland
| | | | - Dorian B McGavern
- Viral Immunology and Intravital Imaging Section, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, Maryland
| | - Leslie L Muldoon
- Department of Neurology, Oregon Health & Sciences University, Portland, Oregon
| | - Sadhana Jackson
- Neuro-Oncology Branch, NCI, NIH, Bethesda, Maryland. .,Electron Microscope Laboratory, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| |
Collapse
|
246
|
Gupta P, Hare DL, Wookey PJ. Strategic Development of an Immunotoxin for the Treatment of Glioblastoma and Other Tumours Expressing the Calcitonin Receptor. Cells 2021; 10:cells10092347. [PMID: 34571996 PMCID: PMC8466289 DOI: 10.3390/cells10092347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 11/21/2022] Open
Abstract
New strategies aimed at treatment of glioblastoma are frequently proposed to overcome poor prognosis. Recently, research has focused on glioma stem cells (GSCs), some quiescent, which drive expansion of glioblastoma and provide the complexity and heterogeneity of the tumour hierarchy. Targeting quiescent GSCs is beyond the capability of conventional drugs such as temozolomide. Here, we discuss the proposal that the calcitonin receptor (CT Receptor), expressed in 76–86% of patient biopsies, is expressed by both malignant glioma cells and GSCs. Forty-two percent (42%) of high-grade glioma (HGG; representative of GSCs) cell lines available from one source express CT Receptor protein in cell culture. The pharmacological calcitonin (CT)-response profiles of four of the HGG cell lines were reported, suggesting mutational/splicing inactivation. Alternative splicing, commonly associated with cancer cells, could result in the predominant expression of the insert-positive isoform and explain the atypical pharmacology exhibited by CT non-responders. A role for the CT Receptor as a putative tumour suppressor and/or oncoprotein is discussed. Both CT responders and non-responders were sensitive to immunotoxins based on an anti-CT Receptor antibody conjugated to ribosomal-inactivating proteins. Sensitivity was increased by several logs with the triterpene glycoside SO1861, an endosomal escape enhancer. Under these conditions, the immunotoxins were 250–300 times more potent than an equivalent antibody conjugated with monomethyl auristatin E. Further refinements for improving the penetration of solid tumours are discussed. With this knowledge, a potential strategy for effective targeting of CSCs expressing this receptor is proposed for the treatment of GBM.
Collapse
|
247
|
Lo Cascio C, McNamara JB, Melendez EL, Lewis EM, Dufault ME, Sanai N, Plaisier CL, Mehta S. Nonredundant, isoform-specific roles of HDAC1 in glioma stem cells. JCI Insight 2021; 6:e149232. [PMID: 34494550 PMCID: PMC8492336 DOI: 10.1172/jci.insight.149232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 07/22/2021] [Indexed: 01/02/2023] Open
Abstract
Glioblastoma (GBM) is characterized by an aberrant yet druggable epigenetic landscape. One major family of epigenetic regulators, the histone deacetylases (HDACs), are considered promising therapeutic targets for GBM due to their repressive influences on transcription. Although HDACs share redundant functions and common substrates, the unique isoform-specific roles of different HDACs in GBM remain unclear. In neural stem cells, HDAC2 is the indispensable deacetylase to ensure normal brain development and survival in the absence of HDAC1. Surprisingly, we find that HDAC1 is the essential class I deacetylase in glioma stem cells, and its loss is not compensated for by HDAC2. Using cell-based and biochemical assays, transcriptomic analyses, and patient-derived xenograft models, we find that knockdown of HDAC1 alone has profound effects on the glioma stem cell phenotype in a p53-dependent manner. We demonstrate marked suppression in tumor growth upon targeting of HDAC1 and identify compensatory pathways that provide insights into combination therapies for GBM. Our study highlights the importance of HDAC1 in GBM and the need to develop isoform-specific drugs.
Collapse
Affiliation(s)
- Costanza Lo Cascio
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA.,Interdisciplinary Graduate Program in Neuroscience, School of Life Sciences, and
| | - James B McNamara
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Ernesto L Melendez
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Erika M Lewis
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Matthew E Dufault
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Nader Sanai
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Christopher L Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona, USA
| | - Shwetal Mehta
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
248
|
Gil-Ranedo J, Gallego-García C, Almendral JM. Viral targeting of glioblastoma stem cells with patient-specific genetic and post-translational p53 deregulations. Cell Rep 2021; 36:109673. [PMID: 34496248 DOI: 10.1016/j.celrep.2021.109673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/05/2021] [Accepted: 08/16/2021] [Indexed: 10/20/2022] Open
Abstract
Cancer therapy urges targeting of malignant subsets within self-renewing heterogeneous stem cell populations. We dissect the genetic and functional heterogeneity of human glioblastoma stem cells (GSCs) within patients by their innate responses to non-pathogenic mouse parvoviruses that are tightly restrained by cellular physiology. GSC neurospheres accumulate assembled capsids but restrict viral NS1 cytotoxic protein expression by an innate PKR/eIF2α-P response counteractable by electric pulses. NS1 triggers a comprehensive DNA damage response involving cell-cycle arrest, neurosphere disorganization, and bystander disruption of GSC-derived brain tumor architecture in rodent models. GSCs and cancer cell lines permissive to parvovirus genome replication require p53-Ser15 phosphorylation (Pp53S15). NS1 expression is enhanced by exogeneous Pp53S15 induction but repressed by wtp53. Consistently, patient-specific GSC subpopulations harboring p53 gain-of-function mutants and/or Pp53S15 are selective viral targets. This study provides a molecular foundation for personalized biosafe viral therapies against devastating glioblastoma and other cancers with deregulated p53 signaling.
Collapse
Affiliation(s)
- Jon Gil-Ranedo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - Carlos Gallego-García
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | - José M Almendral
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain.
| |
Collapse
|
249
|
Gelatin methacrylate hydrogels culture model for glioblastoma cells enriches for mesenchymal-like state and models interactions with immune cells. Sci Rep 2021; 11:17727. [PMID: 34489494 PMCID: PMC8421368 DOI: 10.1038/s41598-021-97059-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is the most lethal primary malignant brain tumor in adults. Simplified two-dimensional (2D) cell culture and neurospheres in vitro models fail to recapitulate the complexity of the tumor microenvironment, limiting its ability to predict therapeutic response. Three-dimensional (3D) scaffold-based models have emerged as a promising alternative for addressing these concerns. One such 3D system is gelatin methacrylate (GelMA) hydrogels, and we aimed to understand the suitability of using this system to mimic treatment-resistant glioblastoma cells that reside in specific niches. We characterized the phenotype of patient-derived glioma cells cultured in GelMA hydrogels (3D-GMH) for their tumorigenic properties using invasion and chemoresponse assays. In addition, we used integrated single-cell and spatial transcriptome analysis to compare cells cultured in 3D-GMH to neoplastic cells in vivo. Finally, we assessed tumor-immune cell interactions with a macrophage infiltration assay and a cytokine array. We show that the 3D-GMH system enriches treatment-resistant mesenchymal cells that are not represented in neurosphere cultures. Cells cultured in 3D-GMH resemble a mesenchymal-like cellular phenotype found in perivascular and hypoxic regions and recruit macrophages by secreting cytokines, a hallmark of the mesenchymal phenotype. Our 3D-GMH model effectively mimics the phenotype of glioma cells that are found in the perivascular and hypoxic niches of the glioblastoma core in situ, in contrast to the neurosphere cultures that enrich cells of the infiltrative edge of the tumor. This contrast highlights the need for due diligence in selecting an appropriate model when designing a study's objectives.
Collapse
|
250
|
Haddad AF, Young JS, Amara D, Berger MS, Raleigh DR, Aghi MK, Butowski NA. Mouse models of glioblastoma for the evaluation of novel therapeutic strategies. Neurooncol Adv 2021; 3:vdab100. [PMID: 34466804 PMCID: PMC8403483 DOI: 10.1093/noajnl/vdab100] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glioblastoma (GBM) is an incurable brain tumor with a median survival of approximately 15 months despite an aggressive standard of care that includes surgery, chemotherapy, and ionizing radiation. Mouse models have advanced our understanding of GBM biology and the development of novel therapeutic strategies for GBM patients. However, model selection is crucial when testing developmental therapeutics, and each mouse model of GBM has unique advantages and disadvantages that can influence the validity and translatability of experimental results. To shed light on this process, we discuss the strengths and limitations of 3 types of mouse GBM models in this review: syngeneic models, genetically engineered mouse models, and xenograft models, including traditional xenograft cell lines and patient-derived xenograft models.
Collapse
Affiliation(s)
- Alexander F Haddad
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Dominic Amara
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Mitchel S Berger
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - David R Raleigh
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California, San Francisco, California, USA
| | - Nicholas A Butowski
- Department of Neurological Surgery, University of California, San Francisco, California, USA
- Corresponding Author: Nicholas A. Butowski, MD, Department of Neurological Surgery, University of California, San Francisco, 400 Parnassus Ave Eighth Floor, San Francisco, CA, 94143, USA ()
| |
Collapse
|